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Abstract

Real-time, intelligent, and natural speech inter-
action is an essential part of the next-generation
human-computer interaction. Recent advance-
ments have showcased the potential of building
intelligent spoken chatbots based on large lan-
guage models (LLMs). In this paper, we intro-
duce LLaMA-Omni 2, a series of speech lan-
guage models (SpeechLMs) ranging from 0.5B
to 14B parameters, capable of achieving high-
quality real-time speech interaction. LLaMA-
Omni 2 is built upon the Qwen2.5 series mod-
els, integrating a speech encoder and an autore-
gressive streaming speech decoder. Despite be-
ing trained on only 200K multi-turn speech di-
alogue samples, LLaMA-Omni 2 demonstrates
strong performance on several spoken question
answering and speech instruction following
benchmarks, surpassing previous state-of-the-
art SpeechLMs like GLM-4-Voice, which was
trained on millions of hours of speech data.1

1 Introduction

Speech, as a critical interface for human-computer
interaction, can significantly enhance both interac-
tion efficiency and user experience (Clark et al.,
2019). In recent years, as large language mod-
els (LLMs) like ChatGPT (OpenAI, 2022) have
demonstrated outstanding performance across var-
ious fields, speech interactions with LLMs have
attracted widespread attention from both academia
and industry. For instance, GPT-4o (OpenAI, 2024)
enables real-time, intelligent, and natural speech
interaction between users and LLMs, heralding the
advent of a new generation of human-computer
interaction paradigms.

To develop a spoken chatbot similar to GPT-4o,
the traditional approach typically employs a cas-
caded pipeline comprising an automatic speech

*Corresponding author: Yang Feng.
1Code: https://github.com/ictnlp/LLaMA-Omni2
Audio Samples: https://llama-omni2.github.io/

recognition (ASR) model, an LLM, and a text-to-
speech (TTS) model. While this method is rela-
tively straightforward to implement, it suffers from
several notable limitations. First, errors can accu-
mulate across the different stages of the pipeline.
Second, the overall response latency tends to be
high due to the sequential processing of multi-
ple models. Third, the system struggles to cap-
ture paralinguistic information present in the input
speech. To address these limitations, end-to-end
speech language models (SpeechLMs) have gradu-
ally gained more attention, using a single unified
model to handle the entire process from speech in-
put to output. Overall, end-to-end SpeechLMs can
be categorized into two types: native and modu-
lar. Native SpeechLMs typically discretize speech
into tokens and employ a GPT-style decoder-only
Transformer (Radford, 2018) to model both speech
and text within a unified language model (Zhang
et al., 2023; Rubenstein et al., 2023; Hassid et al.,
2024a). A key advantage of this architecture is
its ability to leverage vast amounts of unsuper-
vised speech data for pretraining, making it eas-
ier to scale up in terms of model parameters and
data size. This can potentially result in emer-
gent capabilities, such as more human-like speech
expressiveness (Zeng et al., 2024a; Open-Moss,
2025). However, native SpeechLMs typically re-
quire large-scale speech datasets (e.g., millions of
hours) for pretraining (Zeng et al., 2024b; Défos-
sez et al., 2024), which presents challenges in data
collection and training costs, and may also lead to
catastrophic forgetting of the model’s text capabili-
ties. In contrast, modular SpeechLMs incorporate
a speech encoder and a speech decoder around the
LLM to handle speech understanding and gener-
ation (Fang et al., 2025; Wang et al., 2024). The
advantage of this approach is its ability to leverage
the inherent capabilities of each module, requiring
only small-scale fine-tuning (e.g., a few hundred
or thousand hours of speech data) to align the mod-
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ules. This enables the model to acquire speech in-
teraction capabilities at a relatively low cost, while
retaining most of its original capability. Moreover,
modular SpeechLMs can typically generate speech
guided by textual output, ensuring the intelligence
of the generated speech.

In addition to the intelligence of speech, real-
time responsiveness and naturalness are also cru-
cial characteristics of spoken chatbots. LLaMA-
Omni (Fang et al., 2025) uses a non-autoregressive
(NAR) streaming speech decoder to enable syn-
chronized generation of speech and text, ensuring
extremely low response latency. However, due
to the limitations of non-autoregressive models in
modeling capacity, the generated speech is often
less natural and fluent. Freeze-Omni (Wang et al.,
2024) combines both NAR and autoregressive (AR)
models for speech generation, resulting in higher
naturalness of the generated speech. However, it
can only achieve sentence-level streaming speech
generation through a simple sentence-split strategy,
which prevents it from achieving very low response
latency. To address these challenges, in this paper,
we introduce LLaMA-Omni 2, a series of modular
SpeechLMs ranging from 0.5B to 14B. LLaMA-
Omni 2 adopts Qwen2.5-0.5B/1.5B/3B/7B/14B-
Instruct models (Team, 2024) as the base LLM,
and uses Whisper’s encoder (Radford et al., 2023)
as the speech encoder. For the speech decoder,
inspired by the state-of-the-art streaming speech
synthesis model CosyVoice 2 (Du et al., 2024), it
first includes an autoregressive text-to-speech lan-
guage model initialized with Qwen2.5-0.5B, which
generates speech tokens from the LLM output and
achieves streaming generation through alternating
read and write operations. The speech tokens are
then passed through a chunk-aware causal flow
matching model (Lipman et al., 2023) to gener-
ate the mel spectrogram in a streaming manner.
To train the model, we synthesize 200K multi-
turn speech-to-speech dialogue samples with di-
verse input voices and a uniform output voice.
Experimental results show that LLaMA-Omni 2
achieves outstanding performance on spoken ques-
tion answering and speech instruction following
tasks in both speech-to-text and speech-to-speech
settings, outperforming both LLaMA-Omni and
the native SpeechLM GLM-4-Voice (Zeng et al.,
2024a), which was trained on millions of hours
of speech data. We also conducted detailed abla-
tion studies on factors such as LLM parameter size,
training data scale, speech decoder pretraining, and

read-write strategy, to better understand the impact
of these factors on the overall system performance.

2 Model: LLaMA-Omni 2

In this section, we introduce the model architecture
of LLaMA-Omni 2. As shown in Figure 1, the
core of LLaMA-Omni 2 is an LLM, for which we
use the Qwen2.5 series models (Team, 2024) due
to their strong performance across various bench-
marks. Next, we will describe how we equip the
LLM with speech understanding and streaming
speech generation capabilities. In the following,
we use MLLM to denote the LLM. For a single-turn
instruction-response pair, we denote the speech in-
struction as X , and the text and speech responses
as Y T and Y S , respectively.

2.1 Speech Understanding

To enable speech understanding, we incorporate
a speech encoder and a speech adapter before the
LLM, similar to LLaMA-Omni (Fang et al., 2025).
Specifically, we use the encoder of Whisper-large-
v3 (Radford et al., 2023) as the speech encoder,
which converts the input speech into a sequence of
representations. The encoded representations are
then passed into the speech adapter, which consists
of a downsampling module and a feed-forward net-
work (FFN). The downsampling module concate-
nates every k consecutive frames along the feature
dimension, and the concatenated representations
are further encoded by the FFN. The final output
representation is then input into the LLM.

2.2 Streaming Speech Generation

To equip the model with streaming speech gener-
ation capabilities, we adopt a paradigm similar to
CosyVoice 2 (Du et al., 2024). First, the speech
response is converted into discrete tokens using a
supervised semantic speech tokenizer. Then, an
autoregressive text-to-speech language model is
employed to model the streaming generation from
the LLM output to speech tokens. Finally, a causal
flow matching model converts speech tokens into
the mel spectrogram in a streaming manner.

Speech Tokenizer The speech tokenizer is im-
plemented by inserting a finite scalar quantization
(FSQ) module (Mentzer et al., 2024) into the en-
coder of SenseVoice-Large ASR model (An et al.,
2024). This module first projects the intermediate
representations to a low-rank space and discretizes
them through a rounding operation. Ultimately,

18618



Large Language Model

Speech Adaptor

Speech Encoder

Flow Matching & Vocoder

(Hey! Can you give me some 
advices on writing NLP papers?)

Certainly! Writing a high …

latency … Large Language Model

Speech Adaptor

Speech Encoder

❄""

Stage I(a)

Large Language Model

Speech Adaptor

Speech Encoder

Gate Fusion

TTS Language Model

❄❄❄"

Stage II

Gate Fusion

Text-to-Speech Language Model

Speech Representations

LLM Hidden States

Fused Representations

Speech Tokens

Ignore Tokens

Certainly!

FFN Emb

<latexit sha1_base64="7CDz+hFii/hnzm/SPcG6JVj1JjA=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoMgCGFXJHoMevGYgHlAsoTZSW8yZnZ2mZkVQsgXePGgiFc/yZt/4yTZgyYWNBRV3XR3BYng2rjut5NbW9/Y3MpvF3Z29/YPiodHTR2nimGDxSJW7YBqFFxiw3AjsJ0opFEgsBWM7mZ+6wmV5rF8MOME/YgOJA85o8ZK9YteseSW3TnIKvEyUoIMtV7xq9uPWRqhNExQrTuemxh/QpXhTOC00E01JpSN6AA7lkoaofYn80On5MwqfRLGypY0ZK7+npjQSOtxFNjOiJqhXvZm4n9eJzXhjT/hMkkNSrZYFKaCmJjMviZ9rpAZMbaEMsXtrYQNqaLM2GwKNgRv+eVV0rwse5VypX5Vqt5mceThBE7hHDy4hircQw0awADhGV7hzXl0Xpx352PRmnOymWP4A+fzB3UXjLo=</latexit>

+

<latexit sha1_base64="IksX52OSp+tBzewG6ZihRejM6FQ=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69BIvgqSQi1WPRi8cKpi20oWw2m3bpZjfsToRS+hu8eFDEqz/Im//GbZuDVh8MPN6bYWZelAlu0PO+nNLa+sbmVnm7srO7t39QPTxqG5VrygKqhNLdiBgmuGQBchSsm2lG0kiwTjS+nfudR6YNV/IBJxkLUzKUPOGUoJWCvooVDqo1r+4t4P4lfkFqUKA1qH72Y0XzlEmkghjT870MwynRyKlgs0o/NywjdEyGrGepJCkz4XRx7Mw9s0rsJkrbkugu1J8TU5IaM0kj25kSHJlVby7+5/VyTK7DKZdZjkzS5aIkFy4qd/65G3PNKIqJJYRqbm916YhoQtHmU7Eh+Ksv/yXti7rfqDfuL2vNmyKOMpzAKZyDD1fQhDtoQQAUODzBC7w60nl23pz3ZWvJKWaO4Recj2/u8I7J</latexit>�<latexit sha1_base64="yWApgEffzdEH57mYnQQzN7vgc1w=">AAAB6XicbVBNS8NAEJ34WetX1aOXxSJ4sSQi1WPRi8cq9gPaUDbbSbt0swm7G6GE/gMvHhTx6j/y5r9x2+agrQ8GHu/NMDMvSATXxnW/nZXVtfWNzcJWcXtnd2+/dHDY1HGqGDZYLGLVDqhGwSU2DDcC24lCGgUCW8Hoduq3nlBpHstHM07Qj+hA8pAzaqz04J33SmW34s5AlomXkzLkqPdKX91+zNIIpWGCat3x3MT4GVWGM4GTYjfVmFA2ogPsWCpphNrPZpdOyKlV+iSMlS1pyEz9PZHRSOtxFNjOiJqhXvSm4n9eJzXhtZ9xmaQGJZsvClNBTEymb5M+V8iMGFtCmeL2VsKGVFFmbDhFG4K3+PIyaV5UvGqlen9Zrt3kcRTgGE7gDDy4ghrcQR0awCCEZ3iFN2fkvDjvzse8dcXJZ47gD5zPH+d4jPc=</latexit>

1�
<latexit sha1_base64="tdy5cBUx22e49sInllEMc7AaEZY=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKeyKRI9BLx4jmAckS5idzCZj5rHMzAphyT948aCIV//Hm3/jJNmDJhY0FFXddHdFCWfG+v63V1hb39jcKm6Xdnb39g/Kh0cto1JNaJMornQnwoZyJmnTMstpJ9EUi4jTdjS+nfntJ6oNU/LBThIaCjyULGYEWye1eoYNBe6XK37VnwOtkiAnFcjR6Je/egNFUkGlJRwb0w38xIYZ1pYRTqelXmpogskYD2nXUYkFNWE2v3aKzpwyQLHSrqRFc/X3RIaFMRMRuU6B7cgsezPxP6+b2vg6zJhMUkslWSyKU46sQrPX0YBpSiyfOIKJZu5WREZYY2JdQCUXQrD88ippXVSDWrV2f1mp3+RxFOEETuEcAriCOtxBA5pA4BGe4RXePOW9eO/ex6K14OUzx/AH3ucPn/GPLg==</latexit>�

<latexit sha1_base64="IksX52OSp+tBzewG6ZihRejM6FQ=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69BIvgqSQi1WPRi8cKpi20oWw2m3bpZjfsToRS+hu8eFDEqz/Im//GbZuDVh8MPN6bYWZelAlu0PO+nNLa+sbmVnm7srO7t39QPTxqG5VrygKqhNLdiBgmuGQBchSsm2lG0kiwTjS+nfudR6YNV/IBJxkLUzKUPOGUoJWCvooVDqo1r+4t4P4lfkFqUKA1qH72Y0XzlEmkghjT870MwynRyKlgs0o/NywjdEyGrGepJCkz4XRx7Mw9s0rsJkrbkugu1J8TU5IaM0kj25kSHJlVby7+5/VyTK7DKZdZjkzS5aIkFy4qd/65G3PNKIqJJYRqbm916YhoQtHmU7Eh+Ksv/yXti7rfqDfuL2vNmyKOMpzAKZyDD1fQhDtoQQAUODzBC7w60nl23pz3ZWvJKWaO4Recj2/u8I7J</latexit>�

Gate Fusion Module

"

TTS Language Model
Stage I(b)

"

Figure 1: Left: Model architecture of LLaMA-Omni 2. Right: Illustration of the two-stage training strategy.

the speech response Y S is converted into a token
sequence Y U = [yU1 , . . . , y

U
M ], with 25 tokens per

second, where each token yUi ∈ {K ∈ N | 0 ≤
K < 6561}. We use the pretraiend speech tok-
enizer in CosyVoice 2.

Text-to-Speech Language Model After convert-
ing the speech response into discrete tokens, we
use a decoder-only Transformer (Vaswani, 2017)
to model the conditional language model from
the LLM output to the speech tokens, denoted as
MTTS. It is initialized with Qwen2.5-0.5B, and
its vocabulary is extended as V′ = V ∪ {< i >|
i ∈ N, 0 ≤ i < 6561}, where V is the original
vocabulary. This extension enables the model to
generate speech tokens.

The input to MTTS comes from the output of the
LLM. Specifically, the LLM output consists of two
parts: continuous hidden states and text tokens sam-
pled from the hidden states. The former contains
contextual information, while the latter provides
precise textual content. We aim to use both as in-
puts to the text-to-speech language model. This al-
lows the model to both consider the current context
and ensure better alignment with the text response
when generating speech tokens. During training,
the LLM is trained with teacher forcing, so its out-
put hidden states are denoted as H = [h1, ...,hN ],
where hi = MLLM(X,Y T

<i). The corresponding
text is the ground truth Y T = [yT1 , ..., y

T
N ]. We first

use a 2-layer feed-forward network (FFN) to map
the hidden states to the embedding dimension of

MTTS, while also obtaining the text embeddings:

ehidden
i = FFN(hi), (1)

eemb
i = Emb(yTi ), (2)

where Emb(·) is the embedding layer of MTTS. Af-
terward, we use an element-wise gate fusion mecha-
nism to combine both representations. Specifically,
we compute the gate gi as follows:

gi = σ
(
Wg

[
ehidden
i ∥ eemb

i

]
+ bg

)
, (3)

where ∥ denotes concatenation, σ is the sigmoid
function, and Wg ∈ R2d×d and bg ∈ Rd are the
weight and bias parameters of the gate, and d is
the embedding size of MTTS. Finally, the fused
representation is computed as:

ci = gi ⊙ ehidden
i + (1− gi)⊙ eemb

i , (4)

where ⊙ denotes element-wise multiplication. This
fused representations C = [c1, ..., cN ] are then
passed to MTTS for generating speech tokens.

To achieve streaming generation, i.e., to generate
speech tokens simultaneously during the LLM’s
output process, we adopt a “Read-R-Write-W”
strategy, similar to CosyVoice 2. Specifically, we
mix the fused representation C and the speech to-
kens Y U at a predefined ratio R : W . For every R
fused representations read in, the model generates
W speech tokens. Once all fused representations
are read, the model continues to generate the re-
maining speech tokens until completion. During
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training, cross-entropy loss is computed only for
the generated speech tokens as follows:

LTTS = −
M∑

i=1

logP (yUi |C≤min(⌊ i−1
W +1⌋·R,N), Y

U
<i),

(5)
where C≤min(⌊ i−1

W +1⌋·R,N) denotes the fused rep-
resentations that have already been read.

Flow Matching Model The speech tokens gen-
erated by MTTS are further processed by a chunk-
aware causal flow matching model (Lipman et al.,
2023) to synthesize the mel spectrogram in a
streaming manner. Every time W speech tokens
are generated, they are treated as a chunk for
mel spectrogram synthesis. The synthesized mel
spectrogram is then passed through a HiFi-GAN
vocoder (Kong et al., 2020) to generate the final
waveform. We use the pretrained flow matching
model and vocoder in CosyVoice 2.

2.3 Training

The training of LLaMA-Omni 2 relies solely on
200K multi-turn speech-to-speech dialogue data
(we will describe how this is synthesized in Sec-
tion 3) and does not use any ASR or TTS data. We
find that it is sufficient to achieve excellent perfor-
mance while minimizing training costs. Specifi-
cally, the training process consists of two stages, as
shown in Figure 1.

Stage I In Stage I training, we train the speech-
to-text and text-to-speech components separately.
The training data consists of <speech instruction,
text response> pairs and <text response, speech re-
sponse> pairs from the multi-turn speech-to-speech
dialogue data. Specifically, for the speech-to-text
part (Stage I(a)), we freeze the speech encoder
and train the speech adapter and LLM with cross-
entropy loss. For the text-to-speech part (Stage
I(b)), we train the text-to-speech language model
with cross-entropy loss. Note that during this stage,
the gate fusion module is not trained, and only text
embeddings are input into MTTS.

Stage II In Stage II, we train the model’s speech-
to-speech generation capability with speech-to-
speech dialogue data. During this stage, we freeze
the speech encoder, speech adapter, and LLM, and
only train the gate fusion module and MTTS.

2.4 Inference
During inference, the LLM autoregressively gener-
ates the text response based on the speech instruc-
tion. After generating R text tokens, its hidden
states and the corresponding decoded text are fed
into the gate fusion module and MTTS to generate
W speech tokens, which are then passed through
the flow matching model and the vocoder to synthe-
size a speech chunk. In this way, text and speech
responses can be generated simultaneously. The
response latency for the first synthesized speech
chunk can be calculated as:

Ttotal = TLLM(R) + TTTS(W) + TFM(W) + TVoc(2W),
(6)

where TLLM(R) and TTTS(W) represent the time
required by the MLLM and MTTS models to gen-
erate R and W tokens, respectively. TFM(W) and
TVoc(2W) represent the decoding times of the flow
matching model and vocoder when the inputs are
W and 2W tokens2, respectively.

3 Data Construction

In this section, we introduce the process of con-
structing multi-turn speech-to-speech dialogue data.
Our data is an extension of the InstructS2S-200K
dataset introduced in Fang et al. (2025), which
contains 200K single-turn instruction-following
samples designed for speech interaction scenarios.
These samples are derived from the Alpaca (Taori
et al., 2023) and UltraChat (Ding et al., 2023)
datasets through rewriting using LLMs. Specifi-
cally, for each sample, we first sample the num-
ber of turns from a Poisson distribution: N ∼
Poisson(λ = 2), then clip N to the range of 1 to 5.
Next, we use the Llama-3.3-70B-Instruct3 (Dubey
et al., 2024) model to iteratively generate the dialog.
For the i-th turn, the instruction and response are
generated based on the dialogue history of previous
i− 1 turns. In this way, we obtain 200K multi-turn
text dialog samples.

Next, we need to convert the text dialogue into
speech. To simulate real-world applications, we
aim to have varied voices for the instruction, while
maintaining a consistent voice for the response.
For each multi-turn dialogue, we first use the fish-
speech-1.54 model (Liao et al., 2024) to synthesize

2The length of the mel spectrogram is twice that of the
speech tokens (50 Hz vs. 25 Hz).

3https://huggingface.co/meta-llama/Llama-3.
3-70B-Instruct

4https://huggingface.co/fishaudio/
fish-speech-1.5

18620

https://huggingface.co/meta-llama/Llama-3.3-70B-Instruct
https://huggingface.co/meta-llama/Llama-3.3-70B-Instruct
https://huggingface.co/fishaudio/fish-speech-1.5
https://huggingface.co/fishaudio/fish-speech-1.5


a short prompt (e.g., "This is a randomly generated
voice") with a random voice. Then, we use the syn-
thesized speech as the prompt for the CosyVoice2-
0.5B5 model, which synthesize the instruction into
speech while simultaneously cloning the voice.
This ensures consistency in the voice across dif-
ferent turns of the dialogue, while maintaining di-
versity across dialogues. For all responses, we use
a uniform voice as the prompt and then synthesize
the speech using the CosyVoice2-0.5B model.

4 Experiments

4.1 Experimental Setups

Model Configuration We use the encoder of
Whisper-large-v3 as the speech encoder. The
speech adapter first performs a 5× downsam-
pling, followed by a FFN with an intermediate
dimension of 2048. For the LLM, we select
the Qwen2.5 series models, including Qwen2.5-
0.5B/1.5B/3B/7B/14B-Instruct models. We refer
to the corresponding models as LLaMA-Omni2-
0.5B/1.5B/3B/7B/14B in the following sections.
For the text-to-speech language model, we initial-
ize it with the Qwen2.5-0.5B model and set the
read-write strategy with R = 3 and W = 10.
We will discuss the impact of these hyperparame-
ters on speech quality and response latency later.
The speech tokenizer, flow matching model, and
vocoder are directly taken from CosyVoice 2.

Training Details We use the 200K multi-turn
speech-to-speech dialogue data from Section 3 for
two-stage training. In Stage I(a), we freeze the
speech encoder and train all parameters of the
speech adaptor and LLM. The batch size is 32,
and we train for 3 epochs with a peak learning
rate of 5e-5. In Stage I(b), we train the text-to-
speech language model with a batch size of 32 for
5 epochs and a peak learning rate of 5e-4. In Stage
II, we freeze the speech encoder, speech adaptor,
and LLM, and train the remaining components with
a batch size of 32 for 1 epoch and a peak learning
rate of 1e-3. For all stages, we use a warmup strat-
egy for the first 3% of steps and a cosine annealing
learning rate scheduler. The LLaMA-Omni2-14B
model is trained on 4 NVIDIA H800 GPUs, while
other models are trained on 4 NVIDIA L40 GPUs.

5https://www.modelscope.cn/studios/iic/
CosyVoice2-0.5B

4.2 Evaluation

Our evaluation includes two tasks: spoken ques-
tion answering and speech instruction following.
For both tasks, we evaluate the model’s speech-to-
text and speech-to-speech capabilities. The speech-
to-speech evaluation is done by transcribing the
speech response into text using the Whisper-large-
v3 model, and then applying the same evaluation
method as used for speech-to-text evaluation. In
all experiments, we use greedy search for the LLM
to ensure stable results. For the text-to-speech lan-
guage model, we use sampling with temperature set
to 1.0, as we find that using greedy search causes
the model to fall into repetition.

Spoken Question Answering The speech ques-
tion answering (SpokenQA) task involves asking
the model spoken questions, then checking whether
the reference answer appears in the model’s re-
sponse, and calculating the accuracy. We evalu-
ate our model on two benchmarks: Llama Ques-
tions6 (Nachmani et al., 2024) and Web Ques-
tions7 (Berant et al., 2013). Since the questions in
the Web Questions dataset are in text form, we use
CosyVoice2-0.5B to synthesize them into speech.

Speech Instruction Following For the speech
instruction following task, we follow the settings
in Fang et al. (2025), selecting the helpful_base
and vicuna subsets from the Alpaca-Eval8 (Li et al.,
2023) dataset, excluding math and code-related in-
structions. The remaining 199 instructions are then
synthesized into speech for evaluation. Follow-
ing Fang et al. (2025), we evaluate the model using
the following metrics:

ChatGPT Score: To evaluate the model’s abil-
ity to follow instructions, we use GPT-4o (OpenAI,
2024) to score the model’s responses. It considers
factors such as helpfulness, relevance, fluency, and
suitability for speech interaction scenarios, and as-
signs a single score between 1 and 5. The detailed
prompt can be found in Appendix A.

ASR-WER: To assess the consistency between
model’s text and speech responses, we use Whisper-
large-v3 to transcribe the speech response into text,
and calculate the word error rate (WER) between
the transcribed text and text response. We perform

6https://github.com/google-research-datasets/
LLAMA1-Test-Set

7https://huggingface.co/datasets/Stanford/web_
questions

8https://github.com/tatsu-lab/alpaca_eval
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Model
SpokenQA (Accuracy ↑) Speech Instruction Following

Llama Questions Web Questions ChatGPT Score ↑ ASR-WER ↓ UTMOS ↑ Latency (ms) ↓S2T S2S S2T S2S S2T S2S

TWIST - 4.0 - 1.5 - - - - -
SpeechGPT 21.6 - 6.5 - 2.98 2.17 40.01 3.51 5587.94
Spectron 21.9 - 6.1 - - - - - -
Moshi (7B) 62.3 21.0 26.6 9.2 - - - - -
GLM-4-Voice (9B) 64.7 50.7 32.2 15.9 4.16 4.09 9.02 3.48 1562.81
LLaMA-Omni (8B) 67.7 49.0 33.4 23.7 3.99 3.52 5.95 3.67 346.73

LLaMA-Omni2-0.5B 45.7 38.7 17.7 16.8 3.24 3.20 2.64 4.21 542.71
LLaMA-Omni2-1.5B 62.0 52.7 28.2 26.6 4.01 3.91 3.06 4.22 552.76
LLaMA-Omni2-3B 64.3 55.7 30.5 28.0 4.24 4.14 3.37 4.22 567.84
LLaMA-Omni2-7B 70.3 60.7 34.5 31.3 4.28 4.15 3.26 4.19 582.91
LLaMA-Omni2-14B 73.0 62.7 40.4 37.1 4.56 4.35 3.89 4.20 663.32

Table 1: Results on speech question answering and speech instruction following benchmarks. S2T and S2S represent
speech-to-text and speech-to-speech, respectively. We set R = 3 and W = 10 for all LLaMA-Omni2 series models.

text normalization9 before calculating the WER.
UTMOS: To evaluate the naturalness of the gen-

erated speech, we use the UTMOS model10 (Saeki
et al., 2022) to predict the mean opinion score
(MOS) of the generated speech.

Latency: We measure the time from receiving
the speech instruction to generating the first speech
chunk on a single NVIDIA L40 GPU.

4.3 Baseline Systems

We primarily compare LLaMA-Omni 2 with the
following baseline systems:

LLaMA-Omni (Fang et al., 2025): One of the
earliest SpeechLMs that achieves real-time speech
interaction, by using a CTC-based (Graves et al.,
2006) streaming speech decoder to simultaneously
generate text and speech units. The generated units
are fed into the vocoder for streaming synthesis in
fixed-size chunks. We set the chunk size Ω = 40.

GLM-4-Voice (Zeng et al., 2024a): The cur-
rent state-of-the-art native SpeechLM, pretrained
on millions of hours of speech data. It enables real-
time speech interaction by alternately generating
text and speech tokens in a fixed ratio of 13:26.
The generated speech tokens are input into a flow
matching model with a fixed chunk size.

In addition, we also borrow some results
from Zeng et al. (2024a), including results of
TWIST (Hassid et al., 2024b), SpeechGPT (Zhang
et al., 2023), Spectron (Nachmani et al., 2024), and
Moshi (Défossez et al., 2024).

9https://github.com/openai/whisper/blob/main/
whisper/normalizers/english.py

10https://github.com/tarepan/SpeechMOS

5 Results and Analysis

5.1 Main Results
Table 1 presents the main results on the speech
question answering and speech instruction follow-
ing benchmarks.

Spoken Question Answering For the SpokenQA
task, we observe that: (1) For models with similar
parameter sizes, LLaMA-Omni2-7B outperforms
both GLM-4-Voice and LLaMA-Omni in both S2T
and S2S settings. Notably, our model significantly
reduces the gap between S2T and S2S perfor-
mance. For example, on the Web Questions bench-
mark, GLM-4-Voice drops by 16.3 (32.2→15.9),
LLaMA-Omni drops by 9.7 (33.4→23.7), while
LLaMA-Omni2-7B only drops by 3.2 (34.5→31.3),
demonstrating that our approach largely improves
speech generation capabilities. (2) For models with
varying parameter sizes, we observe that accuracy
increases as the LLM size grows, indicating that
LLaMA-Omni 2 effectively leverages the LLM’s
inherent capabilities. For smaller models, LLaMA-
Omni2-1.5B/3B exceeds the accuracy of GLM-4-
Voice and LLaMA-Omni in the S2S setting, mak-
ing them suitable choices for edge devices. For
larger models, we observe a significant accuracy
improvement with LLaMA-Omni2-14B compared
to LLaMA-Omni2-7B, highlighting the potential
of our approach for scaling to larger models.

Speech Instruction Following For the speech
instruction following task, we observe that:
(1) LLaMA-Omni2-3B/7B/14B outperforms both
GLM-4-Voice and LLaMA-Omni in the S2T and
S2S settings, demonstrating the strong instruction-
following capabilities of our models. (2) Similar
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Model Score (S2S) ASR-WER

LLaMA-Omni2-7B 4.15 3.26
w/o Gate Fusion 4.02 4.89

w/o Text Embedding 3.88 6.83

Table 2: Ablation study on the gate fusion module with
LLaMA-Omni2-7B.

Model Score (S2S) ASR-WER

Streaming TTS 4.15 3.26
Offline TTS 4.13 3.51
Text Pretrained 3.53 10.34
Scratch 1.08 80.65

Table 3: Ablation study on different TTS pretraining
strategies with LLaMA-Omni2-7B.

to the results on SpokenQA benchmarks, we ob-
serve that model performance improves as the LLM
size increases, with LLaMA-Omni2-14B achieving
significantly better performance. (3) The models’
ASR-WER is generally low, significantly lower
than previous models, proving that our models
maintain strong consistency between the text and
speech responses. (4) Regarding speech quality,
thanks to the CosyVoice 2’s strong causal flow
matching model, our models achieve good UTMOS
scores under streaming synthesis, significantly out-
performing the baseline models. (5) The latency
of LLaMA-Omni 2 is around 600ms. Although it
is slightly higher than LLaMA-Omni, it still meets
the requirements for real-time interaction and is
significantly lower than that of GLM-4-Voice.

5.2 Ablation Studies
To understand the impact of different factors on
overall performance, we conduct a series of abla-
tion studies on the LLaMA-Omni2-7B model.

Gate Fusion Module Table 2 shows the ablation
study on the gate fusion module. Gate fusion mod-
ule allows the model to adaptively fuse LLM hid-
den states and text embeddings, considering both
contextual information and textual content. When
the gate fusion module is removed and the two com-
ponents are simply added together (ehidden

i + eemb
i )

as input to the text-to-speech language model, we
observe a decrease in performance. Further re-
moving the text embedding and only inputting the
hidden states (ehidden

i ) results in a further perfor-
mance decline. This validates the effectiveness of
adding text embeddings as input and adaptively

R W Score (S2S) ASR-WER UTMOS Latency (ms)

1 5 4.09 3.48 3.98 457.29
2 10 4.15 4.00 4.19 557.79
3 10 4.15 3.26 4.19 582.91
3 15 4.12 4.37 4.27 663.32
4 15 4.10 3.77 4.27 683.42
5 20 4.15 3.62 4.32 798.99
Offline 4.14 3.40 4.46 -

Table 4: Ablation study on the read/write strategy with
LLaMA-Omni2-7B. “Offline” means generating speech
tokens only after receiving the complete input, and then
synthesizing all speech tokens into waveform at once.

fusing them with the gate fusion module.

TTS Pretraining Our text-to-speech language
model is initialized with the Qwen2.5-0.5B model
and undergoes streaming TTS pretraining using
text-speech pairs from speech dialogue data in
Stage I(b) (R = 3,W = 10). We also explore
several other strategies, as shown in Table 3. “Of-
fline TTS” refers to pretraining with the offline TTS
task on top of Qwen2.5-0.5B, which shows a slight
performance drop compared to the streaming TTS
pretraining. “Text Pretrained” refers to directly ini-
tializing with Qwen2.5-0.5B (with the extended
vocabulary including speech tokens), and we ob-
serve a significant performance decline. “Scratch”
refers to a randomly initialized model, whose loss
fails to converge within a short period. These exper-
iments demonstrate the importance of pretraining
for the TTS language model.

Read/Write Strategy The read/write strategies
of the TTS language model is a key factor influ-
encing performance, primarily affecting the speech
quality and system response latency. As shown
in Table 4, we explore different combinations of
R and W . First, we observe that when R = 3
and W = 10, the ASR-WER is the lowest, indi-
cating the best alignment between speech and text
responses. As for the UTMOS score, we find that
it is primarily determined by W , as W represents
the chunk size of speech tokens input to the flow
matching model, with larger chunk sizes leading to
better speech quality. Regarding response latency,
it is jointly determined by R and W , as shown
in Equation 6. Without any engineering optimiza-
tions, LLaMA-Omni2-7B can achieve a latency
below 500ms. We choose R = 3 and W = 10 in
our main experiments because it provides a good
trade-off across all aspects.
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#Samples Multiturn
SpokenQA (Accuracy) Speech Instruction Following

Llama Questions Web Questions ChatGPT Score ASR-WERS2T S2S S2T S2S S2T S2S

200K ✓ 70.3 60.7 34.5 31.3 4.28 4.15 3.26
200K × 70.0 59.0 33.7 30.5 4.11 3.98 3.28
150K ✓ 70.7 58.7 34.7 31.7 4.23 4.10 3.71
100K ✓ 67.7 55.3 34.1 29.9 4.19 4.07 4.45
50K ✓ 50.0 37.0 16.6 13.9 3.02 2.84 5.42

Table 5: Results under different training data sizes with LLaMA-Omni2-7B.

5.3 Effects of the Training Data Sizes
We explore the impact of different training data
sizes on performance. As shown in Table 5, we
first observe that, with the same number of train-
ing samples, multi-turn dialogue data consistently
achieves better results across all benchmarks com-
pared to single-turn dialogue data, highlighting
the effectiveness of multi-turn dialogue data for
training. Additionally, for different training data
sizes, we observe that as the data size increases,
the model’s performance improves, gradually sta-
bilizing at 200K training samples. This indicates
that our 200K multi-turn dialogue data is generally
sufficient while ensuring efficient training.

6 Related Work

With the rapid development of LLMs, SpeechLMs
have gained widespread attention in recent
years (Cui et al., 2024; Ji et al., 2024), aiming to
endow LLMs with the ability to understand or gen-
erate speech. Generally speaking, SpeechLMs can
be divided into two categories: native SpeechLMs
and modular SpeechLMs. Native SpeechLMs re-
fer to decoder-only Transformer models capable
of directly inputting and outputting speech tokens.
Some early works include SpeechGPT (Zhang
et al., 2023, 2024a), AudioPaLM (Rubenstein
et al., 2023), and TWIST (Hassid et al., 2024a).
These models first convert speech into discrete
tokens, then extend the vocabulary of pretrained
LLMs to include these tokens, and finally train the
LLMs using a large amount of speech or speech-
text pair data. Spirit-LM (Nguyen et al., 2024)
and GLM-4-Voice (Zeng et al., 2025, 2024a) pro-
pose training models using speech-text interleaved
data to encourage cross-modal knowledge trans-
fer. Moshi (Défossez et al., 2024), OmniFlat-
ten (Zhang et al., 2024b) and LSLM (Ma et al.,
2024b) propose models capable of full-duplex con-

versations. IntrinsicVoice (Zhang et al., 2024d)
proposes a GroupFormer architecture to shorten
speech length to be closer to that of text. In con-
trast to native SpeechLMs, modular SpeechLMs
add speech-related modules on top of LLMs. Early
works achieve speech understanding tasks by com-
bining speech encoders with LLMs, but are unable
to perform speech generation (Wu et al., 2023;
Wang et al., 2023; Chu et al., 2023; Yu et al.,
2024; Ma et al., 2024c; Hono et al., 2024; Chen
et al., 2024b; Tang et al., 2024; Chu et al., 2024;
Fathullah et al., 2024). To achieve speech gener-
ation, LLaMA-Omni (Fang et al., 2025), Freeze-
Omni (Wang et al., 2024), and OpenOmni (Luo
et al., 2025) integrate a streaming speech decoder
after LLMs, similar to previous techniques in simul-
taneous translation (Zhang et al., 2024c; Ma et al.,
2024a, 2025). Mini-Omni (Xie and Wu, 2024) and
SLAM-Omni (Chen et al., 2024a) enable LLMs
to generate speech tokens simultaneously while
generating text tokens. The most related work to
ours is the concurrent work Minmo (Chen et al.,
2025), which also adopts an autoregressive stream-
ing speech decoder similar to CosyVoice 2. In
comparison, Minmo is trained on 1.4M hours of
data, while we train on only a few thousand hours
of data, providing a more efficient training solu-
tion. Additionally, we conduct detailed ablation
studies on LLM sizes, read-write strategies, and
model architecture to offer a more comprehensive
understanding of the model.

7 Conclusion

In this paper, we introduce LLaMA-Omni 2, a se-
ries of speech language models ranging from 0.5B
to 14B parameters, designed to enable real-time,
high-quality speech interaction. LLaMA-Omni
2 achieves streaming speech generation by inte-
grating an autoregressive text-to-speech language
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model and a causal flow matching model. Ex-
perimental results on spoken question answering
and speech instruction following tasks show that
LLaMA-Omni 2 outperforms previous state-of-the-
art speech language models, including LLaMA-
Omni and GLM-4-Voice. Additionally, LLaMA-
Omni 2 can achieve latency under 600ms, meeting
real-time interaction requirements. We also con-
duct detailed ablation studies to understand the
impact of various factors on overall performance.
In the future, we will explore enhancing LLaMA-
Omni 2 to generate more human-like speech, incor-
porating features such as emotion and dialects.

Limitations

One limitation of our model is that currently it
cannot generate speech responses with different
styles (such as emotion or speech rate) based on
the content of the input speech or underlying par-
alinguistic information, as we have only trained on
conventional speech-to-speech dialogue data. How-
ever, we believe this functionality can be achieved
through a data-driven approach, as our model is
end-to-end trained and could acquire this capabil-
ity after further training with suitable data. We plan
to explore this in the future.

Ethical Considerations

Since LLaMA-Omni 2 is built on LLMs, it carries
some of the same risks as LLMs, such as the poten-
tial for factual errors or other hallucination issues
in its outputs. We recommend that the model’s
outputs be checked in practical use to ensure they
comply with the required standards.
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A Prompt

Prompt for ChatGPT Scoring (Model: GPT-4o)

I need your help to evaluate the performance of several
models in a speech interaction scenario. The models re-
ceive the user’s speech input and respond with speech
output. For evaluation purposes, both the user’s speech
input and the model’s speech response have been tran-
scribed into text using Automatic Speech Recognition
(ASR). Your task is to rate the model’s responses based
on the provided user input transcription [Instruction] and
the model’s output transcription [Response]. Please con-
sider factors such as helpfulness, relevance, fluency, and
suitability for speech interaction in your evaluation, and
provide a single score on a scale from 1 to 5.

Below are the transcription of user’s instruction and mod-
els’ response:
### [Instruction]: {instruction}
### [Response]: {response}

After evaluating, please output the scores in JSON format:
{score: ...}. You don’t need to provide any explanations.

B Detailed Latency

We list the detailed latency at different stages of
the model in Table 6. “LLM” refers to the latency
for generating the first R text tokens, “TTS” refers
to the latency for generating the first W speech
tokens, and “FM+Voc” refers to the latency for
generating the first speech chunk using the flow
matching model and vocoder.
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Model R W Latency (ms)
LLM TTS FM+Voc Total

LLaMA-Omni2-0.5B 3 10 190.95 165.83 185.93 542.71
LLaMA-Omni2-1.5B 3 10 201.01 165.83 185.93 552.76
LLaMA-Omni2-3B 3 10 216.08 165.83 185.93 567.84
LLaMA-Omni2-7B 3 10 231.16 165.83 185.93 582.91

LLaMA-Omni2-14B 3 10 311.56 165.83 185.93 663.32

LLaMA-Omni2-7B 1 5 185.93 85.43 185.93 457.29
LLaMA-Omni2-7B 2 10 206.03 165.83 185.93 557.79
LLaMA-Omni2-7B 3 10 231.16 165.83 185.93 582.91
LLaMA-Omni2-7B 3 15 231.16 246.23 185.93 663.32
LLaMA-Omni2-7B 4 15 251.26 246.23 185.93 683.42
LLaMA-Omni2-7B 5 20 271.36 336.68 190.95 798.99

Table 6: Detailed latency of LLaMA-Omni2 series models.

18629


