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Abstract

Existing end-to-end speech large language
models (LLMs) usually rely on large-scale an-
notated data for training, while data-efficient
training has not been discussed in depth. We
focus on two fundamental problems between
speech and text: the representation space gap
and sequence length inconsistency. We propose
Soundwave, which utilizes an efficient train-
ing strategy and a novel architecture to address
these issues. Results show that Soundwave
outperforms other advanced speech LLMs in
speech translation and AIR-Bench speech tasks
with only a fraction of the training data. Further
analysis shows that Soundwave still retains its
intelligence during conversation.

1 Introduction

Large language models (LLMs) have profoundly
transformed the paradigm of natural language pro-
cessing (NLP) due to their remarkable abilities in
understanding and reasoning (Achiam et al., 2023;
Touvron et al., 2023). Recently, multi-modal LLMs
have also shown rapid development, with the suc-
cess of GPT-4o highlighting the potential of speech-
focused LLMs (Hurst et al., 2024). A fundamental
requirement for achieving seamless communication
with LLMs is their ability to accurately interpret
speech—essentially enabling LLMs to “hear”.

However, most speech-based LLMs rely on mas-
sive labeled datasets and substantial computational
resources to enable speech perception (Défossez
et al., 2024; Chen et al., 2025). For example, the
Qwen2-Audio (Chu et al., 2024) model requires ap-
proximately 500,000 hours of data to achieve cross-
modal functionality, while 1,000 hours is needed
by advanced automatic speech recognition models
to achieve comparable results (Gulati et al., 2020).
This discrepancy underscores the need for more ef-
ficient methods to develop speech-capable LLMs.
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Figure 1: AIR-Bench speech foundation tasks.

We first identify two fundamental challenges to
achieve alignment between speech and text (Zhang
et al., 2023): (1) the representation space gap
and (2) sequence length inconsistency. The for-
mer challenge arises from the two modalities be-
ing developed independently, while the second
challenge stems from the difference in modeling
units—speech is typically represented at the frame
level, whereas LLMs operate at the sub-word level.
We then decouple the process of building speech
LLMs to achieve more efficient training. Specifi-
cally, we propose a two-stage training framework
designed to efficiently overcome these challenges.
The first stage focuses on resolving the represen-
tation space gap, while the second stage aims to
reduce the sequence length of speech.

Furthermore, to efficiently bridge the gap be-
tween speech and text, the quality of alignment
data plays a crucial role. To address this, we collect
high-quality speech recognition data and manu-
ally annotate audio labels to support the first stage.
For the second stage, we analyze the proportion
of text data to ensure a smooth learning process.
During the supervised fine-tuning (SFT) stage, we
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Figure 2: Training progress of Soundwave. The gray modules are frozen while the orange modules are updated.

employ temperature sampling to balance the variety
of tasks effectively.

We conduct experiments on various speech-to-
text tasks and several sound-related tasks. We
also compare our model with the strong system
Qwen2-Audio on both closed- and open-ended
tasks. Our average results achieve state-of-the-art
performance on the AIR-Bench (Yang et al., 2024)
speech foundation task as shown in Fig. 1. It also
shows comparable results on audio-related tasks.
Furthermore, our method exhibits significant per-
formance in zero-shot speech translation, demon-
strating that Soundwave unlocks the full potential
of LLMs. Soundwave delivers better performance
with less training data, lower training costs, and
fewer speech sequences.

Our main contributions are as follows. 1) We
propose an efficient training framework that utilizes
only ten thousand hours of training data to achieve
state-of-the-art speech understanding performance.
2) We introduce dynamic multi-task learning in
the post-training stage to enhance speech model-
ing and leverage the benefits of text data. 3) We
annotate a sound classification dataset to support
the alignment between sound and text, and provide
high-quality instruction data based on the thinking
process for speech LLMs.

2 Methodology

2.1 Overall Design

The training process consists of three stages, as
shown in Fig. 2. Stage I aims to align the repre-
sentation between speech and text, addressing the
representation space gap problem. Stage II pri-
marily shrinks the speech sequence and mitigates
the sequence length inconsistency. The supervised
fine-tuning (SFT) stage (Wei et al., 2021) enables

Table 1: The parameters of different modules. The
orange represents the number of training parameters.

Modules #Param. Training Detailsstage

Audio encoder ∼635M - Whisper Large V3

Alignment adapter ∼144M I&II One projection layer
and Transformer

Shrinking adapter ∼67M II One cross-attention
and layer-norm

LLMs ∼8B - Llama3.1

LLM adapter ∼55M II&III LoRA

Total ∼9B

the speech LLMs to generalize across diverse tasks.
The input to the model consists of speech FBank

features, which are then processed by the pretrained
audio encoder. To efficiently align the representa-
tion with that of LLMs, we use the audio encoder
that produces semantic features (e.g., Whisper
(Radford et al., 2023) or Seamless (Team, 2025)),
rather than vector quantization features (Défossez
et al., 2022) or self-supervised features (Hsu et al.,
2021). We implement an alignment adapter and a
shrinking adapter to bridge the gap between speech
and text. Additionally, LoRA (Hu et al., 2022) is
used to enable efficient fine-tuning. An overview
of the modules is provided in Tab. 1.

2.2 Stage I: Alignment

We use the auxiliary CTC loss and high-quality
data to improve training efficiency.

2.2.1 Auxiliary CTC loss
The audio encoder and LLMs have a gap in their
representation spaces due to separate pre-training.
One direct approach is to use ASR tasks for align-
ment. We design an adapter and utilize CTC loss
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(Graves et al., 2006) to achieve efficient cross-
modal training. Specifically, the adapter consists
of a linear layer followed by a Transformer layer
(Vaswani, 2017). The linear layer transforms the
audio sequence A ∈ Rl×ha where l is the length of
the speech sequence and ha is the hidden size of the
audio encoder. We concatenate adjacent features
and adjust the dimensionality to match that of the
LLMs, resulting in A′ ∈ Rl/2×hllm where hllm is
the hidden size of the LLMs. A Transformer layer
then converts the features into the representation
space of LLMs. Finally, we use CTC loss to train
the adapter, aligning the shared space of the LLMs.

2.2.2 High-quality Alignment Data
We believe that improving data quality is crucial
to training efficiency for alignment. We apply data
strategies for two types of data (ASR and sound
data), as outlined below. The adapter is trained
without the LLMs at this stage, thus the alignment
training is fast. Our later experiments in Sec. 5.4
confirm the benefits to training efficiency.

Verified ASR Data At this training stage, we use
transcriptions from ASR data as the target, which
we found to be crucial for improving convergence
ratio. The selected high-quality data is all verified
by advanced ASR model (Radford et al., 2023)
with a Word Error Rate (WER) lower than 10%.

Standardized Sound Data Another challenge is
processing sound due to the inherent background
noise and the diversity of labeling information. To
address this, we annotate about 8k pieces of sound
category data. We further select clear 20k sound
samples, then unify label format and audio length.

2.3 Stage II: Shrinking
After aligning the data representation, we focus
on reducing the length of the speech as detailed in
Sec. 2.3.1. Additionally, at this stage, we include
various types of foundational audio tasks to bet-
ter generalize downstream tasks. This introduces
a data mixture problem, which is solved by a dy-
namic data mixture strategy (see Sec. 2.3.2).

2.3.1 Dynamic Shrinking
There are two essential aspects to shrinking the
audio sequence: final length determination and
lossless information retention.

Final Length Determination For the first aspect,
we utilize the probability from CTC. The CTC pre-
dicts the corresponding word for each position. We
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& Gather ... ...

Output

Nice <blank> to

Figure 3: We first select the features based on the peak
of CTC prediction. Then, we use these features to query
and gather auxiliary information from the original se-
quence. Finally, we fuse the two features to achieve
shrinking. Note that when gathering the information,
the selected positions are masked.

then remove duplicate predictions from adjacent
positions to obtain the final sequence. Since the
sequence has been aligned to text in Stage I, the
decoded result can indicate the final length.

Lossless Information Retention For the second
aspect, we select the content based on the CTC
output as the query, and then use attention mecha-
nisms to gather related information, such as tone
and pitch, in order to prevent information loss.

Assume the speech features x have been aligned
to the representation space of LLMs, then, we se-
lect the features based on the CTC probability to
compress the sequence x′.

xout = norm
(
x′ + cross_attn(x′, x, x)

)
(1)

where norm is the layer norm operation. xout is
the final output of the shrinking adapter. x′ can be
viewed as the content feature, while the gathered
information, calculated by cross-attention, serves
as auxiliary data for the selected features. The
whole processing is shown in Fig. 3.

Table 2: The overview of tasks in shrinking stage. The
data scales of these data are highly imbalanced.

Task Input Output Size (k)

QA Text question Text answer 78

ASR Speech Transcription 3,012

ST Speech Translation 460

Sound Mixed speech Transcription 25and sound and sound type

2.3.2 Dynamic Data Mixture
We select both audio data (involving three basic
audio tasks) and text data to enable LLMs to gener-
alize to downstream speech understanding. Train-
ing with mixed data may be biased by dominant
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Table 3: Summary of datasets used in different stages and their total hours.

Dataset I II III Num. Hours Task

GigaSpeech (M) (Chen et al., 2021) ✓ ✓ 713k 805.11 ASR
TED-LIUM (Hernandez et al., 2018) ✓ ✓ 144k 244.02 ASR
Multilingual Librispeech (En) (Pratap et al., 2020) ✓ ✓ 985k 4,081.61 ASR
Europarl-ASR (Garcés Díaz-Munío et al., 2021) ✓ ✓ 719k 418.42 ASR
TextrolSpeech (Ji et al., 2024b) ✓ ✓ ✓ 215k 301.19 ASR, GR 1, Emotion Recognition
LibriSpeech (Panayotov et al., 2015) ✓ ✓ ✓ 281k 961.05 ASR, Speech Grounding
MUST-C (En-De) (Cattoni et al., 2021) ✓ ✓ 283k 388.55 Speech Translation
Common Voice (En) (Ardila et al., 2019) ✓ ✓ 233k 364.64 AP 1, Speech Translation
Fisher (Cieri et al., 2004) ✓ ✓ 132k 1,091.42 ASR, Chat
Europarl-ST (Iranzo-Sánchez et al., 2020) ✓ 53k 133.16 Language Identification
Common Voice (Ja) (Ardila et al., 2019) ✓ 13k 15.00 Language Identification
SLURP (Bastianelli et al., 2020) ✓ 141k 101.49 IC 1, Entity Recognition
CREMA-D (Cao et al., 2014) ✓ 7k 5.26 Emotion Recognition
RAVDESS (Livingstone and Russo, 2018) ✓ 1k 1.48 Emotion Recognition
IEMOCAP (Busso et al., 2008) ✓ 3k 2.16 Emotion Recognition
MELD (Poria et al., 2019) ✓ 9k 8.12 Emotion Recognition
VoxCeleb (Nagrani et al., 2017) ✓ 156k 435.17 Speaker Num. Verification
FoR (Reimao and Tzerpos, 2019) ✓ 54k 47.55 Synthesized Detection
AnyInstruct (Zhan et al., 2024) ✓ 107k 206.30 Speech Instruction
VocalSound (Gong et al., 2022) ✓ ✓ ✓ 20k 23.20 Sound Classification
TUT2017 (Duppada and Hiray, 2017) ✓ ✓ ✓ 5k 13.00 Scene Classification
CochlScene (Jeong and Park, 2022) ✓ 75k 208.65 Scene Classification

Total 2 4,349k∗ 9,856.91∗ 15
1 GR is for Gender Recognition, AP is for Age Prediction, and IC is for Intent Classification.
2 ‘*’ means that this table is compiled from the perspective of audio, and an audio file may be used multiple times for different tasks.
If multiple usages at different tasks are all counted, the number of data samples is 6301k, and the total duration is 14068.77 hours.

tasks due to data imbalance (see Table 2), and ex-
isting work has adopted curriculum learning (Das
et al., 2024; Tang et al., 2023), though it requires
considerable prior knowledge for proper design.

Inspired by temperature-based data sampling,
which has previously been used to address multi-
lingual data imbalance (Arivazhagan et al., 2019),
we propose a dynamic data mixture guided by sam-
pling temperature. Specifically, the sample rate for
each task k is as follows:

pk =

Å |Dk|∑
i |Di|

ã 1
T

(2)

where the |Dk| denotes the data size of task k and
T denotes the temperature. T is initially set to 1
and gradually increases. This causes the training to
start with a sample-level uniform distribution and
gradually shift to a task-level uniform distribution.
Training at the former stage might be dominated by
rich-source tasks, while at the latter stage, training
might be more balanced among tasks, potentially
alleviating the over-fitting issue.

Additionally, Chen et al. (2024) shows that text-
related tasks aid instruction following for multi-
modal LLMs. We also introduce the text task to
ensure a smoother cross-modal process. We incor-
porate the Wizard SFT dataset (Xu et al., 2024) to

help speech LLMs retain their understanding capa-
bilities, thereby enhancing their ability to follow
instructions for speech tasks.

2.4 Stage III: Supervised Fine-tuning
At this stage, we only fine-tune the parameters of
LoRA, as speech and text are already aligned. Our
goal is to enable the speech LLMs to handle more
complex tasks and respond directly based on the
speaker’s speech. Thus, we use both text-based and
speech-based instructions during SFT.

3 Data Engineering

We introduce the data details for the three stages,
respectively, see the summary in Tab. 3. The
data shown in the table has been cleaned and fil-
tered, and the details of strategies can be found in
App. A.2. We sample some speech from several
dataset to control the quality and training cost.

3.1 Data During Stage I and II
ASR Data We choose high-quality datasets and
filter the data with a WER of less than 10%, as
tested by Whisper medium. We apply SpecAug-
ment (Park et al., 2019) to enhance the robustness
of the model towards speech. To help LLMs under-
stand the conversation and the number of speakers,
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Table 4: Examples of three QA formats for building SFT data in the speech emotion task.

Instruction Answer

1 What feeling is the speaker trying to convey? Neutral.

2 What is the emotional theme of the speaker’s message? The one answer you should pick is D. happiness.Pick one answer from: A. neutral B. fear C. surprise D. happiness.
3 What emotion is the speaker hinting at in their speech? The speaker is hinting at surprise in their speech.

we splice speech from different speakers. We de-
note the output format as The first speaker
says ... The second speaker says ....

Sound Data The sound data is often too short
and may be viewed as noise, which causes the
model to fail in perceiving it. To address this prob-
lem, we embedded environmental sounds into the
audio to construct the data. For example: ‘But
there was a passenger dropped off for you, a little
girl. <throat_clearing> It’s a boy I’ve come for.’
The special token is added to the conversation, and
the model needs to transcribe both the sound and
speech simultaneously. This method of learning
both speech and audio also makes training efficient.

Another problem is that the sound is always a
mix of multiple sound categories and exhibits con-
stant repetition. This causes timing and label count
issues, which increases the difficulty of learning
alignment. Therefore, we standardize the audio to a
duration of three seconds based on energy, and man-
ually select and label the data. The detailed process
of labeling can be found in our Appendix A.1.

3.2 Instruction Data During Stage III

Text Instructions The text-based instruction is
designed to understand and analyze speech. We
have created three types of QA formats, as shown
in Tab. 4. The first requires the model to directly
answer, which is the most difficult. The second
provides detailed choices, and the last requires the
model to output the answer in a natural format.

Speech Instructions If speech LLMs are to com-
municate directly with humans, it is essential for
them to follow speech instructions. Once the
speech is well-aligned, we can achieve this by using
text-based dialogue data and synthesizing text into
speech. We use AnyInstruct speech subset (Zhan
et al., 2024), which is built using this approach.

Chain of Thought To reduce the complexity of
some challenging tasks, we built the dataset to en-
able the model to predict in a manner similar to
Chain of Thought (CoT). For example, in the Intent

The speaker mentions: ‘how many unread emails do i have’,
thus the speaker's goal is assessed as ‘email query’.

You are asking ‘What color is the
sky’ and I can tell you the sky is blue.

What's your estimation of the speaker's motive in this audio?

“How many unread emails do i have?”

“What color is the sky?”

Figure 4: Adding thought processes to address compli-
cated problems and speech instructions.

Classification task, we first had the model output
the speech transcription before identifying the in-
tent, as shown in Fig. 4. For the speech instruction,
the model initially predicts the transcription and
then responds to the question. The reasoning time
is slightly increased, but the model can address
complicated tasks with limited training data.

4 Experiments

4.1 Settings

Training The audio encoder is Whisper Large
V3 (Radford et al., 2023), and the foundation model
is Llama-3.1-8B-Instruct (Dubey et al., 2024). The
alignment adapter is a projection where the out-
put size is 4096. We apply LoRA to the Attention
module, where rank and α are set to 64 and 16,
respectively. Both alignment and shrinking stages
consist of 6,000 steps, with the SFT stage set to
around 4,000 steps. The sample temperature T at
Stage II starts at 1 and increases by 5 per train-
ing epoch. The experiments are conducted on 32
A800 GPUs for training on 10k hours of data. The
training time for the two stages is approximately
four days, and the SFT requires an additional day.
App. C shows more details about training settings.

Evaluation We evaluate Soundwave on several
basic tasks and the open-ended AIR-Bench. We
also remove repeated samples (see App. A.4) be-
fore training to avoid data leakage. We primarily
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Table 5: Performance on foundation tasks, including ASR, speech translation (ST), Speech Emotion Recognition
(SER), Vocal Sound Classification (VSC). ST is evaluated by ScareBLEU (Post, 2018). ∗ denotes the zero-shot task.

Task Dateset Model Metric Performance

ASR Librispeech (Test-clean|Test-other)

SALMONN (Tang et al., 2023)

WER ↓

2.1 | 4.9
SpeechVerse (Das et al., 2024) 2.5 | 4.7

WavLLM (Hu et al., 2024) 2.0 | 4.8
Qwen2-Audio (Chu et al., 2024) 1.6 | 3.6

Soundwave 2.1 | 5.0

ST

CoVoST2 En-De

BLSP (Wang et al., 2023)

BLEU ↑
14.1

SALMONN (Tang et al., 2023) 18.6
Qwen2-Audio (Chu et al., 2024) 29.9

Soundwave 30.6

MuST-C∗ (En-Nl|En-It|En-Ro|En-Es) Qwen2-Audio (Chu et al., 2024) BLEU ↑ 20.7 | 19.5 | 11.8 | 22.1
Soundwave 27.0 | 22.2 | 16.9 | 26.7

SER Meld Qwen2-Audio (Chu et al., 2024) ACC ↑ 0.553
Soundwave 0.635

VSC VocalSound
Pengi (Deshmukh et al., 2023)

ACC ↑
0.604

Qwen2-Audio (Chu et al., 2024) 0.939
Soundwave 0.905

compare Soundwave with Qwen2-Audio, an ad-
vanced model for various audio processing tasks.

4.2 Results

Basic Audio Tasks We show the results on foun-
dational audio tasks in Tab. 5. We find that our
model demonstrates a significant advantage on the
ST and SER tasks, which heavily rely on the un-
derstanding ability of speech LLMs. We also ob-
serve that our model shows strong performance on
zero-shot tasks, such as translation tasks in other
languages. On the other hand, our model still un-
derperforms the SOTA model on the ASR task,
indicating that massive training data is essential for
ASR. We only used about 244 hours of sound data,
which is dozens of times less than the SOTA, thus
there is still a gap on the VSC task.

AIR-Bench We compare our model on AIR-
Bench across speech foundation, sound foundation,
and speech chat tasks. As shown in Tab. 6, our
model demonstrates SOTA performance on aver-
age speech foundation tasks with only about 10k of
training data. Specifically, we outperform the best
of previous speech LLMs on six sub-tasks. Since
98.61% of the training data consists of English
speech, our model performs worse on the language
identification task. This highlights that the propor-
tion of different languages remains important.

Results of the sound foundation task are shown
in Tab. 7. Although only around 244 hours of
data were used, our model is still superior to other
models, except Qwen2-Audio, which is trained
with 10k hours. Moreover, our single-encoder ar-
chitecture performs better than the two-encoder
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Figure 5: Training curves of different strategies

model (Tang et al., 2023), indicating that fewer
encoders can process both speech and sound si-
multaneously. Our model also performs well in
AIR-Bench speech chat task, ranking second only
to Qwen2-Audio among open source models.

5 Analysis

Considering that analysis based on full data re-
quires massive training cost, we analyze our
method based on Librispeech data. The experi-
ments are trained on 8 A800 GPUs with 4,000
steps. We use Adapter (×n) to denote that the
adapter architecture is the same as Qwen2-Audio,
where n is the down-sampling rate.

5.1 Convergence Rate
In Fig. 5, we compare the convergence rate with
and without the first alignment stage, and the pro-
jection adapter architecture. Soundwave sees a
high convergence rate, with the loss rapidly de-
creasing within the first hundred steps. In contrast,
the training process of the other model is much
slower without the alignment stage. Furthermore,
Soundwave performs worse than other models with-
out stage one, because the shrinking adapter relies
on the CTC prediction.
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Table 6: Performance on the AIR-Bench speech foundation tasks.

Task Soundwave Qwen2-Audio Qwen-Audio SALMONN BLSP NExT-GPT PandaGPT Whisper
Turbo +GPT-4

Speech Grounding 59.2 28.3 45.4 25.3 25.0 25.4 23.0 35.0
Language Identification 89.6 93.3 95.9 28.1 30.8 23.7 34.6 96.8
Gender Recognition 90.3 79.3 82.5 35.5 33.2 57.0 66.5 21.9
Emotion Recognition 60.5 54.6 60.0 29.9 27.4 25.7 26.0 59.5
Age Prediction 58.9 36.1 58.8 48.7 51.2 62.4 42.5 41.1
Entity Recognition 81.7 82.0 48.1 51.7 37.2 26.1 34.0 69.8
Intent Classification 93.2 85.8 56.4 36.7 46.6 25.6 28.5 87.7
Speaker num. Verification 73.3 48.8 54.3 34.3 28.1 25.4 43.2 30.0
Synthesized Detection 72.5 25.9 69.3 50.0 50.0 30.8 53.1 40.5
Average 75.5 59.3 63.4 37.8 36.6 33.6 39.0 53.6

Table 7: Performance on the AIR-Bench audio foundation and chat tasks.

Task Soundwave Qwen2-Audio Qwen-Audio SALMONN BLSP NExT-GPT PandaGPT Gemini
Turbo (1.5-pro)

Sound (average) 62.10 65.10 60.95 32.95 31.43 32.15 43.58 -
Speech Chat 6.51 7.18 7.04 6.16 6.17 3.86 3.58 6.97
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Figure 6: Comparison of alignment effect and speed.

5.2 Effect of Alignment

We randomly sampled 200 items from the Lib-
rispeech test clean set and then extracted text and
speech representations. The similarity of speech
and text after average pooling is compared, as
shown in Fig. 6. We found that the representa-
tion of Soundwave with the alignment adapter is
significantly higher than that of other methods. In
addition, we further compare the average training
speed under the same batch conditions. The train-
ing speed in the alignment stage is nearly three
times faster than that of other methods. Whether
due to the alignment effect or the training method,
the alignment adapter shows obvious advantages.

5.3 Effect of Shrinking

We compare the performance and compression ra-
tios of different strategies on ASR tasks. We found
that our approach compresses significantly based
on text length. Our method maintains stable perfor-
mance with 2.5% compression ratios. However, the
compression method leads to performance degrada-

100 200 300 400 500

5

10

15

20

Training steps

L
os

s
Speech + Sound Speech + Uncleaned sound

Speech Uncleaned speech

Figure 7: Training curves with cleaned and uncleaned
data at the alignment stage.

tion on other test tasks without the aid of auxiliary
information. This demonstrates that auxiliary in-
formation can compensate for missing features, al-
lowing the LLMs to receive complete information.

We exhibit the inference speed in Tab. 8, us-
ing Time To First Token (TTFT) as the metric.
Our method shows a speed-up of about 15% and
25% compared to Adapter (×3) and Adapter (×4)
methods, respectively. This demonstrates that our
method uses fewer tokens while achieving greater
inference speed-up. We found that the shrinking
adapter does not incur significant computational
cost, proving it is both lightweight and effective.

5.4 Data Quality

The training loss for Stage I, with and without
cleaning the speech and sound data, is compared
in Fig. 7. When uncleaned speech is used, the
training process becomes unstable. Additionally,
if the sound data is not properly processed, it sig-
nificantly worsens the overall training. Given that
the alignment stage only trains a few parameters to
align the two pretrained large models, the quality

18724



Table 8: Comparison of different shrinking methods on
the Librispeech ASR dataset.

Method Test Test TTFT Compression
clean other (ms) ratio

Shrinking adapter 3.1 6.6 72 2.5%
w/o auxiliary info. 3.1 7.1 72 2.5%

Adapter (×3) 3.8 6.5 95 33.3%
Adapter (×4) 4.3 7.8 85 25.0%

of the training data is crucial.

5.5 Data Scaling
We compare the performance from 1k to 10k hours
of data, and the results are shown in Fig. 8. Our
model, using only 1k hours of data, achieves per-
formance comparable to previous speech LLMs.
Note that we use only the ASR task as the SFT
data, yet our model demonstrates decent capability
in instruction following. This demonstrates that the
speech representation is well aligned with the text
representation. When we further scale up the train-
ing data, all tasks show consistent improvements.

5.6 Knowledge-Based QA
We present a case of using the speech instruction
to ask complex questions in Fig. 9. We find that
Soundwave inherits the rich knowledge of LLMs
during the conversation. For more examples of
performance in physics, chemistry, finance, mathe-
matics, and other fields, refer to App. E.

6 Related Work

Speech contains rich non-semantic information
compared to text (Wang et al., 2024; Bu et al., 2024;
Huang et al., 2024). For LLMs to achieve an ac-
curate understanding of audio, they must have a
comprehensive perception of speech rather than
relying solely on text (Ji et al., 2024a; Ao et al.,
2024). As a result, many researchers have studied
how to build end-to-end speech LLMs (Hu et al.,
2024; Tang et al., 2023; Chu et al., 2024; Ghosh
et al., 2024; Fang et al., 2024; Geng et al., 2025).

Some studies have found the less is more phe-
nomenon in LLMs with respect to data usage (Zhou
et al., 2024; Song et al., 2025), meaning that ef-
ficient use of data can also achieve good perfor-
mance. However, for speech LLMs, data efficiency
has not been fully explored. Therefore, this work
addresses this issue by focusing on the key chal-
lenge of speech-text alignment.

The acoustic features and text features differ
significantly in both their representation space
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Figure 8: Comparison of scaling effect in AIR-Bench
speech foundation tasks.

The stock prices of domestic electric vehicle manufacturers
might increase because they are less dependent on imported
cars.

“If a country raises tariffs on imported cars, how
might this affect the stock prices of domestic electric
vehicle manufacturers?”

Figure 9: A case of answering the spoken question.

and length. To address this issue, Chu et al.
(2024, 2023) employ convolution network to down-
sample the speech, while others opt for solu-
tions with more learnable parameters, such as Q-
Former (Tang et al., 2023) and linear layers (Hu
et al., 2024). Unlike previous work, the proposed
Soundwave implements two adapters to address dif-
ferences in representation and length, which also
make training more efficient.

Speech LLMs are primarily designed for two
capabilities: Speech and Sound. Tang et al. (2023);
Hu et al. (2024) combine Whisper with other fea-
ture extractors, such as BEATs (Chen et al., 2023)
and WavLM (Chen et al., 2022), to process sound
features. Chu et al. (2024) show that a fully fine-
tuned encoder can also capture sound information.
Our work demonstrates that a frozen encoder can
efficiently process both types of features when pro-
vided with the proper data and training strategy.

7 Conclusion

Speech understanding is a core capability for multi-
modal LLMs, yet current speech LLMs often rely
on enormous amounts of training data, putting them
out of reach for most academic researchers due to
the high costs involved. To address this, we devel-
oped a more data-efficient solution: a three-stage
training strategy paired with a model architecture
that incorporates two adapters. This approach ef-
fectively tackles the mismatches in representation
and length between speech and text. The trained
Soundwave delivers top-tier performance on the
AIR-Bench speech tasks, while requiring signifi-
cantly less training data.
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Limitations

Our work still has some limitations, specifically in
the following three aspects:

• We have not verified the feasibility of our ap-
proach on larger models with more parame-
ters.

• Due to time and manpower limitations, the
amount of sound data we have labeled from
the scene dataset is still relatively small. As
a result, we are unable to conduct in-depth
experiments to determine the optimal amount
of sound data to include.

• Due to the lack of relevant data, our model
does not perform well in music understand-
ing tasks and has limited support for multiple
languages.

Next, we will expand the parameter size of our
model to verify the feasibility of our approach on
larger models. We will also incorporate music un-
derstanding and multilingual data to enhance these
capabilities. In addition, we will continue annotat-
ing the sound data to further validate the optimal
data ratio. We also hope that other researchers in
the community will conduct related studies.

Ethical Considerations

Use of Artifacts Our study employs Whisper
Large V3 as the audio encoder to extract and pro-
cess speech input data and utilizes Llama-3.1-8B-
Instruct as the foundation model for downstream
tasks. In using these models, we adhere to aca-
demic standards and have cited their original papers

and relevant documentation to ensure proper schol-
arly attribution. Additionally, Whisper is released
under MIT License, while Llama-3.1-8B-Instruct
is subject to Llama 3.1 Community License. We
have ensured that our application of the model does
not violate any of the specified restrictions, thereby
maintaining compliance with the license terms.

Data Collection All the datasets used in our
study are publicly released open-source datasets,
and we strictly adhere to the corresponding open-
source license agreements to ensure the legality
and compliance of the data sources. In addition,
the supplementary data annotation work we con-
ducted did not involve any data privacy or sensitive
information. Detailed procedures and workflow of
the data annotation work can be found in Section
A.1. The content related to Statistics For Data can
be found in Section A.3.

Computational Experiment Design and Execu-
tion In Section 4.1, we detail the number of pa-
rameters of the base model used, the total compu-
tational budget, and the computing infrastructure
employed. Tab. 13 in Section C lists the hyper-
parameters used during training and other related
configuration details. In Sections 4.2 and 5, we
present the final training results and a comparative
analysis of experiments.

Data Annotation and Ethical Compliance In
the Section A.1, we provide detailed explanations
of the manual data annotation work. Section A.1.1
details our data processing methods. We display
the complete instruction text given to participants
in Fig. 10, and explain our volunteer recruitment
methods, salaries, and annotator characteristics in
Section A.1.3 and A.1.4. Throughout the entire
data processing procedure, no ethical risks to per-
sonal privacy or data security were posed, and there-
fore no ethics committee review was required.

Use of AI Tools In the course of this research
project, AI tools were only utilized in specific as-
pects, such as assisting with coding and providing
grammar checks and language refinement in the
writing of the paper, to enhance efficiency and tex-
tual quality. Beyond these applications, the core
research content, data processing, experimental de-
sign, analysis, and conclusions were all indepen-
dently conducted by the research team, without any
other form of artificial intelligence involvement,
ensuring the rigor and originality of the study.
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A Data Construction and Preparation

A.1 Sound Re-annotation

Since a scene segment may contain multiple
sounds, we allow users to select multiple sound
labels. In the end, we labeled 7,863 audio files,
totaling 7.30 hours, with 5,197 files being single-
label, totaling 4.81 hours. Specific details can be
found in the following sections. We will release all
of these labeled data.

A.1.1 Data Splitting

We divide the original 10s data into combinations
of 3s-3s-4s for annotation.

A.1.2 Data Annotation

In accordance with the pre-existing scene labels,
we established detailed sound annotations, such as
waves and birdsong for a beach scenario. Subse-
quently, we recruited a number of volunteers to
perform data annotation tasks. The interface uti-
lized for this process is illustrated in Fig. 10.

Figure 10: Page for sound annotation.

A.1.3 Volunteer Sources and Salaries

We extensively recruited volunteers for this project,
comprising 70% undergraduate students, 25% grad-
uate students, and 5% individuals who have already
graduated. Each participant was compensated with
a one-time payment of 200 RMB, which aligns
with the prevailing wage levels in mainland China.
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A.1.4 Volunteer Authorization
All volunteers have agreed to the public release of
their labeled data to promote academic research
within the community.

A.2 Data Process
The process from raw data to final application in
this paper includes two steps: Data Selection and
Data Filtration.
Data Selection We performed data selection on the
following dataset:

• TED-LIUM, we selected the speaker adapta-
tion part as our dataset, as it is more balanced
and representative in characteristics (number
of speakers, gender, duration) (Hernandez
et al., 2018).

• GiGaSpeech It contains five data sizes: XL,
L, M, S, and XS. We noticed that the WER
limit for XL is relatively loose, so we did not
choose this size of data. At the same time,
due to the large number of data in L, it would
cause GigaSpeech’s data to occupy too high a
proportion, while the data in S and XS are too
small. Therefore, we ultimately chose M.

• Common Voice (En), Common Voice con-
tains multiple versions. Since we mainly
use it to construct the data required for Cov-
ost2 (Wang et al., 2021), we selected the
matching version, which is Common Voice
En 15.0. At the same time, we also use it to
construct the data required for Age Prediction,
which does not have specific version require-
ments. For convenience, we consistently use
Common Voice En 15.0.

• Common Voice (Ja), Common Voice con-
tains multiple versions. Since we are using
this data to build a Language Identification
task, and in order to balance with data from
other languages, we need to select around 15
hours of data. Smaller versions do not pro-
vide enough data, and larger versions would
result in unnecessary overhead, so we ulti-
mately chose Common Voice ja 7.0.

Data Filtration To ensure data quality, we per-
formed filtering on the dataset:

• Duration, it cannot exceed 30 seconds for the
Whisper encoder, and it cannot be less than 3
seconds for more balanced training.

• Lenth We excluded transcriptions that were
longer than 200 to ensure the stability of the
training process. We limit the frame length
to no more than 100 times the text length, as
exceeding this indicate the speech contains
excessive noise.

• WER To ensure stable training, we only re-
tained the data with a WER of less than 10%
in the Whisper recognition results.

Instruction Data Generation During the SFT
data preparation phase, we used the GPT-4o-mini
model to automatically generate question-answer
pairs for all the training tasks. For example about
the Fisher conversation ASR data, the process in-
volved extracting dialogue segments from the ASR
dataset and inputting them into the GPT-4o-mini
model, which was instructed to generate contex-
tually relevant questions framed from an objec-
tive third-person perspective. For each question,
the model also generated corresponding answers
directly derived from the conversation. These
question-answer pairs were then incorporated into
the training dataset for the chat task.

A.3 Data Statistics

We present the usage of audio data and the total
amount for each dataset in Table 3. It is important
to note that in this statistical process, the same data
is counted only once across different stages, only
once across different tasks, and only once even
if constructed using different methods within the
same task. If you are interested in the specific data
usage for each stage and task, please refer to the
subsequent section.

A.3.1 Alignment Stage Data
In Tab. 9, we present the datasets used during the
alignment stage, along with their respective quanti-
ties and durations.

Table 9: Summary of datasets, their size, and duration
used in the alignment stage.

Dataset Size Duration (h)

Multilingual LibriSpeech 984,559 4081.61
GigaSpeech 713,394 805.11
TED-LIUM 143,641 244.02
TUT w./ libritts 4,698 18.48
Vocalsound w./ libritts 19,737 82.42
Europral-ASR 718,663 418.42
LibriSpeech 281,241 961.05
TextrolSpeech 170,502 246.85
SUM 3,036,435 6,857.97
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As described in Section 3, the sound and scene
data used in this stage are both constructed with
LibriTTS (Zen et al., 2019) inserted in between.
"TUT w./ LibriTTS" refers to the dataset where
TUT is sandwiched between LibriTTS, while "TUT
w./ LibriTTS" refers to the dataset where Vocal-
Sound is sandwiched between LibriTTS.

A.3.2 Shrinking Stage Data
In Tab. 9, we present the datasets used during the
shrinking stage, along with their respective quanti-
ties and durations.

Table 10: Summary of datasets, their size, and duration
in the shrinking stage.

Dataset Size Duration (h)

ASR (First Stage) 3,012,000 6757.06
Covost2 (en-de) 232,953 364.89
MUST-C (en-de) 226,810 395.10
Fisher 153,102 1091.42
TUT w./ LibriTTS 4,937 19.33
VocalSound w./ LibriTTS 19,737 82.42
SUM 3,649,539 8,710.23

Here, we have two points that need clarification:
1) Why is the ASR data reduced compared to the
first stage? 2) Why has the "TUT w./ LibriTTS"
data increased compared to the first stage?

Here, we will explain why the ASR data in this
stage is reduced. In this stage, the LoRA parame-
ters of the large model need to be trained. To ensure
stable training, it is important to avoid overlap be-
tween tasks executed by different instructions. As
shown in Figure 1, we have a dedicated task for
Sound, which primarily involves predicting special
Sound tokens. To prevent overlap, we removed
the data containing Sound special tokens from the
ASR dataset.

Here, we explain the reason for the increased
amount of "TUT w./ LibriTTS" data in this stage.
In the previous training phase, we removed data
that was deemed to have a high level of noise during
manual annotation in order to ensure the stability
of the training process. However, in this phase, we
included these data to enhance the model’s robust-
ness.

A.3.3 SFT Data
Our SFT data statistic details are shown in Tab. 11.

A.4 Mitigating Data Leakage Risks

In this section, we will discuss the risks of data
leakage in several parts. For one set of tasks, we

used non-homogeneous training data, while for
another set, although we employed homogeneous
data, we rigorously considered the issue of data
leakage.

A.4.1 Non-homogeneous Training Data
Speech Gender Recognition The task involved
in the test set is AIR-Bench(Yang et al., 2024),
which uses Common Voice(Ardila et al., 2019) and
MELD(Poria et al., 2019) to construct the data. We
use TextrolSpeech(Ji et al., 2024b) to construct the
data, which is considered non-homogeneous data
in comparison.
Spoken Language Identification This task in-
volves a total of 7 languages: Chinese, English,
Italian, German, French, Spanish, and Japanese.
AIR-Bench (Yang et al., 2024) uses Covost2 (Wang
et al., 2021) in its construction, which is sourced
from Common Voice (Ardila et al., 2019). The
construction of data in English, Italian, German,
French, and Spanish, we used Europarl-ASR (Gar-
cés Díaz-Munío et al., 2021), while for Chinese
data, we used AISHELL3 (Shi et al., 2020). These
sources are different from Common Voice, so there
is no data leakage. For Japanese data construction,
we used Common Voice, which is the same source
as AIR-Bench, so we paid special attention to po-
tential leakage issues. We noticed that there were
only two Japanese samples in AIR-Bench, so we
manually removed these two entries.

A.4.2 Homogeneous Training Data
Speech Grounding Since our training set is con-
structed using the same dataset as in the AIR-Bench
test, we made sure that the test set was not included
in the training. We removed data where the same
word in the same position was queried in the audio.
Specifically, due to the difficulty of ensuring that
randomly selected data doesn’t overlap during the
selection process, we adopted a post-processing
approach where we deleted training data with the
same filename and identical queries.
Emotion Recognition During the construction
of our training dataset, we utilized the Textrol-
Speech (Ji et al., 2024b), RAVDESS (Livingstone
and Russo, 2018), CREMA-D(Cao et al., 2014),
IEMOCAP (Busso et al., 2008), and MELD (Po-
ria et al., 2019) datasets. Notably, TextrolSpeech
is composed of multiple datasets, including ESD,
MEAD, MESS, SAVEE, and TESS. Given that
AIR-Bench incorporates data from IEMOCAP and
MELD, we have entirely excluded these datasets
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Table 11: Summary of datasets, their size, and duration used in the SFT stage.

Task Dataset Size Duration (hours)

ASR LibriSpeech 281241 961.05
Translation EN-DE Covost2, MuST-C 455648 753.18
Speech Grounding LibriSpeech 23828 51.36
Spoken Language Identification Common Voice, Europal-ST 269485 293.15
Speaker Gender Recognition TextrolSpeech 319986 466.09
Emotion Recognition TextrolSpeech, RAVDESS, CREMA-D, IEMOCAP 258541 347.18
Speaker Age Prediction Common Voice 77239 120.04
Speech Entity Recognition SLURP 114792 91.62
Intent Classification SLURP 212473 151.52
Speaker Num. Verification VoxCeleb 156033 435.17
Synthesized Voice Detection FoR 53696 47.55
Vocal Sound Classification VocalSound 29962 34.77
Acoustic Scene Classification TUT2017, CochlScene 159590 443.31
Chat Fisher 132209 956.25
Speech Instruction AnyInstruct 106770 206.30
SUM 18 2651493 5358.54

from our training data. Additionally, the test set
of MELD has also been removed to ensure data
integrity and prevent potential data leakage.
Speech Entity Recognition and Intent Classifica-
tion We used the same source data as AIR-Bench
for construction, both utilizing SLURP (Bastianelli
et al., 2020), so we paid special attention to data
leakage issues. Since AIR-Bench retained the orig-
inal file names for all its files, we directly removed
this portion of the data from our dataset.
Speaker Number Verification We used the same
source data as AIR-Bench for construction, both
utilizing VoxCeleb (Nagrani et al., 2017), We used
a fully random selection method, choosing a series
of speech pairs to form our training set. Since
the random selection process is hard to control,
we removed any data that had already appeared in
AIR-Bench after the selection.
Synthesized Voice Detection We used
FoR (Reimao and Tzerpos, 2019) to con-
struct our training set. We noticed that FoR
overlaps with AIR-Bench. However, AIR-Bench
does not provide detailed records of the specific
sources of these data, so we removed the repeated
test and development sets from FoR.

A.5 Dataset Lisence

The paper and license for the dataset we used are
listed in Table 15. There are several points regard-
ing the usage of data that need to be clarified.
Fisher Our access to the Fisher dataset is autho-
rized by the National University of Singapore. We
will strictly adhere to the usage agreement and will
not, in any way, release, broadcast, disclose, dis-
play, copy, reproduce, or redistribute this data to

anyone outside of our team.

B Performance on MMAU benchmark

The following results on MMAU benchmark (Sak-
shi et al., 2024) in Tab 12. We can found that
Soundwave still outperforms Qwen2-Audio in
Speech tasks and shows decent performance on
Sound tasks.

Table 12: Resutls on MMAU speech and Sound tasks.

Model Speech Tasks Sound Tasks Avg.

Soundwave 46.25 46.25 46.25
Qwen2-Audio 42.04 54.95 48.50
Qwen-Audio 30.03 55.25 42.64
SALAMONN 25.50 41.00 33.25
GAMA 18.91 41.44 30.18

C Training Configurations

The training settings of different stages are shown
in Tab. 13. For all training and decoding processes,
we set ‘You are a helpful language and speech
assistant. You are able to understand the speech
content that the user provides and assist the user
with a variety of tasks using natural language.’ as
the system prompt.

Table 13: Overview of training parameters at different
stages.

Settings Stage 1 Stage 2 Stage 3

Batch 32 16 8
Learning rate 1e-4 3e-5 3e-5
Accumulation steps 8 8 4
Training param. 144M 266M 122M
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Table 14: Comparison of training parameters and data
for different models.

Model #Params #Data AIR-Bench
(Hours) Speech Avg.(%)

Qwen2-Audio ∼8B ∼520K 59.3
Qwen-Audio Turbo ∼8B ∼147K 63.4
SALMONN ∼14B ∼9K 37.8
BLSP ∼7B ∼13K 36.6
NExT-GPT ∼12B - 33.6
PandaGPT ∼14B - 39.0
Soundwave ∼9B ∼10K 75.5

All in all, we trained a total of 266M parameters
in our three-stage process. To better highlight the
advantages of our model’s parameters compared to
others, we plotted the relationship between AIR-
Bench performance and training parameters, which
is shown in Fig. 11. We also compare the size of
model parameters and training data in Tab. 14.
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Figure 11: AIR-Bench speech accuracy with number of
training parameters.

D AIR-Bench Sound and Music
Foundation Tasks

The AIR-Bench sound and music tasks evaluate
models on various auditory capabilities. Sound
tasks focus on identifying, classifying, and reason-
ing with environmental sounds, while music tasks
involve classifying musical elements, analyzing
pitch and velocity, and understanding emotional
content. As Tab. 16 shown, Soundwave demon-
strates exceptional performance in vocal sound and
acoustic scene classification, achieving impressive
accuracy. Though few sound data is used, sound av-
erage score of Soundwave still ranks second. This

highlights its strong performance across sound-
related tasks, even with limited data.

E Speech Instruction

We demonstrate our model’s ability to follow voice
commands from two aspects: generation tasks and
knowledge question-answering tasks.

E.1 Generation Tasks
We selected some commonly used generation tasks
in daily life, which demonstrate our model’s ability
to assist in handling everyday affairs. Our presen-
tation results are shown in Figures 12, 13, and 14.

E.2 Knowledge-based QA Tasks
We will categorize the knowledge to showcase
our model’s QA ability across various domains
of knowledge. Specifically, for math, please refer
to Fig. 15. For physics, please refer to Fig. 16. For
biology, please refer to Fig. 17. For history, please
refer to Fig. 18.
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Table 15: The summary for the dataset

DataSet Name Citation License

Librispeech w./ timestamp Olympusmons (2021) Apache 2.0
Librispeech Panayotov et al. (2015) CC BY 4.0
CREMA-D Cao et al. (2014) DbCL-1.0
TED-LIUM Hernandez et al. (2018) CC BY-NC-ND 3.0

MLS Pratap et al. (2020) CC BY 4.0
Europarl-ASR Garcés Díaz-Munío et al. (2021) CC BY 4.0
TextrolSpeech Ji et al. (2024b) MIT License

LibriTTS Zen et al. (2019) CC BY 4.0
VCTK Yamagishi et al. (2019) ODC-By 1.0

TUT2017 Duppada and Hiray (2017) Non-Commercial
VocalSound Gong et al. (2022) CC BY-SA 4.0

MUST-C Cattoni et al. (2021) CC BY-NC-ND 4.0
Europarl-ST Iranzo-Sánchez et al. (2020) CC BY-NC 4.0

Common Voice Ardila et al. (2019) CC0 1.0 Universal
CochlScene Jeong and Park (2022) CC BY-SA

SLURP Bastianelli et al. (2020) CC BY-NC 4.0
RAVDESS Livingstone and Russo (2018) CC BY-NC-SA 4.0
IEMOCAP Busso et al. (2008) IEMOCAP License

MELD Poria et al. (2019) GPL-3.0
Gigaspeech Chen et al. (2021) Apache 2.0

Covost2 Wang et al. (2021) CC0 1.0 Universal
VoxCeleb Nagrani et al. (2017) CC BY 4.0
WaveFake Frank and Schönherr (2021) MIT License

FoR Reimao and Tzerpos (2019) LGPL-3.0
AnyInstruct Zhan et al. (2024)

Fisher Cieri et al. (2004) LDC License

Table 16: Performance on the AIR-Bench sound and music foundation tasks.

Task Soundwave Qwen2-Audio Qwen-Audio SALMONN BLSP NExT-GPT PandaGPTTurbo

Audio Grounding 23.1 34.9 41.6 24.0 34.6 62.2 38.3
Vocal Sound Classification 91.7 89.3 78.1 45.3 29.8 23.5 31.6
Acoustic Scene Classification 83.8 67.4 61.3 34.1 25.2 24.1 55.7
Sound Question Answering 49.7 68.8 62.8 28.4 36.1 18.8 48.7
Sound avg. 62.1 65.1 61.0 33.0 31.4 32.2 43.6

Music Instruments Classification 37.1 65.8 59.6 41.3 22.8 24.3 47.7
Music Genre Classification 49.5 78.8 77.1 45.3 26.1 28.1 39.8
Music Note Analysis-Pitch 27.7 28.7 30.1 26.4 23.5 25.1 26.4
Music Note Analysis-Velocity 23.2 26.2 25.1 22.8 24.9 23.1 27.2
Music Question Answering 65.0 65.7 62.5 54.6 31.0 47.1 50.7
Music Emotion Detection 38.3 46.9 39.0 32.2 28.3 25.4 36.7
Music avg. 40.1 52.0 48.9 37.1 26.1 28.9 38.1

Table 17: Performance on the AIR-Bench chat tasks.

Task Soundwave Qwen2-Audio Qwen-Audio SALMONN BLSP NExT-GPT PandaGPT Whisper
Turbo +GPT-4

Speech 6.41 7.18 7.04 6.16 6.17 3.86 3.58 7.54
Sound 5.33 6.99 6.59 6.28 5.55 4.76 5.46 /
Music 5.10 6.79 5.98 5.95 5.08 4.18 5.06 /
Mixed Audio 4.98 6.77 5.77 6.08 4.52 2.92 2.93 /
Average 5.46 6.93 6.34 6.11 5.33 4.13 4.25 /
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"Enjoying music without interruptions" - Wireless earbuds with active
noise cancellation and long battery life.
"Relaxing with a comfortable fit" - Wireless earbuds with long battery
life and comfortable fit.
"Listening to music without distractions-free" - Wireless earbuds with
noise cancellation and long battery life.

“For a new wireless earbud product, create three brief
advertisement slogans. Each slogan must mention exactly two
features from ‘noise cancellation’, ‘battery life’, and
‘comfortable fit’. And each slogan must begin with a gerund
and end with a word. Each slogan should be fewer than 20
words.”

Figure 12: Generate task show case 1.

Sure, here are three daily workout suggestions:
1. Morning jog: Start your day with a 30-minute jog at 7 am to boost your
energy and set a positive tone for the day.
2. Evening yoga: End your day with a 45-minute yoga session at 8 pm to
relax and unwind.
3. Lunchtime walk: Take a 30-minute walk during your lunch break at 12
pm to 1 pm to stay active and refreshed.

“Hey, please come up with three daily workout suggestions.
Each suggestion should be under 25 words and include a
specific time (for example, ‘7 AM’), an exercise (for example,
‘jogging’), and a workout method (for example, ‘outdoor’).”

Figure 13: Generate task show case 2.

Sure, I can help you with that. Here's a suggested schedule for you:
6:00 AM - Wake up
7:00 AM - Breakfast
9:00 AM - Meeting at work
12:00 PM - Lunch with team
2:00 PM - Check emails
4:00 PM - Training session
6:00 PM - Finish work
7:00 PM - Dinner with family
9:00 PM - Relaxation time (reading, etc.)
Please let me know if this schedule meets your needs or if you need any
adjustments.

“ I got up at 6 AM to exercise, then had breakfast at 7 AM. At
9 AM, I went to a meeting at work, had lunch with my team at
12 PM, returned to the office at 2 PM to check emails, and
attended a training session at 4 PM. I finished work at 6 PM,
had dinner with my family at 7 PM, and relaxed by reading at
9 PM. Please generate a schedule for me.”

Figure 14: Generate task show case 3.

18736



The square root of 144 is 12.

“What is the square root of 144?”

“Two girls each got 1/6 of the 24 litres of water. Then a boy
got 6 litres of water. How many litres of water were left?”

There were 24 litres of water initially. Two girls each got 1/6 of the water,
so they got 2 x 4 = 8 litres. Then a boy got 6 litres. So, there were 24 - 8 -
6 = 10 litres of water left.

Figure 15: Knowledge-based QA about math.

Quantum tunneling is a phenomenon where a particle can pass through a
barrier even if it doesn't have enough energy to overcome the barrier. This
effect is applied in semiconductor devices to create a tunneling current.

“Please explain the quantum tunneling effect and describe
how this effect is applied in semiconductor devices.”

“Quantum tunneling is a phenomenon where a particle can
pass through a barrier even if it doesn't have enough energy
to overcome the barrier. This effect is applied in
semiconductor devices to create a tunneling current.”

The buoyant forces experienced by the glass balls and plastic balls of the
same volume are equal.

Figure 16: Knowledge-based QA about physics.
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The correct answer is C. Restriction Endonuclease. Restriction
endonucleases are enzymes that cut DNA at specific sequences, which is
necessary for physical mapping analysis of DNA fragments.

“What is required for physical mapping analysis of DNA
fragments? Please listen to the options. A. Exonuclease. B.
DNAseI. C. Restriction Endonuclease. D. DNA polymerase.”

“In enzyme separation and purification, which experimental
result is the most ideal? Please listen to the options. A. High
purification fold and high recovery rate. B. High protein
recovery rate. C. Low recovery rate, but high purification fold.
D. Maximum specific activity.”

The most ideal experimental result in enzyme separation and purification
is option A. High purification fold and high recovery rate. This means that
the enzyme is highly purified and also recovered in high amounts.

Figure 17: Knowledge-based QA about biology.

The purpose of this provision is to ensure that the king's decisions are not
arbitrary and that they are subject to scrutiny and approval by a
responsible official.

“In the process of establishing the constitutional monarchy in
Britain, the Act of Settlement, enacted in 1701, played an
important role. The law stipulated that any decision made by
the king must be signed by a minister who agrees with the
decision in order to take effect. The purpose of this provision
was to?”

“In the early stages of the French Revolution, to overthrow
the long-standing feudal system and aristocratic privileges,
what was the purpose of issuing the Declaration of the Rights
of Man and of the Citizen, which stipulated that all citizens
enjoy equal fundamental rights?”

The purpose of issuing the Declaration of the Rights of Man and of the
Citizen was to overthrow the long-standing feudal system and aristocratic
privileges, and to stipulate that all citizens enjoy equal fundamental rights.

Figure 18: Knowledge-based QA about history.
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