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Abstract

Mitigating positional bias of language models
(LMs) for listwise inputs is a well-known and
important problem (e.g., lost-in-the-middle).
While zero-shot order-invariant LMs have been
proposed to solve this issue, their success on
practical listwise problems has been limited. In
this work, as a first contribution, we identify
and overcome two limitations to make zero-
shot invariant LMs more practical: (1) train-
ing and inference distribution mismatch aris-
ing from modifying positional ID assignments
to enforce invariance, and (2) failure to adapt
to mixture of order-invariant and sensitive in-
puts in practical listwise problems. Then, to
overcome these issues we propose (1) RoToR,
a zero-shot invariant LM for genuinely order-
invariant inputs with minimal modifications of
positional IDs, and (2) Selective Routing, an
adaptive framework that handles both order-
invariant and order-sensitive inputs in listwise
tasks. On the Lost in the middle (LitM), Knowl-
edge Graph QA (KGQA), and MMLU bench-
marks, we show that ROTOR with Selective
Routing can effectively handle practical list-
wise input tasks in a zero-shot manner.1

1 Introduction

Language conveys meaning in part through posi-
tional information, such as word placement and
sentence structure. Given this nature, Language
Models (LMs) that learn from human language are
trained sensitive to positional information related to
the ordering of segments. However, there are some
listwise inputs that require neutrality to positional
information. For example, for inputs such as sets,
tables, databases, or multiple-choice questions, the
ordering of the input segments—e.g., rows in a
table or elements in an unordered set—require an

* Work done during an internship at Channel Corporation.
† Corresponding author.
1https://github.com/soyoung97/RoToR

Figure 1: Self-attention alteration from order-invariant
models. (a) PCW by elimination (b) PINE by re-
assignment of position IDs based on query-based pair-
wise ordering. In contrast, (c) RoToR minimizes the
distribution mismatch by global ordering with circular
assignment.

order-agnostic understanding. We refer to such in-
puts as “order-invariant inputs,” on which LMs re-
portedly struggle. For example, in LLM-as-a-judge
scenarios, LMs exhibit a preference of up to 75%
for the first answer in pairwise inputs (Zheng et al.,
2024b), and ranking between LMs can change up to
8 positions in different orderings of multiple choice
questions on MMLU (Alzahrani et al., 2024). Such
results question the reliability of LMs on order-
invariant inputs. Meanwhile, existing methods for
enforcing invariance to LMs showed limited effec-
tiveness in real-world tasks, which we hypothesize
to arise from the following limitations.

First, training and inference distribution mis-
match due to the positional ID re-assignment of
zero-shot order-invariant LMs: Fig. 1 illustrates
how self-attention is altered in these models. Un-
like the original non-invariant model which always
assigns position IDs in a causal, ascending man-
ner, order-invariant models either eliminate inter-
segment attention, such as PCW (Ratner et al.,
2023) in Fig. 1a, or re-assign position IDs as in
PINE (Wang et al., 2024) in Fig. 1b, re-ordering
segments using pairwise similarity, placing simi-
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lar segments closer to the query. For each query
segment, it computes segment-wise query-key at-
tention (for each attention head in each decoder
layer) and re-assigns position IDs of segments as
keys. This query-dependent segment ordering leads
to excessively frequent alterations of positional ID
assignments. Frequent re-assignments can also con-
fuse the model and risk collisions which violate the
invariance property (e.g., multiple key segments
having the same similarity to a query).

To overcome this, we propose a query-agnostic
global sorting with circular arrangement for order-
invariant positional ID assignment. Ours is named
ROTOR, inspired by the word rotary to express cir-
cular assignment, and also a palindrome, to reflect
order invariance. Fig. 1c contrasts with PINE in
Fig. 1c, where ROTOR only needs a single global
ordering (e.g., A->B->O->K->G) with no extra at-
tention computation. The ordering of segments on
suffix tokens remains in a fixed order, since it does
not rely on their similarity to the query. Finally, we
propose three different global sorting algorithms
for ROTOR, and demonstrate that they consistently
outperform previous order-invariant models.

Second, for practical listwise inputs, order-
invariant tasks may partially include order-sensitive
inputs that require order-specific understanding.
For example, the (d) None of the above option
in MMLU cannot be reordered. Such a “mixed” na-
ture requires handling each of the cases adaptively,
for which we propose a simple Selective Routing
method. Selective Routing adapts to a given input
by routing between two models, invariant and non-
invariant (original), based on the confidence scores
of their predictions. Experiments on the MMLU
benchmark show that Selective Routing effectively
handles datasets with order-invariant and sensitive
inputs, and achieves better order robustness while
maintaining the original performance.

In summary, our contributions are as follows: 1.
Clarifying key challenges to robust understand-
ing of listwise inputs. We pinpoint the distribution
mismatch and positional ID assignment complexi-
ties that hinder zero-shot order-invariance in LMs,
and the need to adaptively handle order-invariant
and order-sensitive inputs. 2. A stable, order-
invariant solution (RoToR): We propose a query-
agnostic global ordering with minimal positional
ID modifications, resulting in stable and efficient
order-invariance. 3. Adaptive handling of list-
wise inputs (Selective Routing): We introduce a
simple routing method that switches between the

original and invariant LMs based on confidence.
On MMLU, we show that Selective Routing can
adaptively deal with both types of input, leading
to better stability. To this end, we aim to develop
a model that excels at processing a wide range of
listwise inputs reliably and efficiently.

2 Related Works

2.1 Positional bias of LLMs
Problem statement. Recent works on (zero-
shot) retrieval augmented generation (RAG) with
LLMs have found that the models exhibit un-
wanted bias on the ordering of the retrieved doc-
uments (Chhabra et al., 2024). Widely known as
the lost-in-the-middle problem (Liu et al., 2024),
many prior studies (Chen et al., 2024; Gupta et al.,
2024; Pezeshkpour and Hruschka, 2023; Zhao
et al., 2023; Zhou et al., 2024; Wei et al., 2024;
Alzahrani et al., 2024; Zheng et al., 2024a) also
investigate the impact of positional bias, extend-
ing the domain to structured knowledge grounding
(SKG) tasks (Zhao et al., 2023; Zhou et al., 2024)
and multiple-choice questions (Gupta et al., 2024)
where changing the ordering of rows, schemas, or
choices greatly degrades performance.
Considerations for decoder-only LMs. While
successful approaches are presented to mitigate
this issue for encoder-only (Yang et al., 2022) and
encoder-decoder (Yen et al., 2024; Cai et al., 2023)
models, they leave decoder-only models, which
account for the current frontier LLMs, for more
consideration. In contrast to transformer encoders
that use bidirectional attention which is invariant
by nature (Lee et al., 2019), transformer decoders
use causal attention to learn causal relation sig-
nals, which is not invariant by nature (Haviv et al.,
2022a). Therefore, positional bias for decoder-only
models is known to stem from both positional en-
coding and causal attention mask (Yu et al., 2024;
Wang et al., 2024) and is harder to mitigate.

2.2 Zero-shot order-invariance for LLMs
Long context modeling. Zero-shot approaches for
mitigating positional bias in LLMs were first raised
in long-context tasks, with a goal to correctly han-
dle relevant information located in the middle of
lengthy inputs2. Nonetheless, these works focus
primarily on understanding long texts without los-
ing precision (Li et al., 2023; Zhang et al., 2024a;
An et al., 2023; Bai et al., 2024), whereas positional

2github.com/gkamradt/LLMTest_NeedleInAHaystack
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bias is a more general problem that can occur even
on multiple-choices questions with relatively short
contexts (Alzahrani et al., 2024). Technically, this
line of works modify the attention mechanism by
altering the positional encoding to adapt an LLM
to longer contexts (Peng et al., 2023; Hsieh et al.,
2024; Peysakhovich and Lerer, 2023; Chen et al.,
2023; Junqing et al., 2023; Xu et al., 2023; Yu et al.,
2024; Zhang et al., 2024b). But since they do not
modify the causal mask which also contributes to
positional bias, order-invariance is not guaranteed
in general (Haviv et al., 2022b).
(Zero-shot) order-invariance. Recent line of
works focused on achieving order-invariance by
mechanistically altering both positional encoding
and causal masking. While several works re-
quire training (Junqing et al., 2023; Zhu et al.,
2023), we focus on zero-shot approaches for prac-
ticality, namely PCW (Ratner et al., 2023), Set-
Based Prompting (McIlroy-Young et al., 2024), and
PINE (Wang et al., 2024), which we explain in de-
tail at Sec. 3.1. Another line of works based on
self-consistency try to mitigate positional bias sim-
ply by running inference multiple times with dif-
ferent orderings of contexts (Zheng et al., 2024a).
However, in principle, this requires evaluating n!
forward passes in total, enforcing Monte Carlo
approximations (Tang et al., 2024). More recent
work optimizes the number or passes (Lee et al.,
2025b) with similar comprehensiveness (Hwang
and Chang, 2007), or replaces with contrastive
training objective (Lee et al., 2025a). In contrast,
our method guarantee invariance with a single for-
ward pass, without requiring any approximations.

3 Methodology

3.1 Baseline: Order-invariant causal LMs
In this section, we briefly overview the existing
work on endowing decoder-only models on order-
invariance by adjusting attention mechanism, and
review their limitations.

Isolated parallel processing Prior works like
PCW (Ratner et al., 2023) and Set-Based Prompt-
ing (McIlroy-Young et al., 2024) have modified the
attention mask and positional ID assignments of the
language model to isolate the processing of each
segment and apply same positional embeddings are
applied across segments, and thus achieve order in-
variance: However, this design completely prevents
one segment from attending to the others, and ag-
gregating the information from different segments

is solely handled at suffix and generated tokens, sig-
nificantly hindering the LM’s cross-segment con-
textualized understanding of the text. Yang et al.
(2023) have argued that this essentially degenerates
to mere ensemble of conditioning on each context
separately. Such information bottleneck and train-
test time discrepancy limits the applicability, more
severely as the number of segments is increased.

Bidirectional processing with Q-K similarity A
more recent work, PINE (Wang et al., 2024) has
addressed these issues through a bidirectional at-
tention mechanism that allows each segment to
attend to all other segments. To achieve this within
decoder-only models while maintaining order in-
variance, PINE dynamically modifies positional
IDs based on whether a token acts as a query or
key in the attention computation.

The key insight is that PINE creates an “illusion”
for each query segment: it assigns the query seg-
ment the largest positional IDs among all segments,
enabling it to attend to all other segments bidirec-
tionally. The ordering of key segments is then deter-
mined by their relevance scores computed without
positional embeddings (AttnNoPoS), ensuring that
more relevant segments appear closer to the query.

Consider the example in Fig. 2 with in-
put [T1‘Given”, S1[Apple”], S2[Ban”,
ana”], S3[Orange”], T6‘which one”, ..
T10‘red?”]. The prefix token ‘Given” (T1) and
suffix tokens ‘which one .. red?” (T6-T10)
maintain their original positions and follow stan-
dard causal attention. For the segments S1-S3,
PINE applies its order-invariant mechanism:

Dynamic positional ID assignment: When a
token from segment S2 (e.g., ‘ana” at T4) acts
as a query, PINE: (1) Assigns S2 the highest po-
sitional IDs (4-5) among all segments, placing it
last. (2) Maintains internal causal order within S2:
‘ban” gets position 4, ‘ana” gets position 5. Then,
it (3) Reorders other segments (S1, S3) based on
their AttnNoPoS scores with S2. Conversely, when
the same token acts as a key for another query
(e.g., from S1), its position depends on the rele-
vance score between S2 and the query segment.
If AttnNoPoS(S1,S2) > AttnNoPoS(S1,S3), then
S2 is placed closer to S1 than S3.

This dynamic reassignment occurs for every at-
tention computation: each query token sees a dif-
ferent positional arrangement of the key tokens,
determined by their relevance scores. Prefix, suffix,
and generated tokens do not participate in this re-
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Figure 2: Attention mask and positional ID modifications for segment-wise order invariance using example input
“Given Apple Banana Orange...”. Each block represents a single token arranged by positional ID assignment.
In practice, tokens retain original positions but receive reassigned positional IDs as shown. White areas indicate
masked attention. Key difference: PINE requires per-query sorting while RoToR reuses one global ordering across
all queries.

ordering and always maintain their standard causal
positions. However, when these non-segment to-
kens act as queries, they still see the segments re-
ordered by their relevance scores.

3.2 ROTOR: minimal OOD from positional
ID assignments

Challenges with PINE While PINE achieves
order-invariance by contextualization across seg-
ments, its query-specific ordering scheme intro-
duces (1) significant train-test behavior discrepancy
as well as (2) unnecessary complexity and numeri-
cal instability, which limits its scalability. During
decoding with PINE, position IDs are assigned dif-
ferently for every query token (each token in the
suffix), decoder layer, and attention head, as the
query-key attention score AttnNoPos determines
the position IDs. This complexity introduces exces-
sively frequent alterations on position IDs: As
the base LM is trained with fixed positional IDs
and causal masks, this causes hidden activations
higher risk of out-of-distribution (OOD) for it to
process properly. Moreover, ordering segments
based on attention is computationally expensive
and introduces numerical instability. As com-
puting the attention value of one query segment
requires computing the KV attention over every
other number of segments, PINE invokes O(n2)
cost overhead for each segment for input length
n, which is further multiplied by the number of
all combinations of layers, heads, and the number
of suffix and generated tokens. Also, in practice,

calculating attention without RoPE results in a very
narrow range of values. bfloat16 numeric type
lacks precision to distinguish these values, leading
to non-determinism originating from several tied
values. The outcome may then depend on the initial
ordering.

Motivation & Theoretical Foundation While
investigating ways to overcome the limitations of
PINE, our central goal is to preserve order invari-
ance while minimizing the complexity of the re-
assignment of positions. We reason that defining a
single global ordering scheme, not necessarily re-
lying on attention scores, and re-using them across
all queries can solve the problems stemming from
query-dependent ordering. A circular assignment
of a global order seems as a practical solution. The
idea of using global sorting to achieve ordering
invariance has been studied in set/graph ML do-
main (Murphy et al., 2019a,b), but to the best of
our knowledge, using circular assignment of the
global ordering, and the application to pre-trained
language models, are our novel contributions. As a
result, we propose ROTOR(Fig. 3), which uses one
global ordering that is not a function of the initial
ordering of segments (e.g., canonical ordering by
lexical sorting) and assigns IDs for tokens in differ-
ent segments based on circular arrangement.

Global ordering Instead of re-computing the rel-
ative order of segments for each query, we reuse
a globally shared single ordering, avoiding costly
recomputation of numerically unstable attention
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Figure 3: Comparing the ordering of 5 segments (S1 - S5) of PINE (Wang et al., 2024; left) and ROTOR (Ours;
right). PINE sorts segments using aggregated attention scores. In order to be fully ordering-invariant, segment
sorting is changed per token in suffix level, causing confusion. In contrast, we define one global sorting of segments
and conduct circular assignment between segments. With this, we simply use the global sorting for position id
assignment on suffix tokens, without harming invariance.

scores. Moreover, this further reduces the gap be-
tween the LLM’s pretrained behavior and test-time
behavior, as consistent position IDs are assigned
across layers/heads/across suffix tokens. Global
ordering allows to preserve the relative placement
of segments, further closing the gap induced from
introducing order invariance to causal LMs. For
example, in Figure 3, due to the global ordering,
segments S5 and S2 are always placed in adjacent
positions with ROTOR (right side), while it is not
satisfied and constantly changed with PINE (left
side). We consider three separate global sorting
algorithm to be used in ROTOR: (1) simple lexico-
graphical sorting which can be obtained with min-
imal overhead based on tokenized sequence of seg-
ments, (2) using a pointwise reranker (Nogueira
et al., 2020)3 to score relevancy of each row with
respect to the question, or (3) simple frequency-
based sorting which normalizes token ids based
on the inverse frequency of each token (Details
at Appendix Fig. 6). Empirically, we find that us-
ing simple lexicographical sorting is sufficient to
obtain improvements over PINE.

Circular arrangement To mimic bidirectional-
ity with causal LMs, each segment should be as-
signed position IDs so that they appear to them-
selves as being placed at the end of the sequence of
segments. To achieve this with a shared global or-
dering, we employ circular arrangement, each seg-
ment taking turns to be placed at the end while their
relative ordering is preserved. Given the global or-
dering, we can construct a single directed graph
by combining the front and last parts. Then, we
assign orderings for each segment as query by fol-
lowing the path from the graph, starting from the
query segment, which is illustrated in Fig. 3. For

3castorini/monot5-base-msmarco-10k

all suffix and generated tokens, segments are ar-
ranged according to the initial front and last part of
the global ordering. Compared to PINE where we
have to assign different orderings of segments for
each suffix and generated tokens, ROTOR assign
the same positional ID, acting merely the same as
the original token. This also accounts for reducing
the distributional gap between the original model.

Computational overhead We report only op-
erations executed beyond vanilla self-attention
cost O(n2d), where n is total input length, d is
hidden dimension, and k is the number of seg-
ments. PINE requires two additional operations:
(1) computing attention scores without rotary po-
sition embeddings (O(n2d)) and (2) sorting k seg-
ments for each query token (O(nk log k)), total-
ing O(n2d+ nk log k) (Wang et al., 2024)4. In
contrast, our lexicographical sorting requires only
a single global sort of k segments (O(k log k)),
each with length O(n), achieving O(nk log k)
and eliminating the expensive O(n2d) term en-
tirely. This can be further optimized to O(nk)
using radix sort.5 We empirically validate signifi-
cantly faster performance than PINE as k increases
(Tab. 4).

3.3 Selective Routing for handling
order-sensitive inputs

Since many practical benchmarks such as MMLU
involves semi-invariant inputs, we propose a rout-
ing mechanism that uses the order-invariant model
in conjunction with the standard causal model for
further applicability. Our design is partly based
on the finding from Wei et al. (2024) that there is

4The PINE paper reports O(nk log k) by absorbing the
O(n2d) term into baseline; we expose it explicitly for fair
comparison.

5https://en.wikipedia.org/wiki/Radix_sort
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Figure 4: Illustration of Selective Routing (Sec. E).

correlation between task difficulty (which is in turn
correlated with confidence values) and the model’s
sensitivity to ordering. Selective Routing, illus-
trated in Fig. 4, combines confidence, the model
output probability for the generated answer, from
two different model versions—the original model
and the order-invariant model—on the same input
and choose a more confident answer. Both models
first produce a maximum probability over possible
answer tokens (e.g., A, B, C, D for MMLU) and
a corresponding answer choice. We then compare
the original model’s maximum probability, plus
a bias term α, to the invariant model’s maximum
probability. If the original model’s adjusted score is
higher, we take its answer; otherwise, the invariant
model’s answer is chosen. α is a hyperparame-
ter that controls how strongly the original model
is favored, which was selected as 0.2 according
to hyperparameter search on the validation subset
(Appendix Sec. E).

4 Experiment setup

4.1 Baselines
Original causal LM with no modifications (Orig.)
were compared, which processes text sequentially.
Also, we compare ROTOR against previous zero-
shot order-invariant LMs discussed in Sec. 3.1,
namely PCW (Ratner et al., 2023), PINE (Wang
et al., 2024), and Set-Based Prompting (McIlroy-
Young et al., 2024). We use the LLaMA 3.1 (AI,
2024) 8B-Instruct6 70B-Instruct, Qwen1.5-4B-
Chat, Qwen1.5-7B-Chat7, and Qwen1.5-72B-Chat
as our backbone model for our experiments. As
our method doesn’t need training, a single A6000
GPU was sufficient to run all of the experiments ex-
cept for the Llama-3.1-70B-Instruct and Qwen1.5-
72B-Chat model. We also conduct experiments on
a subset of benchmarks (LitM and MMLU) on the
runtime latency, perplexity, and collision rate of
PINE and ROTOR, to further validate our claims
on Sec. 3.2.

6meta-llama/Meta-Llama-3.1-8B-Instruct
7Qwen/Qwen1.5-4/7B-Chat

4.2 Benchmarks with listwise inputs

We experiment with three benchmarks involving
real-world listwise input data. Examples of exact
inputs and outputs are provided in Appendix G. All
reported scores are rounded to the nearest tenth,
except for the standard deviation (rounded to the
second decimal place).
Knowledge Graph QA (KGQA) In KGQA tasks,
the model takes facts over knowledge graphs rep-
resented as (subject, relation, object), and answers
the given question based on the given facts. We ba-
sically follow the KGQA dataset preprocessing and
evaluation setup from Baek et al. (2023), which
uses Mintaka (Sen et al., 2022) with Wikidata for
knowledge source, and use the Exact Match (EM),
Accuracy (Acc), and F1 score metric for evalua-
tion. We also use MPNet (Song et al., 2020) as
a dense retriever to retrieve top-k facts over each
question, and experiment with segment size of 30
and 50. Replication details and example dataset
format are at Appendix Sec. C and Fig. 10. Along
with measuring the performance of the initial input
ordering, we report performance after we shuffle
the order of segments with 3 different seeds to see
shuffle robustness.
Lost in the middle (LitM) We use the Lost in the
Middle (LitM) benchmark (Liu et al., 2024), which
draws from 2655 queries in the Natural Questions
(NQ) dataset. It provides sets of (10, 20, 30) pas-
sages, placing the gold passage at predetermined
positions (e.g., 0, 4, 9) and filling the remaining
slots with irrelevant passages. Following Liu et al.
(2024), the best_subspan_em metric is used. Ex-
periments on LitM found that eliminating the effect
of index bias is another important detail for measur-
ing true order robustness: (Appendix Sec. H). Thus,
we report experiments with index bias eliminated.
The exact prompt and full results including index
bias is reported at Appendix Fig. 8 and Sec. A.
MMLU The Massive Multitask Language Under-
standing (MMLU) benchmark (Hendrycks et al.,
2021) (prompts at Appendix Fig. 11) consists of 57
diverse sub-tasks with a total of 14,015 queries
to measure general performance of LMs about
the knowledge of the world. Despite its popular-
ity, many works report that performance fluctuates
heavily depending on the order of choices (Gupta
et al., 2024; Pezeshkpour and Hruschka, 2023; Wei
et al., 2024; Alzahrani et al., 2024; Zheng et al.,
2024a) and is widely investigated to measure the
positional bias of the model. We notice that a lot
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Total ndoc (segments) 10 20 30

Gold idx at: 0 4 9 0 4 9 14 19 0 4 9 14 19 24 29

Llama-3.1-8B-Instruct

Original 54.7 53.0 50.2 54.8 52.6 52.8 52.4 51.0 55.6 51.5 52.4 52.8 52.1 52.3 53.0
PCW 12.4 11.9 12.2 3.7 4.0 4.0 4.0 3.9 2.3 1.8 2.0 2.0 2.1 2.0 2.0
Set-Based Prompting 42.5 42.5 42.5 26.3 26.3 26.3 26.3 26.3 14.1 14.1 14.1 14.1 14.1 14.1 14.1
PINE 58.6 58.8 59.0 56.2 55.7 55.5 55.7 55.5 54.2 54.8 54.3 53.7 54.8 54.2 54.0
ROTOR-lexical 61.4 61.6 61.6 61.4 59.8 59.6 59.6 59.8 59.2 59.5 59.4 59.1 59.0 59.3 59.1
ROTOR-reversed lexical 61.6 61.8 61.8 58.9 59.3 58.8 58.6 58.7 57.9 58.2 57.9 57.4 57.9 57.6 57.5
ROTOR-MonoT5 61.2 61.4 61.2 60.9 61.0 61.2 61.2 61.2 60.9 60.7 60.7 60.7 60.8 60.8 60.7
ROTOR-Freq. 61.0 61.1 61.1 60.4 60.3 58.6 60.2 60.0 59.3 60.4 59.7 59.5 59.5 59.6 59.2

Llama 3.1-70B-Instruct

Original 66.2 65.7 65.7 65.2 64.3 65.0 66.2 64.8 –
PINE 67.9 67.8 67.5 65.9 65.7 65.9 65.8 65.5 –
ROTOR 69.6 69.5 69.3 67.6 67.8 67.8 67.7 67.9 –
ROTOR-MonoT5 68.9 69.0 68.8 67.5 67.5 67.7 67.5 67.6 –

Qwen1.5-4B-Chat

Original 61.3 54.8 53.1 59.5 49.1 47.9 45.9 48.3 56.8 45.6 44.9 44.6 45.3 43.5 48.3
PINE 57.2 57.4 57.0 48.6 48.2 48.2 48.1 48.9 46.4 45.9 46.7 46.6 46.4 46.4 46.3
ROTOR 58.5 58.4 58.1 49.9 49.7 49.6 49.8 49.9 44.6 44.8 44.7 44.7 44.9 44.8 44.7
ROTOR-MonoT5 58.9 58.5 58.7 52.2 52.1 52.1 52.2 52.6 50.6 50.7 50.5 50.6 50.5 50.6 50.4
ROTOR-Freq. 56.7 56.9 56.9 51.9 51.5 51.8 51.6 52.4 46.8 46.7 46.7 46.4 47.0 46.8 46.6

Qwen1.5-7B-Chat

Original 72.5 63.3 62.9 72.5 58.5 56.1 56.0 58.2 73.1 58.6 55.8 53.3 53.2 52.5 57.5
PINE 65.4 65.5 66.3 59.1 59.4 59.1 58.6 59.2 58.0 55.3 55.7 56.3 55.1 55.8 56.1
ROTOR 68.6 68.7 68.6 62.6 62.9 62.7 63.0 62.7 57.0 57.3 59.7 57.4 57.3 62.8 57.0
ROTOR-MonoT5 68.8 69.4 69.0 65.2 65.5 65.0 64.9 65.0 62.6 62.8 62.9 62.7 62.9 62.8 62.5
ROTOR-Freq. 68.2 68.4 68.4 62.6 62.9 62.8 62.7 62.3 59.5 59.8 59.7 59.6 59.7 59.7 59.7

Table 1: The best_subspan_em (%) scores on the lost in the middle (LitM) benchmark, with indexing bias
removed, across varying numbers of documents (ndoc ∈ {10, 20, 30}) and models. ROTOR shows the best
performance across all setups. Experiments on ndoc=30 for the Llama 70B model were unable to report due to
resource constraints.

of proportions consist of ordering-sensitive inputs,
which showed the effectiveness of adaptively ap-
plying Selective Routing. We additionally report
the average performance for all possible (4!-1) re-
orderings.

5 Results & Analysis

We report results for KGQA in Tab. 2, and results
for MMLU in Tab. 3. Results for LitM are in Tab. 1,
with a visualization in Appendix Fig. 5. We use
lexical sorting for ROTOR unless stated otherwise.

Effectiveness of ROTOR We observe that shuf-
fling input segments leads to non-trivial perfor-
mance degradations in the original model, which
exhibits a statistically significant performance drop
on our experimented dataset (two-tailed t-test, p <
0.05, Appendix I). In contrast, our proposed Ro-
ToR model does not show a statistically significant
difference in performance before and after shuf-
fling, indicating that it is more robust against such
perturbations. On LitM (Tab. 1), we notice PCW
and Set-Based Prompting has impractical perfor-
mance, with PINE degrading heavily as number
of documents (k) increases, while RoToR is less

affected. On KGQA (Tab. 2), we show ROTOR
outperform PINE with lower standard deviation
across shuffled segments, consistent with different
model architectures.

Improvements from PINE Experiments against
comparing ROTOR with PINE (Tab. 4) we analyze
FLOPs: 8 RoToR consistently reduces the floating
point operations overhead across segment counts
and different model backbones compared to PINE.
This is because RoToR does not require computing
additional attention scores: it only performs tensor
operations for circular arrangement. In contrast,
PINE requires more cost due to attention-based
reassignment. Runtime, scalability: Actual infer-
ence times (Appendix Sec. F) find that ROTOR out-
performs PINE substantially, with efficiency gains
increasing alongside n. For instance, on LitM (30
docs), ROTOR achieves a 43% reduction in total
runtime. Practical scalability with increasing k is
critical, but we find that previous order-invariant
LMs struggle handling larger k (on KGQA and
LitM). In contrast, RoToR shows better perfor-

8We used the FlopsProfiler of the DeepSpeed library to
measure FLOPs.
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Llama-3.1-8B-Instr. Llama-3.1-70B-Instr. Qwen1.5-4B-Chat Qwen1.5-7B-Chat Qwen1.5-72B-Chat

Method Acc. EM F1 Acc. EM F1 Acc. EM F1 Acc. EM F1 Acc. EM F1

N=30

Initial, no shuffling of segments
Original 50.2 44.0 51.9 61.6 57.7 63.6 30.7 27.9 34.9 31.5 27.8 35.4 41.4 37.7 43.7
PINE 51.5 45.0 52.6 63.1 58.7 64.8 31.6 28.7 35.6 32.3 28.8 36.4 46.7 42.9 49.0
RoToR 53.1 46.5 54.1 63.6 59.1 65.2 32.0 29.0 35.7 34.3 29.8 37.7 47.5 43.2 49.2
RoToR-MonoT5 51.6 45.0 52.5 – 32.3 29.1 36.2 32.9 28.4 36.3 –
RoToR-Freq. 52.6 46.1 53.7 – 32.3 29.2 36.0 33.7 29.5 37.2 –

After shuffling segments, averaged over 3 seeds
Original 49.5 43.3 51.0 62.1 57.8 64.0 30.1 27.5 34.7 31.4 27.3 35.0 41.0 37.6 43.6

↪→ stdev. (±) 0.07 / 0.14 / 0.17 0.37 / 0.40 / 0.27 0.41 / 0.34 / 0.43 0.26 / 0.28 / 0.29 0.75 / 0.40 / 0.33
PINE 51.8 45.2 52.8 63.3 58.8 64.9 31.5 28.7 35.6 32.3 28.8 35.7 46.9 43.3 49.2

↪→ stdev. (±) 0.05 / 0.07 / 0.16 0.13 / 0.04 / 0.10 0.20 / 0.18 / 0.13 0.17 / 0.20 / 0.13 0.18 / 0.20 / 0.20
RoToR 52.8 46.2 53.8 63.5 59.1 65.3 31.8 28.8 35.5 34.2 29.9 37.7 47.4 43.1 49.1

↪→ stdev. (±) 0.05 / 0.05 / 0.02 0.11 / 0.07 / 0.08 0.05 / 0.02 / 0.09 0.09 / 0.07 / 0.06 0.06 / 0.04 / 0.07
RoToR-MonoT5 51.6 45.0 52.6 – 32.4 29.2 36.3 33.0 28.8 36.5 –

↪→ stdev. (±) 0.12 / 0.06 / 0.10 – 0.04 / 0.02 / 0.13 0.12 / 0.09 / 0.07 –
RoToR-Freq. 52.5 45.9 53.5 – 32.3 29.3 36.0 33.8 29.6 37.4 –

↪→ stdev. (±) 0.10 / 0.15 / 0.11 – 0.13 / 0.16 / 0.09 0.04 / 0.00 / 0.09 –

N=50

Initial, no shuffling of segments
Original 50.0 44.0 51.7 62.6 58.5 64.5 31.6 28.6 35.8 31.7 28.0 35.7 42.1 38.7 44.5
PINE 51.6 45.1 52.6 64.1 59.8 65.8 31.6 28.8 35.3 32.0 28.5 35.9 48.0 44.1 49.9
RoToR 52.9 46.0 53.6 64.6 60.0 66.2 32.7 29.6 36.2 34.3 30.1 38.0 48.4 44.3 50.3
RoToR-MonoT5 52.4 45.4 52.8 – 32.3 29.3 35.9 32.9 28.9 36.6 –
RoToR-Freq. 53.1 46.4 53.7 – 32.3 29.2 36.1 33.5 29.5 37.2 –

After shuffling segments, averaged over 3 seeds
Original 49.7 43.5 51.0 62.8 58.5 64.5 30.3 27.6 35.0 31.6 27.9 35.5 42.1 38.9 44.7

↪→ stdev. (±) 0.34 / 0.28 / 0.46 0.29 / 0.28 / 0.05 0.26 / 0.24 / 0.35 0.40 / 0.56 / 0.42 0.30 / 0.40 / 0.35
PINE 51.8 45.3 52.7 64.3 59.8 65.9 31.5 28.7 35.3 31.7 28.2 35.7 48.0 44.3 50.0

↪→ stdev. (±) 0.15 / 0.16 / 0.19 0.16 / 0.15 / 0.14 0.17 / 0.20 / 0.21 0.18 / 0.16 / 0.14 0.02 / 0.04 / 0.05
RoToR 52.7 45.9 53.5 64.5 60.0 66.1 32.5 29.6 36.1 34.2 30.1 38.0 48.3 44.3 50.3

↪→ stdev. (±) 0.05 / 0.09 / 0.04 0.02 / 0.02 / 0.01 0.11 / 0.06 / 0.09 0.06 / 0.05 / 0.04 0.05 / 0.09 / 0.05
RoToR-MonoT5 52.2 45.2 52.8 – 32.3 29.4 35.9 32.8 28.8 36.5 –

↪→ stdev. (±) 0.16 / 0.18 / 0.18 – 0.16 / 0.13 / 0.07 0.16 / 0.09 / 0.07 –
RoToR-Freq. 53.1 46.4 53.7 – 32.4 29.3 36.1 33.7 29.6 37.4 –

↪→ stdev. (±) 0.02 / 0.07 / 0.03 – 0.09 / 0.04 / 0.06 0.04 / 0.16 / 0.22 –

Table 2: Mintaka (KGQA) results, with Initial and After-shuffle settings, across different model parameter size
and backbones. N refers to the number of top-k segments per query. Rows with “↪→ stdev.” report standard deviation
over 3 seeds.

mance with improved efficiency and robustness.
Perplexity: Lower generation perplexity indicates
input representations are closer to in-distribution.
On the same LitM dataset, ROTOR’s reduced per-
plexity implies its positional ID assignment effec-
tively mitigates out-of-distribution effects. Colli-
sion Rate: PINE’s similarity-based ordering often
collides: on average, only 17.3 of 30 similarity val-
ues are unique, causing 42% of the segments to be
indistinguishable and thus breaking invariance. In
contrast, ROTOR with lexical sorting only collides
if the segment texts are identical. On LitM, this
yields zero collisions, preserving full invariance.

Selective Routing MMLU (Tab. 3) is a repre-
sentative of a task that involves not only order-
invariant, but also order-sensitive (e.g., "None
of the above"), inputs. Therefore, single use of
order-invariant models does not always outperform

the original model, limiting applicability of order-
invariant models to practical listwise tasks, i.e.,
we observe significant performance drops for Set-
based Prompting in MMLU, falling short of half the
performance of the original model on initial order-
ing. However, using ROTOR with Selective Rout-
ing to handle order-sensitive inputs outperforms,
or is at least competitive as the original model in
all possible orderings of candidate choices. Se-
lective Routing improves the generalizability and
extends the applicability on practical listwise tasks
by adaptively handling order-sensitive inputs. The
RoToR + Selective Routing (Oracle) performance
on Tab. 3 was evaluated using a relaxed accuracy
metric based on the union of predictions from the
original and the invariant (RoToR-lexical) model.
This improves significantly, which highlights the
potential of Selective Routing for further accuracy
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Llama-3.1-8B-Instruct Qwen1.5-4B-Chat Qwen1.5-7B-Chat
Method Init. Rev. Avg. Init. Rev. Avg. Init. Rev. Avg.
Orig. 68.3 64.8 65.5 ± 1.0 53.6 51.9 52.6 ± 0.6 60.1 56.6 58.6 ± 0.9
PCW 57.0 55.1 56.1 ± 1.1 – –
Set-Based Prompting 31.1 33.0 31.6 ± 0.8 – –
PINE 64.8 63.3 63.6 ± 0.7 50.5 49.3 49.4 ± 0.5 57.0 54.4 55.8 ± 0.9
RoToR 63.2 62.6 62.8 ± 0.7 49.6 47.7 48.3 ± 0.7 56.5 55.8 56.2 ± 0.6
↪→ + S.R. 68.5 65.1 65.7 ± 0.9 53.7 51.8 52.6 ± 0.6 60.1 57.4 58.8 ± 0.7
RoToR - MonoT5 64.2 62.9 63.5 ± 0.5 49.7 47.6 48.7 ± 0.7 56.2 54.4 55.5 ± 0.7
↪→ + S.R. 68.4 65.2 65.8 ± 0.9 53.8 51.9 52.6 ± 0.6 60.1 57.3 58.7 ± 0.8
RoToR - Freq. 64.3 63.6 63.8 ± 0.6 49.9 47.6 48.7 ± 0.5 56.4 54.7 55.7 ± 0.7
↪→ + S.R. 68.5 65.3 65.8 ± 0.8 53.7 52.3 52.6 ± 0.6 60.0 57.3 58.6 ± 0.8
RoToR + S.R. (Oracle) 75.0 71.9 72.7 ± 1.0 61.8 60.1 61.1 ± 1.0 68.1 66.2 67.2 ± 0.7

Table 3: Improving applicability to general listwise tasks (MMLU, N=4) with Selective Routing (S.R), which
includes both order-invariant and order-sensitive examples. Init./Rev. refer to original/reversed orderings, Avg. is
the average selection ratio across all (4!-1) re-orderings with standard deviation. S.R (Oracle) represents the upper
bound with perfect routing accuracy. ROTOR with Selective Routing shows improved performance and stability
across input re-orderings.

Model Benchmark PINE RoToR Reduction

(a) Overhead FLOPs, relative to original model

Llama-3.1-
8B-Instruct

MMLU, N = 4 0.59× 0.55× 7.6%
LitM, N = 10 7.07× 4.81× 31.9%
LitM, N = 30 22.43× 15.05× 32.9%

Llama-3.1-
70B-Instruct

KGQA, N = 30 1.27× 0.94× 26.0%
KGQA, N = 50 1.82× 1.29× 29.0%

Qwen1.5-
72B-Chat

KGQA, N = 30 0.45× 0.01× 98.0%
KGQA, N = 50 0.58× 0.03× 94.8%

(b) End-to-end latency (s)

Llama-3.1-
70B-Instruct

LitM, N = 10 57,352 44,219 22.9%
LitM, N = 20 87,091 58,680 32.6%

Llama-3.1-
8B-Instruct

MMLU, N = 4 7,371 6,608 10.4%
LitM, N = 10 18,551 14,264 23.1%
LitM, N = 30 41,664 23,569 43.4%

(c) Perplexity & Collision rate, (on LitM)

Llama-3.1-
8B-Instruct

Perplexity (N = 20) 6.91 6.65 –
Collision rate (N = 30) 42.3% 0 (None) –

Table 4: Unified efficiency comparison of ROTOR
vs. PINE, reporting (a) Additional FLOPs, (b) Latency,
and (c) Perplexity & Collision rate. Columns list each
metric for PINE and RoToR, and the relative reduction.
Yellow rows separate sub-sections.

gains through optimizing design choices on routing
methods, which we plan to explore in future work.
Additional analysis on the selection ratio of Selec-
tive Routing is reported at Appendix Section L.

Impact of global ordering algorithm While
most of our experiments focus on the simplest lex-
ical sorting method, ROTOR supports any global
sorting approach. To demonstrate this flexibility,
we report experiments with various global sort-
ing strategies, including reversed lexical sorting,
MonoT5-based reranking, and token frequency-
based sorting. Lexical sort is presented as a base-
line (lower bound) - a simple algorithm ensuring
global sorting. Our experiments on Tab. 1 show

that any type of global sorting, with the use of circu-
lar assignment is superior than PINE, which relies
on pairwise attention arrangements.

Extension to LLMs, other scenarios Experi-
ments on Llama-3.1-70B-Instruct and Qwen-1.5-
72B-Chat for LitM and KGQA show consistent and
significant improvements over both the original im-
plementation and the PINE baseline, demonstrat-
ing RoToR’s generalizability to larger-scale LLMs.
We further evaluate robustness on longer-context
inputs (LongBench-2WikiMultiHopQA (Bai et al.,
2024) in Appendix Section J) and different task
templates (KGQA template swap in Appendix Sec-
tion K). Results indicate that our method retains
benefits across longer input scenarios and diverse
task templates, including those without explicit in-
put format requirements.

6 Conclusion

Our work addresses order-invariance in listwise in-
puts by identifying core issues in distribution mis-
match and adaptive handling of mixed inputs. Our
proposed RoToR by modifying self-attention by
global sorting and circular arrangement provides
a stable zero-shot order-invariant solution that re-
duces the complexity of positional ID modification,
while Selective Routing adaptively routes between
invariant and sensitive LMs to handle real-world
scenarios. Together, these methods demonstrate
improved performance and reliability on LitM,
KGQA, and MMLU benchmarks.
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7 Limitations

Our method can utilize any kind of deterministic
sorting algorithm, but we have only experimented
with limited global sorting algorithms due to time
and resource constraints. We plan to investigate
potentially better sorting algorithms in the future.
Also, current ordering-invariant models are limited
to inputs given as prefix + parallel + suffix. It would
be beneficial to support more complex structures,
such as ability to process multiple order-invariant
contexts interleaved with serial text.
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Appendix

A Full results on the Lost in the Middle Benchmark

(a) Results with index bias (indexed by numbers). (Example input at Appendix Fig. 7)

(b) Results without index bias (indexed by title) (Example input at Appendix Fig. 8)

Figure 5: Results on the Lost-in-the-middle benchmark. Visualization of the best_subspan_em results at Appendix
Tab. 1. ROTOR (dark red, red, yellow) generally performs the best regardless of the position of the gold index,
with less fluctuations when we remove index bias. Ours is ROTOR with lexical sort, and ours-reversed is the one
with the reversed lexical ordering. For brevity, only the performance of ROTOR with reranking sort (MonoT5)
is annotated as numbers, and the performance of PCW and Set-Based Prompting are reported only at the Table
(Appendix Tab. 1) due to its low performance.

Impact of removing index bias on LitM Tab.5 presents the full results on the Lost in the Middle (LitM)
benchmark, comparing scenarios where indexing bias is present versus removed. Fig.5 provides a visual
representation of these results.

As shown in Appendix Tab.5, invariant LMs exhibit stable performance regardless of the gold index,
especially when index bias is removed (as described in Sec.4.2; see also Appendix Fig.5b). However,
when index bias is present, performance fluctuations are observed (Appendix Fig.5a). Notably, ROTOR
achieves the highest performance across all setups, demonstrating its effectiveness in mitigating positional
bias in a zero-shot setting while maintaining overall performance.

These findings suggest that index bias acts as an implicit source of additional positional bias and that
invariant LMs benefit significantly from its removal.

B Illustration of the global sorting method

We show the three different global sorting algorithms presented in our paper at Fig. 6.

C Details about preprocessing and evaluation of datasets

C.1 General.
All inferences were done with a single NVIDIA RTX A6000 48GB GPU. Note that all of the baseline
models including our method can be applied directly in a zero-shot, training-free manner. For repro-
ducibility, we fix the seed and disabled random sampling (i.e., used greedy decoding), set the maximum
number of new generated tokens to 500, and set the pad_token_id to the same value as the eos_token_id
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Total ndoc (segments) 10 20 30

Gold idx at: 0 4 9 avg. 0 4 9 14 19 avg. 0 4 9 14 19 24 29 avg.

Indexing bias present

Original 52.8 51.1 46.7 50.2 55.0 50.7 50.5 50.2 47.5 50.7 56.1 50.8 51.5 51.1 50.8 50.5 48.9 51.4
PCW 12.0 11.9 12.1 12.0 3.4 3.7 3.8 3.9 3.6 5.1 2.1 2.1 2.0 1.9 2.0 2.2 2.0 2.0
Set-Based Prompting 40.8 40.7 40.8 40.8 25.6 25.8 25.7 25.5 25.3 25.6 15.8 15.9 16.1 16.0 16.1 15.7 15.8 15.9
PINE 59.2 56.8 57.7 57.9 56.2 55.1 54.5 54.2 55.3 55.5 56.1 53.6 53.3 53.9 53.2 53.7 54.5 54.0
ROTOR-lexical 63.6 60.5 59.1 61.1 52.6 58.6 57.8 56.8 58.6 57.6 64.6 58.9 56.9 56.2 57.1 56.2 57.1 58.1
ROTOR-reversed lexical 61.5 60.8 60.6 61.0 60.8 58.6 59.7 60.5 59.3 60.0 61.1 57.5 58.2 58.6 58.3 59.3 59.2 58.9
ROTOR-reranking 61.4 61.4 61.7 61.5 62.3 59.2 59.1 59.4 59.8 60.2 62.2 58.6 58.4 58.6 58.3 58.5 59.8 59.2
ROTOR-freq 62.8 61.1 59.5 61.1 62.9 58.8 56.7 57.4 58.0 59.1 61.7 58.2 56.9 56.1 56.4 55.4 56.8 57.4

Indexing bias removed (main paper)

Original 54.7 53.0 50.2 52.6 54.8 52.6 52.8 52.4 51.0 52.7 55.6 51.5 52.4 52.8 52.1 52.3 53.0 52.8
PCW 12.4 11.9 12.2 12.2 3.7 4.0 4.0 4.0 3.9 3.9 2.3 1.8 2.0 2.0 2.1 2.0 2.0 2.0
Set-Based Prompting 42.5 42.5 42.5 42.5 26.3 26.3 26.3 26.3 26.3 26.3 14.1 14.1 14.1 14.1 14.1 14.1 14.1 14.1
PINE 58.6 58.8 59.0 58.8 56.2 55.7 55.5 55.7 55.5 55.7 54.2 54.8 54.3 53.7 54.8 54.2 54.0 54.3
ROTOR-lexical 61.4 61.6 61.6 61.5 61.4 59.8 59.6 59.6 59.8 60.0 59.2 59.5 59.4 59.1 59.0 59.3 59.1 59.2
ROTOR-reversed lexical 61.6 61.8 61.8 61.8 58.9 59.3 58.8 58.6 58.7 58.8 57.9 58.2 57.9 57.4 57.9 57.6 57.5 57.8
ROTOR-reranking 61.2 61.4 61.2 61.3 60.9 61.0 61.2 61.2 61.2 61.1 60.9 60.7 60.7 60.7 60.8 60.8 60.7 60.8
ROTOR-freq 61.0 61.1 61.1 61.1 60.4 60.3 58.6 60.2 60.0 59.9 59.3 60.4 59.7 59.5 59.5 59.6 59.2 59.6

Table 5: The best_subspan_em (%) scores on the lost in the middle (LitM) benchmark. For ROTOR, we test three
different global ordering strategies (lexical, reversed lexical, and MonoT5-base reranking) across varying numbers
of documents (ndoc ∈ {10, 20, 30}). Appendix Fig. 5 visualizes the fluctuations across different gold positions.
ROTOR shows the best performance across all setups, and is especially more stable when indexing bias in the input
is removed.

Figure 6: Illustration of ordering 7 rows by 2 different global sort options, (1) lexical sort based on token ids, or (2)
reranking sort based on a reranker model (MonoT5-base in this case). (3) frequency based sorting applies lexical
sorting, but the definitive token ids are mapped into the inverse frequency.

for all experiments. For all datasets we tested, we separate the input to 3 parts: prefix, parallel contexts,
and suffix and feed them accordingly to the positional-invariant model. For the case of the original model,
we simply join the prefix, context, and suffix text to make one sequential text. For testing with the PCW
model, we concat each prefix to the parallel context due to the architectural limitations of the PCW model,
which doesn’t have the prefix part (which is processed casually before parallel contexts). For example, on
testing the PCW model on MMLU, we append the question and each answer options, which generally
result in longer input sequences. For PCW, we use the pcw_generate function, and we additionally
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α = no Selective Routing -0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

Validation set (1531) <— bias towards invariant model —— bias towards orig model —>

Selective Routing (orig, pine) 64.9 65.3 65.8 66.4 67.3 67.4 67.6 67.5 67.9 67.8 68.0 67.9
Selective Routing (orig, ours-lexical) 63.9 64.1 64.5 65.4 65.8 67.0 67.4 68.1 68.2 68.1 67.9 67.9
Selective Routing (orig, ours-monot5) 66.0 66.1 66.3 66.7 67.0 67.6 68.0 68.1 68.1 68.1 67.7 67.9

Test set (14015)

Selective Routing (orig, pine) 64.8 64.9 65.4 66.0 66.8 67.5 68.4 68.5 68.5 68.4 68.3 68.3
Selective Routing (orig, ours-lexical) 63.2 63.5 64.2 65.2 66.2 67.3 68.0 68.4 68.5 68.5 68.4 68.3
Selective Routing (orig, ours-monot5) 64.2 64.4 64.8 65.5 66.4 67.3 68.1 68.5 68.4 68.5 68.3 68.3

Table 6: Reporting full ablation results on application of Selective Routing. α = 0.2 was the best for the validation
set, which was then applied to obtain the reported results for all models.

utilized the RestrictiveTokensLogitsProcessor provided at the official PCW repository for MMLU
classification, to have a similar setup with the log_likelihood option used for other models.

C.2 Knowledge Graph Question Answering

For evaluation with Mintaka, we follow the same setup as Baek et al. (2023). Given the gold answer
and model generated answer, the EM score counts if both are exactly the same; Accuracy measures if
the generated answer includes the gold answer, and F1 score measures the precision and recall among
overlapping words. Since we are testing on a non-trained zero-shot version of the model, we enforce the
model to output in json format to make it easier to parse. For the row shuffling setup, we fix the seed to 0,
1, 2 on shuffling rows and report the average scores.

C.3 Lost in the Middle

Specifically, we use the dataset provided in the official repository9, use the same prompt as the llama
2 chat model with only the instruction tokens adjusted to llama 3 (removed [Inst] and changed to
<|begin_of_text|> and etc.,), and evaluate using the best_supspan_em metric.

C.4 MMLU

We follow the publicly acknowledged lm-evaluation harness (Gao et al., 2024) prompt design by eluther.ai.
We measure accuracy between the gold answer and the token with the highest likelihood (probability)
among possible answer tokens [‘ A’, ‘ B’, ‘ C’, ‘ D’].

D Further impact scenarios on general conversation.

We shortly discuss about how this method may be applied to general conversational scenarios of LLMs.
For processing contexts such as chronological history of conversations, the ordering is important, and the
original LLM remains the better choice for this case. However, in subsets of conversational tasks requiring
order invariance (e.g., Sets, Tables, or RAG contexts), our method enhances unbiased understanding, as
demonstrated mainly in Lost-in-the-Middle benchmark. Here, RoToR achieves a significant 7-9% average
accuracy gain over the original LLM, very consistently across all setups (doc indexing and ndoc) for all
choices of the ordering algorithm, with lower standard deviation than the original model.

E Selection of α for Selective Routing on MMLU

We report α is a hyperparameter that can be tuned per-dataset. We searched its value in the range of -0.5
to 0.5 with a step size of 0.1 using the validation split of MMLU10 on RoToR with lexical sorting, and
applied the found value (0.2) on the test set to obtain the reported results for all models. We report the full
variation of Selective Routing results on the investigated α value at Tab. 6.

9github.com/nelson-liu/lost-in-the-middle
10https://huggingface.co/datasets/cais/mmlu/viewer/abstract_algebra/validation
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F Replication details on the runtime experiment

Apart from the theoretical runtime efficiency, we measured the actual end-to-end runtime in seconds, to
better analyze the practical runtime efficiency between PINE and ROTOR. The runtime of each experiment
was measured on an ASUS ESC8000-E11 server featuring dual 4th Gen Intel Xeon Scalable processors,
64 CPU threads, 1.1 TB of RAM across 32 DIMM slots, and 8 NVIDIA A6000 GPUs with 48 GB of
memory each. We Except for the experiments on Llama-3.1-70B-Instruct, we only use a single A6000
GPU for all of the experiments.

G Input data examples

To illustrate the input and output formats used in our experiments, we provide example inputs for the
Lost-in-the-Middle (LitM), Knowledge Graph Question Answering (KGQA), and MMLU datasets. For
experiments using the Qwen-Chat model, special tokens were adjusted accordingly. While the example
prompts are based on the Llama-3.1-8B-Instruct model, the specific differences in token usage for the
Qwen-Chat variants can be observed by comparing the prompts in Fig. 8 and Fig. 9. This adjustment is
consistently applied across all datasets. Note that no special tokens are added for the MMLU benchmark,
which aligns with the lm-evaluation harness setup.

lost in the middle
Prefix:
<|begin_of_text|><|start_header_id|>system<|end_header_id|>

You are a helpful, respectful and honest assistant. Always answer as helpfully as possible, while
being safe. Please ensure that your responses are socially unbiased and positive in nature. If a
question does not make any sense, or is not factually coherent, explain why instead of answering
something not correct. If you don’t know the answer to a question, please don’t share false
information.<|eot_id|><|start_header_id|>user<|end_header_id|>

Write a high-quality answer for the given question using only the provided search results (some of
which might be irrelevant).

Parallel texts:
Document [1](Title: List of Nobel laureates in Physics) The first ...
...
Document [10](Title: Nobel Prize in Chemistry) on December 10, the ...

Suffix:
Question: who got the first nobel prize in physics<|eot_id|><|start_header_id|>assistant
<|end_header_id|>

Figure 7: Example input for the lost in the middle dataset.
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lost in the middle no indexing

Prefix:
<|begin_of_text|><|start_header_id|>system<|end_header_id|>

You are a helpful, respectful and honest assistant. Always answer as helpfully as possible, while
being safe. Please ensure that your responses are socially unbiased and positive in nature. If a
question does not make any sense, or is not factually coherent, explain why instead of answering
something not correct. If you don’t know the answer to a question, please don’t share false
information.<|eot_id|><|start_header_id|>user<|end_header_id|>

Write a high-quality answer for the given question using only the provided search results (some of
which might be irrelevant).

Parallel texts:
[Document Title: List of Nobel laureates in Physics] The first ...
...
[Document Title: Nobel Prize in Chemistry] on December 10, the ...

Suffix:
Question: who got the first nobel prize in physics<|eot_id|><|start_header_id|>assistant
<|end_header_id|>

Figure 8: Example input for the lost in the middle dataset, without indexing by numbers. Prompt for the Llama-3.1-
8B-Instruct model.

lost in the middle no indexing (Qwen variant)

Prefix:
<|im_start|>system
You are a helpful, respectful and honest assistant. Always answer as helpfully as possible, while
being safe. Please ensure that your responses are socially unbiased and positive in nature. If a
question does not make any sense, or is not factually coherent, explain why instead of answering
something not correct. If you don’t know the answer to a question, please don’t share false
information.<|im_end|><|im_start|>user

Write a high-quality answer for the given question using only the provided search results (some of
which might be irrelevant).

Parallel texts:
[Document Title: Thorax] when deep breaths are attempted. Different people ...
...
[Document Title: Chest pain] present with chest pain, and carry a significantly higher ...

Suffix:
Question: for complaints of sudden chest pain patients should take a<|im_end|>
<|im_start|>assistant

Figure 9: Example input for the lost in the middle dataset, without indexing by numbers, prompt for the Qwen1.5-
Chat model.

18755



Mintaka

Prefix:
<|begin_of_text|><|start_header_id|>system<|end_header_id|>

Below are the facts in the form of the triple meaningful to answer the question. Answer the given
question in a JSON format, such as "Answer": "xxx". Only output the JSON, do NOT say any
word or explain.

<|eot_id|><|start_header_id|>user<|end_header_id|>

Parallel texts:
(Super Bowl XLII, winner, New York Giants)
(Super Bowl XLII, participating team, New York Giants)
(Super Bowl XLII, point in time, time: +2008-02-03)
(Super Bowl XLII, followed by, Super Bowl XLIII)
(Super Bowl XLII, location, State Farm Stadium)
...
(Super Bowl XLII, sport, American football)
(Super Bowl XLII, instance of, Super Bowl)

Suffix:
Question: which team did the super bowl xlii mvp play for?, Answer: <|eot_id|><|start_header_id|>
assistant <|end_header_id|>

Gold Answer(s):
(‘NYG’, ‘Giants’, ‘NY Giants’, ‘New York Giants’)

Example generated output:
{"Answer": "New York Giants"} (Parsed to: New York Giants)

Figure 10: Example input for the Mintaka dataset.

MMLU
Prefix:
The following are multiple choice questions (with answers) about moral disputes.

Norcross agrees that if a being is incapable of moral reasoning, at even the most basic level, then it
cannot be

Parallel texts:
A. a being of value.
B. an object of moral sympathy.
C. a moral agent.
D. a moral patient.

Suffix:
Answer:

Figure 11: Example input for the MMLU benchmark.
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H Why is removing index bias an important detail for invariant models to be effective?

The alphabetic index (A/B/C/D) introduced in Fig. 1 associated with each segment, reportedly introduces
token bias (Wei et al., 2024) of preferring the choice marked as ‘A.’ The same thing can be applied to
listwise inputs with simple numeric indexing (1/2/3/4), which was the case for the lost-in-the middle
benchmark. While a standard model with no modifications on positional encoding correctly places contexts
indexed A before contexts indexed with D by positional encoding, an invariant model sees contexts in an
order-agnostic way, meaning that the alphabetical indexing may not always be interpreted sequentially and
thus can confuse the model from accurately interpreting the contexts. For example, even for cases where
the index ordering of the input was in alphabetical order (A->B->C->D), the ordering-invariant model
may interpret contexts with (C->A->B->D) at one point (e.g., when the query is D on self attention),
which can cause unnatural, out-of-distribution representation, leading to decreased performance.

I Statisticial significance before and after shuffling segments

We conducted paired two-tailed t-tests (Table 8) for both the baseline (“original”) model and our proposed
method (ROTOR), using the results in Table 7. Our goal was to determine whether the performance
differences between the initial ordering and shuffled ordering are statistically significant. We excluded the
Lost-in-the-Middle (LitM) dataset because it does not provide an initial ordering. Specifically, the tests
evaluate whether the mean performance difference (Before Shuffle - After Shuffle) significantly deviates
from zero.

For KGQA, we selected the F1 score as the representative metric among the three available, gathering
data points from various task configurations and different models. For MMLU, the results are based on
our ROTOR variant with selective routing. As shown in Table 8, the original model shows a statistically
significant drop in performance when the segments are shuffled, while ROTOR does not, indicating
increased robustness to segment-order perturbations. 11

Original Model RoToR-lexical

Before
Shuff.

After
Shuff.

Diff.
Before
Shuff.

After
Shuff.

Diff.

Mintaka, Llama3.1-8B-Instruct, ndoc=30 51.9 51.0 0.9 54.1 53.8 0.3
Mintaka, Llama3.1-8B-Instruct, ndoc=50 51.7 51.0 0.7 53.6 53.5 0.1
Mintaka, Qwen1.5-4B-Chat, ndoc=30 34.9 34.7 0.2 35.7 35.5 0.2
Mintaka, Qwen1.5-4B-Chat, ndoc=50 35.8 35.0 0.8 36.2 36.1 0.1
Mintaka, Qwen1.5-7B-Chat, ndoc=30 35.4 35.0 0.4 37.7 37.7 0
Mintaka, Qwen1.5-7B-Chat, ndoc=50 35.7 35.5 0.2 38.0 38.0 0
MMLU, Llama3.1-8B-Instruct 68.3 65.5 2.8 68.5 65.7 2.8
MMLU, Qwen1.5-4B-Chat 53.6 52.6 1 53.7 52.6 1.1
MMLU, Qwen1.5-7B-Chat 60.1 58.6 1.5 60.1 58.8 1.3

Table 7: Performance of the Original model and ROTOR before and after shuffling.

Derivation for the original model. Let the nine paired differences (Before − After) be
{d1, d2, d3, ...d8, d9}. Mean Difference: d̄ = 1

9

∑9
i=1 di. In this case, d̄ ≈ 0.9444%. Sample Stan-

dard Deviation: sd =
√

1
n−1

∑n
i=1(di − d̄)2 ≈ 0.7632. Standard Error (SE): SE = sd√

n
≈ 0.2544.

t-Statistic: t = d̄
SE ≈ 3.7124, (df = 8). Since the critical value at df = 8 and α = 0.05 is 2.306, we

have 3.71 > 2.306. Therefore, the difference is statistically significant.

11All statistical calculations were validated using an online t-test calculator: https://www.mathportal.org/calculators/
statistics-calculator/t-test-calculator.php
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Original RoToR

Degrees of Freedom 8

Mean Difference 0.94 0.66

t-Statistic 3.71 2.23

Critical Value 2.306

Statistically Significant Yes No

Table 8: Paired two-tailed t-test results comparing the original model and ours.

Derivation for the ROTOR model. Under the same procedure, d̄ ≈ 0.6556%, sd ≈ 0.8833, SE ≈
0.2944. t-Statistic: t ≈ 2.2265. Since 2.2265 < 2.306, there is no significant difference in performance
before and after shuffling for ROTOR.

Conclusion. While the original model shows a statistically significant performance drop with shuffled
inputs, ROTOR remains unaffected, demonstrating greater robustness to segment-order perturbations.

J Application to Long-Context Inputs

Benchmark and protocol. To test whether RoToR consistantly performs well to inputs with longer
contexts, we extend our evaluation to the LongBench (Bai et al., 2024)–2WikiMultihopQA task, whose
multi-document questions yield input lengths from 5 k to 15 k tokens. Because our current ROTOR and
PINE implementations do not yet support advanced parallelization (e.g., FlashAttention or SDPA), GPU
memory becomes prohibitive beyond ∼10 k tokens, especially for PINE, whose memory footprint is
larger than ours. We therefore truncate the context at 10 k tokens, which already exceeds the lengths used
in our main experiments.

Following the official LongBench guidelines12, we segment each long context into 512-token “listwise”
inputs, enabling a direct comparison with our listwise reranking pipeline. To ensure robustness, we test
three input-order perturbations:

1. Initial: original chunk order [1, 2, 3, 4, 5];

2. Reversed: [5, 4, 3, 2, 1];

3. Center-flipped: first and last halves swapped, [3,2,1,5,4].

Results. Table 9 reports F1 scores for the Original model variant, RoToR, and PINE with Llama
3.1-8B-Instruct and Qwen 1.5-7B-Chat. Across every ordering and token-length band, RoToR retains a
clear advantage, while PINE fails to run when the longest (8 k+) chunks are kept. These findings confirm
that RoToR scales to substantially longer inputs across different input-order perturbations.

Take-aways. Even without specialised long-context kernels, ROTOR consistently outperforms both the
original reranker and PINE, and remains robust to severe input-order perturbations. This suggests our
approach can generalize to substantially longer inputs once memory and kernel constraints are alleviated.

K Robustness to task templates

We evaluated whether the proposed selective-routing methods remain effective when the surrounding
task instructions are re-phrased. Concretely, we performed a template-swap experiment on the KGQA
benchmark, specifically on the initial ordering setup. The original prompt (Figure 10) began with

“Below are the facts in the form of triples meaningful to answer the question.”

12Maximum generation length 32 and qa_f1_score (LongBench-E) as the evaluation metric.
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Llama 3.1-8B-Instruct Qwen 1.5-7B-Chat

Order Method 0–4k 4–8k 8k+ Total 0–4k 4–8k 8k+ Total

Count 25 131 144 300 23 121 156 300

Initial
(e.g.,
1,2,3,4,5)

Orig. 48.3 56.8 34.0 45.1 65.6 47.9 26.7 38.2
PINE 51.0 47.6 – – 70.2 45.1 – –
RoToR 59.0 52.7 41.8 48.0 75.7 47.8 31.0 41.2

Reversed
(e.g.,
5,4,3,2,1)

Orig. 57.0 51.5 39.0 46.0 53.4 43.3 34.2 39.3
PINE 43.0 49.8 – – 64.1 48.9 – –
RoToR 59.0 52.0 41.0 47.3 72.8 47.6 30.8 40.8

Center flip
(e.g.,
3,2,1,5,4)

Orig. 47.0 47.7 35.6 41.8 61.0 40.6 32.7 38.1
PINE 46.3 49.2 – – 70.2 43.5 – –
RoToR 59.0 52.5 41.5 47.8 77.1 47.3 30.9 41.0

Table 9: F1 scores (%) on LONGBENCH–2WikiMultihopQA with ∼10k-token contexts. “Count” is the number of
examples per length bucket; “–” denotes out-of-memory.

Llama-3.1-8B-Instruct Qwen-1.5-4B-Chat Qwen-1.5-7B-Chat

N = 30 N = 50 N = 30 N = 50 N = 30 N = 50

Method Acc. EM F1 Acc. EM F1 Acc. EM F1 Acc. EM F1 Acc. EM F1 Acc. EM F1

Original template, Initial ordering

Original 50.2 44.0 51.9 50.0 44.0 51.7 30.7 27.9 34.9 31.6 28.6 35.8 31.5 27.8 35.4 31.7 28.0 35.7
PINE 51.5 45.0 52.6 51.6 45.1 52.6 31.6 28.7 35.6 31.6 28.8 35.3 32.3 28.8 36.4 32.0 28.5 35.9
RoToR 53.1 46.5 54.1 52.9 46.0 53.6 32.0 29.0 35.7 32.7 29.6 36.2 34.3 29.8 37.7 34.3 30.1 38.0
RoToR-MonoT5 51.6 45.0 52.5 52.4 45.4 52.8 32.3 29.1 36.2 32.3 29.3 35.9 32.9 28.4 36.3 32.9 28.9 36.6
RoToR-Freq. 52.6 46.1 53.7 53.1 46.4 53.7 32.3 29.2 36.0 32.3 29.2 35.9 33.7 29.5 37.2 33.5 29.5 37.2

Template-swap

Original 50.0 44.1 51.8 50.2 44.3 51.9 31.1 27.8 34.9 31.7 28.3 35.3 31.4 27.6 35.2 32.0 28.0 35.7
PINE 52.0 45.7 52.9 52.0 45.3 52.8 31.9 28.8 35.8 31.7 28.6 35.4 31.9 28.5 36.0 31.5 28.2 35.7
RoToR 52.7 46.4 54.0 52.9 46.4 53.7 31.8 28.2 35.0 32.4 29.0 35.6 34.1 29.8 37.6 34.0 29.9 37.7
RoToR-MonoT5 51.5 45.2 52.6 52.5 45.7 53.1 32.4 29.0 36.3 32.6 29.3 35.9 32.9 28.5 36.4 32.6 28.5 36.3
RoToR-Freq. 52.3 46.2 53.7 52.9 46.5 53.8 31.9 28.4 35.4 32.4 28.8 35.6 34.0 29.9 37.4 33.8 29.6 37.4

Table 10: Results on the Mintaka (KGQA) dataset on different models, before (top block, also reported at main
paper) and after (bottom block) the template-swap. N refers to number of top-k segments per query. RoToR
variants consistently outperform the Original and PINE baselines, and their performance is stable under the swapped
template, indicating robustness to instruction wording.

and required the model to output only a JSON object. In the swapped template we replaced the first
sentence with

“Below are knowledge statements expressed as triples meaningful to answer the question.”

leaving all other instructions unchanged. Table 10 reports the results. Across all three backbone models
and both retrieval depths (N=30, 50), RoToR and its variants retain similar absolute scores and continue
to outperform both the Original and PINE baselines, indicating strong robustness to superficial wording
changes in the task template.

L Additional Statistics on Selective Routing Assignment

Table 11 complements the main results in Table 3 by reporting the selection ratio, accounting for the
percentage of evaluation queries for which the RoToR branch is chosen over the vanilla branch, under
Selective Routing (SR).13 We break the analysis down by (i) the global sorting strategy (Lexical, MonoT5,
or Freq.), and (ii) three model backbones. The table distinguishes three order–based conditions:

For table 11, Init. refers to the original ordering (e.g., in abcd order), Rev. refers to the reversed
ordering (e.g., in dcba but assigned as abcd), and Avg. is the average selection ratio for all possible (4!-1)
re-orderings, with standard deviation. Empirically, the RoToR model tends to be selected more frequently

13All figures are computed over the full evaluation set of 14,015 queries.
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Sorting Init. Rev. Avg. Init. Rev. Avg. Init. Rev. Avg.

Lexical 7.0 8.5 7.3±0.8 5.9 6.2 6.2±0.4 10.3 10.6 9.9±0.6
MonoT5 6.9 7.6 6.7±1.5 8.0 12.5 9.8±2.1 10.7 10.9 10.7±0.7
Freq. 6.4 6.7 6.9±0.5 8.5 10.9 9.4±1.6 10.7 11.1 11.1±0.8

Table 11: Selection ratio (%) of the RoToR variant under SR. Higher values indicate more frequent routing to
RoToR.

under reversed orderings, whereas under the original ordering, the vanilla model is chosen slightly more
often. The exact ratio varies by model and sorting strategy.

18760


