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Abstract
NLP research has increasingly focused on sub-
jective tasks such as emotion analysis. How-
ever, existing emotion benchmarks suffer from
two major shortcomings: (1) they largely rely
on keyword-based emotion recognition, over-
looking crucial cultural dimensions required for
deeper emotion understanding, and (2) many
are created by translating English-annotated
data into other languages, leading to poten-
tially unreliable evaluation. To address these
issues, we introduce Cultural Lenses on Emo-
tion (CuLEmo), the first benchmark designed
to evaluate culture-aware emotion prediction
across six languages: Amharic, Arabic, En-
glish, German, Hindi, and Spanish. CuLEmo
comprises 400 crafted questions per language,
each requiring nuanced cultural reasoning and
understanding. We use this benchmark to eval-
uate several state-of-the-art LLMs on culture-
aware emotion prediction and sentiment analy-
sis tasks. Our findings reveal that (1) emotion
conceptualizations vary significantly across lan-
guages and cultures, (2) LLMs performance
likewise varies by language and cultural con-
text, and (3) prompting in English with explicit
country context often outperforms in-language
prompts for culture-aware emotion and senti-
ment understanding. The dataset1 and evalua-
tion code2 is available.

1 Introduction

Despite progress in bridging language barriers
(Ahuja et al., 2023), large language models (LLMs)
still struggle to capture cultural nuances and adapt
to specific cultural contexts (Shen et al., 2024).
Ideally, multilingual LLMs can not only facilitate
cross-lingual communication but also incorporate
an awareness of cultural sensitivities (i.e., what is
deemed acceptable, normal, or inappropriate in a
given culture), integrating such knowledge to foster
deeper global connections (Liu et al., 2024a).

1https://huggingface.co/llm-for-emotion
2https://github.com/llm-for-emotion/culemo
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Figure 1: CuLEmo dataset creation pipeline and evalua-
tions of LLMs in emotion and sentiment tasks.

LLMs and agent systems are employed to inter-
act extensively with humans across applications
such as customer service, healthcare, and educa-
tion (Wang et al., 2024). To facilitate effective
interaction, incorporating aspects of cognitive and
emotional-social intelligence, the ability to recog-
nize and interpret human emotions (Mathur et al.,
2024), can facilitate better interactions with more
people. Factors such as age, cultural background,
and personal experiences influence how individu-
als perceive and process information, particularly
within subjective NLP tasks. Among these, emo-
tion recognition (ER) and sentiment analysis (SA)
are particularly sensitive to language- and culture-
specific nuances (Plaza-del-Arco et al., 2024).

Natural language frequently encodes emotional
information (Jim et al., 2024). For example, con-
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sider tipping customs in restaurants: in some cul-
tures (e.g., North America), tipping is widely prac-
ticed, whereas in China, it is rare, and in Japan, it
may even be considered offensive (Givi and Galak,
2017). Such differences underscore the importance
of culturally-aware language technologies.

Although prior work has attempted cross-
lingual emotion evaluation by translating emotion-
annotated data in English into other lan-
guages (Tahir et al., 2023; De Bruyne, 2023),
relying solely on translations from English can
introduce incomplete or misleading insights. A
more fair comparison requires the same underly-
ing scenarios, each annotated natively across dif-
ferent languages and cultures. While emotion is
language- and culture-dependent (Plaza-del-Arco
et al., 2024), comprehensive cross-cultural evalua-
tions remain largely unexplored.

To bridge this gap, we propose Cultural Emo-
tion (CuLEmo), a novel dataset that captures
events and annotates them across multiple cultures
and languages from scratch. CuLEmo enables the
evaluation of multilingual LLM performance in
analogous scenarios across different cultural con-
texts. Figure 1 shows the CuLEmo dataset creation
and evaluation pipeline.

Culture can manifest in 1) the language of the
data itself and 2) the annotation labels (i.e., multi-
culturally informed annotations) (Liu et al., 2024b).
CuLEmo satisfies both conditions: it is multilin-
gual and includes culturally grounded annotations.
Indeed, the same event may evoke distinct emo-
tional reactions in different cultures. In light of this,
we pose the following research questions (RQs):

• RQ1. Do LLMs provide culturally aware-
emotional responses?

• RQ2. Which cultures are more effectively
represented in LLMs?

• RQ3. Can LLMs identify a country’s culture
based on the text describing an event in the
prompt?

• RQ3. Does the language of the prompt affect
the ability of LLMs for culture-aware emotion
understanding?

To that end, this paper makes three key con-
tributions. First, we introduce CuLEmo, a high-
quality, multicultural, and multilingual benchmark
dataset. Second, we leverage CuLEmo to investi-
gate whether widely used multilingual LLMs can
capture variations in emotional expression across
cultures and languages in emotion and sentiment

tasks. Finally, we highlight the variation in per-
formance on culture-aware emotion understanding
when LLMs are prompted in different languages.

2 Related Work

We now review related work in culturally-aware
NLP, culture-oriented benchmarks, and cross-
lingual study of linguistic emotional expression.
Although culture is a complex concept, most def-
initions of culture encompass people, groups of
people, and interactions between individuals and
groups (Liu et al., 2024c). Understanding culture
is important for the safety and fairness of LLMs.

2.1 Culture-oriented Benchmarks

Given the significance of culture in language
model evaluation (Adilazuarda et al., 2024), re-
searchers have proposed various culture-oriented
benchmarks to explore its effects on language un-
derstanding and generation. These efforts typi-
cally involve collecting and annotating multilin-
gual and multicultural corpora to study cultural-
driven phenomena in downstream NLP tasks. For
instance, prior work has examined cross-cultural
user statements (Liu et al., 2021; Nayak et al.,
2024), detected cultural differences and user at-
tributes (Sweed and Shahaf, 2021; Qian et al.,
2021), studied multilingual moral understanding
(Guan et al., 2022; Mohamed et al., 2022), and ad-
dressed culture-specific time expression grounding
(Shwartz, 2022; Fung et al., 2023).

2.2 Emotion Across Languages

Several studies have examined multilingual emo-
tion datasets. Some findings suggest that emotion
categories can be preserved through machine trans-
lation, for example, by exploring how English-
annotated emotion data translate into Finnish,
French, German, Hindi, and Italian (Kajava et al.,
2020; Tahir et al., 2023; Bianchi et al., 2022).
These works suggest that the changes in emotion
labels often stem from the inherent difficulty of
annotation rather than from linguistic differences.

Conversely, other works emphasize that emo-
tions may not be consistently preserved across dif-
ferent languages. De Bruyne et al. (2022) showed
that typologically dissimilar languages pose chal-
lenges for cross-lingual learning with mBERT-
based models. De Bruyne (2023) argued that trans-
lation could fail to capture language-specific ver-
balizations and connotations—especially if certain
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emotion keywords do not exist in a given language
(e.g., there is no direct word for “sadness” in Tahi-
tian, and Amharic does not have an exact term for
“surprise”). Qian et al. (2023) found that roughly
half of the machine-translated outputs from English
to Chinese fail to adequately preserve the original
emotion, attributing these discrepancies to emotion-
specific words and complex linguistic phenomena.

2.3 Emotions and Cultures
Recent work examines how cultural contexts shape
emotional expression across languages. Haval-
dar et al. (2023a) analyze embeddings of 271
emotion keywords in English, Spanish, Chi-
nese, and Japanese by projecting into a Valence-
Arousal plane using XLM-RoBERTa (Reimers
and Gurevych, 2020) embeddings, finding that
multilingual models embed non-English emotion
words differently. Havaldar et al. (2023b) ana-
lyzes Pride/Shame as a known cultural difference
by prompting GPT-3.5 and GPT-4 to explore how
these models handle pride and shame in the USA
vs. Japan. They find that GPT-3.5 displays limited
knowledge of culturally specific norms. Ahmad
et al. (2024) expands the 19 cultural questions of
the work (Havaldar et al., 2023b) to 37 questions
and evaluates ChatGPT for the low-resource Hausa
language for sentiment analysis, but these evalua-
tions are limited to 19/37 culturally relevant ques-
tions (not diverse and representative data), limited
classes (Pride/Shame or positive/negative/mixed),
and limited cultures (USA vs. Japan or Hausa).

3 CuLEmo Dataset Preparation

We now describe the precise steps in creating the
CuLEmo dataset.

3.1 Collecting Cultural Events
We manually craft scenarios, search on the web,
and prompt LLMs to gather traditions, events,
norms, and actions that elicit culturally different
emotions across six target countries (UAE, USA,
Germany, Ethiopia, India, and Mexico). We draw
inspiration from the work of Havaldar et al. (2023b)
to enhance topic diversity. Language representa-
tives are asked to propose events distinct from those
of other countries in the form of emotion-oriented
questions. Importantly, these events do not contain
explicit emotional keywords (as typically seen in
traditional emotion datasets). We also refer to the
International Survey on Emotion Antecedents and
Reactions (ISEAR) (Scherer and Wallbott, 1994)

data format, "When I ... situations that cause a spe-
cific emotion", a well-known English dataset for
emotion analysis consisting of self-reported events
from around 3,000 respondents across 37 countries
and five continents. Table 1 displays the ten broad
categories of the CuLEmo dataset and the number
of questions in each category.

Categories # Qn.
Family relationships 45
Social etiquette and interactions 65
Personal appearance and dress code 32
Cultural and religious practices 62
Sexual and intimate relationships 38
Professional contexts 28
Food and dining etiquette 35
Personal privacy 25
Emotional and psychological situations 40
Public behavior and norms 30
Total 400

Table 1: The ten broad categories and the number of
events (# Qn. - number of questions) in the CuLEmo
dataset.

3.2 Human-Adapted Translation

After collecting the events in English, we translate
them into five target languages—Arabic, Amharic,
German, Hindi, and Spanish—using Google Trans-
late, followed by native-speaker approvals. Be-
cause the questions are simple “How do you feel
when . . . ?” questions and lack explicit emotion
keywords, translation quality did not affect their
cultural content. While we acknowledge that ex-
isting works often depend on translating emotion-
annotated data from English into other languages
with their labels (Kajava et al., 2020; Tahir et al.,
2023; Bianchi et al., 2022), our translation pro-
cess is done before any annotation. To ensure cor-
rectness, native speakers evaluate the translations.
While most translations were acceptable, a few ad-
justments were made, e.g., to fix gender references
and timing expressions for Amharic.

3.3 Language and Cultures Covered

Several factors guide our choice of languages, en-
suring a broad range of cultural norms and con-
cepts: (1) typological variety (five languages with
four scripts), (2) geographical diversity (eastern vs.
western contexts), (3) resource availability (low- vs.
high-resource languages), and (4) the availability
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of native speakers for translation reviews.

3.4 CuLEmo Annotation

We use Amazon Mechanical Turk (MTurk) for
most of our annotations, ensuring at least five
native-speaker annotators per instance from the
respective targeted country. We use a customized
POTATO (Pei et al., 2022) annotation tool for lan-
guages lacking sufficient MTurk annotators (e.g.,
Amharic) and recruit local native speakers who
met our criteria. Annotators are fairly compensated
$12/hr (better than the Prolific3’s minimum anno-
tation wage, which is $9/hr). Where no majority
vote emerges among five annotators, we assign two
additional annotations and use that majority vote.

Languages
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Figure 2: Emotion label distribution across coun-
tries/languages: the number of instances in each emo-
tion label across languages from a total of 400 events.

Figure 2 illustrates the distribution of emotion la-
bels. We use six categories: joy, fear, sadness,
anger, guilt, and neutral (no specific emotion).
These labels were adapted from De Bruyne et al.
(2019), where five categories were clustered, plus
a neutral class. Our annotation guidelines group
related labels as “helper” categories—for instance,
“love” and “happy” under joy, and “shame” under
guilt—to assist annotators in selecting the most ap-
propriate coarse-grained label. Examples from the
dataset are provided in Appendix A.
Pairwise Label Agreements Across Countries
We further examine label differences across coun-
tries by computing pairwise agreements after major-
ity voting (Figure 3). Ethiopia and the United Arab
Emirates exhibit the highest agreement at 55%,
along with Germany and the United Arab Emirates;
both exhibit a high neutral class (Figure 2), while
Germany and India show the lowest agreement, at
29.0%. Labels from India thus diverge from those
of other countries.

3https://www.prolific.com/
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Figure 3: Pairwise emotion label agreements across
countries/languages (ordered by their average agree-
ment). Abbreviations: US = USA, MX = Mexico, DE =
Germany, AE = UAE, ET = Ethiopia, and IN = India.

4 Experimental Setup

4.1 Task Formulation

To investigate the emotional comprehension ca-
pabilities of LLMs, we examine how they asso-
ciate different cultures of a country with their cor-
responding languages. Specifically, we explore
culture-aware emotion understanding via two main
tasks: (1) emotion prediction and (2) sentiment
analysis. All tested models are instruction-fine-
tuned, except for the Aya-expanse model. We also
experiment with prompts that do and do not include
explicit country context, using the phrase "You
live in «country name»," (where «country
name» is one of the six targeted countries: UAE,
USA, Ethiopia, Germany, India, and Mexico).
Each task is framed as a text-generation problem,
and the models are evaluated in a zero-shot setting.

4.2 Model Selection

We evaluate a variety of recent LLMs known for
strong performance on standard benchmarks. We
aim to include both smaller and medium-sized mod-
els, as well as open-source and proprietary models:

1. Open Source: LLaMA-3 (3.2-3B, 3.1-8B)
(Dubey et al., 2024; Meta AI, 2024), Gemma
(2B, 9B) (Team Gemma et al., 2024), Aya
(expanse-8b, 101-13B) (Üstün et al., 2024;
Dang et al., 2024), Ministral (3B, 8B) (Mistral
AI, 2024)

2. Proprietary: GPT (3.5, 4) (Achiam et al.,
2024), Gemini-1.5 (Team et al., 2024), Claude
(3.5-sonnet, 3-opus) (Anthropic AI, 2024)
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4.3 Multilingual Prompt Construction

To examine the impact of prompt language on
model performance and to assess each model’s cul-
tural awareness, we design both English and in-
language prompts. The instruction, input text, and
expected answer are in English when using English
prompts. For in-language prompts, all elements are
in one of the five target languages—Arabic (AR),
Amharic (AM), German (DE), Hindi (HI), or Span-
ish (ES). Complete examples of our multilingual
prompts for both emotion prediction and sentiment
analysis are provided in Appendix C. We extract
each model’s answer from its generated text using
the PEDANTS tool (Li et al., 2024).

5 Result and Analysis

5.1 Culture-Aware Emotion Prediction

Do LLMs provide culturally aware emotional re-
sponses? A culture-aware model should accurately
answer questions related to any culture, demon-
strating uniformly high accuracy. To test this, we
assess each LLM’s emotional understanding using
English and in-language prompts with the context
"You live in «country name»,".

Results: Table 2 presents the accuracy of each
LLM for culture-aware emotion prediction. The
choice of prompt language significantly influences
performance. Generally, proprietary models are
less affected by in-language prompts compared to
open-source models, especially for Spanish and
German. Certain cultures appear better represented
in the models—Ministral-8B scores highly on Ger-
man (72%), and GPT-4 performs best on Mexi-
can (65%). In contrast, performance in Indian cul-
ture (Hindi) lags, particularly those using Hindi,
Amharic, or Arabic scripts. Larger models do not
always outperform smaller ones; Gemma-2-2B and
Ministral-8B show competitive or superior accu-
racy relative to some proprietary models. When
prompted in English, all models achieve a reason-
able accuracy. Ministral-8B can exceed proprietary
performance in English and German. GPT-4 an-
swers the same emotion while using the correspond-
ing country name in the prompting; see predicted
examples in Table 3. Overall, results suggest that
culture-aware emotion understanding remains
challenging for the tested LLMs, especially for
low-resource languages and cultures.

5.2 Culture Representation in LLMs

Which culture is more represented in LLMs?
Here, we evaluate LLM performance using English
prompts without any explicit country context. We
then measure how models respond to events from
each target country.
Results: According to Table 4, English prompt
column category, the USA, Mexico, and Germany
consistently achieve higher accuracy scores, while
the UAE, Ethiopia, and India remain less accurately
represented. This suggests that certain cultures may
be more prevalent in the underlying training data.

5.3 Does Language Represent Country?

Can LLMs identify one country’s culture based
solely on the prompt language? In this experi-
ment, we remove explicit country context ("You
live in «country name»") and test whether
LLMs can infer cultural cues only from the lan-
guage used in the prompt.
Results: Table 4, in-language prompt column
category, shows that accuracy drops significantly
when country context is omitted. Comparing these
scores with Table 2 (where country context is in-
cluded), we see consistent performance boosts (e.g.
+1% in Spanish with GPT-4, +5% in Arabic with
Gemini1.5, +6% in German with Ministral, +9%
in Amharic with Claude-3.5-sonnet, and +21% in
Hindi with GPT-4) when the prompt explicitly
names the country. This indicates that language
alone does not reliably convey cultural context. No-
tably, models like Claude-3.5-sonnet and GPT-4
show improvements in Indian and Ethiopian data
when country context is specified, while English
prompts (without “USA” context) are less affected.
Overall, providing the country name remains cru-
cial for accurate culture-aware emotion understand-
ing, especially for less-resourced languages.

5.4 Culture-Aware Sentiment Analysis

For the sentiment analysis experiment, we follow
De Bruyne et al. (2019) and Mostafazadeh Davani
et al. (2022) by grouping emotions into positive
(joy), negative (fear, anger, guilt, sadness), and
neutral sentiments. Table 5 shows the accuracy of
each LLM under this three-class setup.
Results: Table 5 shows better overall performance
on sentiment analysis compared to fine-grained
emotion classification. For example, GPT-4 gains
notable accuracy (e.g., +22% for Hindi). Simi-
larly, the highest score appears for Mexican culture
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Figure 4: Emotion prediction accuracy in radar chart across countries in English and in-language prompts. For
lower-resource languages, English tends to work substantially better.

LLMs
USA UAE Germany Ethiopia India Mexico
EN EN AR EN DE EN AM EN HI EN ES

Llama-3.2-3B 0.44 0.20 0.12 0.20 0.20 0.18 0.30 0.26 0.26 0.28 0.37
Llama-3.1-8B 0.58 0.52 0.47 0.48 0.39 0.48 0.14 0.37 0.34 0.56 0.57
Gemma-2-2B 0.62 0.59 0.45 0.64 0.54 0.48 0.17 0.38 0.29 0.58 0.56
Gemma-2-9B 0.57 0.51 0.56 0.47 0.53 0.47 0.29 0.40 0.34 0.53 0.60
Aya-expanse-8b* 0.38 0.28 0.20 0.30 0.24 0.30 0.29 0.32 0.29 0.37 0.47
Aya-101-13B 0.60 0.60 0.43 0.68 0.43 0.52 0.34 0.39 0.34 0.56 0.48
Ministral-8B 0.65 0.61 0.06 0.58 0.72 0.49 0.23 0.39 0.19 0.57 0.32
Claude-3.5-sonnet 0.57 0.48 0.54 0.46 0.42 0.51 0.49 0.40 0.36 0.58 0.61
Claude-3-opus 0.54 0.48 0.47 0.43 0.32 0.53 0.43 0.37 0.36 0.61 0.61
Gemini1.5-flash 0.56 0.56 0.56 0.46 0.48 0.51 0.51 0.41 0.41 0.62 0.64
GPT-4 0.60 0.55 0.48 0.51 0.50 0.54 0.29 0.40 0.40 0.64 0.65

Table 2: LLMs’ accuracy for the emotion prediction task. Columns labeled EN/AR/DE/AM/HI/ES show the
prompt language for each corresponding culture (e.g., UAE is tested with English and Arabic). The highest-scoring
model across English and in-language prompts is highlighted in bold, and the best model for the in-language prompt
is underlined. * indicates a non-instruction fine-tuned model.

Questions Examples from CuLEmo US AE DE ET IN MX
How would you feel when you did not tip the waiter at the
restaurant?

guilt neutral neutral guilt guilt guilt
guilt guilt guilt guilt guilt guilt

How would you feel when someone insults someone’s religion? neutral anger neutral anger neutral anger
anger anger anger anger anger anger

How would you feel if someone wears black to a wedding? sadness neutral neutral anger neutral neutral
neutral neutral neutral neutral neutral neutral

How would you feel when you see a female wearing small pants
on the street?

neutral sadness neutral anger neutral neutral
neutral neutral neutral neutral neutral neutral

How would you feel when your attendee joined the meeting
after 10 minutes started?

anger neutral anger neutral anger anger
neutral anger anger anger anger anger

How would you feel if your parents arranged a marriage for you
without your input?

anger anger neutral neutral neutral neutral
anger anger anger anger anger anger

How would you feel upon receiving the message that you have
been accepted as a medical student?

joy joy neutral joy joy joy
joy joy joy joy joy joy

Table 3: Examples of emotion predictions from GPT-4 model. The first row under the country-code columns in each
section represents the gold-label emotions, while the second row displays the predicted label. The predictions are
using country context, by adding You live in «country name», How do you feel when ... to the prompt.
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English prompt In-language prompt

Lang. US AE DE ET IN MX AE DE ET IN MX

Llama-3.2-3B 0.44 0.41 0.36 0.35 0.31 0.46 0.13 0.19 0.30 0.25 0.37
Llama-3.1-8B 0.62 0.54 0.50 0.51 0.36 0.60 0.46 0.31 0.18 0.32 0.56

Gemma-2-2B 0.61 0.59 0.68 0.49 0.32 0.57 0.47 0.56 0.14 0.27 0.52
Gemma-2-9B 0.59 0.54 0.54 0.50 0.41 0.57 0.59 0.59 0.28 0.34 0.61

Aya-101-13B* 0.61 0.57 0.60 0.55 0.38 0.58 0.34 0.39 0.31 0.30 0.49
Ministral-8B 0.66 0.60 0.56 0.50 0.38 0.59 0.07 0.67 0.20 0.23 0.34

Claude-3.5-s. 0.56 0.51 0.39 0.49 0.36 0.60 0.51 0.35 0.53 0.38 0.61
Claude-3-op 0.52 0.40 0.37 0.49 0.36 0.59 0.45 0.30 0.47 0.37 0.58
Gemini1.5 0.53 0.51 0.39 0.48 0.39 0.59 0.54 0.42 0.52 0.37 0.65
GPT-4 0.58 0.55 0.46 0.48 0.37 0.63 0.46 0.45 0.27 0.41 0.64

Table 4: Emotion predicton results using English prompts and in-language prompts without specifying the country
context, "You live in «country name»". The language column names are the two-letter targeted countries. The
boldface result indicates the better results for each country. * indicates a non-instruction fine-tuned model.
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Figure 5: Sentiment (positive, negative, and neutral) distribution across countries in the CuLEmo dataset.

LLMs
USA UAE Germany Ethiopia India Mexico
EN EN AR EN DE EN AM EN HI EN ES

Llama-3.2-3B 0.57 0.41 0.15 0.20 0.24 0.48 0.51 0.60 0.56 0.55 0.60
Llama-3.1-8B 0.65 0.58 0.50 0.49 0.43 0.59 0.43 0.57 0.55 0.64 0.68
Gemma-2-2B 0.68 0.65 0.58 0.66 0.59 0.56 0.46 0.50 0.59 0.66 0.66
Gemma-2-9B 0.55 0.57 0.63 0.49 0.56 0.62 0.50 0.57 0.61 0.63 0.68
Aya-expanse-8b* 0.45 0.33 0.26 0.31 0.27 0.39 0.50 0.45 0.58 0.45 0.57
Aya-101-13B 0.65 0.64 0.55 0.69 0.45 0.55 0.53 0.52 0.56 0.61 0.63
Ministral-8B 0.70 0.66 0.06 0.60 0.73 0.59 0.46 0.54 0.24 0.65 0.53
Claude-3.5-sonnet 0.65 0.58 0.61 0.49 0.46 0.66 0.62 0.60 0.61 0.66 0.72
Claude-3-opus 0.63 0.60 0.56 0.46 0.35 0.67 0.58 0.59 0.61 0.72 0.75
Gemini1.5-flash 0.63 0.63 0.63 0.48 0.50 0.63 0.60 0.60 0.53 0.69 0.71
GPT-4 0.67 0.61 0.54 0.48 0.51 0.62 0.49 0.58 0.62 0.72 0.75

Table 5: Accuracy for culture-aware sentiment analysis (positive/negative/neutral) with English and in-language
prompts. The highest-scoring model across English and in-language prompts is highlighted in bold, and the best
model for the in-language prompt is underlined. * is not an instruction fine-tuned model.
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(Spanish) with Claude-3-opus and GPT-4, each at
75%. By contrast, Aya-expanse-8b struggles more,
as it is not instruction fine tuned. Smaller mod-
els like Gemma-2-2B are competitive with propri-
etary models. Still, performance drops persist for
Amharic and Hindi, reflecting the challenges of
culture-aware tasks in lower-resource contexts.

6 Discussion

Our analyses provide several insights into the cur-
rent state of LLMs with respect to cultural emotion
understanding. We highlight three main lessons
learned and propose potential steps to enhance the
cultural awareness of LLMs.

6.1 Variance Across Languages and Cultures
Data analysis from the CuLEmo dataset in Fig-
ure 2 shows notable differences in how annotators
from different countries perceive the same event
differently. For instance, the events annotated from
Germany have the highest proportion of neutral
(no emotion) labels. Figure 5 further illustrates
the distribution of positive, negative, and neutral
sentiments across 400 instances in each country.
How are emotions distributed across languages
and cultures? Based on the dataset analysis of
emotion distribution across languages, shown in
Figure 2: German (87%), Arabic (58%), and En-
glish (50.5%) data have the most neutral (no emo-
tion). Amharic (29.5%), Arabic (22%), and Span-
ish (21.5%) languages have the most anger emo-
tion. These findings confirm that a single event can
evoke distinct emotional reactions depending on
the cultural background and language.

6.2 Prompt Language Strongly Affects
Cultural Emotion Understanding

As illustrated in the Table 4 and summarized re-
sults in Figure 4, prompt language plays a major
role in LLM performance for emotion prediction
and sentiment analysis. For less-resourced lan-
guages like Amharic and Hindi, prompting in En-
glish consistently yields better results—sometimes
by as much as a 20% improvement. Conversely,
in-language prompts with explicit country con-
text tend to work best for high-resource languages
such as German and Spanish. These discrepancies
stem from differences in both linguistic coverage
and instruction-following abilities learned during
pre-training. One practical solution is to leverage
English prompts while specifying the target country
(e.g., “You live in «country name»,”).

6.3 Performance Gaps Reflect
Under-Represented cultures

We observe notably lower accuracy for Ethiopia
and India in both emotion and sentiment tasks, sug-
gesting that models may be less exposed to cultural
practices and norms for these under-represented
contexts. Ensuring greater diversity in training cor-
pora is key to improving model performance for
such cultures. Providing explicit country context
can partially offset these gaps by nudging models
to incorporate relevant cultural knowledge.

Overall, our findings underscore the impor-
tance of cultural context in developing and deploy-
ing LLMs. Beyond balanced data collection, re-
searchers may explore culture-specific tuning or
reinforcement learning from human feedback to
further refine the abilities of models to interpret
and respect cultural nuances.

7 Conclusion

In this paper, we evaluate a diverse set of state-of-
the-art LLMs for their ability to predict culturally
aware emotion prediction and sentiment analysis
tasks. We investigate the influence of including ex-
plicit country references “You live in «country
name»” and varying the query language. Our re-
sults indicate that LLMs tend to excel at culturally
driven emotions that are well-represented in their
training data and underperform for less represented
cultures. Specifically, we find that 1) emotion is
culture-dependent and can vary notably across lan-
guages and regions; 2) LLMs exhibit sizable perfor-
mance gaps when tested on culture-specific emo-
tions from under-represented locales; 3) providing
explicit country context in prompts improves both
emotion and sentiment prediction; and 4) sentiment
analysis is better for the models, likely because it
involved fewer class (positive, negative, neutral)
than fine-grained emotion categories.

Moving forward, we suggest training LLMs
in approaches such as 1) enriching the training
data with diverse cultural information from various
sources like literature, news, and cultural databases
and 2) implementing fine-tuning techniques that
specifically train the LLM on prompts and datasets
focused on different cultural contexts so that they
can be culturally aware and able to generate re-
sponses that are sensitive to cultural nuances. We
also encourage more extensive evaluation of multi-
lingual models using benchmarks designed to mea-
sure cultural awareness alongside standard accu-
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racy metrics. Future research could also explore
the influence of annotator demographics—such
as age, gender, education level, political stance,
and religion—on culture-specific emotion annota-
tion. Finally, we hope that releasing the CuLEmo
dataset will foster further exploration into cultur-
ally nuanced NLP tasks and lead to more inclusive
language models.

Limitations

Subjectivity of emotion Emotional subjectivity
remains a central challenge in emotion analysis
tasks. Although annotating data via crowdsourcing
such as Amazon Mechanical Turk (MTurk) is com-
mon in NLP dataset creation (Mohammad et al.,
2018), and despite applying strict qualification cri-
teria for annotators, maintaining consistent anno-
tations is difficult given the inherently subjective
nature of emotions.

Limited number of events Our test comprises
only 400 questions for each language, which is
certainly not sufficient to capture the full cultural
differences in emotional expression.

Drawback of majority vote We decide the final
label of the annotations using majority vote, such as
an emotion label greater than or equal to three votes
from a total of five annotators per instance will pass
as a final emotion label. As a general drawback of
the majority vote, this will exclude the perspectives
of minority votes. Modeling annotator-level data
without applying the majority vote can address this.

Limited emotion label space Additional con-
straints arise from our decision to limit the emotion
label space to six classes; including more emo-
tion categories (e.g. surprise or disgust) during the
annotation could yield more fine-grained insights
(Niu et al., 2024). Our dataset also covers only
six languages/countries and comprises 400 events,
which may restrict generalizability.

Annotation bias Emotion annotation is subjec-
tive in nature and can vary widely depending on
personal background; it likely still has consistency
issues, affecting the reliability of the evaluations.

Limited model evaluations Regarding open-
source LLMs, we opted to evaluate only small-
(2B,3B) and medium-sized (8B, 9B, 13B) models
due to resource constraints and for experimental
reproducibility. While larger LLMs might achieve

higher accuracies across target languages, they re-
main beyond the scope of our current setup. Finally,
although 400 events allow for controlled experi-
ments, evaluating models on more extensive and
varied data would provide a clearer picture of their
culture-aware performance.

Ethics Statement

We conducted this work with careful attention to
ethical considerations involving data creation, an-
notation, and potential downstream impacts.

1. Data Collection and Annotation

Cultural Respect The CuLEmo dataset was cu-
rated with input from native speakers and cultural
representatives. We designed questions to capture
diverse cultural norms and emotional responses
without perpetuating stereotypes.

Consent and Compensation We used Amazon
Mechanical Turk (MTurk) and an in-house annota-
tion platform for data labeling. Workers were in-
formed of the task’s nature and compensated fairly
at a rate of $12/hour, which exceeds minimum-
wage standards in the majority of the annotators’
countries of residence.

Privacy and Confidentiality All scenario-based
questions were artificially created or adapted from
publicly available cultural information. No person-
ally identifiable information was collected, and no
real names or private details were used.

2. Fair Representation and Potential Biases

Under-Representation While we included six
languages (English, Arabic, Amharic, German,
Hindi, and Spanish) to broaden cultural coverage,
bias in representation is inevitable in such datasets
and evaluations. Clearly, many global cultures
and languages remain unrepresented in our work,
including minority language speakers of the lan-
guages we studied and speakers of those languages
in less dominant regions. Additionally, cultures are
complex and not subject to clean delineation. We
therefore make no contention that this is a complete
or fully representative dataset.

Subjectivity of Emotions Emotions are inher-
ently subjective and influenced by personal and
cultural backgrounds. Crowd-sourced annotations
may inadvertently amplify majority cultural norms
or obscure minority perspectives. We minimized
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these risks by providing clear guidelines, but ac-
knowledge that subjective variation is inevitable.

3. Responsible Use of the Dataset and Models

Cultural Sensitivity The dataset includes
prompts and scenarios potentially sensitive to
specific cultural contexts (e.g., religious practices,
social norms). We urge researchers and practi-
tioners to exercise cultural sensitivity and caution
when using the dataset or resulting models in
applications that could impact cultural or ethnic
groups.

Downstream Applications Models trained or
evaluated on CuLEmo could be applied in contexts
such as mental health or social support, potentially
affecting vulnerable populations. We encourage de-
velopers to consider safety, fairness and informed
consent when deploying such systems. We caution
against deployment in high-stakes settings, particu-
larly without appropriate safeguards, user testing,
and especially ethical oversight.

4. Transparency and Future Work

Open Access We release the CuLEmo dataset
publicly to facilitate reproducibility and encourage
further research in culturally aware NLP.

Ongoing Improvement Future efforts should ex-
pand cultural and linguistic diversity, refine anno-
tation protocols, and include more nuanced emo-
tional labels. We welcome community feedback to
improve both the dataset and modeling approaches.

We aim to advance culturally aware NLP through
responsible data practices, fair representation, and
transparent sharing, and hope this work fosters a
more inclusive understanding of emotion across
languages and cultures.
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A Dataset Examples

The section below shows English examples from CuLEmo datasets.

English Examples from the CuLEmo dataset

1. How would you feel when you did not tip the waiter at the restaurant?
2. How would you feel when someone insults someone’s religion?
3. How would you feel if someone wear black to a wedding?
4. How would you feel when you see a female wearing small pants on the street
5. How would you feel when your attendee joined the meeting after 10 minutes started
6. How would you feel when you saw a young dog running to you?
7. How would you feel when someone accepted your gift in one hand?
8. How would you feel when you crossed an older man in the street?
9. How would you feel when someone calls a religious leader by their name

10. You are a doctor. How would you feel when someone calls you by your name without the
doctor prefix

11. How would you feel if your parents arranged a marriage for you without your input?
12. How would you feel if someone touched or shook hands with you while you were of the

opposite sex?
13. How would you feel when a guest leaves food on their plate at your home?
14. How would you feel if you saw a woman not cover her hair while entering a religious place?
15. How would you feel when you were expected to wash other legs
16. How would you feel if someone refused your gift before accepting it?
17. How would you feel when you kissed your girlfriend/boyfriend and saw your father?
18. How would you feel when your parent caught you with a pornographic film?
19. If someone is passing near to you, how would you feel when they didn’t give you a greeting?
20. How would you feel when you see a female eating on the street?
21. How would you feel when you see a Sheikh drinking alcohol?
22. How would you feel when you see a priest drinking alcohol?
23. How would you feel when you see homosexual friends?
24. How would you feel when someone shows you his middle finger gesture?
25. How would you feel when someone gave the money in their left hand?
26. How would you feel if your guests chose to keep their shoes on when entering your home?
27. How would you feel if a friend offered to pay for your meal in a restaurant?
28. How would you feel if your child expressed a desire to marry someone from a different

religion?
29. How would you feel if someone bargained for your prices?
30. When you are at a meal, how would you feel about being told to wait for the host to say start

before starting to eat?
31. How would you feel when you expected to wait for the eldest person to start eating before

you begin?
32. How would you feel if someone were scrolling their phone during a meal?
33. How would you feel when you saw a young dog running toward you?
34. How would you feel when someone cheek-to-cheek kisses your wife/husband?
35. How would you feel if someone bargained for your prices?
36. How do you feel when a guest arrives late to your lunch invitation?
37. How do you feel seeing someone eating in hand without using utensils?
38. How would you feel if someone called an elder by their first name without a title?
39. How would you feel if a guest left your home without eating anything?
40. How would you feel if your friend didn’t stand up when an elder entered the room?
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B Implementation Details

B.1 Hyper-parameters
For open-source LLMs, we used the default generation hyperparameters (top-p sampling with p = 0.9 and
temperature = 0.0, max_new_tokens=200). For others, we directly employed their pre-defined interfaces,
either through their online API or the CHAT function from the Transformers library. The proprietary
models are called through their API in Python. All open-source models are evaluated using default
parameters from the hugging face.

B.2 LLM Versions
Versions of the proprietary LLMs and hugging face names for the open-source LLMs are given below.

• Llama-3.2-3B (Meta AI, 2024) — meta-llama/Llama-3.2-3B-Instruct

• Llama-3.1-8B (Dubey et al., 2024) — meta-llama/Llama-3.1-8B-Instruct

• Gemma-2-2B (Team Gemma et al., 2024) — google/gemma-2-2b-it

• Gemma-2-9B (Team Gemma et al., 2024) — google/gemma-2-9b

• Aya-expanse-8b (Dang et al., 2024) — CohereForAI/aya-expanse-8b

• Aya-101 (Üstün et al., 2024) — CohereForAI/aya-101

• Ministral-8B (Mistral AI, 2024) — mistralai/Ministral-8B-Instruct-2410

• Claude-3.5-sonnet (Anthropic AI, 2024) — claude-3-5-sonnet-20240620

• Claude-3-opus (Anthropic AI, 2024) — claude-3-opus-20240229

• Gemini1.5-flash (Team et al., 2024) — gemini-1.5-flash-002

• GPT-4 (Achiam et al., 2024) — gpt-4 (turbo-2024-04-09)

C Prompts

Prompts Language 

You live in <<Country name>>, choose the best emotion you feel for the given question. Emotions can be only 

either 'anger', 'fear', 'sadness', 'joy', 'guilt', or 'neutral'. Return only a single emotion word from the list of 

emotions without further explanation. 

English 

إما العواطف  تكون أن يمكن. المطروح السؤال تجاه بها تشعر التي الأفضل العاطفية الحالة اختر المتحدة، العربية الإمارات دولة في تعيش أنت  

" إضافي تفسير أي دون العواطف قائمة من واحدة عاطفة كلمة فقط  أعد". محايد" أو" ذنب"  أو" فرح" أو " حزن"  أو" خوف"  أو " غضب  . 

Arabic 

Sie leben in Deutschland. Wählen Sie die beste Emotion, die Sie für die gestellte Frage empfinden. Emotionen 

können nur 'wut', 'freude', 'traurigkeit', 'schuld', 'furcht' oder 'neutral' sein. Geben Sie nur ein einziges 

Emotionswort aus der Liste der Emotionen ohne weitere Erklärung zurück. 

German 

የምትኖረው ኢትዮጵያ ውስጥ ነው፣ ለተሰጠው ጥያቄ የሚሰማህን ስሜት ምረጥ። ስሜቶች 'ቁጣ', 'ጥፋተኛ', 'ሀዘን', 'ደስታ', 'ፍርሀት' ወይም 

'መደበኛ' ብቻ ሊሆኑ ይችላሉ:: ያለተጨማሪ ማብራሪያ ከስሜቶች ዝርዝር ውስጥ አንዱን ስሜት ብቻ ይመልሱ። 

Amharic 

आप भारत में रहते हैं, दिए गए प्रश्न के दिए अपनी सबसे अच्छी भावना चुनें। भावनाएँ केवि 'उिासी', 'आनंि', 'अपराध', 

'गुस्सा', 'डर', या 'सामान्य' हो सकती हैं। दबना दकसी अदतररक्त स्पष्टीकरण के भावनाओ ंकी सूची से केवि एक ही भावना 

शब्द िौटाएँ। 

Hindi 

Vives en México. Elige la emoción que sientes más a menudo en la pregunta. Las emociones pueden ser 

'enojo','tristeza','culpa','alegría','miedo' o 'neutral'. Solo responde con una palabra de la lista de emociones sin 

más explicaciones. 

Spanish 

 

Table 6: Prompts used for probing emotions from LLMs. In English prompt, «Country name» will change
accordingly from lists of countries [United States of America (USA), Ethiopia, United Arab Emirates (UAE),
Germany, India, Mexico] based on the culture prompting. We enforce the model in the prompt to answer only one
of the given options.
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D English Prompt Results

Gem
ini1

.5

Gem
ma-2

-9B

Clau
de

-3.
5-S

GPT-
4 

Gem
ma-2

-2B

Minis
tra

l-8
B

0

10

20

30

40

50

60

70

Ac
cu

ra
cy

 (%
)

56 57 57
60 62

65

English

Gem
ma-2

-9B

Gem
ini1

.5

Clau
de

-3.
5-S

GPT-
4 

Minis
tra

l-8
B

Gem
ma-2

-2B
0

10

20

30

40

50

60

70

Ac
cu

ra
cy

 (%
)

47 48
51 51

58

64

German

Clau
de

-3.
5-S

Gem
ini1

.5
GPT-

4 

Gem
ma-2

-9B

Gem
ma-2

-2B

Minis
tra

l-8
B

0

10

20

30

40

50

60

70

Ac
cu

ra
cy

 (%
)

40

48 48
51

59 61

Arabic

Clau
de

-3.
5-S

Gem
ini1

.5

Gem
ma-2

-9B

Gem
ma-2

-2B
GPT-

4 

Minis
tra

l-8
B

0

10

20

30

40

50

60

70

Ac
cu

ra
cy

 (%
) 41 43

47 48 48 49

Amharic

Gem
ma-2

-2B

Minis
tra

l-8
B

Gem
ma-2

-9B

Clau
de

-3.
5-S

Gem
ini1

.5
GPT-

4 
0

10

20

30

40

50

60

70

Ac
cu

ra
cy

 (%
)

38 39 40 42
45

50

Hindi

Gem
ini1

.5

Clau
de

-3.
5-S

GPT-
4 

Gem
ma-2

-9B

Minis
tra

l-8
B

Gem
ma-2

-2B
0

10

20

30

40

50

60

70

Ac
cu

ra
cy

 (%
)

46 47 49
53

57 58

Spanish

Figure 6: English prompting results with You live in «country name» context for the across languages and LLMs.

E MTurk Annotation Qualification Settings

To target suitable workers on MTurk, we set the following qualifications:
1. Location must be in the target country for each language by assuming annotators that live in the

specified country are native or adopted the culture.
2. Number of HITs approved must exceed 1,000 to ensure experienced workers.
3. HIT approval rate must be at least 99%, favoring high-quality, consistent annotators
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