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Abstract

Language model evaluation is a daunting task:
prompts are brittle, corpus-level perplexities
are vague, and the choice of benchmarks are
endless. Finding examples that show meaning-
ful, generalizable differences between two LMs
is crucial to understanding where one model
succeeds and another fails. Can this process be
done automatically? In this work, we propose
methodology for automated comparison of lan-
guage models that uses performance-aware con-
textual embeddings to find fine-grained features
of text where one LM outperforms another. Our
method, which we name BEHAVIORBOX, ex-
tracts coherent features that demonstrate differ-
ences with respect to the ease of generation be-
tween two LMs. Specifically, BEHAVIORBOX
finds features that describe groups of words
in fine-grained contexts, such as conditional

‘were’ in the phrase ‘if you were’ and exclama-
tion marks after emotional statements, where
one model outperforms another within a par-
ticular datatset. We apply BEHAVIORBOX to
compare models that vary in size, model fam-
ily, and post-training, and enumerate insights
into specific contexts that illustrate meaning-
ful differences in performance which cannot
be found by measures such as corpus-level per-
plexity alone.1

1 Introduction

Where does one language model perform better
than another? This deceptively simple question
holds a near-endless number of complications.
Practitioners must select from a dizzying array
of evaluation methods, datasets, benchmarks, and
metrics. Seemingly innocuous changes to eval-
uation pipelines, like the formatting of prompts,
have been shown to drastically impact accuracy on
a wide range of tasks (Sclar et al., 2023). Even

1Code for this work is available at https://github.com/
lindiatjuatja/BehaviorBox.

evaluating language models based on their original
training objective—next token prediction—is not
so straightforward. While metrics like perplexity
(Jelinek et al., 1977) on a held-out corpus are com-
monly used and are generally correlated with down-
stream performance (e.g. Adiwardana et al. 2020;
Isik et al. 2024), the use of corpus-level perplex-
ity on extremely large, diverse data often masks
finer-grained differences on particular subgroups
and domains (Magnusson et al., 2023; Fang et al.,
2024).

What could an alternative to collections of bench-
marks and corpus-level perplexity look like? One
solution would be to partition the data into slices
and report performance across these sub-corpora,
as was done in Paloma (Magnusson et al., 2023).
However, such an approach depends on both know-
ing the relevant partitions ahead of time and having
sufficient metadata such that these partitions can
be made. But what if we could instead discover
what the relevant features of these partitions are,
and automatically generate a report telling practi-
tioners specific and coherent groups of text where
one model outperforms another?

We attempt to tackle this problem using our new
evaluation method—BEHAVIORBOX—which dis-
covers fine-grained, human-interpretable features
of data where one LM performs better than another.
Unlike evaluations that depend on predetermined
domains of data, BEHAVIORBOX is a bottom-up
approach that finds semantic and/or structural fea-
tures of text where one model outperforms another,
and does so independently of the domain or corpus
the text originates from. As a consequence, BE-
HAVIORBOX is capable of finding specific features
and relationships in text that span across documents
and domains, without the need to partition these
domains ahead of time.

To find these features, BEHAVIORBOX not only
considers the context of a text sample (via a contex-
tual embedding), but also factors in the evaluated
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Figure 1: BEHAVIORBOX is a three-part automatic behavior comparison pipeline that discovers fine-grained features
where one LM differs from another. These features are extracted from a corpus of performance-aware embeddings,
which take into account the semantics and usage of the text, along with measures of performance via probability
under the evaluated LMs.

LMs’ performance on that sample (via the prob-
abilities the models assign to the text), forming
a performance-aware contextual representation of
each text sample. After generating a large dataset
of these representations, we then train a sparse
autoencoder (SAE), which learns simple linear de-
compositions of the dense representations, with
each component of the sparse representation acting
as a discovered feature. Finally, using the groups of
data determined by the SAE features, we generate
natural language descriptions of each group.

We demonstrate the efficacy of BEHAVIORBOX

in discovering fine-grained differences between
models in the language modeling task by com-
paring models that differ in size, family, and in
types of post-training; specifically, we look at base
and post-trained models of two sizes (7B and 13B
parameters) across two model families, Llama 2
(Touvron et al., 2023) and OLMo 2 (OLMo et al.,
2024). Using BEHAVIORBOX, we are able to find
extremely fine-grained features in data that point to
larger models’ ability to better predict long-tailed
stylized text (e.g. archaic spelling and vernacular),
as well as show particular features related to dia-
logue and conversation where chat/RLHF-ed mod-
els excel. We are also able to discover differences
between models that otherwise show near-identical
performance with respect to perplexity, such as
differences in predicting particular structure or for-
matting in text or different syntactic constructions
in specific contexts. The insights provided by BE-
HAVIORBOX provide a more holistic and detailed
perspective on LM performance, and can be used
to augment existing methods for evaluation and

interpretability.

2 Background

BEHAVIORBOX draws both conceptually and
methodologically from two well-established areas
of research: the problem of slice finding and the
behavioral evaluation of black-box NLP systems.

2.1 Slice Finding

A key component in debugging and building better
machine learning and NLP systems is identifying
where and when a system underperforms. When
we evaluate these systems, we may use overall met-
rics, such as accuracy on a benchmark or perplexity
on a large corpus. However, overall performance
may obfuscate stark differences in performance
across subgroups; thus, if we are interested in the
performance on groups within the larger dataset,
we may partition the data into predetermined cat-
egories, and compare performance within these
groups. Nevertheless, it is often difficult to know
a priori what the relevant groups of data are with
respect to model performance. The task of auto-
matically identifying salient groups of data where
a model underperforms is known as slice finding
(Chung et al., 2018), and is applicable across all
sorts of tasks and modalities, from image classifi-
cation to question answering.

Early works in slice finding often relied on meta-
data to find relevant slices (Chung et al., 2018),
but such an approach depends on the appropriate
metadata categories to be specified and present in
the data, which may not necessarily be the case.
To solve this problem, slice finding methods such
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as George (Sohoni et al., 2020), Spotlight (d’Eon
et al., 2022), and Domino (Eyuboglu et al., 2022)
utilize learned representations of the data to find
semantically similar clusters of underperforming
samples. These methods have primarily focused on
image classification tasks, and a few constrained
natural language tasks, such as sentiment analysis.

BEHAVIORBOX takes a similar approach as
these works by utilizing contextual representations,
but differs in two major ways. First, we focus on
the language modeling task, which involves a sig-
nificantly more complex output space compared to
the tasks explored in prior work. Second, we focus
on model comparison as opposed to where a single
model is “incorrect”, as such a distinction is much
less clear in the context of text generation.

2.2 Behavioral Evaluation in NLP
As NLP systems have grown ever more complex,
efforts to better understand these largely black-box
systems have become increasingly important. One
approach to better understanding such a system is
to generate explanations for a system’s behaviors,
i.e. how a system’s output changes when provided
inputs of a certain type (Ribeiro et al., 2020). Ex-
planations usually take the form of a relationship
between a particular feature in the data and the
resulting prediction, e.g. the impact of the use of
negation on the predictions of a sentiment analysis
model. These explanations not only need to faith-
fully capture model behaviors, but should also be
human interpretable (Ribeiro et al., 2016; Lundberg
and Lee, 2017).

In the context of explaining errors of NLP sys-
tems, works like Errudite (Wu et al., 2019) and
CheckList (Ribeiro et al., 2020) provide frame-
works for practitioners to stress-test models on pre-
cise hypotheses regarding the impact of specific
features. Nevertheless, these hypotheses still need
to be specified ahead of time. BEHAVIORBOX can
be seen as a complementary approach by serving
as a form of hypothesis discovery, where such hy-
potheses can then be further explored in various
other evaluation frameworks.

3 Method Overview: BEHAVIORBOX

As shown in Figure 1, BEHAVIORBOX is an auto-
matic behavior comparison pipeline for language
modeling, comprised of three parts:

1. Data generation, which consists of calculat-
ing contextual embeddings and aligning these

embeddings with probabilities under LMs for
the same text (§4),

2. Extracting features that are coherent and cap-
ture similarities and differences regarding per-
formance between models (§5), and

3. Labeling groups of data indicating perfor-
mance differences between LMs among the
discovered data slices (§6.1).

The unit of data used in this method can, in the-
ory, be as small as a token or as large as a docu-
ment. However, in our experiments, we focus on
characterizing performance at (roughly) the word
level. We decided on this level of abstraction to
balance both granularity and salience, as well as
for engineering convenience. While tokens serve
as the atomic unit of generation and are closest
to the training objective, they may be less human-
interpretable and are harder to work with when
aligning the different tokenizers of the embedding
model and various LMs. On the other hand, larger
structures like phrases and sentences may be easier
to categorize in terms of salient groups, but may
be difficult to parse for certain types of documents
commonly included in pretraining and evaluation
(e.g. code, mathematical expressions, or other non-
linguistic textual data), and could furthermore mask
more granular trends that may be of interest.

4 Data Generation

Prior work has shown that incorporating learned
representations of the input data along with a
model’s predictions and gold labels helps with iden-
tifying unlabeled classes of data where said model
underperforms (Eyuboglu et al., 2022; Sohoni et al.,
2020). Drawing from these works, BEHAVIORBOX

uses contextual embeddings to provide semantic
information about each word, along with probabili-
ties generated by the evaluated LMs, which serve
as a measure of the LMs’ performance. For con-
textual embeddings, we use the last hidden layer of
Longformer (Beltagy et al., 2020).

As previously mentioned, we use BEHAVIOR-
BOX to slice our data (some arbitrary text dataset)
into groups of words. Collecting and aligning
contextual embeddings and probabilities per word
across models that utilize different tokenization pro-
cesses requires a number of engineering decisions,
such as determining the boundaries of words, sub-
sequently combining or splitting token log proba-
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bilities when necessary, and handling strings longer
than the context window of different models.

We use Longformer’s pre-tokenizer, which
largely splits on regular whitespace, as our method
of determining word boundaries. To aggregate to-
ken representations within a single word, we av-
erage the embeddings of the constituent tokens.
For probabilities, we multiply the probabilities of
constituent tokens. For instance, given a word
that spans tokens n to m in a sequence w =
{tn, tn+1, . . . , tm}:

ew =
1

(m− n+ 1)

m∑

j=n

etj , etj ∈ R768 (1)

pw =
m∏

j=n

P (tj |t1, . . . , tj−1) (2)

Each datapoint in the resulting dataset is a vector
of dimension 770, where the first 768 dimensions
are from the Longformer embedding and the last
two are the probabilities of the language models
being compared.

xw =



ew
pw,1

pw,2


 ∈ R770 (3)

5 Extracting Features

Once we have a dataset of aligned words and prob-
abilities for the LMs we wish to compare, we now
have to find a way to extract and label fine-grained
slices of data. This needs to be done in such a way
that the slices are composed of coherent sets of
words in context and the labels adequately explain
the slice in a human-interpretable manner.

Previous works in automatic slice finding that
incorporate learned representations have used vari-
ous clustering algorithms such as k-means cluster-
ing (Sohoni et al., 2020; d’Eon et al., 2022) and
Gaussian mixture models (Eyuboglu et al., 2022).
However, as opposed to finding (hard) partitions in
the data, we want to find specific features associ-
ated with text where one model performs better of
worse than another. These features need not form
a true mathematical partition of the entire corpus,
but can instead be treated as linear decompositions
of each text sample, where each word in context is
comprised of some number of these features.

Finding simple, linear decompositions of oth-
erwise complex representations is a problem in

a wide variety of settings in NLP, such as creat-
ing more interpretable word embeddings (Faruqui
et al., 2015) and—more recently—interpreting the
internal states of transformer models (Cunningham
et al., 2023; Lieberum et al., 2024; Gao et al., 2024,
inter alia). We take a similar methodological ap-
proach to these works by using sparse autoencoders
to extract features relevant to performance differ-
ences between two LMs. Using the SAE, we can
then extract slices corresponding to each feature by
finding the words whose representations that lead
to the highest activation value of that feature.

5.1 Sparse Autoencoder Training
Recall that the features we are looking for ideally
have the following characteristics: they should be
coherent, fine-grained, and capture performance
differences between models. Balancing each of
these criteria inform our use of various hyperpa-
rameters and regularization choices.

The sparse autoencoder consists of an encoder
and decoder: the encoder takes as input a vector x,
which is a concatenation of the contextual word em-
bedding and LM probabilities, and creates a sparse
representation f(x). The decoder then reconstructs
the input (denoted as x̂) from this sparse represen-
tation. σ(·) denotes the activation function.

f(x) = σ(Wencx+ benc) (4)

x̂ = f(x)Wdec + bdec (5)

For σ(·), we use RELU (Agarap, 2018) to ensure
non-negative values, as we conceptually want our
features to be additive. The weights of Wenc, benc,
Wdec, and bdec are learned by minimizing the L2

distance between the reconstruction x̂ and the origi-
nal input x, using AdamW (Loshchilov and Hutter,
2017) as our optimizer.

5.2 Enforcing Sparsity
While allowing us to create a faithful representa-
tion of the original input, the above setup does not
constrain the autoencoder to be sparse. As a way to
enforce sparsity, we apply a batch-wise top-k opera-
tion to the pre-RELU SAE hidden state (Makhzani
and Frey, 2013; Gao et al., 2024; Bussmann et al.,
2024): for some value k, we flatten the batch (of
size N ), and zero out all activations that are not
in the top N × k activations. This allows us to di-
rectly enforce E[L0] at the batch level, as opposed
to using a proxy such as adding an L1 penalty to
the loss (Bricken et al., 2023).
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fsparse(x) = BatchTopK
(
σ(Wencx+ benc), k

)
(6)

5.3 Balancing Context and Performance
Awareness

Including the probabilities in the input to the SAE
on its own does not guarantee that the SAE will uti-
lize that information. One reason why the SAE may
not utilize probabilities is simply because these two
features are overwhelmed by the large number of
embedding features’ contribution to the L2 loss.
Thus, we up-weigh the probability features so that
the magnitude of the probability components make
up 70% of the total magnitude of the input.

Hyperparameters The dimension of the sparse
representation we learn is 3000 with k = 50. We
include a table of all SAE training hyperparameters
and additional training details in Appendix A.1.

6 Processing and Labeling Features

6.1 Processing and Filtering SAE Features

After training, we now need to extract the slice of
words associated with each feature of the SAE. We
do this by taking the same dataset of words used
to train the SAE and find the top 50 words that
lead to the highest non-zero activation value for
each feature in fsparse(x). For features that have
less than 50 non-zero activations, we consider all
samples; we do not consider features with less than
10 non-zero activations.

Different features may have different ranges and
distributions of non-zero activation values. As we
don’t want to consider samples whose activations,
though non-zero, are extremely small compared
to the highest value, we set a “dynamic” cutoff
by including samples whose activation values are
either in the top 75% or are greater than 25% of the
highest activation value.2

However, not every feature is indicative of a
significant and consistent performance difference
between models. To exclude those that are not, we
only consider features that either show a median
probability difference among the filtered samples
greater than 0.1 or a median log-probability differ-
ence greater than 1 (i.e. the ratio of probabilities is
greater than e). We decided on thresholding based

2While this choice is somewhat arbitrary, some sort of cut-
off (whether in this manner or a similar method) was necessary
to select groups of words to consider as representative of a
feature in our analysis.

on probability as well as log-probability differences
to capture a set of features that can show both large
differences in magnitude along with large relative
differences (even if the absolute magnitude of the
probabilities is small, as would be the case for rarer
long-tailed phenomena).3

6.2 Labeling Procedure

As manually labeling every slice across multiple
SAE runs would take a prohibitive amount of time,
we partially automate this process by using a strong
LLM (Claude 3.5 Sonnet, Anthropic 2024) as an
annotator. For a given feature, we have a multi-
step annotation procedure. First, we prompt the
LLM annotator to determine if a group of words
and their contexts form a coherent group, and if
so to provide a label describing this group. We
then have a second round of annotation to validate
the label by feeding the same label with examples
to the LLM annotator, asking it to either keep the
original label if it is appropriate, provide a new one
if the current label does not accurately describe
the examples, or invalidate the feature if the group
is not coherent. We include the prompts used in
Appendix A.3.

While convenient, this automated labeling pro-
cess is not perfect. There are two main failure cases
in this process. First, the label may be slightly in-
accurate. If the label is inaccurate but can be cor-
rected, the authors manually rewrote the label. Oth-
erwise, if the label cannot be corrected (e.g. cases
where less than 10 of the examples is described by
the label and/or the entire group of examples do
not form a coherent grouping), we throw out the
feature.

7 Differentiating Model Performance
with BEHAVIORBOX

Interpretability methods are notoriously hard to
evaluate effectively (Lipton, 2018; Arora et al.,
2022), and thus in this work we follow previous
work on slice finding (Chung et al., 2018) and
largely rely on qualitative inspection of the trends
discovered by our method to demonstrate its utility.
Specifically, we use BEHAVIORBOX to perform
comparisons on language models across three axes
of variation:

• Model size: 7B and 13B
3We include detailed explanation of this choice of thresh-

olding strategy in Appendix A.2.
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publishing contexts
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records as row separators
Misspelled or phonetically written words in
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"wood" for "would"
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indicating compressed archive files

Stage directions indicating character
thoughts or private speech in

dramatic texts
Action verbs describing physical or
mechanical movement and control

Words specifying individual entities or
items of a type

OLMo2-7B vs. OLMo2-13B

Figure 2: Representative features between 7B models (blue) and their 13B counterparts (orange).

Model Perplexity ↓ ∆

Llama-7B 9.856 –
Llama-7B-Chat 13.911 +4.055
Llama-13B 8.773 −1.083

OLMo-7B 9.803 –
OLMo-7B-DPO 12.762 +2.959
OLMo-13B 8.756 −1.047

Table 1: Perplexity per word for each of the models
evaluated (lower is better). ∆ indicates the change in
perplexity from the 7B model within the same family.

• Post-training: we compare base models
against their post-trained RLHF-ed versions

• Model family: Llama 2 (Touvron et al., 2023)
and OLMo 2 (OLMo et al., 2024) (henceforth
simply Llama and OLMo, respectively)

As the source of text we use to create the dataset
of performance-aware representations, we use por-
tions of the Dolma Dataset (Soldaini et al., 2024),
an open dataset for language modeling containing a
diverse mix of web content, academic publications,
code, books, and encyclopedic materials. We sam-
ple 1000 documents across six of the data sources
included in Dolma (Common Crawl, The Stack,
C4, PeS2o, Project Gutenberg, and Wikipedia), to-
taling in approximately 80M words of data. As a

baseline comparison between models, we include
each model’s perplexity per word on the subset of
Dolma we use in our experiments in Table 1. In
line with previous work, we find that the larger
13B base models have lower perplexity than their
7B counterparts (Kaplan et al., 2020; Xia et al.,
2023), while post-trained models that have under-
gone RLHF exhibit higher perplexity compared to
their base counterparts (Li et al., 2024).

Interpreting Results Recall that BEHAVIOR-
BOX generates features indicative of performance
differences between the two models. While this on
its own is interesting, these results are more easily
understood when grouped into broader categories
of features to make understanding these differences
easier.

In each of the below comparisons, we include
dendrograms (see Figures 2, 3, and 4) which show
these broad meta features (in purple) along with a
representative sample of the features found by BE-
HAVIORBOX (in blue and orange) within a single
run.4 These meta features were found using a com-
bination of data exploration and sense-making tech-
niques (Chan et al., 2016), such as k-means cluster-
ing of the labels (MacQueen, 1967) and prompting
a LLM with the list of feature labels, along with

4A full list of features for each comparison can be found
in Appendix A.4.
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manual inspection by the authors.
As with many other forms of clustering, the data

can be grouped into different sets depending on
particular axes of interest; for example, we may be
more interested in groups related to the actual form
of the word described by the feature labels, or we
may be more interested in the overall context the
words occur in. In our visualizations, we mainly
focus on the latter as similar surface forms can take
on different meanings and functions depending on
their context.

7.1 Model Size
In our first set of comparisons, we run BEHAVIOR-
BOX on Llama and OLMo models that vary in size.
Both pairs of models have similar differences in
perplexity, with larger models showing a ≈ 1 drop
in perplexity compared to the 7B models; analo-
gously, we find a greater number of features where
13B outperforms 7B for both Llama and OLMo, as
shown in Figure 2.

For Llama-7B and 13B, we find that 7B outper-
forms 13B in whitespace sequences (specifically
using tabs) within narrative texts, but 13B performs
better at a wider range of formatting and typo-
graphic contexts, such as book titles and in biblio-
graphic entries. Like Llama-13B, OLMo-13B also
outperforms 7B with respect to particular aspects
of archival and bibliographic formatting (use of
double commas in a document of church registries,
‘&’ symbol in bibliographies and lists). Another
overlapping aspect between the two size compar-
isons is that the larger models perform better on
“long-tail” stylistic phenomena, such as vernacular
and non-standard spellings.

7.2 Post-training
Comparisons between base and post-trained mod-
els (the Chat version for Llama and DPO for
OLMo) showed the highest differences in per-
plexity, with Llama-7B-Chat showing the great-
est degradation in perplexity with over +4 gain,
and nearly +3 gain for OLMo-7B-DPO from the
base versions. While there is a larger difference
in perplexity compared to the comparison between
OLMo-7B and 13B, we don’t find a greater number
of features in this setting. Conversely, we find a
greater number of features for the Llama2-7B and
Llama2-7B-Chat comparison compared to 7B and
13B, though a majority of these features (17 out
of 26) are actually for where the Chat version out-
performs the base model, despite its significantly

worse performance with respect to perplexity.
Between Llama-7B and Llama-7B-Chat, the

base model performs better at text related to
source/metadata attribution and archival formatting,
while the chat version is better at a wider range of
narrative stylistic features, markup and web related
content, as well as particular grammatical construc-
tions and phrases. For OLMo models, the base
model is better at words related to categories like
influence and obstacles, as well as particular in-
stances of individual names or words (e.g. “genus”
in descriptions of types of fish, “Very Young Man”
as a character in a story), whereas the DPO version
outperforms the base at predicting words in set
phrases such as “so much the X” and “have a word
with Y”. Across both Llama and OLMo compar-
isons, the post-trained models appear to be better
at conversational phrases and common multi-word
grammatical constructions, which aligns with their
intended use in chat settings.

7.3 Model Families

Figure 4 visualizes the various features found
by BEHAVIORBOX between Llama and OLMo
models same size. Despite the difference in per-
plexity being the lowest out of all comparisons
(∆Perplexity < 0.1), we found the greatest num-
ber of distinct features between models of the same
size between families.

Furthermore, these features are persistent across
size, as we can find sets of features that are shared
among both 7B and 13B comparisons. OLMo mod-
els are better at predicting certain forms of separa-
tors like non-tab whitespace, semicolons, and com-
mas, as well as uses of HTML in reference sections.
On the other hand, common features for Llama
models involve quotation marks, along with a sub-
stantial number of features involving sequences
of tabs in various contexts such as document/text
formatting and within prose.

8 BEHAVIORBOX Features Distinguish
Texts Generated by Different LMs

BEHAVIORBOX finds features based on data from
a particular corpus. While this allows us to com-
pare performance on controlled, naturalistic data,
an open question remains of how the probabilities
of predetermined strings translate to the model’s
behavior in open generation. Are features found by
BEHAVIORBOX also evident when comparing text
generated from the compared models?

18857



Source / metadata
attribution

Archival & record
formatting

Web / technical
markup content

General grammatical
constructions

Dialogue & narrative
layout / punctuation

Narrative semantic
content & stylistic

devices

References to
public-domain material in

digitization projects

Library source
attributions in metadata

“by”+library/archive in
attribution statements

Double commas in
genealogical / parish

records
Commas preceding "and" in
narrative / instructional text

Commas before forms of
address in dialogue

Tabs following a tab
preceding dialogue or
narrative transition

Exclamation marks after
emotional statements

"with a" + facial
expression collocation

Imperative commands
using "with" to indicate
dismissal or removal

"or" as a separator in
Project Gutenberg URLs
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obligation, or requirement
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expressions in dialogue

Requests for private conversations using the phrase
"have a word with"

Instances of the word "said" used as a dialogue tag in
narrative fiction

Instances of "Very Young Man" as a character name in
a narrative text

"Place" as used in the phrase "place of" or as a rank

Words expressing challenges, obstacles or removal in
narrative contexts

OLMo2-7B vs. OLMo2-7B-DPO

General semantic categories Particular names or lexical items Use of set phrases / multiword
expressions

Figure 3: Representative features between base models (blue) and their post-trained counterparts (orange).

To investigate this, we look at whether the preva-
lence of particular strings mentioned in features
found by BEHAVIORBOX are more frequently gen-
erated by one model than another. We focus on
comparing features and generations from Llama-
13B and OLMo-13B, focusing on features that re-
fer to a specific words for ease of analysis. For
each model, we chose four strings based on the
features where the model performs better: tab,
quotation marks, “https”, and “morrow” (in “to-
morrow”) for Llama-13B and periods followed by
quotation marks, standard whitespace5, HTML less
than (“lt”), and commas for OLMo-13B.

For both models, we produce “free-generations”
by conditioning only on the model’s BOS token
with a temperature of 1 and default max generation
length (Liu et al., 2025). We filter for generations
that are between 400-600 words long, then among
those sample 500 for each model. To test the hy-
pothesis that a model produces a particular word
significantly more frequently than another, we cal-
culate the frequency of that string in every genera-

5A whitespace word when parsed by Longformer is ac-
tually due to two or more whitespaces being present in that
position in the original document.

String Hypothesis p-value

tab L > O 4.8e-5
quotation mark L > O 0.02
https L > O 8.5e-6
morrow L > O –

period + quotation mark (.”) O > L 0.02
whitespace O > L 0.03
HTML less than (lt) O > L 0.16
comma O > L 7.3e-4

Table 2: Results from testing hypotheses about differ-
ences in string frequencies between Llama-13B and
Olmo-13B; L > O indicates that Llama-13B generates
the string at a greater frequency than OLMo-13B and
vice versa. Bold indicates significant results (p < 0.05).

tion, then use the Mann-Whitney U test (Mann and
Whitney, 1947) to see if the rates of generation of
a string within a document is significantly more or
less frequent for one model compared to the other.6

As shown in Table 2, six of the eight string hy-
potheses lead to significant results, indicating that

6We use the implementation from https://docs.scipy.
org/doc/scipy/reference/generated/scipy.stats.
mannwhitneyu.html, with “greater” or “less” for the
alternative parameter.
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Dialogue &
quotations

Tabs following another tab
in chapter titles or section

headers
"https" within Project
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references section

Captions or labels for figures
and illustrations in

instructional or historical texts

Tabs following another
tab between sentences in
literary text excerpts

Tabs preceding another
tab between quotes
between speakers

Tabs following commas and
appearing before capitalized

conjunctions

Tabs followed by character
names in theatrical script

HTML less-than symbols
appearing in reference

formatting

Quotation marks following
dialogue consisting of
questions in narrative text

Periods followed by
quotation marks at the end
of a quote in dialogue

Whitespace following abrupt ends,
interruptions, trailing thoughts, or

hesitations in speech

Commas used as clause
separators in narrative or

descriptive text

"morrow" as part of archaic
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word "to-morrow"

Underscores appearing at line
beginnings in dictionary or

reference entries

Semicolons used as
separators in an index or table

of contents

Opening quotation marks at
the start of dialogue or
quoted passages

Llama2-13B vs. OLMo2-13B

Figure 4: Representative features between Llama (blue) and OLMo models (orange) of the same sizes.

BEHAVIORBOX features can be used to distinguish
sets of generations between models. Additionally,
while did not have a conclusive result for “morrow”
(as it was not present in any of the sampled strings),
we inspected 5000 free generations (not filtered for
length) and found 20 occurrences of “morrow” (as
used in “to-morrow”) from Llama-13B and 0 from
OLMo-13B, supporting our hypothesis.

9 Conclusion

In this work, we introduced BEHAVIORBOX, an
automated pipeline for the behavioral compari-
son of language models that bridges the gap be-
tween aggregated metrics and fine-grained perfor-
mance analysis. By integrating contextual em-
beddings with model probabilities into a unified,
performance-aware representation and leveraging a
sparse autoencoder to extract human-interpretable
features, our approach enables the discovery of co-
herent data slices where one model outperforms
another. Our experiments—spanning variations
in model family, size, and post-training regimes—

demonstrate that BEHAVIORBOX can uncover nu-
anced performance differences, such as distinctions
in formatting, domain-specific language, and syn-
tactic patterns, that are often masked by conven-
tional evaluation metrics like perplexity. Addition-
ally, our results highlight how differences in per-
plexity are not correlated with the number of salient
features that distinguish models. A delta in perplex-
ity could be a result of noisy, less coherent differ-
ences in behavior (as in our comparisons across
sizes), while in other cases (e.g. across model fam-
ilies) a minuscule delta could potentially hide a
number of well-stratified groups.

Beyond its utility for detailed performance di-
agnostics, BEHAVIORBOX serves as a hypothe-
sis generation tool for further behavioral analysis
and facilitates a deeper understanding of language
model behavior, thereby supporting more informed
decisions in model development and deployment.
Overall, our method represents a step toward more
transparent and actionable insights into the inner
workings of large-scale language models.
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10 Limitations

While BEHAVIORBOX shows promise as an inter-
pretability and diagnostic tool, several limitations
warrant discussion. First, the approach is depen-
dent on the quality and compatibility of the un-
derlying contextual embeddings and probability
estimates. Any misalignment between the embed-
ding space and the performance signals can ob-
scure meaningful differences. Second, aggregating
token-level probabilities into word-level metrics
may introduce noise, particularly when tokeniza-
tion strategies differ across models.

Additionally, the sparse autoencoder, despite its
design for interpretability, may not capture all rel-
evant behavioral nuances, and its performance is
sensitive to hyperparameter choices such as the
sparsity level and the weighting of probability fea-
tures. The automated labeling process—while
efficient—relies on a strong LLM annotator, which
can sometimes generate inconsistent or suboptimal
descriptions. Finally, our experiments have been
conducted on a subset of language modeling tasks
and datasets; thus, the generalizability of BEHAV-
IORBOX to other tasks, domains, or non-textual
modalities remains to be fully explored. Future
work may address these limitations by refining the
representation alignment, exploring alternative ag-
gregation strategies, and broadening the scope of
evaluation.

Ethical Considerations

BEHAVIORBOX provides new tools for practition-
ers to better understand the behavior of language
models, and particularly the differences between
multiple language models. On the whole, this has
the potential for easing the ethical deployment of
language models by identifying potential issues in
advance of deployment and rectifying them before
their deployment. Overall, we foresee few ethical
risks in the existence of such a framework, although
as with all automatic tools, users must be cautious
in jumping to conclusions based solely on the tool
output without careful thought.
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Hyperparameter Value

Batch size 128
Learning rate 10−4

AdamW β1 0.9
AdamW β2 0.99
Dict size 3000
k 50
Probability feature weight 0.7

Table 3: Hyperparameters used to train SAEs.
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A Appendix

A.1 SAE Hyperparameters and Training

Hyperparameters used to train the SAE are in-
cluded in Table 3. Hyperparameters were chosen
based on a number of heuristics and proxy metrics,
including the number of dead latents and the num-
ber of resulting coherent features as determined by
the LLM annotation process. As there are a large
number of hyperparameters and potential values,
we did not explore varying all parameters; system-
atically choosing these parameters has been noted
as a challenge in previous work (Bricken et al.,
2023). We explored using both larger dictionaries
(e.g. 4000, 5000) and applying greater sparsity con-
straints (k =10, 25), but didn’t find a consistent
pattern with respect to how these changes affect the
number and types of features found across compar-
isons.

Probability feature up-weighting A hyperpa-
rameter that had a significant impact on down-
stream results with a clear trend was the up-
weighting of probability features. Using a smaller
corpus of about 8M words, we train SAEs where
we only vary how much we up-weigh the probabili-
ties, i.e. the fraction of the total magnitude that the
probability features contribute. As expected, as this
fraction increases, features that are discovered be-
come more consistent with respect to the sign of the
probability difference between models for words
associated with that feature; however, there is a
tradeoff with the coherence of those features (with
a high fraction, features are often solely depending
on large probability diffs alone, without regards to
semantic similarity) and the number of dead latents,
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as seen in Table 4. As a result, we settled on using
a fraction of 0.7 in our experiments.

Prob Fraction % Dead ↓ Word Dist ↓ Prob Dist ↓
0.5 14.7 8.59 0.33
0.6 7.0 8.60 0.34
0.7 4.5 8.25 0.30
0.8 20.7 8.44 0.26
0.9 60.5 8.65 0.28

Table 4: Sweep over the degree probability up-
weighting using SAEs trained on 8M words of data
(model probabilities used are from Llama 2 7B and
13B). % dead refers to the number of SAE features that
never activate. For each feature, among the (up to) 50
words that activate the feature, we calculate the mean
L2 distance between each word’s contextual embedding
and the average embedding, and do the same for the
probability vector.

Neuron resetting Additionally, to mitigate the
presence of dead latents during training, we follow
the methodology in Bricken et al. (2023) and peri-
odically re-initialize encoder and decoder weights
for features that have no non-zero activations on a
hold-out eval set during training. For our experi-
ments, we reset dead neurons every 30k steps, but
only if the percentage of dead neurons (based on
inference on the eval set) is greater than 15%; the
frequency of this resetting and threshold may be ad-
justed depending on the amount of data available.

What about random seeds? Works such as Fel
et al. (2025) have pointed out that multiple runs on
the same data with different random seeds or data
orderings can largely impact the space of features
found by SAEs. Indeed, in our experiments we also
noticed variation (more so with changes in initial-
ization as opposed to data shuffling), though there
appeared to be some overlap, especially among
either thematically repetitive features (e.g. tabs
in varying contexts) or among features with large
probability differences. We hypothesize that dif-
ferent runs are capable of finding partially disjoint,
yet “correct”, sets of features, and in practice one
could take the union of various SAE runs as their
feature set of interest, or use methods such as those
proposed in Fel et al. (2025).

A.2 Thresholding Features

Our initial experiments used a two-sided t-test to
filter features based on whether difference in means
was statistically significant (as opposed to the me-
dian difference), but found that this was not suitable

as many distributions of differences were not Gaus-
sian. As a result, we encountered features which
had statistically significant difference in means
(as determined by the t-test) indicating that some
model A was better than B, but was very inconsis-
tent with respect to the number of samples where
A was actually better than B.

Thus, we instead use the median difference of
the either probabilities or log probabilities as a met-
ric to decide whether to keep or discard a feature
for analysis. To choose a threshold for the delta
in probabilities and log probabilities, we look at
the consistency of a feature, where consistency is
defined as the percentage of samples where the
sign of the difference between the two model prob-
abilities matches the median difference. As shown
in Figure 5, these chosen thresholds allow us to
filter out most features that have a consistency of
< 70%.
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Figure 5: Scatterplots showing median probability (top)
and log probability (bottom) of features (after the first
pass annotation step) against consistency. Features are
from Llama2-7B and Llama2-13B, and other compar-
isons generally follow this visual trend. Red lines show
our thresholding values (±0.1 for probability and ±1
for log probability).
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A.3 LLM Annotation
The first pass annotation prompt (as shown below)
was used to generate a first-pass of annotation la-
bels. The top 20 words that lead to the highest
activation value (or up to 20 for features containing
greater than 10 but less than 20 samples with non-
zero activations) and their contexts for a feature
were provided in a list following the prefix.

To filter and validate the features, we have an
additional round of LLM annotation, which takes
as input the original label from the annotator
LLM along with (up to) the top 20 words and
their contexts. In our qualitative analyses, we
only consider the labels output from this labeling
stage that were scored ≥ 1 (as labels scored 1 or 2
were re-labeled). We then manually verify feature
labels, and additionally filter out samples that are
not described by the label for each feature.
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First Pass Annotation Prompt

Your job is to determine if a group of words (surrounded by asterisks, e.g. *word*) in
specific contexts form a coherent group that can be described concisely. I will provide
you with a list of words surrounded by asterisks and the context in which they appear,
usually within a sentence or a block of text. Each word and how it appears in context
will be its own item in a list.

Here are some examples:
- conservation: Efforts in *conservation* are essential for protecting endangered species.
- habitat: The loss of *habitat* is a significant threat to biodiversity.
- ecosystem: An *ecosystem* needs a balance of various species to thrive.

Your job is to determine if the words form a coherent group that can be de-
scribed concisely. If the words do form a coherent group, please provide a concise
description of the group. Provide your answer in the following format:

<BEGIN ANSWER>
Coherent: <YES or NO>
Description: <if YES above, your description here; otherwise NONE>
<END ANSWER>

Do not provide any additional text after <END ANSWER>. Only respond
with YES or NO for the "Coherent" field. If you respond with YES, you must provide
a description in the "Description" field. Descriptions should be concise, ideally a
single sentence. For the above example, descriptions may be something like "Nouns
describing environmental conservation" or "Words related to biodiversity". Note that
groups and descriptions may also pertain to formatting, such as "Punctuation before
whitespaces in documents discussing logic" or "Series of whitespaces in documents
discussing visual art". The description should NOT refer to the asterisks, those are only
there to help you identify the words.

Please categorize the following list of words and their contexts as coherent or
not coherent, and provide a description if needed:
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Label Validation Prompt

Your job is to determine if a group of words (surrounded by asterisks, e.g. *word*) in
specific contexts form a coherent group that is accurately described by a given label. I
will provide you with a list of words surrounded by asterisks and the context in which
they appear, usually within a sentence or a block of text. Each word and how it appears
in context will be its own item in a list. Determine if the words form a group that is
accurately described by the label by providing a numerical score (0 to 3, and -1). Scores
are defined as follows:

- 0: The label is not accurate and the words do not form any coherent groups.
- 1: The label is not accurate, but the words form a coherent group.
- 2: The label is accurate, but fails to capture a more specific trend.
- 3: The label is accurate and captures a specific trend.
- -1: There are two coherent groups.

Additionally, if you give a score of 1 or 2, provide an alternative label that you
believe would be more accurate. If you give a label of -1, provide a label for each group.
Each label should be separated with <SEP>. This label should be precise, concise, and
accurate, ideally a single sentence, Otherwise, leave the alternative label field blank.

Provide your answer in the following format, be sure to include both "Score"
and "Label" fields:

<BEGIN ANSWER>
Score: <a number between 1-3 or -1>
Label: <label(s) if original score is 1, 2, or -1, empty otherwise>
<END ANSWER>

Do not provide any additional text after <END ANSWER>. Only respond a
number between 0 and 3 or -1 in the Score field. The description should NOT refer to
the asterisks, those are only there to help you identify the words. If there are double
asterisks in the text, assume the word of interest is the whitespace between them.

Please score the following list of words and their label, and provide a new
label if necessary:

18866



A.4 Feature Labels
Below we list all features for each comparison.
Since words that weren’t satisfied by the label
within each feature were filtered out, the median
probability and log probability differences were
recalculated

Additionally, we sometimes found repeated fea-
tures, or features that are activated by a large pro-
portion of the same words. These features tend to
occur when the magnitude of the probability differ-
ence is relatively large, and there are a large enough
nearly identical contexts in which this word occurs
within the corpus.
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Table 5: Llama2-7B vs. Llama2-13B

Model Feature Median
Prob Diff

Median Log
Prob Diff Consistency

Llama2-7B Tabs following another tab, typically after sentence-ending
punctuation marks in narrative text

0.999 9.27 1.0

Llama2-7B Tabs in narrative text, likely from historical fiction 0.553 1.303 0.846
Llama2-7B Tabs in primarily narrative text 0.723 1.819 0.875
Llama2-7B Common English expressions and idioms used in casual

dialogue or narrative text
0.204 0.578 0.769

Llama2-7B References to military related events or figures 0.03 0.213 0.818

Llama2-13B Whitespace characters following textual content in book
formatting and typography

-0.556 -2.042 0.909

Llama2-13B Tabs, commas, and periods in printed formatting -0.412 -0.883 0.969
Llama2-13B Casual dialogue and vernacular speech patterns in literary

text
-0.197 -1.775 0.75

Llama2-13B Author surname abbreviations followed by parenthetical
punctuation in bibliographic entries

-0.143 -0.29 0.787

Llama2-13B Informal expressions indicating someone’s state of being
that include the preposition "to"

-0.013 -0.797 0.778

Llama2-13B Book titles beginning with "Or" used as subtitles or alter-
native titles, typically in publishing contexts

-0.08 -0.09 0.889

Llama2-13B Descriptions of landscape features and human interactions
with natural and cultivated environments

-0.003 -0.003 0.762

Llama2-13B Negative contractions in English informal or vernacular
dialogue ("didn’t", "wouldn’t", "carn’t")

-0.0 -0.585 0.667

Table 6: OLMo2-7B vs. OLMo2-13B

Model Feature Median
Prob Diff

Median Log
Prob Diff Consistency

OLMo2-7B References to original illustrations in HTML file docu-
mentation

0.944 3.653 1.0

OLMo2-7B References to original illustrations in HTML document
metadata

0.944 3.653 1.0

OLMo2-7B References to original illustrations in HTML file versions
across different document numbers

0.944 3.653 1.0

OLMo2-7B Consistent reference to original illustration in file metadata
HTML directives

0.944 3.653 1.0

OLMo2-7B File extensions in URLs or file paths indicating com-
pressed archive files

0.661 1.162 0.979

OLMo2-13b Double commas that appear in church registries and mar-
riage records as row separators

-0.627 -2.082 1.0

OLMo2-13b Double commas that appear in church registries and mar-
riage records as row separators

-0.337 -0.959 0.98

OLMo2-13b Stage directions indicating character thoughts or private
speech in dramatic texts

-0.421 -0.816 1.0

OLMo2-13b Distribution type indicator in Gradle version file paths -0.315 -0.441 1.0
OLMo2-13b Action verbs describing physical or mechanical movement

and control
-0.046 -2.768 0.947

OLMo2-13b Misspelled or phonetically written words in informal or
historical texts, specifically "wood" for "would"

-0.032 -1.554 1.0

OLMo2-13b Ampersand symbols used as abbreviations for "etc." or
"and" in various bibliographic and listing contexts

-0.005 -0.987 0.727

OLMo2-13b Words specifying individual entities or items of a type -0.003 -1.427 0.81
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Table 7: Llama2-7B vs. Llama2-7B-Chat

Model Feature Median
Prob Diff

Median Log
Prob Diff Consistency

Llama2-7B References to public domain material in library and
archive digitization projects

0.968 3.498 1.0

Llama2-7B Library source attributions in document metadata 0.952 6.541 1.0
Llama2-7B Library source attributions in document metadata 0.952 6.541 1.0
Llama2-7B Source attribution statements referencing public do-

main materials
0.968 4.696 1.0

Llama2-7B Occurrences of "by" followed by digital libraries,
archives, or institutional sources in document attribu-
tion statements

0.952 6.541 1.0

Llama2-7B Double commas used as separators in parish register
entries containing dates and personal records

0.726 2.536 1.0

Llama2-7B Double commas used as separators in genealogical
or parish records between dates and personal infor-
mation

0.723 2.3 1.0

Llama2-7B Double commas used as separators in genealogical
or parish records

0.635 4.001 1.0

Llama2-7B Words indicating location, direction, or movement in
narrative text

0.225 2.708 1.0

Llama2-7B-Chat Tabs following a tab preceding dialogue or narrative
transitions

-1.0 -10.989 1.0

Llama2-7B-Chat Word "or" as a URL separator between file path and
domain in Project Gutenberg URLs

-0.99 -4.604 1.0

Llama2-7B-Chat The word "or" appearing in Project Gutenberg URLs
as a separator between elements

-0.989 -4.519 1.0

Llama2-7B-Chat Semicolons appearing in HTML markup and refer-
ences sections

-0.364 -0.564 1.0

Llama2-7B-Chat Imperative commands using "with" to indicate dis-
missal or removal

-0.295 -0.446 1.0

Llama2-7B-Chat Words and phrases indicating decision-making, judg-
ment, or reaching conclusions in formal or narrative
contexts

-0.156 -0.718 0.844

Llama2-7B-Chat Instances of "with a" followed by words describing
facial expressions or emotional gestures in narrative
text

-0.168 -0.227 0.939

Llama2-7B-Chat Commas followed by forms of address or names in
direct dialogue

-0.15 -0.265 0.84

Llama2-7B-Chat Conditional uses of ’were’ in hypothetical scenarios,
typically following ’if you’

-0.14 -0.427 0.76

Llama2-7B-Chat Instances of the word "reached" used to describe
arriving at or attaining a destination in narrative texts

-0.19 -0.385 0.744

Llama2-7B-Chat Superlative adjective "most" used to express highest
degree or maximum quality of something

-0.132 -0.286 0.76

Llama2-7B-Chat Uses of "who" as a relative pronoun referring to peo-
ple or beings in formal or literary contexts

-0.109 -0.187 0.94

Llama2-7B-Chat Commas preceeding "and" in various narrative and
instructional texts

-0.128 -0.23 0.8

Llama2-7B-Chat Exclamation marks appearing at the end of emotion-
ally charged or dramatic statements

-0.103 -0.218 0.86

Llama2-7B-Chat Modal verb ’must’ expressing necessity, obligation,
or requirement in various contexts

-0.129 -0.184 0.826

Llama2-7B-Chat Forms of the verbs "to be" (were/are) used as auxil-
iary or linking verbs in historical or narrative contexts

-0.103 -0.161 0.72

Llama2-7B-Chat Informal or dialectical spelling of "and" in literary
texts showing vernacular speech

-0.114 -0.228 0.66
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Table 8: OLMo2-7B vs. OLMo2-7B-DPO

Model Feature Median
Prob Diff

Median Log
Prob Diff Consistency

OLMo2-7B The word "genus" appearing in taxonomic descrip-
tions of ray-finned fish species belonging to En-
teromius

0.715 3.876 1.0

OLMo2-7B Words related to influence, vulnerability, persuasive-
ness, and power in conflict

0.08 1.154 0.933

OLMo2-7B Instances of the word "said" used as a dialogue tag
in narrative fiction

0.181 0.433 0.9

OLMo2-7B Instances of "Very Young Man" as a character name
in a narrative text

0.155 0.824 0.796

OLMo2-7B Words expressing challenges, obstacles or removal
in narrative contexts

0.09 2.065 0.917

OLMo2-7B Action words or numbers serving as interactive ele-
ments or references in digital/printed content

0.04 1.769 0.893

OLMo2-7B "Place" as used in the phrase "place of" or as a rank 0.008 2.524 0.909

OLMo2-7B-DPO Instances of "so much the" followed by comparative
expressions in dialogue

-0.584 -1.138 1.0

OLMo2-7B-DPO Requests for private conversations using the phrase
"have a word with"

-0.239 -0.307 1.0
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Table 9: Llama2-7B vs. OLMo2-7B

Model Feature Median
Prob Diff

Median Log
Prob Diff Consistency

Llama2-7B Tabs used for formatting in all-caps chapter titles and
section headers

0.995 5.471 1.0

Llama2-7B References to HTML file versions in Project Gutenberg
notes

0.888 2.205 1.0

Llama2-7B References to HTML file format in Project Gutenberg
documentation notes

0.843 1.875 1.0

Llama2-7B References to HTML versions of files in Project Guten-
berg documentation

0.843 1.875 0.98

Llama2-7B Words indicating spatial or temporal orientation 0.822 2.687 0.917
Llama2-7B Imperative "See" commands directing users to HTML

files containing illustrations
0.677 1.137 1.0

Llama2-7B Opening quotation marks in dialogue appearing after
two tabs

0.657 1.359 1.0

Llama2-7B Opening quotation marks in dialogue appearing after
two tabs

0.635 1.399 1.0

Llama2-7B Periods appearing in Java-style package and class refer-
ences and application configuration settings

0.629 1.03 1.0

Llama2-7B Opening quotation marks in dialogue appearing after
two tabs

0.522 1.193 1.0

Llama2-7B Tabs following semicolons in poetry written in nonstan-
dard English dialects or other languages

0.456 0.657 1.0

Llama2-7B Tabs following tabs and preceding quotation marks
marking direct speech in narrative text

0.402 0.535 0.96

Llama2-7B Tabs following tabs in narrative text 0.375 0.47 0.857
Llama2-7B Tabs after puncutation (commas, semicolons) and be-

fore the word "and" in literary passages
0.34 0.482 0.92

Llama2-7B Tabs followed by another tab between segments of dia-
logue in narrative text

0.305 0.364 0.694

Llama2-7B Tabs in multilingual software configuration and docu-
mentation

0.29 0.43 1.0

Llama2-7B Tabs in segments of dialog showing character reactions
or responses following quoted speech

0.288 0.34 1.0

Llama2-7B Dialectical and informal variations of words, particu-
larly showing dropped ’h’ sounds

0.237 0.569 0.8

Llama2-7B Tabs following tabs between quoted text between two
speakers

0.224 0.254 1.0

Llama2-7B Tabs within whitespace sequences in dialogue segments
in narrative texts

0.223 0.278 0.9

Llama2-7B Tabs followed by another tab before quotations in liter-
ary dialogue

0.201 0.232 0.688

Llama2-7B Opening quotation marks at the start of dialogue or
exclamations in narrative text

0.189 0.504 0.84

Llama2-7B Tabs followed by another tab following quotations in
literary dialogue

0.187 0.29 0.776

Llama2-7B Single or double tabs appearing between chapters, sec-
tions, or bibliographic entries in a historical text

0.167 0.343 0.9

Llama2-7B Question marks followed by quotation marks at the end
of dialogue in literary texts

0.147 0.308 0.857

Llama2-7B Sequences of tabs after in book layout and formatting
contexts

0.142 0.224 0.86

Llama2-7B Periods at the end of sentences, including contexts from
online conversations and comments

0.134 0.264 0.75

Llama2-7B Whitespace (spaces, tabs) in poetry 0.12 0.254 0.7
Llama2-7B Opening quotation marks and brackets at the start of

bibliographic or reference entries
0.052 0.06 0.559

OLMo2-7B HTML "less than" symbols used as line break tags in
geographic reference texts

-0.986 -4.291 1.0

OLMo2-7B Roman numerals VIII and XIII appearing as sequential
chapter or section numbers in document structure

-0.952 -4.493 1.0

OLMo2-7B Numerical and textual elements appearing in index en-
tries, lists, and content references

-0.936 -6.076 0.909

OLMo2-7B Occurrences of the word "wich" in parenthetical titles
and signatures by Petroleum V. Nasby

-0.891 -9.468 1.0

OLMo2-7B Items appearing as numerical markers or identifiers in
ordered lists or sections<SEP>

-0.818 -2.762 1.0
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OLMo2-7B Whitespace between sentence boundaries in narrative
texts

-0.608 -0.94 1.0

OLMo2-7B Periods followed by quotation marks before another
quote in narrative dialogue

-0.326 -0.797 0.96

OLMo2-7B Government and legislative bodies, particularly British
Parliament and colonial institutions

-0.318 -2.124 0.952

OLMo2-7B Question-ending punctuation marks followed by quo-
tation marks in dialogue, often with rhetorical or inter-
rogative phrases ending in "eh" or similar words

-0.183 -0.277 0.875

OLMo2-7B Whitespace after dialogue tags and before quoted con-
tinuations in narrative dialogue

-0.16 -0.175 1.0

OLMo2-7B Commas preceding tabs and narrative continuation or
descriptive elaboration in poetic text

-0.154 -0.279 0.94

OLMo2-7B Whitespace between sentences in formatted literary text -0.147 -0.159 1.0
OLMo2-7B Punctuation marks at the end of poetic or literary lines -0.129 -0.171 0.82
OLMo2-7B Tabs followed by another tab and dialog or quoted

speech in narrative text
-0.126 -0.192 0.673

OLMo2-7B Semicolons used as separators in index or reference
entries

-0.111 -0.146 0.92

OLMo2-7B Whitespace between sentenes in philosophical and so-
ciological texts

-0.102 -0.109 0.96
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Table 10: Llama2-13B vs. OLMo2-13B

Model Feature Median
Prob Diff

Median Log
Prob Diff Consistency

Llama2-13B Tabs following another tab in chapter titles or section
headers

0.989 4.567 1.0

Llama2-13B "https" within Project Gutenberg file directory URLs 0.984 6.801 1.0
Llama2-13B "morrow" as part of archaic hyphenated spelling in the

word "to-morrow"
0.756 2.519 1.0

Llama2-13B Opening quotation marks followed by various text seg-
ments at the start of dialogue or quoted passages

0.725 1.431 0.98

Llama2-13B Opening quotation marks following dialogue consisting
of questions in narrative text

0.666 1.328 0.98

Llama2-13B Captions or labels for figures and illustrations in instruc-
tional or historical texts

0.558 0.837 1.0

Llama2-13B Opening quotation marks at the start of questions in
dialogue

0.514 1.124 0.98

Llama2-13B Tabs following semicolons in poetry written in nonstan-
dard English dialects

0.41 0.546 0.96

Llama2-13B Tabs following another tab between sentences in literary
text excerpts

0.346 0.424 0.92

Llama2-13B Tabs preceding another tab between quotes in dialogue
between two speakers

0.288 0.341 0.896

Llama2-13B Tabs following another tab after colons and preceding
quoted dialogue in narrative text

0.263 0.305 1.0

Llama2-13B Tabs following commas and appearing before capital-
ized conjunctions

0.251 0.319 0.94

Llama2-13B Tabs following another tab between quotes in dialogue
between two speakers

0.244 0.28 1.0

Llama2-13B Quotation marks at the start of exclamations in narrative
text

0.238 0.77 0.9

Llama2-13B Tabs preceding another tab between quotes in dialogue
between two speakers

0.236 0.289 0.86

Llama2-13B Equal signs appearing in text separators or boundaries
between different sections or concepts

0.15 0.186 0.96

Llama2-13B Underscores appearing at line beginnings in dictionary
or reference entries

0.119 0.14 0.82

Llama2-13B Tabs typically preceding another tab along with quoted
dialogue

0.107 0.212 0.755

Llama2-13B Tabs followed by character names in theatrical script 0.102 0.115 0.72

OLMo2-13B Path component referring to the Gradle wrapper direc-
tory in build configuration files

-0.987 -6.013 1.0

OLMo2-13B References to the Gradle wrapper directory path in build
configuration files

-0.987 -6.013 1.0

OLMo2-13B Path component referring to Gradle wrapper directory
in build configuration files

-0.987 -6.013 1.0

OLMo2-13B Path component ’wrapper’ in Gradle build configuration
files

-0.987 -6.013 1.0

OLMo2-13B HTML line break tags in a references section -0.972 -3.567 1.0
OLMo2-13B HTML line break tags in a References section -0.971 -3.553 1.0
OLMo2-13B HTML line break tags in a References section -0.97 -3.494 1.0
OLMo2-13B HTML less-than symbols appearing in reference for-

matting
-0.965 -3.343 1.0

OLMo2-13B Periods followed by quotation marks at the end of a
quote in dialogue

-0.303 -0.638 0.898

OLMo2-13B Whitespace following abrupt ends, interruptions, trail-
ing thoughts, or hesitations in speech

-0.264 -0.943 0.68

OLMo2-13B Whitespace between sentences in formatted literary text -0.223 -0.253 1.0
OLMo2-13B Semicolons used as separators in an index or table of

contents
-0.198 -0.282 0.92

OLMo2-13B Double-asterisk markers appearing after quoted dia-
logue, followed by additional text

-0.181 -0.201 1.0

OLMo2-13B Commas used as clause separators in narrative or de-
scriptive text

-0.156 -0.289 0.82

OLMo2-13B Whitespace between sentences in narrative text excerpts -0.146 -0.157 1.0
OLMo2-13B Question marks and quotation marks at the end of

quoted dialogue or interrogative statements
-0.139 -0.168 0.955

OLMo2-13B Tabs preceeding another tab in formatted literary text -0.116 -0.147 0.66
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