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Abstract

With the proliferation of task-specific large lan-
guage models, delta compression has emerged
as a method to mitigate the resource challenges
of deploying numerous such models by effec-
tively compressing the delta model parame-
ters. Previous delta-sparsification methods ei-
ther remove parameters randomly or truncate
singular vectors directly after singular value
decomposition (SVD). However, these meth-
ods either disregard parameter importance en-
tirely or evaluate it with too coarse a granu-
larity. In this work, we introduce IMPART, a
novel importance-aware delta sparsification ap-
proach. Leveraging SVD, it dynamically ad-
justs sparsity ratios of different singular vectors
based on their importance, effectively retaining
crucial task-specific knowledge even at high
sparsity ratios. Experiments show that IMPART
achieves state-of-the-art delta sparsification per-
formance, demonstrating 2x higher compres-
sion ratio than baselines at the same perfor-
mance level. When integrated with existing
methods, IMPART sets a new state-of-the-art
on delta quantization and model merging.

1 Introduction

Large language models (LLMs) have demonstrated
remarkable capabilities across diverse knowledge-
intensive (Yang et al., 2024; Abdin et al., 2024)
and reasoning-intensive (DeepSeek-Al et al., 2025;
Kimi Team et al., 2025) tasks through post-
training. Different users fine-tune the widely ap-
plicable open-sourced base LLMs such as LLaMA
(Grattafiori et al., 2024) and DeepSeek (DeepSeek-
Al et al., 2024) with customized datasets for spe-
cific downstream tasks. However, maintaining
separate fine-tuned models for each user or down-
stream task poses significant resource challenges
(Ryu et al., 2023; Yao et al., 2024), particularly in
storage and deployment costs. The challenges have
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attracted increased interest within the community
in efficient model compression techniques that can
preserve task-specific knowledge while reducing
resource requirements.

Recent approaches (Yu et al., 2024; Liu et al.,
2024; Ping et al., 2024) propose to address this
challenge by delta compression, which aims to
compress the difference between the fine-tuned
parameters and the base model parameters (i.e.,
delta parameters) by quantization or sparsification.
Previous sparsification-based methods (Isik et al.,
2023; Yao et al., 2024; Yu et al., 2024) sparsify
the delta parameters by randomly setting partial
weight entries to zero or truncating singular vectors
directly after singular value decomposition (SVD).
However, these methods fail to produce satisfac-
tory results, particularly on challenging specialized
tasks like math reasoning or code generation, as
they inadvertently discard important parameters as
the sparsification ratio increases.

In this work, we propose IMPART (Importance-
Aware Delta-Sparsification), a novel effective
sparsification-based delta compression approach
even at high sparsity ratios. The IMPART frame-
work is motivated by the observations that sin-
gular vectors associated with larger singular val-
ues encode more important task-specific informa-
tion (Ping et al., 2024; Sharma et al., 2024; Ryu
et al., 2023). Building on this insight, IMPART
proposes an adaptive sparsification mechanism that
assigns different sparsity ratios on the singular vec-
tors based on the corresponding singular values,
ensuring the preservation of critical task-specific
knowledge. Based on our theoretical analysis, the
parameters of the sparsified singular vector are then
re-scaled to ensure the performance is maintained.
The IMPART framework can be applied to delta
quantization or model merging tasks by integrating
it with existing approaches, thereby supporting a
higher compression ratio.

Extensive experiments on LLM sparsification
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Figure 1: Comparative evaluation of IMPART against state-of-the-art sparsification methods across mathematical
reasoning, code generation, and chat tasks. IMPART consistently outperforms baselines across various tasks while
maintaining high sparsity ratios (more detailed discussions are in Section 6.3).

across three diverse tasks with various backbones
demonstrate the effectiveness of our method. As
shown in Figure 1, IMPART demonstrates 2x
higher compression ratio than baselines at the same
performance level, retaining 95.8% of the fine-
tuned model’s performance at a compression ratio
of 16 (93.75% sparsity). Additional experiments
on integration with quantization and model merg-
ing further validate IMPART’s versatility, making
it a practical solution for deploying numerous fine-
tuned language models in resource-constrained en-
vironments. !

2 Preliminaries

Delta Compression Delta parameters are the dif-
ferences between the parameters of a fine-tuned
LLM and its corresponding base LLM. In scenarios
such as multi-tenant serving, where a large num-
ber of LLMs fine-tuned from the same base model
are deployed to meet various and complicated user
requirements, using /V sets of delta parameters in
conjunction with the shared backbone can elimi-
nate the need for [V full fine-tuned models. Delta
compression aims to compress these delta param-
eters by sparsification (Yu et al., 2024; Yao et al.,
2024), quantization (Isik et al., 2023; Liu et al.,
2024), or merging (Wortsman et al., 2022; Yadav
et al., 2023) to reduce the overall number of param-
eters. Thereby delta compression decreases both
storage requirements and GPU memory utilization
in scenarios involving multiple fine-tuned models.

Delta Parameter Decomposition Given a delta
parameter AW € R™*"_ its singular value de-
composition (SVD) can be expressed as AW =
ULVT, where U € R™™, V € R™", and

'Our code are publicly available at https: //github.com/
sustech-nlp/ImPart.

3 € R™*™ contains the singular values in descend-
ing order. Assuming n < m for simplicity, we can
reformulate the SVD as:

AW =UsVT =3 otV (1)
=1

where U; and V; denote the i-th columns of U
and V, respectively, and af represent the singular
values ordered in descending magnitude.

We formally define the sparsity ratio (SR)
a € [0,1] as 1 minus the ratio of the number
of non-zero parameters in the sparsified delta pa-
rameters to the total number of delta parameters.
The corresponding compression ratio is given by
CR = 1/(1 — «). For instance, a compression
ratio of 32 corresponds to a ~ 0.97 (97% spar-
sity), yielding a 32-fold reduction in storage re-
quirements. Through subsequent quantization, the
sparse model can achieve even higher compression
ratios, denoted as CRy, to differentiate from the
sparsification-only compression ratio CR.

3 Methodology

3.1 Importance-Aware Sparsification

As shown in Figure 2, IMPART is an importance-
aware sparsification method that adaptively allo-
cates sparsity ratios to singular vectors based on
their singular values’ magnitude. Larger singu-
lar values indicate greater importance of the cor-
responding singular vectors (Wang et al., 2025b;
Gao et al., 2024), we thus assign them a smaller
sparsity ratio. Conversely, singular vectors associ-
ated with smaller singular values will be given a
larger sparsity ratio. Different from previous ran-
dom sparsification methods like DARE (Yu et al.,
2024) and low-rank approximation methods (Ryu
et al., 2023; Saha et al., 2024), our method fully
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Figure 2: Overview of IMPART. (a) Delta parameters computation by subtracting the base model from the fine-tuned
model. (b) Comparison of delta parameters sparsification methods: DARE randomly drops delta parameters,
LowRank sparsifies with low-rank approximation, and IMPART adaptively sparsifies singular vectors. (c) Further
apply mixed-precision quantization on sparse singular vectors to achieve higher compression ratios. (d) Model
merging by combining sparsified delta parameters to build a unified multi-task model.

considers the importance of parameters in the SVD
space, allowing for improved sparsity ratios while
enhancing the performance of the sparse model.

Specifically, given AW with singular values
{ok}7_,, we allocate a pre-defined sparsity ratio
pr. (see more details in Section 3.2) for the k-th sin-
gular vector pair (Uy and V};), ensuring the average
sparsity ratio across all singular vectors meets the
target overall sparsity ratio «. Inspired by the drop-
and-rescale sparsification strategy in DARE (Yu
etal., 2024), we then sample independent Bernoulli
random variables 5}; and ni to randomly mask the
singular vectors U;, (Equation 4) and V}; (Equa-
tion 5) according to their corresponding sparsity
ratio pg. To approximate the original singular vec-
tor, we apply a rescaling coefficient of 1/(1 — py)
to the remaining parameters (see more discussions
on how to select the coefficient in Section 3.3). The
delta parameter is then reconstructed with sparsi-
fied singular vectors (Equation 6).

& ~ Bernoulli(1 — p),i € [1,m],k € [1,n] (2)
i, ~ Bernoulli(1 — py), k € [1,n],5 € [1,n]  (3)

Oik = Un—S5— i € [1,m], k € [1,7] )
1—pi

ij = ijikvk‘ € [17n]7] € [17’”} (5)
1—pk

AW =0U.%2-V7 (©6)

3.2 Strategy for Sparsity Ratio Allocation

Given a pre-defined overall sparsity ratio « and
AW with singular values {o}}7_,, we allocate
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Figure 3: Importance-aware delta-sparsification adap-
tively sets sparsity ratios based on singular values, en-
suring critical information retention. IMPART first pre-
prunes small singular components and then allocates
sparsity budget based on regularized singular values.

sparsity ratio py to each singular vector pair (U
and V}) based on the singular value oy, as shown
in Figure 3:

1 ifk>|n-(1-20))
Pk = (1 — (‘;—’f)c) -7 otherwise ™

where 3 and C are hyperparameters selected with
a validation set, and ~y is a scaling factor calculated
for each AW to ensure the overall sparsity ratio
« is met. Our allocation strategy is designed fol-
lowing two key insights: 1) Previous works show
that directly removing the smallest singular com-
ponents can achieve performance comparable to or
even better than using the full set of parameters,
due to the long tail distribution of singular values
(Ping et al., 2024; Sharma et al., 2024; Ryu et al.,
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2023). This observation motivates us to design a
pre-pruning ratio, denoted as 3, which aims to di-
rectly remove these long-tail singular components.
2) For the rest singular components, we allocate
the sparsity ratio based on the regularized singular
value, with C serving as a regularization hyperpa-
rameter. In practice, it is possible that we cannot
achieve the target sparsity ratio o by simply scaling
~ as py, is constrained to be less than 1. We address
this issue by shifting the boundary of the piecewise
function to the left, thereby attaining the desired
sparsity ratio. See Algorithm 1 in Appendix A for
more details.

3.3 Theoretical Analysis

We provide theoretical proof that the expectation
of the reconstructed output matches the original
output. Given a fine-tuned weight W't ¢ R™*"
and an input X € R", the expectation of the i-th
(1 <7 < m) dimension of the hidden state h € R™
is computed as:

E[h:] = E[Y | Wi;X;]
=E[> WX +E> | AW, X;]

= Z WX, + Z AW X;

J J
:hgase-&-ZZOkUikajXp (8)
ik
where h?ase is the ¢-th dimension of the base model

output. Without loss of generality, we assume that
the bias term is zero. As IMPART randomly drops
the k-th column of U and V independently with a
sparsity ratio of pg, the expectation of the recon-
structed hidden state ﬁl is then computed as:

Efhi] = E[W"X,]
=E[> WH*X;] +E[Y_ AW, X;]
7 7
:h?ase =+ E[Z Z O’kﬁik‘/}kj]Xj
I
=h 4+ 3" B [UR]E[Vis)X;
7 k
=h™ 4 Zzakw (I —=p&) - Ui + 0 pi, - Uiy
7 k
[C- (1 =pr) - Vig +0-pr - Vi] X
=R+ S owlf (1 —pr) - Ua][C - (1= pr) - Vig] X
J k

©)

2To achieve an overall sparsity ratio of «, the sparsity ratios
of U and V are approximately (1 + «)/2 for a square matrix.

By setting the rescaling coefficient § = ( =
1/(1—py), we ensure that the reconstructed embed-
ding approximates the origin. We give empirical
evidence in Section 6.1 to support this theoretical
analysis, where the removal of the rescaling factor
leads to significant performance degradation.

4 Applications of IMPART

4.1 Delta Parameter Quantization

Previous work has demonstrated that delta param-
eters can be effectively compressed from 16-bits
to 1-bit using low-bit quantization methods such as
BitDelta (Liu et al., 2024) and Delta-CoMe (Ping
et al., 2024). In this section, we enhance the com-
pression ratio without sacrificing performance by
combining IMPART, a delta parameter sparsifica-
tion technique, with delta parameter quantization
methods. Since IMPART is based on SVD, we inte-
grate it with Delta-CoMe, a state-of-the-art mixed-
precision quantization method that also operates in
the SVD space. It is important to note that DARE
cannot be integrated with Delta-CoMe, as SVD will
break the sparse weight matrix created by DARE.

Delta-CoMe Delta-CoMe is a mixed-precision
delta parameter quantization method. Instead of
directly quantizing AW, it first decomposes the
delta parameter with the SVD method and then
quantizes all the singular vectors using the GPTQ
method (Frantar et al., 2023). During the process of
GPTQ quantization, singular vectors corresponding
to larger singular values are allocated with larger
bit-widths, due to their greater impact on the ap-
proximation of delta weights.

IMPART-QT The IMPART-QT framework is a
highly efficient mixed-precision delta compression
method that combines the strengths of IMPART and
Delta-CoMe methods. To integrate IMPART with
Delta-CoMe, we first use IMPART to sparsify the
delta parameter, and then apply Delta-CoMe to the
sparsified singular vectors. However, this is not triv-
ial. We address potential issues such as the quanti-
zation of sparse singular matrices by Delta-CoMe,
the allocation of compression ratios for sparsifica-
tion and quantization, and other related concerns
in Appendix B.

4.2 Model Merging

Model merging aims to merge multiple task-
specific fine-tuned models into a single model with
diverse abilities (Ilharco et al., 2023; Yadav et al.,
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2023). Recently, it has attracted the attention of
the research community for its cost-effectiveness,
knowledge-sharing potential, and space efficiency.
Task Arithmetic (Ilharco et al., 2023, TA) and TIES-
Merging (Yadav et al., 2023, TIES) are two com-
monly used model merging methods (see Appendix
C for the details). As a sparsification method, IM-
PART is able to preserve the abilities of fine-tuned
LLM, as long as a small portion of the parameters
in singular vectors remain unaffected. This moti-
vates us to employ IMPART before model merging,
as IMPART can reduce parameter redundancy in
each fine-tuned model before merging, which can
potentially mitigate the interference of parameters
among multiple fine-tuned models.

Specifically, given N models fine-tuned on N
distinct tasks from the same base LLM, we first
apply IMPART on delta parameters for each fine-
tuned model. Then we adopt established model
merging methods such as TA and TIES to fuse the
derived parameters and obtain the merged single
model. The purpose and usage of IMPART are
similar to the DARE method (Yu et al., 2024) in
model merging, therefore, we also compare our
method with DARE in Section 7.2.

5 Sparsification Experiments

To evaluate the effectiveness of IMPART, we con-
duct experiments across three diverse tasks: mathe-
matical problem-solving, code generation, and chat.
Our experiments cover various model sizes and
backbones, benchmarking IMPART against state-
of-the-art methods for model sparsification.

5.1 Tasks

Mathematics We evaluate on GSM8K (Cobbe
et al., 2021) and MATH (Hendrycks et al., 2021)
using Pass@1 accuracy, focusing on complex math-
ematical reasoning abilities.

Code Generation Performance is assessed on
HumanEval (Chen et al., 2021) and MBPP (Austin
et al., 2021) using Pass@1 accuracy for natural
language to code generation.

Chat Models are evaluated using IFEval (Zhou
et al., 2023) loose prompt metric for response con-
trollability and AlpacaEval2 (Dubois et al., 2024)
length-controlled win rate (LCWR) against GPT4-
Turbo baseline, judged by GPT-40-2024-08-06.

5.2 Hyperparameter Selection

For each task, we tune the hyperparameters on the
validation set to select the optimal 3 from {0.6, 0.7,
0.8} and C from {0.5, 1}. We use SVAMP (Patel
et al., 2021) Pass@1, Mercury (Du et al., 2024b)
Pass@1 and FollowBench (Jiang et al., 2024) hard
satisfaction rate for math, code, and chat tasks as
validation sets, respectively.

5.3 Models

The model setups are summarized in Table 1. We
evaluate IMPART on mainstream fine-tuned models,
including WizardMath-13B-V1.0 (Luo et al., 2025)
for mathematical problem solving, WizardCoder-
13B (Luo et al., 2023) for code generation, and
LLaMA2-Chat-13B (Touvron et al., 2023) for chat
tasks. To further assess IMPART ’s performance
across different model sizes and backbones, we
also conduct experiments on LLaMA2-Chat-7B
(Touvron et al., 2023) and LLaMA3-Instruct-8B
(Grattafiori et al., 2024) for chat tasks.

Task ‘ Backbone ‘ Fine-tuned
Math | LLaMA2-13B WizardMath-13B-V1.0
Code | Codellama-13B | WizardCoder-13B

Chat | LLaMA2-13B
Chat | LLaMA2-7B
Chat | LLaMA3-8B

LLaMA2-Chat-13B
LLaMA2-Chat-7B
LLaMAS3-Instruct-8B

Table 1: Selected backbones and fine-tuned LLMs for
the examined tasks.

5.4 Baselines

DARE We compare against DARE (Yu et al.,
2024), a delta compression method through random
delta parameter sparsification.

LowRank We implement a simple SVD-based
baseline (Ryu et al., 2023) that preserves only the
top 7 singular values and corresponding singular
vectors. This serves as a direct comparison point
for evaluating IMPART’s adaptive sparsification
mechanism over basic rank truncation.

5.5 Results

Table 2 presents the sparsification results for IM-
PART and baselines across various tasks and back-
bones. IMPART consistently outperforms both
DARE and the LowRank baseline, achieving an
average improvement of 4.01 over DARE and 2.11
over the LowRank baseline.

Notably, DARE exhibits significant performance
degradation on chat tasks, particularly in AlpacaE-
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WizardMath-13B  WizardCoder-13B

LLaMAZ2-Chat-13B

LLaMA2-Chat-7B

LLaMA3-Inst-8B

Methods CR Avg.
GSM8K MATH HumanEval MBPP IFEval AlpacaEval IFEval  AlpacaEval IFEval  AlpacaEval
Backbone' 1 17.80 3.90 32.32 62.70 19.04 0.71 20.52 0.10 11.46 0.08 16.86
Fine-tuned! 1 63.96 14.10 59.76 67.70 33.64 18.39 31.79 15.63 48.80 32.13 38.59
DARE 32 5891 11.76 54.27 64.60 24.77 2.27 16.82 0.36 30.50 17.76 28.20
LowRank 32 56.25 7.94 57.32 68.80 26.06 8.45 23.84 5.72 29.39 17.18 30.10
IMPART 32 60.20 10.38 59.76 68.00 26.80 9.88 2791 7.13 33.27 18.77 32.21

Table 2: Comparison of IMPART and baselines on various tasks across backbones. 1 denotes the uncompressed
backbone and fine-tuned models, serving as the reference for sparsification. The best results are highlighted in bold.

ID Ablations ‘ GSM8K HumanEval IFEval Avg.
@ IMPART 60.20 59.76 26.80 48.92
@ w/o Pre-prune 57.92 54.88 26.62 46.47
®  w/o Importance-Aware 0.00 51.83 1220 21.34
@  w/o Pre-prune w/o LA. 0.00 20.12 11.83  10.65
® w/o1/(1—p)Rescale 33.21 6.10 2292 20.74

Table 3: Ablation study on different components of
IMPART. LA. denotes Importance-Aware, and 1/(1 —p)
rescale refers to the rescale coefficient in Equation 4, 5.

val, where random sparsification leads to repeti-
tive responses and compromises performance on
LLaMA2. While the impact on IFEval is less se-
vere due to its rule-based metrics, the overall de-
cline underscores the limitations of random sparsi-
fication. In contrast, IMPART ’s adaptive strategy
mitigates these issues, ensuring better retention of
task-relevant knowledge and achieving more reli-
able results across tasks and backbones.

When comparing IMPART with the LowRank
baseline, we observe significant improvements in
overall performance and most individual tasks.
For instance, with a compression ratio of 32, IM-
PART only shows a 3.76 decrease on GSMSK,
while LowRank exhibits a 7.71 decrease. IMPART
maintains performance on HumanEval without any
degradation, while LowRank exhibits a 2.44 de-
crease. These results underscore the effectiveness
of IMPART in preserving critical task-specific infor-
mation and achieving SOTA model sparsification.

6 Analyses of IMPART

In this section, we conduct comprehensive anal-
yses of IMPART on three representative tasks:
mathematical problem solving (GSMS8K with
WizardMath-13B), code generation (HumanEval
with WizardCoder-13B), and chat (IFEval with
LLaMA2-Chat-13B). Unless otherwise specified,
we use a compression ratio CR = 32.

6.1 Ablations

To assess the impact of different components of
IMPART, we conduct an ablation study on the

pre-pruning parameter (3, the importance-aware
sparsification strategy, and the effectiveness of the
1/(1 — p) rescale, as shown in Table 3.

Our results show that all design components con-
tribute to IMPART. First, pre-pruning long-tail sin-
gular vectors with pre-pruning ratio S results in a
more effective sparsity allocation strategy, enhanc-
ing the performance of the final sparse model by
an average of 2.45 (ID 2 vs. ID 1).

We next evaluate our importance-aware sparsi-
fication strategy. In IMPART, we adaptively as-
sign sparsity ratios to singular vectors based on
their importance values. Comparing this approach
against uniform sparsification across unpruned sin-
gular vectors (ID 3), we observe that disregard-
ing importance leads to a substantial performance
degradation of 27.58 on average (ID 3 vs. ID 1).
This deterioration worsens when pre-pruning is re-
moved, with performance dropping by 38.27 (ID
4 vs. ID 1). Most notably, uniform sparsification
produces severely degraded outputs with repetition
and incoherence, resulting in complete failure (0.00
accuracy) on GSMS8K. These findings demonstrate
that importance-aware sparsification is crucial for
preserving model capabilities.

Finally, we verify the effectiveness of the 1/(1 —
p) rescale in approximating the original model.
When the rescale coefficient is removed from Equa-
tion 4 and 5, we observe a significant performance
decrease of 28.18 on average (ID 5 vs. ID 1).

6.2 Sensitivity Analysis on 5 and C

We conduct a comprehensive sensitivity analysis
to evaluate the impact of the pre-pruning param-
eter 5 and regularization parameter C'. Table 4
presents results across diverse tasks, demonstrat-
ing IMPART’s robust performance across various
hyperparameter configurations.

Our analysis of the regularization parameter C'
reveals task-specific effects. For mathematical rea-
soning and code generation tasks, maintaining the
original singular values (C' = 1) yields better per-
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Methods CR| C [ | GSM8K HumanEval IFEval Avg.
Backbone! | - 17.80 32.32 19.04 23.05
Fine-tuned' 1 - 63.96 59.76 33.64 63.81
DARE 32 - 5891 54.27 2477 45.98
LowRank 32 - 56.25 57.32 26.06 46.54
0.6 | 56.48 56.71 2791 47.03

05|07 | 5807 54.88 25.88 46.28

IMPART 3 0.8 | 57.62 54.27 26.80 46.23
0.6 | 60.20 59.76 26.43  48.80

1 |07 | 5845 56.71 27.54  47.57

0.8 | 5845 59.15 25.14 47.58

Tasks Method 8 16 32 64 Avg.
DARE 61.79 60.20 56.63 53.68 58.08
GSM8K LowRank | 61.41 5838 5625 5042 56.62
IMPART | 61.64 62.40 60.20 56.56 60.20
DARE 58.54 5854 56.71 57.32 57.78
HumanEval | LowRank | 54.27 5549 57.32 56.71 55.95
IMPART | 59.15 60.37 59.76 57.93 59.30
DARE 28.84 2699 19.04 887 20.94
IFEval LowRank | 2532 2736 26.06 2495 25.92
IMPART | 29.02 2791 26.80 26.25 27.50

Table 4: Hyperparameter study across different tasks.
The best performance is shown in bold, and results
selected by the validation set are underlined.

formance. In contrast, the chat model benefits from
a smaller C' (C = 0.5), which reduces the differ-
ences between regularized singular values.

Regarding the pre-pruning ratio (3, we find that
moderate values (8 = 0.6) typically yield optimal
results, striking a balance between removing noise
and retaining important information. Higher val-
ues (8 = 0.7,0.8) lead to marginally decreased
performance, suggesting the loss of important task-
specific knowledge during aggressive pre-pruning.

When analyzing the validation set’s selections,
we find that it effectively identifies near-optimal
hyperparameters for math and code-related tasks
but exhibits limitations for chat tasks. For instance,
it selects a configuration that achieves 26.80 on
IFEval, falling short of the optimal 27.91, likely
due to misalignment between validation and test
set. Despite this suboptimal configuration, IMPART
still outperforms all baselines on chat tasks, high-
lighting its robustness and effectiveness in model
sparsification.

6.3 Different Compression Ratios

To demonstrate the flexibility of IMPART, we evalu-
ate performance across varying compression ratios
(8 to 64). Table 5 (visualized in Figure 1) demon-
strates that IMPART consistently outperforms base-
line methods across most settings, with its advan-
tages becoming more pronounced at higher com-
pression ratios. These results validate IMPART’s
effectiveness in preserving task-specific knowledge
under aggressive sparsification.

7 Applications of IMPART

7.1 Delta Parameter Quantization

Setup We compare IMPART-QT with three base-
lines: BitDelta3, DARE-Qt, and Delta-CoMe, by

3As BitDelta is a quantization-based method not suited for
sparsification, it was excluded from the sparsification (Sec-

Table 5: Performance of IMPART with different com-
pression ratios.

evaluating them with the same model and bench-
mark setup as in Section 5. We set the target com-
pression ratio CRy to 32 for all tasks and mod-
els. In line with Delta-CoMe, we employ a triple-
precision quantization scheme, assigning 8-bit, 3-
bit, and 2-bit precision to distinct singular value
groups. See Appendix B.2 for more details.

Results Table 6 presents the quantization results
for different quantization methods. IMPART-QT
achieves the highest overall performance, with
an average score of 36.98, surpassing BitDelta
by 4.27, DARE-QT by 0.86, and Delta-CoMe by
1.81. These results highlight the effectiveness of
IMPART-Qt’s adaptive sparsification strategy in
preserving essential task-specific parameters while
achieving a high compression ratio. Compared to
uncompressed aligned models, IMPART achieves
near-lossless performance on math and code tasks.
However, there is a relatively greater performance
degradation on chat tasks. This suggests that the
difficulty of compression varies across different
types of tasks. Compared to the sparsification re-
sults in Table 2, IMPART-QT achieves significantly
better outcomes than IMPART at the same compres-
sion ratio of 32. This indicates that for effective
compression of the delta parameter, a combination
of sparsification and quantization is preferable to
using either method alone.

We further present the performance across vary-
ing compression ratios, ranging from 16 to 128.
As shown in Table 7 (visualized in Figure 4 of
Appendix B.5 ), IMPART-QT consistently outper-
forms baseline methods across most compression
settings.

7.2 Model Merging

Setup We evaluate model merging on three rep-
resentative benchmarks for math, code, and chat

tion5) and model fusion (Section7.2) experiments.
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WizardMath-13B  WizardCoder-13B

LLaMA2-Chat-13B

LLaMA2-Chat-7B  LLaMA3-Inst-8B

Methods CRy Avg.
GSMBK MATH HumanEval MBPP IFEval AlpacaEval IFEval  AlpacaEval IFEval  AlpacaEval

Backbone 1 17.80 3.90 32.32 62.70 19.04 0.71 20.52 0.10 11.46 0.08 16.86
Fine-tuned! 1 63.96 14.10 59.76 67.70 33.64 18.39 31.79 15.63 48.80 32.13 38.59
BitDelta 32 61.11 12.12 51.83 58.50 25.32 18.30 27.36 11.87 34.38 26.35 32.71
DARE-QT 32 62.17 13.40 57.32 67.70 30.87 17.68 29.76 11.76 42.33 28.24 36.12
Delta-CoMe 32 62.40 12.56 56.71 68.30 2791 15.52 29.39 10.85 41.40 26.64 35.17
IMPART-QT 32 64.29 13.54 58.54 68.50 30.87 17.65 29.76 12.55 45.84 28.27 36.98

Table 6: Comparison of IMPART-QT and baselines on various tasks across backbones. T denotes the uncompressed
backbone and fine-tuned models, serving as the reference for quantization. CRy denotes the combined compression
ratio with sparsification and quantization. The best results are highlighted in bold.

Tasks Method 16

BitDelta 59.89
DARE-QT 62.55
Delta-CoMe | 61.94
IMPART-QT  64.22
BitDelta 52.44
DARE-QT 61.59
Delta-CoMe | 59.15
IMPART-QT  62.20
BitDelta 25.88
DARE-QT 31.79
Delta-CoMe | 31.24
IMPART-QT  32.16

32
61.11
62.17
62.40
64.29
51.83
57.32
56.71
58.54
25.32
30.87
27.91
30.87

64
61.11
62.09
61.62
62.32
51.22
56.71
52.44
57.32
23.66
28.65
28.10
30.68

128
59.14
58.00
58.23
60.35
50.00
55.49
55.49
56.71
22.92
27.73
25.88
27.73

Avg.
60.31
61.20
61.05
62.80
51.37
57.78
55.95
58.69
24.45
29.76
28.28
30.36

GSMS8K

HumanEval

IFEval

Table 7: Performance of IMPART-QT with different
compression ratios CRg;.

tasks, including GSM8K, HumanEval, and IFEval.
We use WizardMath-13B and LLaMA2-Chat-13B
as the mathematical and chat-specialized models
that are fine-tuned from LLaMA?2. Since model
merging requires fine-tuned models sharing the
same backbone, we fine-tune the LLaMA2-13B
backbone on the Magicoder dataset (Wei et al.,
2024) to obtain the code specialized model, which
we refer to as LlamaCoder. The detailed fine-tuning
configuration is shown in the Appendix C.2. We
integrate IMPART into two common merging strate-
gies: TA and TIES, and compare IMPART with
DARE and no pre-sparsification. Please refer to
Appendix C for more details.

Results Table 8 summarizes the merging results
for IMPART across various tasks and merging strate-
gies. IMPART achieves the highest average scores
of 40.98 and 39.99 for TA and TIES, outperform-
ing DARE by 0.46 and 0.78. Compared to no re-
sparsification, IMPART improves model merging
performance by 0.47 and 1.71 for TA and TIES,
respectively. In contrast, DARE shows minimal
improvement in TA merging performance. These
results underscore the effectiveness of IMPART in
improving model merging.

Models | Merge | Mask | GSM8K HumanEval IFEval | Avg.

Math - No 63.96 - - -
Code No - 52.44 -

Chat No - - 33.64 -

No 62.02 30.49 29.02 | 40.51

Chat& TA DARE 61.26 31.10 29.21 | 40.52

Math& IMPART | 63.00 31.10 28.84 | 40.98

Code No 57.54 24.39 3290 | 38.28

TIES | DARE 59.59 24.39 33.64 | 39.21

IMPART | 58.45 26.22 35.30 | 39.99

Table 8: Comparison of different sparsification strate-
gies for model merging.

8 Related Work

Model Sparsification The increasing size of
LLMs has made model compression a critical re-
search focus. While traditional model pruning ap-
proaches (Li et al., 2018; Lee et al., 2021) remove
parameters based on magnitude, they often lead to
significant performance degradation when applied
to fine-tuned models (Yao et al., 2024). Recent
work has instead focused on delta-sparsification,
where ERE (Ryu et al., 2023) employs low-rank
decomposition of delta weights, and DARE (Yu
et al., 2024) demonstrates the effectiveness of ran-
dom parameter dropping. However, these methods
either disregard parameter importance entirely or
evaluate it at too coarse a granularity. In contrast,
IMPART introduces importance-aware sparsifica-
tion that assesses and prunes individual singular
vectors, achieving superior performance.

Model Quantization Parameter quantization has
emerged as a prominent compression technique,
with GPTQ (Frantar et al., 2023) pioneering error-
minimizing low-bit-width approaches. Subsequent
innovations have extended to mixed-precision quan-
tization across model weights (Dettmers et al.,
2023), activations (Shen et al., 2023), and layers
(Bablani et al., 2024). In the context of delta param-
eters, initial approaches like GPT-Zip (Isik et al.,
2023) and DeltaZip (Yao et al., 2024) achieved
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Figure 4: Comparative evaluation of IMPART against state-of-the-art quantization methods across mathematical
reasoning, code generation, and chat tasks (more detailed discussions are in Section 7.1).

2-bit compression through GPTQ extensions and
structured pruning, while BitDelta (Liu et al., 2024)
advanced to 1-bit compression using trainable scal-
ing factors. Delta-CoMe (Ping et al., 2024) fur-
ther enhanced efficiency by introducing varying
bit-width representations for singular vectors. IM-
PART builds upon these advances by integrating
importance-aware sparsification with Delta-CoMe,
establishing new SOTA compression performance.

Model Merging The proliferation of task-
specific models (Luo et al., 2025, 2023; Wei et al.,
2024) from open-source pre-trained backbones
(Touvron et al., 2023; Grattafiori et al., 2024; Jiang
et al., 2023) has motivated efficient model merg-
ing techniques to reduce deployment costs. While
initial approaches like parameter averaging (Worts-
man et al., 2022; Ilharco et al., 2023) demon-
strated the potential of combining delta parame-
ters, subsequent methods addressed parameter con-
flicts through Fisher information matrices (Matena
and Raffel, 2022), linear regression (Jin et al.,
2023), and magnitude-based parameter selection
(Yadav et al., 2023). Although DARE (Yu et al.,
2024) introduced random delta weight dropping
during merging, it overlooks parameter importance.
IMPART advances this direction by incorporating
importance-aware sparsification in the SVD space,
leading to more effective model merging.

9 Conclusion

We introduced IMPART, a novel importance-aware
delta-sparsification approach for efficient model
compression and merging in large language mod-
els. By leveraging singular value decomposition to
adaptively determine sparsity ratios based on pa-
rameter importance, IMPART effectively preserves
critical task-specific knowledge while achieving
significant sparsification. Our comprehensive ex-
periments in mathematical reasoning, code genera-

tion, and chat tasks demonstrate that IMPART con-
sistently outperforms existing sparsification meth-
ods. Additionally, IMPART can be integrated with
state-of-the-art delta-quantization and model merg-
ing techniques, achieving new benchmarks in both
delta-quantization and model merging.

Limitations

While we demonstrate the effectiveness of IMPART
in compressing and merging LLMs, several limita-
tions remain. First, IMPART treats all weight matri-
ces equally and does not consider the potential ben-
efits of layer-wise pruning, which has been shown
to improve compression performance and model ef-
ficiency (Li et al., 2024; Dumitru et al., 2024; Wang
et al., 2025a; Li et al., 2025). Future work could
explore fine-grained, layer-specific sparsification
strategies for different layers and matrices. Second,
IMPART requires a validation set to determine the
optimal hyperparameter tuning. While this is com-
mon practice in model compression (Frantar et al.,
2023; Ping et al., 2024), it may not always align
perfectly with test performance. Nevertheless, IM-
PART consistently achieves state-of-the-art results
across diverse tasks and various hyperparameter
configurations, demonstrating robustness. Third,
our primary focus is on reducing the storage cost of
task-specific delta weights, leaving inference-speed
improvements unexplored. Future work could de-
velop method-specific kernels to fully harness the
potential gains in inference efficiency.
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A More Details for IMPART

A.1 Sparsity Ratio Allocation

Algorithm 1 shows the details of sparsity ratio al-
location across singular vectors for a given target
ratio of .. For simplicity, we only present the case
of square matrices.

Algorithm 1 Sparsity Ratios Computation

Require: Singular values {c; }i-,, Target sparsity ratio «,
Pre-prune ratio 3, Rescale parameter C'
Ensure: Sparsity ratio list P for singular vectors in U and V'
I: a+ (1+a)/2 > Update sparsity ratio for U and V'
s Letr=|n-(1-75)]

: f0ri<—r+lt0nd0p1<—1

2

3 > Pre-prune
4: v + min($=%

5

=5 - oy )
=5 S0 700y —(g)°
: fori < 1tordop; + (1—(Z;)C)~’y >
Importance-aware sparsification
LT
while 237 pr < ado
i <1 Shift boundary to meet target sparsity ratio
i—i—1
: return P + {pr}i—,

Soeaa

B More Details for IMPART-QT

B.1 GPTQ for Sparse Weight

Delta-CoMe quantizes the left and right singular
matrix using GPTQ with a designed mix-precision
strategy. However, GPTQ has been primarily con-
fined to dense models. We extend GPTQ to accom-
modate sparse matrices. Specifically, during the
column-by-column quantization process, we apply
a sparsification mask to the parameters, ensuring
that only those retained after sparsification are sub-
ject to quantization. Furthermore, when updating
the remaining weights based on quantization er-
ror, we compute the error solely on the retained
parameters. The detailed algorithm is presented in
Algorithm 2.

Algorithm 2 GPTQ for Sparse Weight

Require: Weight to be quantized W and its corresponding
mask M, Inverse Hessian H ' = (2X X7 +AI)~*, and
blocksize B

Ensure: Quantized weight ¢

1: Initialize Q <= O, xd.,, > Quantized output
2: Initialize E <— 0g4,,, x B > Block quantization errors
3: H™! < Cholesky(H™") > Hessian inverse information
4: fori =0,B,2B,... do

5: forj=14,...,i1+B—1do

6: thp < M:,j

7:

Wlmp «— W;,]' @ thp
weight to zero

> Set the sparsified

8: Q.,; < quant(Wmp) © Mmp

9: E:ji + (Wump —Q.;) /[H ] >
Quantization error

10: W:,j:(i+B) «— E;J‘ i H;] (i+B) > Update
weights in block

11: W. i+B). < E- Hl (i-+B),(i+B): > Update all

remaining weights

B.2 Compression Ratio Allocation

In line with Delta-CoMe, we employ a triple-
precision quantization scheme, assigning 8-bit, 3-
bit, and 2-bit precision to distinct singular value
groups. The first group consists of 2 elements, the
second group includes 32 elements, and the remain-
ing elements form the third group. To achieve the
target compression ratio CR after quantization,
the corresponding sparsity ratio « is calculated us-
ing a binary search process, as described in Algo-
rithm 3. For simplicity, we only present the case of
square matrices.

Algorithm 3 Binary Search to Find Overall Spar-
sify Ratio for Compression with Quantization

Require: Singular values {o; };—;, Compression ratio CRg,
Pre-prune ratio 3, Rescale parameter C, Tolerance tol
Ensure: Overall sparsify ratio «
1: low <- 0, high <~ 1 > Set the lower and upper bound
2: while high — low > tol do
3: mid < 0.5 - (low + high) > Compute the midpoint
4: P + Algorithm 1({c; }i-,, mid, 8, C')
> Compute the sparsity ratios P usmg Algorithm 1

5 Qqu <= %(%Zz (I =pi) + 5 Zz 3(1 - pi) +
ézz:gs(l —pi))

l> Calculate sparsification ratio after quantization

6: if < 2 CRq then

7: low < mid > Update lower bound
8: else

9: high < mid > Update upper bound
10: return 0.5 - (low + high)

B.3 The Storage of Sparsification Mask

Technically, a random sparsification of U (Equa-
tion 4) and V' (Equation 5) would necessitate stor-
ing sparsity masks for reconstruction (Equation 6),
resulting in additional storage overhead. To ad-
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dress this issue, we implement a deterministic seed-
ing strategy: we initialize the random seed for 5};
(Equation 2) using o when sparsifying U, and use
random seed+1 for 7], (Equation 3). This approach
maintains the independence of ¢!, and 7, while en-
abling the reconstruction of sparsity masks directly
from the singular value oy, thus avoiding additional
storage.

B.4 Baselines for IMPART-QT

BitDelta BitDelta (Liu et al., 2024) achieves a
1/16 compression ratio by compressing the task
vector into x ® Sign(A), where Sign(-) denotes
the 1-bit element-wise sign of each parameter and
1 is a trainable scaling factor. In this paper, we
further combine BitDelta with DARE to achieve an
even higher compression ratio.

DARE-QT DARE-QT is the baseline that inte-
grates DARE into GPTQ. DARE first sparsifies the
delta parameters, and then GPTQ further quantizes
the sparsified delta parameters. To quantize the
sparse delta parameters, we use the same version
of GPTQ as shown in Appendix B.1. For each
compression ratio CRy, we use GPTQ to quan-
tize the 16-bit parameters into 2/4/8-bit, with the
sparsity ratio & of DARE determined by the target
compression ratio CRy. Then we report the config-
uration that achieved the best performance on the
validation set for each compression ratio CRg;.

Delta-CoMe We faithfully implement Delta-
CoMe as described in the original paper (Ping et al.,
2024), achieving the target compression ratio by
adjusting the number of 2-bit singular vectors.

B.5 Performance of IMPART-QT Across
Compression Ratios

Figure 4 visualizes the performance of IMPART-QT
and baselines on different tasks across compression
ratios of 16 to 128.

C More Details for Model Merging

C.1 Common Model Merging Methods

TA Task Arithmeticc (Ilharco et al., 2023) lever-
ages a scaling term to regulate the contributions of
the pre-trained backbone and the aggregated delta
parameters set, formed by summing n multiple in-
dividual delta parameters:

W — R X x Y AW, (10)

t=1

TIES TIES-Merging (Yadav et al., 2023) aims
to address parameter conflicts in model merging.
Given a delta parameter set, it first trims parameters
with lower magnitudes,

AW = trim(AW"). (11)

Then, TIES elects the sign with the highest total
magnitude to resolve sign disagreements:

7' = sgn(AWY), (12)
"= sgn(z AWY). (13)
t=1

Finally, Parameters with consistent signs are dis-
jointly merged:

A={ten]|+" =77, (14)
Wmcrgc _ Wbi\SC + A % L Z AWt (15)
Al

C.2 Details of LlamaCoder

We implement LlamaCoder by full fine-tuning
from the Llama2-13B base model using the Magi-
coder dataset (Wei et al., 2024). The training pro-
cess involved 3 epochs, with a batch size of §, a
peak learning rate of 2e-5, and a maximum se-
quence length of 4096. Note that we do not use
WizardCoder-13B as its backbone is Codellama-
13B.

C.3 Hyperparameter Selection

We follow DARE (Yu et al., 2024; Du et al., 2024a)
for hyperparameter search. Specifically, we per-
form a grid search to optimize the hyperparameters
of TA and TIES. Specifically, for both methods,
the scaling term is selected from the set {0.4, 0.6,
0.8, 1.0, 1.2}, and for TIES, the retain ratio of the
largest-magnitude parameters is chosen from {0.4,
0.6, 0.8}. When incorporating the sparsification
methods DARE and IMPART into TA/TIES, we use
the pre-selected hyperparameters of TA/TIES and
search for the optimal sparsification ratios from
{0.1, 0.3, 0.5, 0.7, 0.9} to save computation.
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