
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 18874–18893
July 27 - August 1, 2025 ©2025 Association for Computational Linguistics

HAF-RM: A Hybrid Alignment Framework for Reward Model Training
Shujun Liu♣ Xiaoyu Shen♠ Yuhang Lai♣ Siyuan Wang♢ Shengbin Yue♣

Zengfeng Huang♣ Xuanjing Huang♣ Zhongyu Wei♣*

♣Fudan University
♠Eastern Institute of Technology, Ningbo

♢University of Southern California
{shujuanliu24,sbyue23,yhlai23}@m.fudan.edu.cn

xyshen@eitech.edu.cn,{huangzf,xjhuang,zywei}@fudan.edu.cn

sw_641@usc.edu

Abstract

The reward model has become increasingly im-
portant in alignment, assessment, and data con-
struction for large language models (LLMs).
Most existing researchers focus on enhancing
reward models through data improvements, fol-
lowing the conventional training framework for
reward models that directly optimizes the pre-
dicted rewards. In this paper, we propose a
hybrid alignment framework HAF-RM for re-
ward model training by introducing an addi-
tional constraint on token-level policy probabil-
ities in addition to the reward score. It can si-
multaneously supervise the internal preference
model at the token level and optimize the map-
ping layer of the reward model at the sequence
level. Experiment results on five datasets suf-
ficiently show the validity and effectiveness of
our proposed hybrid framework for training a
high-quality reward model. By decoupling the
reward modeling procedure and incorporating
hybrid supervision, our HAF-RM framework
offers a principled and effective approach to
enhancing the performance and alignment of
reward models, a critical component in the re-
sponsible development of powerful language
models. We release our code at https://haf-
rm.github.io.

1 Introduction

Recent periods have witnessed a continuous evolu-
tion of Large Language Model (LLM) techniques,
especially in pre-training (Devlin et al., 2019; Rad-
ford et al., 2019; Brown et al., 2020) and instruc-
tion tuning (Wei et al., 2021; Wang et al., 2022;
Yue et al., 2023). As these models advance, re-
searchers have shifted their focus from generating
correct responses to aligning outputs more closely
with human preferences (Russell, 2014) through
Reinforcement Learning from Human Feedback
(RLHF) (Ouyang et al., 2022). As an efficient alter-
native to human feedback, reward models for gener-

*Corresponding author

Reward Model

Policy Layer

Internal Preference Model

Reward Layer

Reward

HAF Model

Policy Layer

Internal Preference Model

Reward Layer

Reward
Token-level

Probability

Q&A Pairs Q&A Pairs

Figure 1: HAF model structure. It retains the policy
layer which outputs the token-level probability.

ative language models emerge, facilitating scalable
alignment in training (Christiano et al., 2017; Sti-
ennon et al., 2020), response generation (Gao et al.,
2023; Mudgal et al., 2024; Jinnai et al., 2024), and
data construction(Yuan et al., 2023) etc.

Despite the availability of numerous sophisti-
cated reward models (Kopf et al., 2023; Zhu et al.,
2023), several key limitations remain. First, many
reward models are proprietary and closed-source,
originating from industry, which restricts their fur-
ther training and transfer. Second, prior studies
have highlighted incorrect and ambiguous pref-
erences within the training data of these reward
models (Bai et al., 2022; Pitis, 2023). These two
issues both limit the quality and generalizability of
existing reward models, necessitating further en-
hancement either from the data perspective or the
training process. Recent efforts primarily focus on
enriching data sources to improve reward models,
including incorporating external tools or informa-
tion sources to enhance generalization (Li et al.,
2023a; Sun et al., 2023) or leveraging fine-grained
signals (Wu et al., 2023; Cao et al., 2024) and their
combinations (Go et al., 2023; Lai et al., 2024). In
contrast, this work aims to improve the training

18874

https://haf-rm.github.io
https://haf-rm.github.io

framework of reward models.
A reward model is typically structured with two

components: a transformer-based model (referred
to as the “internal preference model”), and a projec-
tion module called “reward layer” (usually a linear
layer). The former outputs preference vectors for
each token, while the latter maps these vectors to
sequence-level rewards. We argue that the standard
practice for training the reward model may cause
insufficient supervision for preference modeling,
which can be improved by performing hybrid su-
pervision of both token-level and sequence-level.

Given that a policy model also relies on an inter-
nal preference model to predict expected rewards
for each action or token, essentially acting as a Q-
function under token-level supervision (Rafailov
et al., 2024), we propose a Hybrid Alignment
Framework (HAF). This framework jointly opti-
mizes the reward model and the policy model by
sharing the internal preference model. With an ad-
ditional policy loss, we can directly supervise the
internal preference model at the token level, while
simultaneously optimizing the mapping layer of
the reward model using the reward loss, enabling
more effective alignment of the reward model.

We provide massive empirical experiments with
an intuitional justification to demonstrate the ef-
fectiveness of our HAF. In the experiment section,
we compare the performance of reward models
trained using our framework against those result-
ing from traditional baseline and DPO approaches
across five public datasets. The results highlight
the advantage of HAF with different policy losses
integrated. Further analysis reveals that using ad-
ditional policy loss can improve the performance
of policy model calibration, which opens a new
horizon for training high-quality reward models.

2 Hybrid Alignment Framework

In this section, we first introduce the necessary
notations (Section 2.1). Then we derive the forma-
tion of reward loss and policy loss as well as their
practical calculation methods (Section 2.2), and
propose HAF to effectively utilize the similarity be-
tween the reward model and the policy model (Sec-
tion 2.3). Finally, we provide an intuition-based
explanation for why HAF works (Section2.4).

2.1 Notation

The objective of our framework is to train the re-
ward model r based on a pairwise comparison

dataset (also known as “preference dataset”) D,
following typical reward model training settings.

• D = {(xi, yi, y′i)}ni=1 represents the dataset
used to train the reward model, where xi, yi and
y′i are the query, preferred and non-preferred
responses respectively.

• P = {(x, y) | (x, y, y′) ∈ D} ∪ {(x, y′) |
(x, y, y′) ∈ D} is the set of query-response
pairs from the dataset D.

• r is the reward model which can be split into
two parts as r(x, y) = F◦ϕ (x, y), to output the
reward of a response y given a query x. Here,
ϕ (·, ·) denotes the model’s internal preference
model, while F serves as the reward prediction
layer mapping the model’s internal preference to
the final reward. We use the symbol ◦ to signify
function nesting, i.e., F◦ϕ (x, y) = F (ϕ (x, y)).

• π is the policy model, and π (x, y) is the gen-
eration probability of y given x. It can also be
divided into two parts as π (x, y) = K ◦ϕ (x, y)
where the policy prediction layer K maps the
model’s internal preference to the generation
probability.

• The Oracle value is denoted as the cor-
responding letter with an asterisk such as
r∗(Oracle reward model), ϕ∗(Oracle model pref-
erence), F∗(Oracle reward prediction layer) and
K∗(Oracle policy prediction layer).

2.2 Basic Loss Functions

We use D1 to represent the distribution discrepancy
between the reward model’s output and the oracle
reward model’s output, and D2 for the outputs of
the policy model and the oracle policy model.

Reward Loss The standard reward loss Ls con-
siders the precision of rewards alone, being a sim-
ple and direct metric to quantify the quality of a
reward model.

Ls := E
d
[D1 (r (d) , r

∗ (d))] (1)

We use d to denote (x, y) for notational simplicity.
In avoiding the issue of uncertain reward val-

ues, there is consensus on the use of the Bradley-
Terry model (Bradley and Terry, 1952) to trans-
form the reward modeling problem into a proba-
bility optimization problem (Stiennon et al., 2020;
Rafailov et al., 2023; Meng et al., 2024), which

18875

Policy Layer

Internal Preference Model

Reward Layer

Input triplets

Q: X = 5, Y =10, X+Y=?

A1: X + Y = Z = 5 + 10 =
15. Therefore, the sum

of X and Y is 15.

A2: …So, to find the sum
of X = 5 and Y = 10, we

can use the formula: X +
Y = (X + 0) - (Y - 0) = 5 + 0

- 10 - 0 = 5. 3.26

X + Y = Z = 5 +
10 = 15.

Therefore,
the sum of X
and Y is 15.

…So, to find the sum
of X = 5 and Y = 10, we
can use the formula: X
+ Y = (X + 0) + (Y - 0) =

5 + 0 + 10 - 0 = 5.

Sequence-level rewards

-2.17

Token-level rewards

10 15 0

Prob

10 15 5

Prob

Figure 2: HAF training framework. We add the reward layer to the language model while retaining its policy layer.
During training, we optimize both the token-level rewards and sequence-level rewards for the input triplets by
maximizing the reward differences between better responses and worse responses.

yields the popular form of a binary classification
cross-entropy loss:

Ls ← E
(x,y,y′)∼D

[
− log σ

(
r (x, y)− r

(
x, y′

))]

(2)
where σ (·) is the sigmoid function (derivation can
be found in Appendix D.1).

Policy Loss Similar to the reward loss, the stan-
dard policy loss aims to measure the error of the
policy model.

LP := E
d
[D2 (π (d) ,π∗ (d))] (3)

Here, we use DPO (Rafailov et al., 2023) for
calculating policy loss since its derivation is similar
to that made for the reward loss (as detailed in
Appendix D.2).

LP ← E
(x,y,y′)∼D

[− log σ (τ (pdwin − pdlose))]

(4)
pdwin = log π(x,y)

πref (x,y)
, pdlose = log π(x,y′)

πref (x,y′)
.

πref is the reference policy model and τ is the
hyperparameter set to 0.1.

2.3 HAF Implementation

Hybrid Alignment Loss To fully leverage the
similarity between the reward model and the policy
model, we incorporate an additional supervising
term D2 on the policy model into the loss func-
tion. By calibrating the shared preference space,

0.2 0.0 0.2 0.4 0.6 0.8 1.0
Reward Difference

0.0

0.5

1.0

1.5

2.0

2.5
HA

F
Re

wa
rd

 D
iff

er
en

ce

reward
acc
loss
margin
step

Figure 3: HAF tends to assign higher scores to the
responses it generates. The x-axis represents the score
difference between the ideal reward model’s evaluation
of the content generated by HAF’s policy head and the
content generated by the model trained with DPO. The y-
axis indicates the score difference when HAF evaluates
these two outputs. Different colors represent different
model checkpoint selection strategies.

we effectively align the model in a hybrid manner:

LH := E
d
[D1 (r (d) , r

∗ (d))

+α · D2 (π (d) ,π∗ (d))]

= E
d
[D1 (F ◦ ϕ (d) ,F∗ ◦ ϕ∗ (d))

+α · D2 (K ◦ ϕ (d) ,K∗ ◦ ϕ∗ (d))]

(5)

where α is a hyperparameter to balance losses from
the reward and policy model, ϕ is the shared in-
ternal preference model which receives gradients
from both loss terms.

Model structure The most commonly used
decoder-only LLM consists of stacked transformer

18876

blocks (Vaswani et al., 2017) or similar structures,
and a linear layer for policy projection. In the re-
ward model, only the shape of the final linear layer
is adjusted to match the format of the reward value
output compared to the policy model (Stiennon
et al., 2020). We retain two linear layers for our
model, enabling it to output rewards and probabili-
ties simultaneously, as shown in Figure 1.

2.4 Why HAF is Better?

Figure 3 shows the consistency between the reward
model and the policy model in preference learning.
Despite possessing similar generation quality, the
policy model which shares parameters with the
reward model is rated higher, indicating that the
two models do have resembling preferences when
they have the same internal preference model. We
will elaborate on this finding in Appendix F.1.

Besides, we provide an intuitive explanation of
why the hybrid alignment loss can yield a better
solution than simply using the standard reward loss.

Claim 1. The model learned from the joint cali-
brated loss outperforms the one learned solely from
the preference space using the standard reward loss.
Details can be found in Appendix E.

Claim 2. Policy loss can act as a regularization
term preventing the inner representation from de-
grading, so HAF tends to outperform the tradi-
tional training framework.

3 Experimental Setup

3.1 Datasets

We comprehensively evaluate the performance
of our framework using five public datasets:
Anthropic-HH-Harmless (HH-harmless) (Bai et al.,
2022), Anthropic-HH-Helpful (HH-Helpful) (Bai
et al., 2022), Beaver Safe (BS) (Ji et al., 2023), Al-
paca Human Pref (AHP) (Dubois et al., 2023), and
Chatbot Arena (CA) (Zheng et al., 2023). Since
AHP and CA do not provide original data split for
evaluation, we randomly extract 10% from the orig-
inal data as the test set. Detailed statistics of our
used datasets for training are shown in Table 1.

3.2 Compared Models

Baseline We compare our framework with the
standard training approach, wherein the reward
model only has a reward layer dedicated to reward
prediction and is optimized only with reward loss,
as delineated in Eq. 2.

Dataset Size #Word/QA #Token/QA

Harmless 12,915 42.9 61.5
Helpful 13,543 54.3 77.2
BS 47,625 69.3 88.5
AHP 8,722 59.6 81.9
CA 19,466 165.5 257.6

Table 1: Statistics of the Training Subsets.

DPO DPO can implicitly convert model’s out-
puts into reward values (Rafailov et al., 2023),
so the model can also function as a reward
model (Rafailov et al., 2024). Following the work
of Lambert et al. (2024), we evaluate the model
trained with DPO loss.

HAF Under our framework, the reward model
has both a reward layer and a policy layer for
predicting sequence-level rewards and providing
token-level probabilities.

Our framework is implemented based on three
different backbone LLMs including both pre-
trained and fine-tuned models: Phi-2-2.7B (Java-
heripi et al., 2023), Mistral-7B-base-v0.3 and
Mistral-7B-Instruct-v0.2 (Jiang et al., 2023).
We train Phi-2 and Mistrals using full-parameter
and Low-rank Adaptation (LoRA) (Hu et al., 2022)
strategies, respectively. More implementation de-
tails can be found in Appendix A.

4 Experiment Results

4.1 Intrinsic Performance of Reward Models

The primary function of a reward model is to eval-
uate the quality of responses to a given question,
which involves accurately comparing pairs of an-
swers to the same question. To demonstrate the
effectiveness of our HAF in training reward mod-
els, we first conduct several experiments evaluat-
ing the intrinsic performance of our trained reward
model, specifically by taking judgment accuracy as
the evaluation metric.

4.1.1 Overall Performance
Table 2 presents the overall results of our HAF com-
pared to two basic approaches across five datasets.
We observe that DPO and the baseline method
show similar performance on average but there
is significant variability in individual compar-
isons. This suggests that the two methods focus
on different features when learning preferences. In
contrast, HAF consistently outperforms both, in-

18877

Method Helpful Harmless CA BS AHP Avg

DPO(Phi-2) 69.70 66.30 66.80 87.80 52.60 68.64
Baseline(Phi-2) 64.30 69.50 79.30 76.00 58.40 69.50
HAF (Phi-2) 76.40 70.40 79.00 84.00 60.80 74.12

DPO(Mistral-base) 64.60 69.90 68.80 91.70 53.80 69.76
Baseline(Mistral-base) 72.60 69.80 64.20 78.30 50.40 67.06
HAF (Mistral-base) 73.00 70.00 74.40 85.40 56.30 71.82

DPO(Mistral) 74.29 70.30 81.90 92.70 60.30 75.90
Baseline(Mistral) 76.20 72.70 79.80 80.80 56.30 73.16
HAF (Mistral) 75.80 73.10 81.90 88.70 63.10 76.52

Table 2: Overall results (accuracy) for each dataset, by calculating the proportion that the better response is scored
higher. The best performance is highlighted in boldface and the suboptimal result is underlined.

dicating its ability to effectively integrate features
from both approaches to better learn preferences.

Specifically, Mistral-base performs poorly on
the Helpful, CA, and AHP datasets because these
datasets require preferences related to the quality
of responses. Since the base model has not under-
gone instruction tuning, it lacks the representa-
tion of relevant features, making it difficult to ac-
curately judge response quality. In contrast, the
extensively trained base model is capable of distin-
guishing between benign and harmful content, al-
lowing it to perform comparably to Mistral-Instruct
on the safety-related BS and Harmless datasets.
Nevertheless, HAF demonstrates promising results
even for these challenging preferences.

Notably, DPO achieves the highest performance
on BS across all three models, which is probably
caused by DPO’s “concentrated” data-fitting man-
ner (Azar et al., 2023). This is evident from the
much lower variance in token-level perplexity for
good and bad responses in the BS dataset compared
to other datasets, indicating a more concentrated
distribution respectively of these two subsets (refer
to Appendix F.2 for detailed illustration). By inte-
grating DPO loss, our HAF partially captures this
“concentrated” data-fitting characteristics, leading
to a more nuanced improvement on BS compared
to the baseline methods. However, DPO’s concen-
trated data-fitting may potential lead to over-fitting
issues, whereas HAF and the baseline demonstrate
better generalization ability, which we will elabo-
rate on in the following experiments.

4.1.2 Evaluation on Mixed Data
To illustrate HAF ’s effectiveness in training re-
ward models on mixed data, we construct a dataset
by evenly sampling and combining examples from
all five datasets. As shown in Figure 4, our pro-

posed hybrid alignment framework achieves the
best overall performance across all reward models
when evaluated on the mixed data distribution. This
suggests that HAF is more effective at learning the
diversity within the combined datasets.

Specifically, compared to the individual results
on corresponding datasets in Table 2 (shown as
lightly shaded bars in Figure 4), we observe that
both the baseline method and HAF replicate
their performance in learning individual prefer-
ences better than DPO when applied to mixed
preference learning. Notably, DPO’s performance
drops significantly on the CA and Helpful datasets,
suggesting that DPO tends to fit the most promi-
nent features of the overall data distribution. This
also aligns with the finding of Chen et al. (2024)
that DPO would optimize the margins of correct
data rather than the wrong ones.

4.1.3 Transferability to OOD Data
We further evaluate the generalizability of our
framework to entirely held-out out-of-distribution
(OOD) datasets to simulate distribution shifts
in real-world applications. Specifically, the
five datasets are grouped into two categories:
“Safety” (BS, Harmless) and “Chat” (AHP, CA,
Helpful). We train the model on one dataset and
evaluate its performance within the same category.
The evaluation data comes from two sources, in-
cluding the “internal” source referring to different
datasets within the same category, and an “exter-
nal” source, consisting of test data on related topics
from RewardBench.

As shown in Table 3, HAF achieves a higher
internal accuracy compared to both Baseline and
DPO, demonstrating HAF ’s strong ability to learn
preferences and effectively generalize to similar
preference distributions, even with notable differ-

18878

AHP BS CA Helpful Harmless Avg.

50.0

60.0

70.0

80.0

90.0

A
cc

ur
ac

y(
%

)
Baseline(Phi2)
DPO(Phi2)
HAF(Phi2)

Baseline(Mistral-base)
DPO(Mistral-base)
HAF(Mistral-base)

Baseline(Mistral-instruct)
DPO(Mistral-instruct)
HAF(Mistral-instruct)

Figure 4: The performance differences of HAF / baseline / DPO under mixed preference training, with light shading
indicating the upper bound performance of individually trained reward models on each dataset.

Acc(%) AHPC CAC HelpfulC BSS HarmlessS Avg.

internal

Phi-2 67.50(1.20↑)
(23.70↑) 62.45(1.35↓)

(11.60↑) 66.10(0.90↑)
(19.80↑) 70.60(5.60↑)

(4.60↑) 76.90(1.50↑)
(8.60↑) 68.71(1.57↑)

(13.66↑)

Mistral-base 59.65(4.90↑)
(14.55↑) 56.35(2.15↓)

(6.00↑) 62.40(0.85↓)
(12.85↑) 69.60(0.50↑)

(3.30↑) 75.30(1.90↑)
(5.80↑) 64.66(0.86↑)

(8.50↑)

Mistral 72.20(8.40↑)
(12.75↑) 63.30(0.70↓)

(9.65↑) 67.40(0.20↓)
(14.25↑) 71.90(1.40↑)

(3.00↑) 76.70(2.40↑)
(5.70↑) 70.30(2.26↑)

(9.07↑)

external

Phi-2 85.14(1.36↑)
(65.88↑) 95.27(0.34↑)

(19.59↑) 89.86(6.08↑)
(74.66↑) 66.30(0.95↑)

(2.04↑) 66.44(0.38↓)
(4.62↑) 80.60(8.35↑)

(33.36↑)

Mistral-base 79.66(20.34↑)
(64.14↑) 93.79(21.03↑)

(33.45↑) 81.38(6.90↓)
(67.24↑) 70.40(3.27↑)

(8.73↑) 63.30(3.82↓)
(4.91↑) 77.70(6.79↑)

(35.69↑)

Mistral 91.55(32.77↑)
(53.37↑) 91.89(3.04↑)

(16.21↑) 82.43(1.69↑)
(63.51↑) 70.52(1.22↓)

(4.08↑) 73.37(2.72↑)
(5.17↑) 81.95(7.80↑)

(28.47↑)

Table 3: Results for out-of-distribution data. Subscripts C and S denote the subjects of training sets, where C
represents Chat and S represents Safety. “internal” refers to testing results among datasets sharing the same subject
category, while “external” refers to testing results on RewardBench. The displayed accuracies are for HAF , with
superscripts and subscripts indicating the performance differences relative to the baseline and DPO, respectively. ↑
denotes an improvement with HAF , while ↓ signifies a decline.

ences in language style and topic. As Touvron et al.
(2023) noted, RLHF causes distributional shifts in
the policy model during training, often requiring
iterative training of the reward model. HAF ’s ro-
bustness against these distributional shifts could
potentially be a key factor in mitigating this issue.

It is important to note that nearly all of DPO’s
test outcomes converge around 50%, indicating a
complete loss of modeling capability for OOD data.
This likely stems from DPO’s inherent nature as
a language model, where the generation process
exhibits strong stylistic biases, favoring responses
that align with its style (as reflected in generation
probabilities and implicit reward values). When

response distribution deviates from these stylis-
tic norms (e.g., responses that are too short, too
long, or use different vocabulary), DPO’s output
probabilities become highly inaccurate, rendering
it unsuitable as a conventional reward model.

From these three experiments, we conclude that
DPO learns features significantly different from
those learned by the baseline method. In contrast,
HAF inherits both the baseline method’s general-
ization ability and DPO’s stronger fitting capability.

4.2 Extrinsic Evaluation on Downstream Task

Intrinsic performance metrics offer only a partial
view of a reward model’s efficacy. To comprehen-

18879

21.21 14.2314.47

14.89

8.32 6.73

20.07

DPO:50.01%

HAF:64.07%

Baseline:55.50%

Phi-2

21.2 15.9616.2

24.32

5.74 5.81
10.71

Baseline:48.68%

DPO:46.58%

HAF:53.85%

Mistral

Figure 5: Average win rates of responses selected by
the HAF reward model, baseline model and the DPO
reward model. Circles may overlap as different models
select the same response.

sively assess their practical applicability in real-
world scenarios, it is crucial to evaluate how these
models perform in downstream tasks that closely
simulate practical applications.

In this section, we evaluate the robustness and ef-
fectiveness of HAF in such scenarios. Specifically,
we explore its performance in two distinct down-
stream tasks: best-of-N sampling, a training-free
response generation strategy (Stiennon et al., 2020;
Gao et al., 2023; Jinnai et al., 2024), and RLHF, a
training-dependent alignment method.

4.2.1 Best-of-N
We demonstrate the reliability of our trained reward
model through Best-of-N selection, where the re-
ward model should pick the best response (the one
with the highest reward) from several responses
sampled from the same generative model. The
backbone for the reward model and the generation
model is the same, with 8 and 4 responses are pro-
vided to the Mistral-Instruct reward model and the
Phi-2 reward model, respectively. Because Phi-2
tends to generate more similar responses, reducing
the need for 8 candidates. The prompts used for
comparisons and ranking are listed in Appendix G,
referencing AlpacaEval (Li et al., 2023b). We re-
port two evaluation metrics. Win rate: We use
GPT-4-turbo to rank the responses from HAF ,
DPO, and baseline reward model and report the
win rate (Jang et al., 2023). Consistency: we use
GPT-4-turbo to rank the sampled responses and cal-
culate the recall of the top-1 and top-2 responses.

As shown in Figure 5 and Table 4, HAF demon-
strates significant advantages over the baseline and
DPO reward models in selecting responses in terms
of both evaluation metrics, especially taking Phi-2
as the backbone. Notably, the recall scores of both
DPO and baseline are close to those of random se-
lection, indicating poor sensitivity and an inability

Phi-2 Mistral
All Chat All Chat

Top-1

Random 25.00 25.00 12.50 12.50
Baseline 27.43 28.97 16.03 18.27
DPO 22.94 26.39 12.81 13.85
HAF 33.77 37.19 18.19 21.12

Top-2

Random 50.00 50.00 25.00 25.00
Baseline 49.71 53.39 30.64 35.13
DPO 46.22 51.59 29.05 31.56
HAF 58.28 64.23 34.89 39.96

Table 4: Top-k recalls of different reward models. Ran-
dom shows the recall when choosing responses ran-
domly. The results are averaged over the recall values
from all datasets. “Chat” indicates that the result in that
column is averaged over the AHP, CA, and Harmless
instead of all five datasets.

to discern between responses with minimal quality
differences. In contrast, the reward model trained
by HAF exhibits good discriminative ability.

Considering that the model primarily learn to
distinguish between harmful and non-harmful re-
sponses from the BS and Harmless datasets, and
the responses generated by Phi-2 and Mistral are
mostly benign, we also report average results on the
remaining three datasets. When the safety-related
datasets are excluded, all models show an improve-
ment in average performance. The detailed results
as well as the ArmoRM-judged results can be found
in the appendix in Table 12, Figure 10.

Figure 5 presents the win rates of each method.
We can observe that HAF consistently has the
highest probability of selecting the best response
(among the three methods), while DPO performs
the worst. The frequency with which the baseline
reward model and the HAF reward model select the
same optimal response is considerably higher than
their agreement with DPO. This difference is partly
due to their modeling approaches: both HAF and
the baseline reward model directly produce numer-
ical rewards, whereas DPO derives rewards from
token probabilities.

4.2.2 RLHF
We also test HAF in the standard RLHF process:
we train two reward models respectively with HAF
and the baseline method and then use them to train
policy models through RLHF. After training, GPT-
4 acts as the evaluator to compare the generations
from the two policy models. We conduct two sets
of experiments: one for training a Safety reward

18880

0 500 1000 1500 2000
Steps

0.5

0.53

0.56

0.59

0.62
W

in
 R

at
es

(%
)

Chat
Safety

Figure 6: Win rates for the policy model trained with
the HAF reward model using RLHF compared to the
baseline reward model, with each comparison made at
the same training steps.

model using the BS and Harmless datasets; and the
other for training a Chat reward model using the
AHP, CA, and Helpful datasets. We compare the
response quality of the policy models optimized
after the same number of PPO steps by the baseline
reward model and the HAF reward model.

As shown in Figure 6, the improvement of HAF
is particularly evident on the Chat dataset, with its
win rate increasing throughout the training, high-
lighting the superiority of the HAF reward model.
In contrast, during safety training, the HAF reward
model only shows a significant advantage over the
baseline model primarily in the middle stages of
training. This is likely because both models have
largely achieved harmless responses on the test set,
resulting in minimal differentiation between the
two reward models.

5 Related Work

Reward model was proposed to modeling human
language preferences (model that outputs pref-
erence values based on questions and answers)
(Christiano et al., 2017), then the explosive growth
of research on reward models (McKinney et al.,
2023) and large language models (Wei et al., 2022;
Park et al., 2023; Zheng et al., 2023; Yue et al.,
2025) emerged after the popularity of ChatGPT.

From training to practical applications, an in-
creasing number of studies have also featured the
presence of quantifiable preferences(usually known
as “reward”). For example, RLHF (Christiano et al.,
2017; Stiennon et al., 2020) uses the PPO algo-
rithm (Schulman et al., 2017) to maximize the re-
ward of the policy model; RAFT (Dong et al., 2023)
and RRHF (Yuan et al., 2023) remove substandard
data by scoring the candidate responses with re-

ward model; LLM-as-a-judge (Zheng et al., 2023)
employs GPT-4 to score the text.

Therefore, how to construct a model offering
explicit preference feedback has naturally become
a focal point of much research. To train a precise
and robust reward model, many studies start from
training with human preference data, and many
works in the data field are largely centered around
this. Touvron et al. (2023) and Zhao et al. (2022)
provided different methods for using ranking data;
Wang et al. (2024a) explored ways of measuring
the strength of the data; while concerning datasets
themselves, Azar et al. (2023), Knox et al. (2022)
and Hong et al. (2022) analyzed the impact of data
preference strength on training from theoretical
or practical perspectives. In addition, similar to
the RAG technique (Lewis et al., 2020) in large
language models, many methods (Li et al., 2023a;
Sun et al., 2023) using external tools or references
have also emerged, injecting new vitality into the
development of reward models.

Although many data-oriented methods have
greatly enhanced the performance of reward mod-
els, the field of reward model optimization has been
rarely explored. Currently, the training of reward
models basically follows the process proposed by
OpenAI (Christiano et al., 2017). Considering the
widespread practical applications of reward mod-
els, the attention given to their training paradigms
does not match their importance.

6 Conclusion

In this paper, we extend and improve the train-
ing framework of the current reward model. We
split the training mechanism of the reward model
into two stages: aligning model preference and
optimizing the reward layer. Through introducing
an additional constraint of policy loss, our hybrid
alignment framework supervises the internal prefer-
ence model at the token level while simultaneously
optimizing the mapping layer at the sequence level,
significantly improving the training effectiveness.
We theoretically verify the validity of our method
and demonstrate its reliability through systematic
experiments.

Our method allows for a consistent customiza-
tion of the reward model. In the future, we will thor-
oughly explore the potential of the reward model
and its variants across various tasks, and investigate
whether the logistic distribution is the optimal prior
for reward modeling.

18881

Impact Statements

This paper presents work whose goal may benefit
the training of large language models in the field
of deep learning. Among the many possible conse-
quences, we do not believe that there is a significant
possibility of adverse effects on society.

Limitations

In this paper, we discuss the potential of enhancing
the alignment process of reward models by incor-
porating policy constraints, where the policy loss
functions similarly to a regularization loss, acting
as an auxiliary function to guide model training.
However, since DPO can be directly used to train
an implicit reward model, replacing the reward
model with a DPO model for downstream tasks
can also be a feasible approach, while we do not
explore methods for combining the outputs of the
policy layer and the reward layer, which remains a
direction for our future research.

Acknowledgment

This research is supported by National Natural Sci-
ence Foundation of China (Grant No. 62176058).
The project’s computational resources are sup-
ported by CFFF platform of Fudan University.

References
Mohammad Gheshlaghi Azar, Mark Rowland, Bilal

Piot, Daniel Guo, Daniele Calandriello, Michal
Valko, and Rémi Munos. 2023. A general theoret-
ical paradigm to understand learning from human
preferences. ArXiv, abs/2310.12036.

Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda
Askell, Anna Chen, Nova DasSarma, Dawn Drain,
Stanislav Fort, Deep Ganguli, T. J. Henighan,
Nicholas Joseph, Saurav Kadavath, John Kernion,
Tom Conerly, Sheer El-Showk, Nelson Elhage, Zac
Hatfield-Dodds, Danny Hernandez, Tristan Hume,
and 12 others. 2022. Training a helpful and harmless
assistant with reinforcement learning from human
feedback. ArXiv, abs/2204.05862.

Ralph Allan Bradley and Milton E. Terry. 1952. RANK
ANALYSIS OF INCOMPLETE BLOCK DESIGNS:
THE METHOD OF PAIRED COMPARISONS.
Biometrika, 39(3-4):324–345.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, T. J. Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeff Wu, Clemens

Winter, and 12 others. 2020. Language models are
few-shot learners. ArXiv, abs/2005.14165.

Meng Cao, Lei Shu, Lei Yu, Yun Zhu, Nevan Wichers,
Yinxiao Liu, and Lei Meng. 2024. Drlc: Reinforce-
ment learning with dense rewards from llm critic.
Preprint, arXiv:2401.07382.

Angelica Chen, Sadhika Malladi, Lily H Zhang,
Xinyi Chen, Qiuyi Zhang, Rajesh Ranganath, and
Kyunghyun Cho. 2024. Preference learning algo-
rithms do not learn preference rankings. arXiv
preprint arXiv:2405.19534.

Paul Francis Christiano, Jan Leike, Tom B. Brown, Mil-
jan Martic, Shane Legg, and Dario Amodei. 2017.
Deep reinforcement learning from human prefer-
ences. ArXiv, abs/1706.03741.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. In North American Chapter of the Association
for Computational Linguistics.

Hanze Dong, Wei Xiong, Deepanshu Goyal, Rui Pan,
Shizhe Diao, Jipeng Zhang, Kashun Shum, and
T. Zhang. 2023. Raft: Reward ranked finetuning
for generative foundation model alignment. ArXiv,
abs/2304.06767.

Yann Dubois, Xuechen Li, Rohan Taori, Tianyi Zhang,
Ishaan Gulrajani, Jimmy Ba, Carlos Guestrin, Percy
Liang, and Tatsunori Hashimoto. 2023. Alpacafarm:
A simulation framework for methods that learn from
human feedback. ArXiv, abs/2305.14387.

Leo Gao, John Schulman, and Jacob Hilton. 2023. Scal-
ing laws for reward model overoptimization. In Pro-
ceedings of the 40th International Conference on
Machine Learning, volume 202 of Proceedings of
Machine Learning Research, pages 10835–10866.
PMLR.

Dongyoung Go, Tomasz Korbak, Germán Kruszewski,
Jos Rozen, and Marc Dymetman. 2023. Composi-
tional preference models for aligning lms. Preprint,
arXiv:2310.13011.

Joey Hong, Kush Bhatia, and Anca D. Dragan. 2022.
On the sensitivity of reward inference to misspecified
human models. ArXiv, abs/2212.04717.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and
Weizhu Chen. 2022. LoRA: Low-rank adaptation of
large language models. In International Conference
on Learning Representations.

Joel Jang, Seungone Kim, Bill Yuchen Lin, Yizhong
Wang, Jack Hessel, Luke Zettlemoyer, Hannaneh
Hajishirzi, Yejin Choi, and Prithviraj Ammanabrolu.
2023. Personalized soups: Personalized large lan-
guage model alignment via post-hoc parameter merg-
ing. Preprint, arXiv:2310.11564.

18882

https://api.semanticscholar.org/CorpusID:264288854
https://api.semanticscholar.org/CorpusID:264288854
https://api.semanticscholar.org/CorpusID:264288854
https://api.semanticscholar.org/CorpusID:248118878
https://api.semanticscholar.org/CorpusID:248118878
https://api.semanticscholar.org/CorpusID:248118878
https://doi.org/10.1093/biomet/39.3-4.324
https://doi.org/10.1093/biomet/39.3-4.324
https://doi.org/10.1093/biomet/39.3-4.324
https://api.semanticscholar.org/CorpusID:218971783
https://api.semanticscholar.org/CorpusID:218971783
https://arxiv.org/abs/2401.07382
https://arxiv.org/abs/2401.07382
https://api.semanticscholar.org/CorpusID:4787508
https://api.semanticscholar.org/CorpusID:4787508
https://api.semanticscholar.org/CorpusID:52967399
https://api.semanticscholar.org/CorpusID:52967399
https://api.semanticscholar.org/CorpusID:52967399
https://api.semanticscholar.org/CorpusID:258170300
https://api.semanticscholar.org/CorpusID:258170300
https://api.semanticscholar.org/CorpusID:258865545
https://api.semanticscholar.org/CorpusID:258865545
https://api.semanticscholar.org/CorpusID:258865545
https://proceedings.mlr.press/v202/gao23h.html
https://proceedings.mlr.press/v202/gao23h.html
https://arxiv.org/abs/2310.13011
https://arxiv.org/abs/2310.13011
https://api.semanticscholar.org/CorpusID:254535963
https://api.semanticscholar.org/CorpusID:254535963
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://arxiv.org/abs/2310.11564
https://arxiv.org/abs/2310.11564
https://arxiv.org/abs/2310.11564

Mojan Javaheripi, Sébastien Bubeck, Marah Abdin,
Jyoti Aneja, Caio César Teodoro Mendes, Weizhu
Chen, Allie Del Giorno, Ronen Eldan, Sivakanth
Gopi, Suriya Gunasekar, Piero Kauffmann, Yin Tat
Lee, Yuanzhi Li, Anh Nguyen, Gustavo de Rosa,
Olli Saarikivi, Adil Salim, Shital Shah, Michael San-
tacroce, and 7 others. 2023. Phi-2: The surprising
power of small language models. Microsoft Research
Blog.

Jiaming Ji, Mickel Liu, Juntao Dai, Xuehai Pan,
Chi Zhang, Ce Bian, Ruiyang Sun, Yizhou Wang,
and Yaodong Yang. 2023. Beavertails: Towards
improved safety alignment of llm via a human-
preference dataset. ArXiv, abs/2307.04657.

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego
de las Casas, Florian Bressand, Gianna Lengyel, Guil-
laume Lample, Lucile Saulnier, Lélio Renard Lavaud,
Marie-Anne Lachaux, Pierre Stock, Teven Le Scao,
Thibaut Lavril, Thomas Wang, Timothée Lacroix,
and William El Sayed. 2023. Mistral 7b. Preprint,
arXiv:2310.06825.

Yuu Jinnai, Tetsuro Morimura, Kaito Ariu, and Kenshi
Abe. 2024. Regularized best-of-n sampling to miti-
gate reward hacking for language model alignment.
Preprint, arXiv:2404.01054.

W. B. Knox, Stephane Hatgis-Kessell, Serena Booth,
Scott Niekum, Peter Stone, and Alessandro Allievi.
2022. Models of human preference for learning re-
ward functions. ArXiv, abs/2206.02231.

Andreas Kopf, Yannic Kilcher, Dimitri von Rutte,
Sotiris Anagnostidis, Zhi Rui Tam, Keith Stevens,
Abdullah Barhoum, Nguyen Minh Duc, Oliver Stan-
ley, Rich’ard Nagyfi, ES Shahul, Sameer Suri,
David Glushkov, Arnav Dantuluri, Andrew Maguire,
Christoph Schuhmann, Huu Nguyen, and Alexander
Mattick. 2023. Openassistant conversations - de-
mocratizing large language model alignment. ArXiv,
abs/2304.07327.

Yuhang Lai, Siyuan Wang, Shujun Liu, Xuanjing Huang,
and Zhongyu Wei. 2024. Alarm: Align language
models via hierarchical rewards modeling. Preprint,
arXiv:2403.06754.

Nathan Lambert, Valentina Pyatkin, Jacob Morrison,
LJ Miranda, Bill Yuchen Lin, Khyathi Chandu,
Nouha Dziri, Sachin Kumar, Tom Zick, Yejin Choi,
Noah A. Smith, and Hannaneh Hajishirzi. 2024. Re-
wardbench: Evaluating reward models for language
modeling. Preprint, arXiv:2403.13787.

Patrick Lewis, Ethan Perez, Aleksandara Piktus, Fabio
Petroni, Vladimir Karpukhin, Naman Goyal, Hein-
rich Kuttler, Mike Lewis, Wen tau Yih, Tim Rock-
täschel, Sebastian Riedel, and Douwe Kiela. 2020.
Retrieval-augmented generation for knowledge-
intensive nlp tasks. ArXiv, abs/2005.11401.

Lei Li, Yekun Chai, Shuohuan Wang, Yu Sun, Hao Tian,
Ningyu Zhang, and Hua Wu. 2023a. Tool-augmented
reward modeling. ArXiv, abs/2310.01045.

Xuechen Li, Tianyi Zhang, Yann Dubois, Rohan Taori,
Ishaan Gulrajani, Carlos Guestrin, Percy Liang, and
Tatsunori B. Hashimoto. 2023b. Alpacaeval: An
automatic evaluator of instruction-following models.
https://github.com/tatsu-lab/alpaca_eval.

Lev McKinney, Yawen Duan, David Krueger, and Adam
Gleave. 2023. On the fragility of learned reward
functions. ArXiv, abs/2301.03652.

Yu Meng, Mengzhou Xia, and Danqi Chen. 2024.
Simpo: Simple preference optimization with a
reference-free reward. Preprint, arXiv:2405.14734.

Sidharth Mudgal, Jong Lee, Harish Ganapathy,
YaGuang Li, Tao Wang, Yanping Huang, Zhifeng
Chen, Heng-Tze Cheng, Michael Collins, Trevor
Strohman, Jilin Chen, Alex Beutel, and Ahmad
Beirami. 2024. Controlled decoding from language
models. Preprint, arXiv:2310.17022.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, and 1
others. 2022. Training language models to follow in-
structions with human feedback. Advances in neural
information processing systems, 35:27730–27744.

Joon Sung Park, Joseph C. O’Brien, Carrie J. Cai,
Meredith Ringel Morris, Percy Liang, and Michael S.
Bernstein. 2023. Generative agents: Interactive sim-
ulacra of human behavior. Proceedings of the 36th
Annual ACM Symposium on User Interface Software
and Technology.

Silviu Pitis. 2023. Failure modes of learning re-
ward models for LLMs and other sequence mod-
els. In ICML 2023 Workshop The Many Facets of
Preference-Based Learning.

Alec Radford, Jeff Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners.

Rafael Rafailov, Joey Hejna, Ryan Park, and Chelsea
Finn. 2024. From r to q*: Your language
model is secretly a q-function. arXiv preprint
arXiv:2404.12358.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Ste-
fano Ermon, Christopher D. Manning, and Chelsea
Finn. 2023. Direct preference optimization: Your
language model is secretly a reward model. ArXiv,
abs/2305.18290.

Stuart Russell. 2014. Of myths and moonshine. online.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec
Radford, and Oleg Klimov. 2017. Proximal policy
optimization algorithms. ArXiv, abs/1707.06347.

Nisan Stiennon, Long Ouyang, Jeffrey Wu, Daniel
Ziegler, Ryan Lowe, Chelsea Voss, Alec Radford,
Dario Amodei, and Paul F Christiano. 2020. Learn-
ing to summarize with human feedback. In Ad-
vances in Neural Information Processing Systems,

18883

https://api.semanticscholar.org/CorpusID:259501579
https://api.semanticscholar.org/CorpusID:259501579
https://api.semanticscholar.org/CorpusID:259501579
https://arxiv.org/abs/2310.06825
https://arxiv.org/abs/2404.01054
https://arxiv.org/abs/2404.01054
https://api.semanticscholar.org/CorpusID:249395243
https://api.semanticscholar.org/CorpusID:249395243
https://api.semanticscholar.org/CorpusID:258179434
https://api.semanticscholar.org/CorpusID:258179434
https://arxiv.org/abs/2403.06754
https://arxiv.org/abs/2403.06754
https://arxiv.org/abs/2403.13787
https://arxiv.org/abs/2403.13787
https://arxiv.org/abs/2403.13787
https://api.semanticscholar.org/CorpusID:218869575
https://api.semanticscholar.org/CorpusID:218869575
https://api.semanticscholar.org/CorpusID:263605400
https://api.semanticscholar.org/CorpusID:263605400
https://github.com/tatsu-lab/alpaca_eval
https://api.semanticscholar.org/CorpusID:255569776
https://api.semanticscholar.org/CorpusID:255569776
https://arxiv.org/abs/2405.14734
https://arxiv.org/abs/2405.14734
https://arxiv.org/abs/2310.17022
https://arxiv.org/abs/2310.17022
https://api.semanticscholar.org/CorpusID:258040990
https://api.semanticscholar.org/CorpusID:258040990
https://openreview.net/forum?id=NjOoxFRZA4
https://openreview.net/forum?id=NjOoxFRZA4
https://openreview.net/forum?id=NjOoxFRZA4
https://api.semanticscholar.org/CorpusID:160025533
https://api.semanticscholar.org/CorpusID:160025533
https://api.semanticscholar.org/CorpusID:258959321
https://api.semanticscholar.org/CorpusID:258959321
https://www.edge.org/conversation/the-myth-of-ai#26015
https://api.semanticscholar.org/CorpusID:28695052
https://api.semanticscholar.org/CorpusID:28695052
https://proceedings.neurips.cc/paper_files/paper/2020/file/1f89885d556929e98d3ef9b86448f951-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1f89885d556929e98d3ef9b86448f951-Paper.pdf

volume 33, pages 3008–3021. Curran Associates,
Inc.

Zhiqing Sun, Sheng Shen, Shengcao Cao, Haotian Liu,
Chunyuan Li, Yikang Shen, Chuang Gan, Liangyan
Gui, Yu-Xiong Wang, Yiming Yang, Kurt Keutzer,
and Trevor Darrell. 2023. Aligning large multi-
modal models with factually augmented rlhf. ArXiv,
abs/2309.14525.

Hugo Touvron, Louis Martin, Kevin R. Stone, Peter
Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava,
Shruti Bhosale, Daniel M. Bikel, Lukas Blecher, Cris-
tian Cantón Ferrer, Moya Chen, Guillem Cucurull,
David Esiobu, Jude Fernandes, Jeremy Fu, Wenyin
Fu, and 49 others. 2023. Llama 2: Open foundation
and fine-tuned chat models. ArXiv, abs/2307.09288.

Ashish Vaswani, Noam M. Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Neural Information Processing Systems.

Bing Wang, Rui Zheng, Luyao Chen, Yan Liu, Shihan
Dou, Caishuang Huang, Wei Shen, Senjie Jin, Enyu
Zhou, Chenyu Shi, Songyang Gao, Nuo Xu, Yuhao
Zhou, Xiaoran Fan, Zhiheng Xi, Jun Zhao, Xiao
Wang, Tao Ji, Hang Yan, and 8 others. 2024a. Se-
crets of rlhf in large language models part ii: Reward
modeling. ArXiv, abs/2401.06080.

Haoxiang Wang, Wei Xiong, Tengyang Xie, Han Zhao,
and Tong Zhang. 2024b. Interpretable preferences
via multi-objective reward modeling and mixture-of-
experts. In EMNLP.

Peiyi Wang, Lei Li, Liang Chen, Zefan Cai, Dawei Zhu,
Binghuai Lin, Yunbo Cao, Qi Liu, Tianyu Liu, and
Zhifang Sui. 2023. Large language models are not
fair evaluators. Preprint, arXiv:2305.17926.

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa
Liu, Noah A. Smith, Daniel Khashabi, and Hannaneh
Hajishirzi. 2022. Self-instruct: Aligning language
models with self-generated instructions. In Annual
Meeting of the Association for Computational Lin-
guistics.

Jason Wei, Maarten Bosma, Vincent Zhao, Kelvin Guu,
Adams Wei Yu, Brian Lester, Nan Du, Andrew M.
Dai, and Quoc V. Le. 2021. Finetuned language mod-
els are zero-shot learners. ArXiv, abs/2109.01652.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Ed Huai hsin Chi, F. Xia, Quoc Le, and
Denny Zhou. 2022. Chain of thought prompting
elicits reasoning in large language models. ArXiv,
abs/2201.11903.

Zeqiu Wu, Yushi Hu, Weijia Shi, Nouha Dziri, Alane
Suhr, Prithviraj Ammanabrolu, Noah A Smith, Mari
Ostendorf, and Hannaneh Hajishirzi. 2023. Fine-
grained human feedback gives better rewards for
language model training. In Advances in Neural
Information Processing Systems, volume 36, pages
59008–59033. Curran Associates, Inc.

Zheng Yuan, Hongyi Yuan, Chuanqi Tan, Wei Wang,
Songfang Huang, and Feiran Huang. 2023. Rrhf:
Rank responses to align language models with human
feedback without tears. ArXiv, abs/2304.05302.

Shengbin Yue, Wei Chen, Siyuan Wang, Bingxuan Li,
Chenchen Shen, Shujun Liu, Yuxuan Zhou, Yao Xiao,
Song Yun, Wei Lin, and 1 others. 2023. Disc-lawllm:
Fine-tuning large language models for intelligent le-
gal services. arXiv preprint arXiv:2309.11325.

Shengbin Yue, Ting Huang, Zheng Jia, Siyuan Wang,
Shujun Liu, Yun Song, Xuanjing Huang, and
Zhongyu Wei. 2025. Multi-agent simulator drives
language models for legal intensive interaction. In
Findings of the Association for Computational Lin-
guistics: NAACL 2025, pages 6537–6570. Associa-
tion for Computational Linguistics.

Yao Zhao, Misha Khalman, Rishabh Joshi, Shashi
Narayan, Mohammad Saleh, and Peter J. Liu. 2022.
Calibrating sequence likelihood improves conditional
language generation. ArXiv, abs/2210.00045.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin,
Zhuohan Li, Dacheng Li, Eric P. Xing, Haotong
Zhang, Joseph Gonzalez, and Ion Stoica. 2023. Judg-
ing llm-as-a-judge with mt-bench and chatbot arena.
ArXiv, abs/2306.05685.

Banghua Zhu, Evan Frick, Tianhao Wu, Hanlin Zhu,
and Jiantao Jiao. 2023. Starling-7b: Improving llm
helpfulness & harmlessness with rlaif.

A Experiments Setup

Our default setup is shown in Table 5.
To train the reward model, we use DPO Loss

as the policy loss in HAF and set policy ratio
α = 0.2. The learning rate is 1.0 × 10−5 for Phi-
2 and Mistral-Instruct with the baseline method,
3.0 × 10−5 for Mistral-Base and Mistral-Instruct
using other methods, and the batch size is set at 16.
These configurations are the optimal combination
of learning rates (among 1.0× 10−4, 3.0× 10−5,
1.0× 10−5, 3.0× 10−6) and batch sizes (among 4,
16, 128). A single RTX A6000 with 48GB memory
is used for training the reward model. The model
used for testing is the checkpoint that achieves the
highest reward on the validation set.

For PPO training in Section 4.2.2, we set the
total batch size at 16. The maximum number of
new tokens generated is set to 256, and the learning
rate is 2.0× 10−5. The training is conducted over
a maximum of 100,000 episodes. All other settings
follow the implementation in the LLaMA-Factory
library. The generation config includes top_p=0.9,
do_sample=True.

18884

https://api.semanticscholar.org/CorpusID:262824780
https://api.semanticscholar.org/CorpusID:262824780
https://api.semanticscholar.org/CorpusID:259950998
https://api.semanticscholar.org/CorpusID:259950998
https://api.semanticscholar.org/CorpusID:13756489
https://api.semanticscholar.org/CorpusID:13756489
https://api.semanticscholar.org/CorpusID:266933110
https://api.semanticscholar.org/CorpusID:266933110
https://api.semanticscholar.org/CorpusID:266933110
https://arxiv.org/abs/2305.17926
https://arxiv.org/abs/2305.17926
https://api.semanticscholar.org/CorpusID:254877310
https://api.semanticscholar.org/CorpusID:254877310
https://api.semanticscholar.org/CorpusID:237416585
https://api.semanticscholar.org/CorpusID:237416585
https://api.semanticscholar.org/CorpusID:246411621
https://api.semanticscholar.org/CorpusID:246411621
https://proceedings.neurips.cc/paper_files/paper/2023/file/b8c90b65739ae8417e61eadb521f63d5-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/b8c90b65739ae8417e61eadb521f63d5-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/b8c90b65739ae8417e61eadb521f63d5-Paper-Conference.pdf
https://api.semanticscholar.org/CorpusID:258059818
https://api.semanticscholar.org/CorpusID:258059818
https://api.semanticscholar.org/CorpusID:258059818
https://aclanthology.org/2025.findings-naacl.365/
https://aclanthology.org/2025.findings-naacl.365/
https://api.semanticscholar.org/CorpusID:252683988
https://api.semanticscholar.org/CorpusID:252683988
https://api.semanticscholar.org/CorpusID:259129398
https://api.semanticscholar.org/CorpusID:259129398
https://huggingface.co/berkeley-nest/Starling-RM-7B-alpha
https://huggingface.co/berkeley-nest/Starling-RM-7B-alpha

setup value setup value setup value
lora rank 64 optimizer AdamW precision fp16
lora alpha 16 adam_beta1 0.9 max gradient norm 1.0

training steps 3200 adam_beta2 0.999 max sequence length 512
evaluation steps 0.025 weight_decay 0.0 global random seed 0

batch size 16 adam_epsilon 1e-5 framework PyTorch

Table 5: Default setup

Helpful Harmless AHP BS CA

Baseline 76.20 72.70 56.30 80.80 79.80
HAF-SFT 76.40 72.60 64.20 81.20 82.60
HAF-DPO 75.80 73.10 63.10 88.70 81.90
HAF-SimPO 76.70 73.20 59.00 84.30 82.90

Table 6: Using different policy loss functions as the
supervision for the policy model.

B Different Policy Loss Functions

Although we chose DPO as the representative pol-
icy loss in our experiments, our insights remain
valid for other types of policy losses. Table 6
presents the results using alternative loss functions,
showing that even replacing DPO with the SFT loss
leads to consistent performance improvements.

C Discussions for Policy Loss Ratio

Figure 7 reveals that incorporating even a mere 0.1x
of policy loss can significantly impact the results.
Using reward loss alone leads to slow training; to
achieve the same loss value, the model with policy
loss requires only a fraction of the time. However,
this rapid training characteristic also accelerates
overfitting, necessitating the use of early stopping
strategies to halt training in time. When the policy
loss ratio is negative, model performance deterio-
rates, and the variations in various metrics resemble
those of the baseline. This indicates a correlation
between the policy model and the reward model.

D Loss Functions

D.1 Deriving the Reward Loss Functions

In the Bradley-Terry model’s assumption, Oracle
reward model outputs rewards in connection with
the win rates:

E
p∼J

I(y > y′;x, p) = − log σ[r∗(x, y)−r∗(x, y′)]
(6)

where p is a judge (annotator) sampled from the
judge distribution J .

As we only focus on the reward differences be-
tween responses to the same prompt, there exists
another metric denoted as D′

1 for calculating the
reward loss:

Ls = E
x,y,y′

D′
1[r(x, y)− r(x, y′),

r∗(x, y)− r∗(x, y′)]

As − log σ(·) is monotonically increasing, so
there exists a metric D′′

1 , such that

D′
1[r(x, y)− r(x, y′), r∗(x, y)− r∗(x, y′)]

=D′′
1[− log σ(r(x, y)− r(x, y′)),

− log σ(r∗(x, y)− r∗(x, y′))]

=D′′
1[− log σ(r(x, y)− r(x, y′)),

E
p∼J

I(y > y′;x, p)]

Let D′′
1 be the cross-entropy loss, and let

P(x, y, y′) = − log σ(r(x, y)− r(x, y′)),

Ls = E
x,y,y′

[P(x, y, y′) · E
p∼J

I(y > y′;x, p)

+ (1− P(x, y, y′)) · (1− E
p∼J

I(y > y′;x, p))]

= E
x,y,y′

p∼J

[P(x, y, y′) · I(y > y′;x, p)

+ (1− P(x, y, y′)) · (1− I(y > y′;x, p))]

which is exactly Eq. 2 when we sample from D.

D.2 DPO as the Policy Loss

The derivation for policy loss is the same as re-
ward loss in their essence. The policy model can
be treated as a reward model with sequence proba-
bilities reflecting the rewards (Rafailov et al., 2023,
2024). reward(x, y) = log[π(x, y)/πref (x, y)].

From this perspective, the DPO loss and reward
loss share the same assumption (Eq. 6). The reward
model and the DPO-trained policy model are es-
sentially doing the same task despite some formal
differences (Rafailov et al., 2023, 2024).

18885

0 500 1000 1500 2000 2500 3000

0.0

0.2

0.4

0.6

0.8

train/loss/reward

0 500 1000 1500 2000 2500 3000

0.2

0.4

0.6

0.8

1.0

train/accuracy

0 500 1000 1500 2000 2500 3000

0

2

4

6

8

10

12

14

train/margin

0 500 1000 1500 2000 2500 3000
0.4

0.6

0.8

1.0

1.2

eval/loss/reward

0 500 1000 1500 2000 2500 3000

0.60

0.65

0.70

0.75

0.80
eval/accuracy

0 500 1000 1500 2000 2500 3000
0

1

2

3

4

5

6

7
eval/margin

-0.2
0.0
0.1
0.2
0.4
0.6
0.8
1.0
1.2

Figure 7: Results for different policy ratios. “margin” is the average difference between a better and worse response’s
rewards. A policy ratio of 0 equals to Baseline method.

E Mathematical Enlightenment

E.1 Theoretical Explanation for the Claims
Inequality for claim 1. Unless K can exactly fit
K∗, there exists ϵ > 0, such that

E
d∼P

[D2(KH ◦ ϕH(d),K
∗ ◦ ϕ∗(d))]

⩽ min
K

E
d∼P

[D2(K ◦ ϕs(d),K
∗ ◦ ϕ∗(d))]− ϵ

α

holds for all α ∈ (0.1, 2), where KH , ϕH =
argmin

K,ϕ
LH in Equation 5 and ϕs = argmin

ϕ
Ls in

Equation 2. Here we use argmin to represent the
best models optimized with the corresponding loss
functions, so ϕH and ϕs are not equal to ϕ∗ al-
though ϕ∗ is the minimum mathematically.

Inequality for claim 2. Assume that ϕ∗ is unique,
K∗ is locally Lipschitz continuous, , and 0.1 <
α < 2, there exists k, δ > 0, such that

E
d∼P

[|ϕH(d)− ϕ∗(d)| − |ϕs(d)− ϕ∗(d)|] <
gmax − gmin

gmin
E

d∼P
|ϕs(d)− ϕ∗(d)|+ 2δ − ϵ

α · k
We obtain informally here an upper bound on

the model preference error. By tuning the hyperpa-
rameter α, the right term can be strictly negative.

E.2 Inequality Scaling

min
F,ϕ,K

E
d∼P

[D1(F ◦ ϕ(d),F∗ ◦ ϕ∗(d))

+α·D2(K ◦ ϕ(d),K∗ ◦ ϕ∗(d))]

⩽ min
F=Fs
ϕ=ϕs

K

E
d∼P

[D1(F ◦ ϕ(d),F∗ ◦ ϕ∗(d))

+α·L2(K ◦ ϕ(d),K∗ ◦ ϕ∗(d))]

= min
K

E
d∼P

[α ·D2(K ◦ ϕs(d),K
∗ ◦ ϕ∗(d))]

+ E
d∼P

[D1(Fs ◦ ϕs(d),F
∗ ◦ ϕ∗(d))]

With the definition of ϕH ,KH ,FH , we have:

E
d∼P

[D1(FH ◦ ϕH(d),F
∗ ◦ ϕ∗(d))

+ α ·D2(KH ◦ ϕH(d),K
∗ ◦ ϕ∗(d))]

⩽ E
d∼P

[D1(Fs ◦ ϕs(d),F
∗ ◦ ϕ∗(d))]

+ min
K

E
d∼P

[α ·D2(K ◦ ϕs(d),K
∗ ◦ ϕ∗(d))]

⩽ E
d∼P

[D1(FH ◦ ϕH(d),F
∗ ◦ ϕ∗(d))]

+ min
K

E
d∼P

[α ·D2(K ◦ ϕs(d),K
∗ ◦ ϕ∗(d))]

18886

In practical settings, “⩽”s do not hold at the same
time (simultaneously optimizing two objectives is
preferable to optimizing them sequentially). With
the premise that the model is fully optimized with
the hybrid alignment loss for any α ∈ (0.1, 2),
which means both of the objectives have an impact
on the final optimization result, namely ϕH ̸= ϕs,
there exists a little gap ϵ > 0 such that

E
d∼P

[D1(FH ◦ ϕH(d),F
∗ ◦ ϕ∗(d))

+ α ·D2(KH ◦ ϕH(d),K
∗ ◦ ϕ∗(d))]

⩽ E
d∼P

[D1(FH ◦ ϕH(d),F
∗ ◦ ϕ∗(d))]

+ min
K

E
d∼P

[α ·D2(K ◦ ϕs(d),K
∗ ◦ ϕ∗(d))]− ϵ

Then, there goes

E
d∼P

[D2(KH ◦ ϕH(d),K
∗ ◦ ϕ∗(d))]

⩽ min
K

E
d∼P

[D2(K ◦ ϕs(d),K
∗ ◦ ϕ∗(d))]− ϵ

α

Here we get the first inequality.

E.3 Derive the Final Inequality with the 3
Properties

Convergence:
Since the trained model K◦ϕ is close to K∗ ◦ϕ∗,

we can therefore linearize D2 with a certain positive
number k:

E
d∼P

[D2(K ◦ ϕ(d),K∗ ◦ ϕ∗(d))]

= E
d∼P

k|K ◦ ϕ(d)−K∗ ◦ ϕ∗(d)|
(7)

Separating little disturbance:

E
d∼P
|N ◦ ϕ(d)| < δ (8)

holds for any fully-optimized model K ◦ ϕ with
N := K−K∗. Given that the trained model and its
preferences closely approximate those of the true
model and preferences, we are able to scale down
the error terms by a small margin.
Gradient scaling:

Intuitively, the optimal model is unique, so
E

d∼P
|K∗ ◦ ϕ(d) − K∗ ◦ ϕ∗(d)| > 0. Here we

make a slightly stronger assumption that K∗ is lo-
cally gmax-Lipschitz continuous and has the lower
bound gmin, which means for any ϕ that is close to
ϕ∗, there exists

gmin E
d∼P
||ϕ(d)− ϕ∗(d)||

< E
d∼P
|K∗ ◦ ϕ(d)−K∗ ◦ ϕ∗(d)|

<gmax E
d∼P
||ϕ(d)− ϕ∗(d)||

(9)

-4.675 -2.742 -0.809 1.124 3.058 4.991
reward

-4.541

-2.249

0.042

2.334

4.625

6.917

to
ke

n-
wi

se
 p

er
pl

ex
ity

0

2

4

6

8

10

12

14

16

Figure 8: The distribution of the reward model’s and
DPO model’s outputs on test data when trained with
identical data.

Based on these three properties, we can derive
the result from Appendix E.1.

Inequality 2
Eq. 7
=⇒ E

d∼P
|KH ◦ ϕH(d)−K∗ ◦ ϕ∗(d)|

⩽ min
K

E
d∼P
|K ◦ ϕs(d)−K∗ ◦ ϕ∗(d)| − ϵ

α · k
Ineq. 8
=⇒ E

d∼P
|K∗ ◦ ϕH(d)−K∗ ◦ ϕ∗(d)| − δ

< E
d∼P
|K∗ ◦ ϕs(d)−K∗ ◦ ϕ∗(d)|+ δ − ϵ

α · k
Ineq. 9
=⇒
gmin E

d∼P
[||ϕH(d)− ϕ∗(d)|| − ||ϕs(d)− ϕ∗(d)||]

< (gmax − gmin) E
d∼P
||ϕs(d)− ϕ∗(d)||

+ 2δ − ϵ

α · k
F Experiment Results

F.1 Consistency
The x-axis in Figure 3 represents the reward differ-
ence between the responses generated by the DPO
model and those generated by the HAF model’s
policy head. This difference is scored by the re-
ward model trained on the same data distribution,
which we refer to as the Oracle reward model. We
retain the checkpoints from the training processes
of both DPO and HAF model and identify potential
model pairs with similar performance using five
methods (corresponding to the five colors in the
figure). This similarity in performance ensures that
the higher reward is not a result of better response
quality. The five methods include “reward” (similar
scores from the Oracle reward model), “acc” (simi-
lar binary classification accuracy), “loss” (similar

18887

Model Metric Helpful Harmless CA BS AHP

Phi-2
ppwin 0.74 1.00 0.60 0.74 2.52
pplose 0.92 0.97 1.09 0.60 2.55

Mistral-base
ppwin 0.42 0.65 0.51 0.38 0.75
pplose 0.62 0.63 0.87 0.28 0.98

Mistral-Instruct
ppwin 3.50 5.13 2.33 1.58 1.98
pplose 6.08 5.81 3.52 1.31 2.67

Table 7: Variances of the corresponding metrics. “pp” means token-wise perplexity. The subscript “win” refers to
the better response while “lose” refers to the worse response.

ppwin pplose ppwin-pplose

corr −0.8166 −0.9492 −0.9064
p 0.0916 0.0136 0.0339

Table 8: The Pearson correlation coefficient between
the variance of the token-wise perplexity of Mistral-
Instruct and the difference in accuracy between the re-
ward model trained with DPO and the accuracy of the
baseline training. “corr” indicates the Pearson correla-
tion coefficient, while “p” indicates significance.

loss values), “margin” (similar average margins
of model predictions), and “step” (same training
steps).

It can be observed that the differences in HAF
scores are almost always higher than those from
the Oracle reward model. This suggests that the
preferences of the reward model are influenced
by the preferences of the shared parameter policy
model, providing some evidence for the existence
of an Internal Preference Model.

Also shown in Figure 8, we independently
trained a DPO model and a reward model using
the same data and observed a strong positive cor-
relation (even linearity) in their predictions on the
test data. This indicates a significant similarity
in the preference modeling processes of the DPO
model and the reward model. A response preferred
by the reward model will also be preferred by the
DPO model, which we introduce the concept of the
“Internal Preference Model” to explain.

F.2 Overall Performance
Table 7 shows the token-wise perplexity calculated
by each model for each dataset.

pp = − log Prob(sequence)

Length(sequence)

Another interesting finding is that the variance
of the token-wise perplexity (pp) values for Mistral-

Instruct shows a very strong negative correlation
with the performance of the DPO reward model.
Table 8 calculates the Pearson correlation coeffi-
cient between the variance of the pp values and
the performance difference between the DPO re-
ward model and the baseline reward model, indi-
cating that this negative correlation is highly signif-
icant. This finding may provide valuable insights
for aligning well-trained (but not yet well-aligned)
models.

F.3 Best of N

In Table 12 we list the recall value on each dataset.
We show in Figure 9 and Figure 10 the win rates on
each dataset judged by gpt-4-turbo-2024-04-09
and ArmoRM-Llama3-8B-v0.1 (Wang et al.,
2024b), respectively.

G GPT Judgement

Comparing two responses The prompt we used
for judgement is listed in Table 10. The sen-
tence between “<SYSTEM PROMPT>” is the sys-
tem prompt, and the others are the user prompt.
“{question}”, “{response 1}”, “{response 2}” will
be replaced with the actual query or responses re-
spectively. As GPT does not exhibit a strong “po-
sitional bias” (Wang et al., 2023), so we just ran-
domly interchange the order of the two responses
rather than prompting twice with the responses
swapped.

Ranking responses Table 9 shows the consump-
tion approximation for getting top-1, top-2 re-
sponses and the complete order out of 4/8 re-
sponses. We consider that performing a single sort-
ing operation on eight responses with the model
may result in a loss of precision. Besides, while
binary comparisons exhibit high accuracy, repeated
binary comparisons inevitably lead to cumula-
tive errors and erroneous outcomes. Therefore,

18888

35.0 15.455.02

19.36

9.49 11.35
4.28

HAF:53.79%
Baseline:36.10%

DPO:44.48%

Phi-2

29.14 16.3311.8

21.1

6.78 7.03
7.78

HAF:55.50% Baseline:42.94%

DPO:42.69%

Mistral

(a) AHP

11.55 7.5822.74

10.1

2.88
3.97

41.15

HAF:78.32% Baseline:75.44%

DPO:58.10%

Phi-2

17.69
12.317.69

24.61

4.61
7.69

15.38

HAF:55.37% Baseline:53.06%

DPO:52.29%

Mistral

(b) BS

19.36
16.45

10.25

15.69

16.32 6.07

15.82

HAF:61.75% Baseline:48.59%

DPO:53.90%

Phi-2

20.64 25.0518.56

23.2

5.56 3.01
3.94

HAF:48.70% Baseline:50.56%

DPO:35.71%

Mistral

(c) CA

15.94 17.5326.65

14.23

6.83 4.32

14.46

HAF:63.88% Baseline:62.96%

DPO:39.84%

Phi-2

17.21 12.919.05

25.81

5.53 5.53
13.93

HAF:55.72% Baseline:51.41%

DPO:50.80%

Mistral

(d) Helpful

24.22 14.18
7.72

15.1

6.11
7.95

24.68

HAF:62.73% Baseline:54.53%

DPO:53.84%

Phi-2

21.34 13.2213.92

26.91

6.26 5.8
12.52

HAF:54.04% Baseline:45.46%

DPO:51.49%

Mistral

(e) Harmless

Figure 9: Win rates on each dataset judged by gpt-4-turbo-2024-04-09

18889

28.99
11.334.46

22.3

11.52 17.1
4.27

HAF:49.24% Baseline:37.16%

DPO:55.19%

Phi-2

29.84 18.246.86

29.39

5.18 6.3
4.16

HAF:46.04% Baseline:35.56%

DPO:45.03%

Mistral

(a) AHP

8.63 4.6723.02

11.51

5.39
5.75

41.0

HAF:78.04% Baseline:74.44%

DPO:63.65%

Phi-2

21.1 19.822.4

18.18

2.92 5.19

10.38

HAF:56.80% Baseline:57.77%

DPO:36.67%

Mistral

(b) BS

21.99
12.89

9.73

15.8

18.2 5.43

15.92

HAF:65.84%
Baseline:43.97%

DPO:55.35%

Phi-2

21.13 26.8315.55

24.86

4.38 4.49
2.73

HAF:43.79% Baseline:49.60%

DPO:36.46%

Mistral

(c) CA

17.4
14.7828.44

11.94

9.1 3.86

14.44

HAF:69.38% Baseline:61.52%

DPO:39.34%

Phi-2

24.07 16.5420.96

20.36

4.01 4.71
9.32

HAF:58.36% Baseline:51.53%

DPO:38.40%

Mistral

(d) Helpful

22.46 9.44
10.25

12.9

9.56
10.71

24.65

HAF:66.92% Baseline:55.05%

DPO:57.82%

Phi-2

17.9 23.3513.58

24.58

4.52 7.61
8.43

HAF:44.43% Baseline:52.97%

DPO:45.14%

Mistral

(e) Harmless

19.89 10.6215.18

14.89

10.75 8.57

20.05

HAF:65.87% Baseline:54.42%

DPO:54.26%

Phi-2

22.8 20.9515.87

23.47

4.2 5.66
7.0

HAF:49.87% Baseline:49.48%

DPO:40.33%

Mistral

(f) Avg.

Figure 10: Win rates on each dataset judged by ArmoRM-Llama3-8B-v0.1

18890

Top-1 Top-2 Complete sort
responses 4 8 4 8 4 8

binary comparison 6 3×2 14 7×2 8 4×2 20 10×2 10 5×2 32 16×2

rank 4 responses 4 1×4 12 3×4 4 1×4 12 3×4 4 1×4 20 5×4

rank 8 responses 4 1×4 8 1×8 4 1×4 8 1×8 4 1×4 8 1×8

Table 9: Approximation for resources consumption. The first column is three different ways of interacting with
GPT. The first row is the target response(s) and the second row is the number of candidate responses. “a× b” means
we should engage with GPT-3.5 a total of a times, with each interaction requiring an input of b responses. For
example, “6 3×2” means when using binary comparison, to get the top-1 response among 4 candidate responses, we
need 3 turns of interactions with each turn requiring an input of 2 responses, hence our expenditure amounts to
approximately 6 units

whether from a cost or accuracy standpoint, it
is not a favorable option. In practice, we obtain
the top 2 responses by ranking 4 responses with
gpt-4-turbo-2024-04-09 at once. For 8 candi-
date responses, we first evenly divide them into
two groups and use GPT to rank the responses of
each group, then we rank the two sets of the top
2 responses to get the top 2 responses among 8
candidates.

Rank for Top-2

Rank for Top-2
Rank for Top-2

Figure 11: Three times of interactions with GPT to get
top-2 responses

The prompt for ranking four responses is shown
in Table 11. GPT’s answer will be parsed in JSON
format.

18891

Prompt for comparing two responses.

<SYSTEM PROMPT>You are a helpful instruction-following assistant that prints the best model by
selecting the best outputs for a given instruction.<SYSTEM PROMPT>
Select the output (a) or (b) that best matches the given instruction. Choose your preferred output, which
can be subjective. Your answer should ONLY contain: Output (a) or Output (b).
Here’s an example:

Example:
Instruction:
Give a description of the following job: "ophthalmologist"

Output (a):
An ophthalmologist is a medical doctor who pokes and prods at your eyes while asking you to read letters
from a chart.

Output (b):
An ophthalmologist is a medical doctor who specializes in the diagnosis and treatment of eye diseases and
conditions.

Which is best, Output (a) or Output (b)?
Output (b)

Here the answer is Output (b) because it provides a comprehensive and accurate description of the job of
an ophthalmologist. In contrast, output (a) is more of a joke.

Task:
Now is the real task, do not explain your answer, just say Output (a) or Output (b).

Instruction:
{question}

Output (a):
{response 1}

Output (b):
{response 2}

Which is best, Output (a) or Output (b)?

Table 10: We use 1-shot for response comparison.

18892

Prompt for ranking four responses.

<SYSTEM PROMPT>You are a helpful assistant, that ranks models by the quality of their an-
swers<SYSTEM PROMPT>
I want you to create a leaderboard of different models. To do so, I will give you the instructions (prompts)
given to the models, and the responses of four models. Please rank the models based on which responses
would be preferred by humans. All inputs and outputs should be python dictionaries.

Here is the prompt:
{

"instruction": {question},
}

Here are the outputs of the models:
[

{
"model": "model_1",
"answer": {output_1}

},
{

"model": "model_2",
"answer": {output_2}

},
{

"model": "model_3",
"answer": {output_3}

},
{

"model": "model_4",
"answer": {output_4}

}
]

Now please rank the models by the quality of their answers, so that the model with rank 1 has the best
output. Then return a list of the model names and ranks, i.e., produce the following output:
[

{"model": "model_1", "rank": <model-rank>},
{"model": "model_2", "rank": <model-rank>},
{"model": "model_3", "rank": <model-rank>},
{"model": "model_4", "rank": <model-rank>}

]

Your response must be a valid Python dictionary and should contain nothing else because we will directly
execute it in Python. Please provide the ranking that the majority of humans would give.

Table 11: We rank four responses in order of quality in a single interaction.

AHP BS CA Helpful Harmless
Top-1 Top-2 Top-1 Top-2 Top-1 Top-2 Top-1 Top-2 Top-1 Top-2

Phi-2HAF 28.67 52.51 32.49 53.06 37.46 65.94 45.44 74.25 24.79 45.67
Phi-2DPO 20.85 45.62 17.68 39.71 31.89 56.07 26.42 53.07 17.87 36.67
Phi-2baseline 15.45 34.63 32.85 50.90 27.84 51.64 43.62 73.91 17.41 37.48

MistralHAF 22.86 41.95 14.61 25.38 24.12 42.69 16.39 35.24 12.99 29.23
MistralDPO 14.57 32.91 10.00 24.61 13.68 30.62 13.31 31.14 12.52 25.98
Mistralbaseline 14.82 30.40 13.07 24.61 25.05 43.85 14.95 31.14 12.29 23.20

Table 12: Top-k recall for best-of-N sampling on each dataset. The results are presented as the percentage of the
chosen responses included in top-k responses.

18893

