Global MMLU: Understanding and Addressing Cultural and Linguistic Biases in Multilingual Evaluation
Shivalika Singh, Angelika Romanou, Clémentine Fourrier, David Ifeoluwa Adelani, Jian Gang Ngui, Daniel Vila-Suero, Peerat Limkonchotiwat, Kelly Marchisio, Wei Qi Leong, Yosephine Susanto, Raymond Ng, Shayne Longpre, Sebastian Ruder, Wei-Yin Ko, Antoine Bosselut, Alice Oh, Andre Martins, Leshem Choshen, Daphne Ippolito, Enzo Ferrante, Marzieh Fadaee, Beyza Ermis, Sara Hooker
Abstract
Reliable multilingual evaluation is difficult, and culturally appropriate evaluation is even harder to achieve.A common practice to fill this gap is to machine-translate English evaluation sets. However, translation introduces language bias and carries over cultural and regional assumptions from the original questions – often testing knowledge irrelevant to the target audience. In this work, we highlight the extent and impact of these biases and present a multilingual evaluation framework that aims to mitigate them through improved translations and annotation practices.Through a large-scale study involving professional and community translators and annotators, we show that state-of-the-art models excel primarily by learning Western-centric concepts. Notably, we find that model rankings on the full MMLU change when evaluated on a subset of questions explicitly marked as culturally sensitive.We release Global MMLU, a multilingual extension of MMLU across 42 languages, featuring improved translation quality, expanded language coverage, and designated subsets labeled as culturally sensitive and culturally agnostic to enable a more comprehensive and equitable benchmark for evaluating language models across diverse linguistic and cultural contexts.- Anthology ID:
- 2025.acl-long.919
- Volume:
- Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
- Month:
- July
- Year:
- 2025
- Address:
- Vienna, Austria
- Editors:
- Wanxiang Che, Joyce Nabende, Ekaterina Shutova, Mohammad Taher Pilehvar
- Venue:
- ACL
- SIG:
- Publisher:
- Association for Computational Linguistics
- Note:
- Pages:
- 18761–18799
- Language:
- URL:
- https://preview.aclanthology.org/ingestion-acl-25/2025.acl-long.919/
- DOI:
- Cite (ACL):
- Shivalika Singh, Angelika Romanou, Clémentine Fourrier, David Ifeoluwa Adelani, Jian Gang Ngui, Daniel Vila-Suero, Peerat Limkonchotiwat, Kelly Marchisio, Wei Qi Leong, Yosephine Susanto, Raymond Ng, Shayne Longpre, Sebastian Ruder, Wei-Yin Ko, Antoine Bosselut, Alice Oh, Andre Martins, Leshem Choshen, Daphne Ippolito, Enzo Ferrante, Marzieh Fadaee, Beyza Ermis, and Sara Hooker. 2025. Global MMLU: Understanding and Addressing Cultural and Linguistic Biases in Multilingual Evaluation. In Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 18761–18799, Vienna, Austria. Association for Computational Linguistics.
- Cite (Informal):
- Global MMLU: Understanding and Addressing Cultural and Linguistic Biases in Multilingual Evaluation (Singh et al., ACL 2025)
- PDF:
- https://preview.aclanthology.org/ingestion-acl-25/2025.acl-long.919.pdf