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Abstract
In knowledge-intensive domains like scientific
research, effective decisions rely on organizing
and retrieving intricate data. Knowledge graphs
(KGs) help by structuring entities, relations,
and contextual dependencies, but building KGs
in such domains is challenging due to inherent
complexity, manual effort, and rapid evolution.
Inspired by how humans organize knowledge
hierarchically, we propose Tree-KG, an expand-
able framework that combines structured do-
main texts with advanced semantic techniques.
First, Tree-KG builds a tree-like graph from
textbook structures using large language mod-
els (LLMs) and domain-specific entities, cre-
ating an explicit KG. Then, through iterative
expansion with flexible, predefined operators,
it uncovers hidden KG while preserving se-
mantic coherence. Experiments demonstrate
that Tree-KG consistently surpasses compet-
ing methods, achieving the highest F1 scores
(12–16% above the second-best), with notable
performance (F1 0.81) on the Text-Annotated
dataset, highlighting its effectiveness in ex-
tracting high-quality information from source
texts. Additionally, Tree-KG provides supe-
rior structural alignment, domain-specific ex-
traction, and cost-efficiency, delivering robust
results with reduced token usage and adaptable,
resource-conscious deployment. 1

1 Introduction

Knowledge-intensive domains refer to areas where
specialized knowledge, deep expertise, and exten-
sive information processing are required, such as
scientific research, healthcare, finance, and law (Xu
et al., 2024; Marjanovic, 2011; Zhao et al., 2023).
Knowledge graphs (KGs) provide a structured rep-
resentation of domain-specific knowledge, cap-
turing entities, relations, and their contextual de-
pendencies (Chandak et al., 2022; Santos et al.,
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Figure 1: Distribution of Entity-Pair Strength Values.
A physics textbook was divided into 129 sections, with
approximately 1,000 extracted entities assigned section
IDs. We randomly sampled 5,000 entity pairs (potential
relations) and used LLMs to score their relation strength
(0–10). The x-axis shows the first entity’s section ID,
and the y-axis shows the second’s.

2022). In knowledge-intensive domains, knowl-
edge graphs facilitate efficient information retrieval,
reasoning and decision support (Su et al., 2024;
Chen et al., 2024). However, constructing KGs for
knowledge-intensive domains remains a challenge
due to knowledge complexity, substantial manual
effort, and rapid evolution (Yan et al., 2024).

Several methods have been employed for con-
structing KGs. Rule-based systems rely on prede-
fined logical rules to extract and structure knowl-
edge (Suchanek et al., 2007; Galárraga et al., 2013;
Muggleton, 1997). While they offer high preci-
sion and domain-specific control, they suffer from
scalability issues, limited generalization and brit-
tleness. Supervised learning models leverage anno-
tated datasets to learn patterns for knowledge ex-
traction (Yates et al., 2007; Banko et al., 2007; Kim
and Moldovan, 1993; Mintz et al., 2009). These
approaches face several challenges of high annota-
tion costs, limited adaptability, and dependency on
training data. LLMs have been increasingly used
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for automated knowledge extraction and graph con-
struction (Zhang and Soh, 2024; Feng et al., 2024;
Couto and Ebecken, 2024). However, most of them
lack a well-defined knowledge structure, semantic
consistency, and incremental mechanisms, which
limits their scalability across domains.

By drawing on insights from human cogni-
tion, we can better construct KGs for knowledge-
intensive domains. Humans often structure infor-
mation hierarchically, much like how textbooks are
arranged. This organization aligns with the intu-
itive way that knowledge is typically accessed, pro-
cessed, and connected. Figure 1 shows that entities
close together in the textbook have stronger con-
nections, with three key observations: (a) the text-
book’s structure is exploitable, (b) entities within
the same section have the strongest links, and (c)
local context matters, as even slightly deviating
pairs show significant relationships. These findings
inspire the design of our KG construction method.

To address the challenges of KG construction in
knowledge-intensive domains, we propose a frame-
work named Tree-KG that builds structured knowl-
edge and supports continuous expansion. Our ap-
proach consists of two key phases: Phase 1 con-
structs a hierarchical explicit KG from structured
domain corpora, using text segmentation and LLM-
generated summaries to form context-aware nodes
and vertical edges; Phase 2 iteratively expands this
structure by revealing hidden KG via contextual
convolution, aggregation, embedding, deduplica-
tion, and edge prediction, while merging new tex-
tual sources to ensure robust scalability.

The key contributions of this paper are:
Expandable KG Construction Framework. We
introduce Tree-KG, a expandable framework that
integrates structured domain corpora with large
language models to build and continuously expand
knowledge graphs. This framework leverages both
explicit and hidden KG construction to provide
comprehensive, context-aware representations.
Novel Tree-like Hierarchical Graph. Our ap-
proach formulates a tree-like hierarchical graph
that organizes domain knowledge in a clear, ratio-
nal structure. This design standardizes the form
of knowledge representation and enhances the
ease of extension and navigation through complex,
knowledge-intensive domains.
Operator-Driven Expansion Mechanisms. We
propose a set of flexible, predefined operators that
drive the iterative expansion of the KG. These op-
erators utilize textual and structural cues to extract

latent information, refine entity relationships, and
ensure systematic, expandable growth while main-
taining semantic coherence.

Experiments demonstrate that Tree-KG consis-
tently surpasses competing methods, achieving
the highest F1 scores (12–16% above the second-
best), with notable performance (F1 0.81) on the
Text-Annotated dataset, highlighting its effective-
ness in extracting high-quality information from
source texts. Additionally, Tree-KG provides supe-
rior structural alignment, domain-specific extrac-
tion, and cost-efficiency, delivering robust results
with reduced token usage and adaptable, resource-
conscious deployment.

2 Related Work

The landscape of KG construction has evolved
from traditional rule-based and supervised tech-
niques to advanced approaches leveraging LLMs,
each with distinct strengths and limitations.

Rule-based and Supervised Methods. Early
approaches, such as YAGO (Suchanek et al.,
2007), exploited hierarchical structures for se-
mantic knowledge extraction. Concurrently, self-
supervised models, TextRunner (Banko and Et-
zioni, 2008), leveraged CRFs for sequence labeling
to extract relations, classes, and entities from text.
Later, span-level models(Zhan and Zhao, 2019)
and text-to-triple translation frameworks (Wang
et al., 2021) expanded extraction scope. Despite
performance, these methods require tuning, lack
scalability.

LLM-based Methods. Recent progress in
LLMs has catalyzed the development of innovative
techniques for constructing KGs. (a) Ontology-
based. In this approach, raw, domain-specific cor-
pora are processed using an ontology sourced from
repositories such as Wikipedia. Candidate rela-
tions are generated through LLMs (Ding et al.,
2024), resulting in high-quality graphs enriched
by common-sense reasoning. However, the perfor-
mance of this strategy is contingent upon the depth
and accuracy of the external ontology. (b) Fine-
tuning. Methods like AutoRE (Xue et al., 2024)
employ document-level relation extraction without
a predetermined relation set. By integrating Pa-
rameter Efficient Fine Tuning (PEFT) techniques,
such as QLoRA, these approaches yield competi-
tive results in controlled settings. Their limitations
include difficulties in managing the vast number of
relations in practical applications and challenges
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Figure 2: An overview of Tree-KG. Tree-KG consists of two major phases: initial construction and iterative
expansion. Specifically, the pipeline starts by processing hierarchically structured textbooks to build the explicit KG.
This forms the skeleton of our knowledge representation. Once the explicit KG is built, we perform an iterative
expansion to reveal the hidden KG. This phase involves advanced operations to further enhance the KG.

in generalizing to unseen data. (c) Zero- and
Few-shot Learning. Iterative zero-shot prompt-
ing (Carta et al., 2023) and few-shot strategies like
GraphRAG (Edge et al., 2024) balance extraction
efficiency and recall. While they reduce depen-
dence on labeled data, they may face issues with
imprecise entity resolution and computational over-
head. (d) Knowledge-intensive Domains. Sys-
tems such as SAC-KG (Chen et al., 2024) treat
LLMs as domain experts, leveraging multi-stage
pipelines to enhance precision despite necessitating
extensive calibration. Domain-specific systems like
MathGraph (Zhao et al., 2019) and others (Dang
et al., 2021) focused on educational KGs further
demonstrate that tailored strategies can enrich do-
main knowledge, though their applicability remains
limited to targeted scenarios.

Collectively, an effective framework for con-
structing KGs in knowledge-intensive domains
must balance automation, accuracy, adaptability,
and incremental knowledge integration. Our frame-
work Tree-KG can make it possible to automati-
cally extract, refine, and integrate new sources into
a unified KG structure.

3 Methodology

Our framework Tree-KG is designed to systemat-
ically construct KGs for knowledge-intensive do-
mains by leveraging the inherent structural and
semantic information in domain literature. An
overview of Tree-KG is demonstrated in Figure 2.

3.1 Definitions

We first define the key concepts that establish the
design foundation of our framework Tree-KG dis-
cussed later.

3.1.1 Tree-like Hierarchical Graph

Let G = (V,E) be a graph, where V and E denote
the set of nodes and edges respectively. A tree-like
hierarchical graph is a type of graph representation
that follows a hierarchical structure similar to a tree.
The node set V is partitioned into k layers as:

V = V1 ∪ V2 ∪ · · · ∪ Vk,

where each subset Vi corresponds to a specific layer,
and Vi ∩ Vj = ∅ for i ̸= j.
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The edge set E is further distinguished into two
types and can be expressed as:

E = E1 ∪ E2.

Vertical edges E1: These edges connect nodes
from different layers, i.e., they span across layers.
For each edge (u, v) ∈ E1, if u ∈ Vi and v ∈ Vj ,
then |i−j| = 1, meaning the edge can only connect
adjacent layers. The nodes along vertical edges
form a tree.

Horizontal edges E2: These edges connect
nodes within the same layer, i.e., they connect
nodes at the same level. For each edge (u, v) ∈ E2,
if u, v ∈ Vi, then the edge connects nodes within
the same layer Vi.

3.1.2 KG Schema
Tree-KG adopts a tree-like hierarchical graph struc-
ture. Each node has three main attributes: name,
the node’s designated name; description, initially
extracted from source text (3.2) and later enriched
via LLMs by integrating descriptions from neigh-
bors (3.3.1); and relations, the edges connect-
ing it to other nodes. For edges, homogeneous
vertical edges represent hierarchical or subordi-
nate relationships, with three predefined types:
has_subsection (section–subsection), has_entity
(subsection–entity), and has_subordinate (core–
non-core entity). In contrast, heterogeneous hor-
izontal edges combine a general category (sec-
tion_related or entity_related) with a specific LLM-
predicted relation (e.g., obey, has in Figure 2).

3.1.3 Adamic-Adar (AA) Score
(Adamic and Adar, 2003)

AA(u, v) =
∑

w∈N(u)∩N(v)

1

log(|N(w)|) ,

where N(u) and N(v) are the neighbor sets of
nodes u and v respectively, N(u) ∩ N(v) is the
set of common neighbors between u and v, and
|N(w)| is the degree (number of neighbors) of w.

3.1.4 Number of Common Ancestors
Given two nodes u and v in an unconstrained
layered graph, the number of common ancestors
CA(u, v) is defined as follows:

Lineage Paths: From node u and node v, tra-
verse upwards through vertical edges (edges be-
tween adjacent layers) until reaching the first layer.
Let the lineage path sets from node u and node v
to the first layer be Pu and Pv, respectively.

Common Ancestors: For each pair of lineage
paths from Pu and Pv, compute the intersection
of the paths. The number of common ancestors
CA(u, v) is the maximum size of the intersection
of any pair of lineage paths, i.e.,

CA(u, v) = max
(
|P (i)

u ∩ P (j)
v |

)
,

where P
(i)
u and P

(j)
v are the i-th and j-th paths in

Pu and Pv respectively, and | · | denotes the size of
the intersection of the two paths.

3.2 Initial Construction

Starting with domain corpora (i.e., most notably
hierarchically structured textbooks), we extract the
primary skeleton of the knowledge graph. This
explicit KG represents a top-down view of the
domain, capturing relations like chapter–section-
subsection–entity. We leverage this natural struc-
ture to build a tree-like hierarchical graph in 3.1.1.

3.2.1 Text Segmentation

We use tailored regex patterns to parse textbooks
and identify chapter, section, and subsection bound-
aries based on formatting cues (e.g., numbered
headings). This segmentation produces hierarchi-
cal table-of-contents (TOC) nodes corresponding
to the book, its chapters, sections, and subsections,
establishing initial has_subsection relations.

3.2.2 Bottom-Up Summarization

For subsection nodes without further subdivisions,
we use LLMs to generate summaries based on texts
that capture essential contents and domain-specific
terms. Summaries for higher-level TOC nodes are
created by aggregating the summaries of their child
nodes, ensuring that overarching topics reflect de-
tailed contents of their subsections. This bottom-up
approach mimics human review processes.

3.2.3 Entity and Relation Extraction

For each TOC node, descriptions from its parent
provide context to analyze child-node relations.
LLMs extract these as section_related edges, paired
with specific predicted types (see 3.1.2).

Subsection summaries are further processed us-
ing LLMs to identify entities and derive has_entity
edges and entity_related edges combined with spe-
cific LLM-predicted relations. This grounds the
KG in fine-grained, domain-specific knowledge.
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3.3 Iterative Expansion

While the explicit KG constructed from notable
textbooks provides a robust skeleton, it may miss
latent or implicit connections within the domain.
The iterative expansion phase enriches the initial
KG by uncovering hidden relations between enti-
ties with the integration of textual and structural
contexts. This phase employs operators in a pre-
defined action set including contextual-based con-
volution (conv), entity aggregation (aggr), node
embedding (embed), entity deduplication (dedup),
edge prediction (pred), and structure integration
(merge), to reveal the hidden KG.

3.3.1 Contextual-based Convolution
Inspired by traditional graph convolution, we up-
date each entity’s description using a contextual-
based convolution. For each entity v with neigh-
boring entities N (v), we use LLMs to generate a
report that includes a concise definition of v, de-
tailed descriptive and contextual information about
v, and the role of v within its local subgraph reflect-
ing both its features and those of N (v).

Mathematically, the update is expressed as:

h(new)
v = conv

(
hv, {hu : u ∈ N (v)}

)
,

where hv is the original description of entity v and
h
(new)
v is its updated description. Experiments show

that a single convolution step is typically sufficient.

3.3.2 Entity Aggregation
Each entity is deliberately assigned a local role
r ∈ {core, non-core} by LLMs based on its de-
scription. For each core entity, we aggregate its
neighboring peripheral non-core entities as its chil-
dren by transforming horizontal edges into verti-
cal ones, thereby forming has_subordinate edges
(see 3.1.2). For instance, if "electric charge" is
core, related phenomena like the "triboelectric ef-
fect" become subordinate. Thus, entities comprise
the lowest two layers of the tree-like hierarchical
graph: the core entity layer and the non-core entity
layer. aggr helps to simplify analysis, boost query
efficiency, and better reflect real-world relations.

3.3.3 Node Embedding
Each node’s description is embedded into a vector
z ∈ Rd by embed and normalized such that ∥z∥2 =
1. The distance between two nodes vi and vj is
computed via L2 norm dist(vi, vj) = ∥zi − zj∥2.
embed does not independently predict entities or

relations. Rather, embeddings serve a crucial and
nuanced role beyond mere operator usage. They
facilitate downstream tasks such as retrieval, sig-
nificantly enhancing performance in systems like
Retrieval-Augmented Generation (RAG).

3.3.4 Entity Deduplication
To eliminate redundant representations, we perform
entity deduplication (dedup). The procedure is as
follows. Compute the enhanced embedding z for
each entity v and assign its local role r. Initially,
each entity forms its own equivalence class. For
each entity, retrieve its 20 nearest neighbors (using
a FAISS vector search). Retain only pairs (v, v′)
satisfying dist(v, v′) < thresholddedup and rv =
rv′ . Sort candidate pairs by increasing distance and
query the LLM to decide if they represent the same
entity. If so, merge their equivalence classes using
a union-find (disjoint set) algorithm.

3.3.5 Edge Prediction
We observed that two entities, u and v, are more
likely to be connected if they exhibit higher similar-
ity, share more common neighbors, and have more
common ancestors (validated by domain experts
in 4.1). Based on this insight, we propose a scoring
function that integrates three key factors:

score = α · cos(zu, zv) + β ·AA+ γ · CA. (1)

Here, cos(zu, zv) measures the semantic similar-
ity between the vector representations of u and v,
AA represents the number of common neighbors,
CA denotes the number of common ancestors (see
in 3.1.3,3.1.4), and α, β, and γ are weighting coef-
ficients. We set the similarity coefficient α = 0.6.

The entity pairs are sorted in descending order
based on the computed score, which are further
evaluated by LLMs in line with their priority, ac-
cording to the expected number of edges to be
added, denoted as ∆e. If the LLM assesses the re-
lation strength as sufficiently strong—i.e., exceed-
ing thresholdstren, an edge is added. Improving
graph connectivity is achieved through a two-stage
edge prediction process that combines structural
and semantic cues (pred).

Stage 1: Initialize Connectivity. At the begin-
ning, the graph exhibits weak connectivity, with
few common neighbors among entities. To address
this, we initially set β = 0 and γ = 0.4. Then
the scoring function combined with LLM evalua-
tion is used to add some preliminary edges, thereby
enhancing the overall connectivity of entities.
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Stage 2: Edge Completion. After the initial
stage, as more common neighbors emerge, we ad-
just the weights to β = 0.3 and γ = 0.1. Then the
same procedure is applied to establish additional
edges. This stage focuses on entity pairs that span
across the minimal structural units (i.e., entities
not in the same subsection). Otherwise edges in
the same subsection typically receive higher scores
and are preferentially added, but many of them
might have already been extracted during the initial
construction.

3.3.6 Structure Integration
Since knowledge-intensive domains are continu-
ously evolving, our framework Tree-KG supports
incrementally integrating new textual sources while
preserving structural coherence by merge.

For unstructured texts, we extract entities and
relations and apply operations (conv, aggr, embed)
to create subgraph G′. Overlapping entities be-
tween graphs G and G′ are merged based on em-
bedding similarity, retaining original subsection
catalog node labels. New entities in merged compo-
nents are labeled using graph coloring to minimize
cross-subsection edges. Isolated components are
linked to the nearest subsection catalog node based
on embedding centers.

For structured texts, we generate and merge hier-
archical subgraphs and catalog trees recursively by
embedding similarity or unique identifiers. Then
the same operations are conducted as the unstruc-
tured texts above.

4 Experiments

In this section, we present a comprehensive exper-
imental evaluation of our Tree-KG approach. We
first provide an overall description of the experi-
mental setup, then detail the comparative experi-
ments, and finally report our ablation studies.

4.1 Experimental Setup
Datasets. The diverse datasets utilized in this study
stems from a comprehensive initiative within the
AI4EDU project at our institute. We compiled a
large pre-collected corpus of approximately 69,000
professional materials, including textbooks, lecture
notes, and academic papers, spanning around 100
subfields and encompassing 9.95 million knowl-
edge points. These materials were sourced from
various departments across the institution, provid-
ing a rich foundation for constructing KGs in di-
verse domains.

We ensured robustness and consistency through
a structured, course-level annotation process: an-
notators received detailed guidelines and training;
multiple TAs independently annotated data, with
discrepancies resolved via instructor-led consensus;
and we assessed inter-annotator agreement (IAA)
using Fleiss’ Kappa on randomly selected subsets.

We focus on constructing KGs for three pri-
mary domains: Physics (Electromagnetism, Op-
tics, and Quantum Physics; hereafter collectively
referred to as Physics), Digital Electronics, and
Educational Psychology. For the Physics domain,
we developed two expert-annotated KGs: one de-
rived from comprehensive expert knowledge cov-
ering the entire Physics field (Domain-Annotated),
and the other manually extracted specifically from
textbooks (Text-Annotated). Both reference KGs
are structured as trees with clearly defined spatial
topologies. In addition, we leveraged the knowl-
edge point lists provided in the textbook appendices
(Appendix-List). Together, these three sources
serve as ground truth references to further validate
and guide the KG construction process.

Baseline Methods. We compare Tree-KG (T)
against four LLM-based KG construction baselines:
GraphRAG (G) (Edge et al., 2024), iText2KG
(I) (Lairgi et al., 2024), LangChain (L) (lan), and
AutoKG (A) (Zhu et al., 2023). GraphRAG, a
RAG framework, is used here only for LLM-based
entity/relation extraction, summarization, and ba-
sic graph construction; it lacks Tree-KG’s itera-
tive, hierarchical, and reasoning-based refinements.
iText2KG relies on manually defined schemas but
lacks iterative expansion or alignment. LangChain
applies template-based graph transformations with
no deeper semantic processing. AutoKG em-
ploys multi-agent interactions for KG construc-
tion but may lack structure in domain-specific
contexts. We used GraphRAG v2.1.0, iText2KG
v0.0.7, LangChain v0.3.0, AutoKG (GitHub), and
Python 3.11. SAC-KG (Chen et al., 2024) was not
included due to unavailability.

All methods were evaluated on SiliconFlow with
DeepSeek-V3 (et al., 2025) (2 RMB/M input to-
kens, 8 RMB/M output), while Tree-KG ablation
used GLM-4-Air (et al., 2024) (1 RMB/million
tokens, now 0.5 RMB/M).

Evaluation strategies. Due to the scarcity of
high-quality annotated KGs, we employ hybrid
evaluation strategies:
(1) Ground Truth. We treat the three sources—the
Domain-Annotated KG, the Text-Annotated KG,
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Method
Domain-Annotated Text-Annotated Appendix-List LLM

ER↑ PC↑ F1↑ MEC↑ MED↓ ER↑ PC↑ F1↑ MEC↑ MED↓ ER↑ PC↑ F1↑ ES↑ RS↑
Tree-KG 0.67 0.34 0.67 0.60 0.46 0.78 0.84 0.81 0.65 0.44 0.74 0.71 0.72 0.98 7.87

GraphRAG 0.53 0.19 0.53 0.38 0.54 0.68 0.51 0.58 0.34 0.52 0.77 0.50 0.60 0.88 7.71
iText2KG 0.46 0.30 0.46 0.37 0.48 0.52 0.84 0.65 0.36 0.49 0.49 0.69 0.58 0.93 7.62
LangChain 0.45 0.38 0.45 0.18 0.43 0.45 0.89 0.59 0.13 0.55 0.39 0.84 0.53 0.91 7.40

AutoKG 0.46 0.34 0.46 0.03 – 0.50 0.60 0.55 0.04 – 0.45 0.53 0.49 0.89 7.79

Table 1: Ground truth and LLM evaluation on Physics.

Method
Physics Digital Electronic Educational Psychology

T G I L A T G I L A T G I L A
T – 0.52 0.81 0.84 0.62 – 0.55 0.82 0.58 0.56 – 0.32 0.75 0.71 0.54
G 0.74 – 0.82 0.80 0.68 0.52 – 0.74 0.52 0.48 0.63 – 0.77 0.83 0.58
I 0.54 0.36 – 0.63 0.46 0.54 0.36 – 0.63 0.46 0.50 0.21 – 0.54 0.37
L 0.44 0.29 0.44 – 0.36 0.40 0.32 0.47 – 0.31 0.37 0.19 0.39 – 0.30
A 0.49 0.37 0.52 0.58 – 0.49 0.39 0.64 0.45 – 0.56 0.26 0.56 0.58 –

Table 2: Entity Recall (ER) of mutual evaluation. The domain columns represent KGs constructed by the methods
as the ground truth, while the rows indicate the methods to evaluate. For instance, "T-G" denotes that we evaluate
method Tree-KG on GraphRAG KG entity sets in metric ER.

and the Appendix-List—as the ground truth ref-
erences for evaluating automatically constructed
KGs from Physics.
(2) Mutual Evaluation. We performed a 5×5 mu-
tual evaluation across the three domains. Entities
extracted by one method serve as the ground truth
for another method.
(3) LLM-Based Evaluation. We employ LLMs
with few-shot prompting to efficiently and consis-
tently assess the quality of the KGs, with their
accuracy validated by (Chen et al., 2024).

Metrics. We define metrics (a-h) applied to the
three strategies to quantitatively assess the the au-
tomatically constructed KG G = (V,E). Assume
that a ground truth graph Ggt(Vgt, Egt) is available.
(a) Entity Recall (ER). We first embed entity
names from both Ggt and G. For each entity in Ggt,
we retrieve the top-5 most similar entities from G,
and an LLM selects the final mapping from these
candidates. ER = #mapped entities

|Vgt| .

(b) Precision (PC). Similarly, we retrieve each
predicted entity in G from Ggt using the same pro-
cedure. PC = #mapped entities

|V | .

(c) F1 Score (F1). Harmonic mean of recall and
precision: F1 = 2× ER×PC

ER+PC .

(d) Mapping-based Edge Connectivity (MEC).
For each edge in Ggt, we identify the correspond-
ing entity pair in G by applying the above mapping
process to both source and target entities. Note that
the mapped entities need not be immediate neigh-
bors; they are considered connected if there exists
a path between them in G.
MEC = #mapped entity pairs connected in G

|Egt| .

(e) Mapping-based Edge Distance (MED).

MED =
1

|Egt|
∑

(u,v)∈Egt

dG(u, v)

dG
,

where dG(u, v) denotes the shortest path distance
between the mapped entity pair (u, v) in G, and
dG is the average shortest path distance in G. In
the ground truth, adjacent entities have strong log-
ical links. Thus, a knowledge graph should keep
logically adjacent entities close, i.e., dist(u, v) ∝
dist(u′, v′) (lower values indicate better preserva-
tion). Also, different methods can yield graphs with
varying diameters and connectivity, necessitating
normalization.

In the absence of a ground truth graph, we evalu-
ate G using LLMs to score: for each entity, speci-
ficity (0 or 1) and completeness (0 to 10); for each
relation, strength (0 to 10).
(f) Entity Specificity (ES). Mean entity domain
relevance: ES =

∑
specificity
|V | .

(g) Entity Completeness (EC). Mean complete-
ness of entity descriptions: EC =

∑
completeness

|V | .

(h) Relation Strength (RS). Mean closeness and
clarity of underlying relations: RS =

∑
strength
|E| .

This multi-faceted evaluation approach validates
the robustness and accuracy of TREE-KG

4.2 Main Results

Table 1 and Table 2 are comparisons of our Tree-
KG with other methods by ground truth, LLM-
based evaluation, and mutual evaluation. Overall,
experiments demonstrate that Tree-KG consistently
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outperforms the other competing approaches across
multiple metrics.

Firstly, whether against ground truth or via mu-
tual evaluation, Tree-KG achieves entity recall (ER)
comparable to or exceeding GraphRAG, while far
surpassing other methods. Specifically, Tree-KG
outperforms all the other methods, with a 14% im-
provement over the 2nd-best on domain-annotation.
In mutual evaluation, it performs similarly to or
better than GraphRAG. This indicates superior suf-
ficiency of Tree-KG in entity extraction. For pre-
cision (PC) on the ground truth, Tree-KG consis-
tently ranks second among all methods. While
LangChain achieves the highest precision due to
its smaller extracted graphs—with fewer nodes and
edges—this comes at the cost of significantly lower
ER, revealing that its extraction is incomplete and
lacks sufficient coverage. In contrast, when con-
sidering the F1 score, which reflects the overall
balance between recall and precision, Tree-KG
clearly outperforms all competing methods, achiev-
ing a 12–16% improvement over the 2nd-best on
the ground truth. Notably, on the Text-Annotated
dataset, Tree-KG reaches 0.81 F1 score, underscor-
ing its ability to extract high-quality information
from the original text. This substantial gain high-
lights Tree-KG’s superior balance of coverage and
accuracy, making it the most effective approach.

Second, our approach exhibits the highest
mapping-based edge connectivity (MEC) (1.6x-
20x) and the lowest normalized mapping-based
edge distance (MED) (0.8x-1.1x) on others, indicat-
ing the best structural alignment with the original
graph. These results suggest that Tree-KG better
supports downstream reasoning tasks and meets
connectivity requirements.

Moreover, Tree-KG leads in both entity speci-
ficity (ES) and relation strength (RS), indicating
that the extracted entities are not only high-quality
and domain-specific, but also supported by high-
quality relational edges.

Method #Tokens (M) Cost (RMB)
T 6.1 (1.5 for initial construction + 4.6 for expansion) 18 (4.5 + 13.5)
G 4.0 12
I 2.3 7.4
L 15.0 28
A 7.2 18

Table 3: Token usage and cost across methods.

Token/API Cost. We compare the token and
API costs of Tree-KG against baseline methods
using the DeepSeek-V3 API on the Physics domain,
as summarized in Table 3.

summary ES↑ RS↑ |V | |E|
with 0.94± 0.01 7.10± 0.04 1301± 5 930± 12

without 0.86± 0.01 6.57± 0.08 1530± 150 1050± 50

Table 4: KG quality with vs. without summary.

stage EC↑ RS↑
0 6.92± 0.08 7.10± 0.04
1 9.30± 0.05 7.79± 0.05
2 9.39± 0.02 7.86± 0.02
3 9.50± 0.04 7.89± 0.04

Table 5: Impact of multiple contextual-based convolu-
tion steps on the KG quality.

Table 3 shows that GraphRAG and the initial
phase of Tree-KG both build hierarchical structures.
However, GraphRAG uses a bottom-up approach
(via the Hierarchical Leiden Algorithm and heavy
summarization), consuming many tokens, while
Tree-KG leverages textbook structures to build top-
down without token cost. Tree-KG’s bottom-up
phase only summarizes text, making its initial con-
struction far more token-efficient than GraphRAG.

Overall, Tree-KG’s initial phase incurs lower
costs, and its iterative expansion is optional, al-
lowing flexibility based on budget or application
needs. While some methods (e.g., iText2KG) show
slightly lower costs, their extraction quality is lim-
ited. Tree-KG offers a balanced trade-off between
cost and performance, achieving strong results with
reasonable resource use.

4.3 Ablation

We perform systematic ablation experiments to val-
idate the effectiveness of Tree-KG designs.

4.3.1 Summarization
We compare the performance of Tree-KG with and
without the preliminary summary step. Table 4
shows that summary improves ES by 9% and RS
by 8% compared to without summary, enhancing
the quality of extracted entities and relations and re-
ducing irrelevant or weak associations. We can also
observe greater numerical stability in the number
of entities and edges, confirming its robustness.

4.3.2 Contextual-based Convolution
We evaluated the impact of multiple contextual-
based convolution steps on the quality of entities
and relations. Table 5 shows that one conv step
yields substantial improvements (EC +34%, RS
+10%). Consistent with the convergence behavior
in traditional graph convolution which typically
converge within 2–3 iterations, our conv also con-
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Figure 3: Entities in the same subsection become com-
pact after contextual-based convolution.

Figure 4: Entity deduplication threshold.

verges rapidly. Further steps offer only about 1%
gain while significantly increasing token usage, in-
dicating that a single step is generally sufficient
unless the graph structure changes.

We also select entities from the same minimal
chapter (i.e., subsection in our case) and visualize
their description embeddings using t-SNE before
and after conv. Identical colors represent the same
subsection. Figure 3 shows that conv clusters em-
beddings of entities from the same subsection, indi-
cating an alignment of textual descriptions with the
graph structure, which supports subsequent entity
deduplication.

4.3.3 Entity Deduplication
We can see from Figure 4 that, as the value of
thresholddedup increases, both the total check
count and the successful deduplication count also
increase. However, raising the threshold from 0.55
to 0.6 yields only a 7% increase in successful dedu-
plications, while the total check count increases by
124%. Thus, a thresholddedup; of 0.55 is adopted
for optimal accuracy and efficiency.

4.3.4 Edge Prediction
As described in Section 3.3.5, the weights α, β, and
γ correspond to three key edge prediction goals:
semantic relevance (cosine similarity), structural
similarity (Adamic-Adar Score, AA), and hierar-

Figure 5: The mean percentile of top 1% entity pairs in
all hyperparameter settings of edge prediction score.

chical proximity (Common Ancestors, CA). We
set α > β > γ, as cosine similarity provides the
richest cues, followed by AA, with CA offering
the least. We performed a hyperparameter sensi-
tivity analysis by testing all 66 combinations of α,
β, and γ summing to 1 (at 0.1 steps). For each,
we computed the combined edge prediction score
(Formula 1) across ∼336K candidate pairs, ranked
them, and evaluated the top 1% (∼3,000 pairs)
based on their average percentile under each met-
ric. This mean percentile indicates how well the
combined score balances the three goals. As shown
in Figure 5, our original setting (α = 0.6, β = 0.3,
γ = 0.1) achieved a strong mean percentile of
82.86%. Interestingly, a slightly different setting
(α = 0.8, β = 0.1, γ = 0.1) performed even better
(83.14%), suggesting that increasing the weight on
semantic similarity further improves predictions.

5 Conclusion

In this paper, we propose Tree-KG, an expand-
able framework for constructing and iteratively
expanding KGs in knowledge-intensive domains.
By integrating structured document cues with ad-
vanced semantic techniques, our method effec-
tively builds an explicit, tree-like hierarchical graph
and uncovers hidden relationships through iterative
operator-driven expansion. Experiments demon-
strate that Tree-KG consistently surpasses com-
peting methods, achieving the highest F1 scores
(12–16% above the second-best), with notable per-
formance (F1 0.81) on the Text-Annotated dataset,
highlighting its effectiveness in extracting high-
quality information from source texts. Additionally,
Tree-KG provides superior structural alignment,
domain-specific extraction, and cost-efficiency, de-
livering robust results with reduced token usage
and adaptable, resource-conscious deployment.
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Limitations

Although our Tree-KG performs well in KG con-
struction, the current method relies on inherent
knowledge, which may not perform well for cer-
tain downstream tasks (e.g., inference). We plan
to optimize our design by introducing task-specific
features to construct knowledge graphs that better
support these more complex tasks.
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A More Results

A.1 Comparative Experiments
We also conducted comparative evaluations based
on GLM and GPT. We use GLM-4-air for Tree-KG
and LLM-based evaluation, GPT-4o for iText2KG,

GPT-4-Turbo-Preview for GraphRAG, GPT-4-
Turbo for LangChain, and GPT-4o for AutoKG.
We designed a paradigm with low requirements for
the backzone model and therefore employed the
GLM-4-Air model at a cost of 1 yuan per million
tokens. We attempted to use GLM-4-Air for other
comparative methods; however, the results were
unsatisfactory, and in some cases, the model failed
to function correctly. This issue was likely due to
the design of the prompt. To accurately reproduce
the results reported in the original papers of the
comparative methods, we opted not to use the same
API but instead employed the default GPT API
specified in the respective papers.

Overall, as shown in Table 6 and Table 7, de-
spite our approach Tree-KG based on GLM, which
is 100 times more cost-effective, experiments
demonstrate that Tree-KG consistently outperforms
the comparative methods that rely on GPT across
multiple metrics. This demonstrates that our ap-
proach is both efficient and cost-effective.

A.2 Edge Prediction

As shown in Table 6, the T+e1000 variant outper-
forms the others in both relation strength (RS) and
normalized mapping-based edge distance (MED).
Iterative edge addition increases RS (with a 6% im-
provement over the baseline T) and reduces MED
by 3%, confirming that the priority score effectively
enhances edge quality and the structure consistency
with ground truth graph. These findings support
predicting an additional number of edges equal
to the node count (#nodes approximately 1000),
though the optimal number may vary with different
graph structures.

A.3 Contextual-based Convolution

The PCA visualizations before and after contextual-
base convolution in Figure 6 reveals that equiva-
lence classes become more compact after conv. A
noteworthy side effect of the conv process is that
it draws entities with similar intrinsic properties
closer together while pushing apart those that are
fundamentally different, thereby aligning the se-
mantic and logical spaces. This will help the entity-
deduplication afterwards.

A.4 Case Study

Figure 7 illustrates certain differences between our
method Tree-KG and other methods for the same
two texts. In the first text, "proton" serves as an ex-
ample to explain the core entity of "charge". In the
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Method
Domain-Annotated Text-Annotated LLM

ER↑ MEC↑ MED↓ ER↑ MEC↑ MED↓ ES↑ RS↑
T 0.58 0.41 0.38 0.81 0.65 0.57 0.94 7.79

T+e500 0.58 0.43 0.38 0.81 0.65 0.55 0.94 8.05
T+e1000 0.58 0.43 0.37 0.81 0.65 0.55 0.94 8.23
T+e1500 0.58 0.43 0.39 0.81 0.65 0.55 0.94 8.22

G 0.55 0.20 0.75 0.66 0.18 0.87 0.80 7.10
I 0.42 0.20 0.54 0.45 0.15 0.53 0.87 7.23
L 0.26 <0.02 – 0.40 <0.02 – 0.92 7.61
A 0.40 <0.02 – 0.67 <0.02 – 0.64 6.24

Table 6: Expert-annotated and LLM evaluation on Physics. The notation "T+e500" indicates that Tree-KG has been
added an extra 500 edges by edge prediction. We merge the results of edge prediction into this table.

Method
Physics Digital Electronic Educational Psychology

T G I L A T G I L A T G I L A
T – 0.84 0.77 0.73 0.68 – 0.70 0.86 0.64 0.65 – 0.57 0.71 0.61 0.69
G 0.77 – 0.79 0.88 0.67 0.73 – 0.89 0.77 0.63 0.73 – 0.66 0.59 0.73
I 0.43 0.67 – 0.55 0.44 0.58 0.80 – 0.57 0.39 0.62 0.51 – 0.29 0.56
L 0.44 0.33 0.63 – 0.60 0.49 0.70 0.35 – 0.35 0.59 0.63 0.48 – 0.25
A 0.55 0.48 0.34 0.69 – 0.57 0.55 0.57 0.53 – 0.67 0.42 0.50 0.43 –

Table 7: Entity Recall (ER) of mutual evaluation. The domain columns represent KGs constructed by the methods
as the ground truth, while the rows indicate the methods to evaluate. For instance, "T-G" denotes that we evaluate
method Tree-KG on GraphRAG KG entity sets in metric ER.
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Figure 6: Equivalence classes become more compact
after contextual-base convolution.

Figure 7: Case study.

second text, "proton" is the primary introduced en-
tity. Other methods tend to merge these two entities
of "proton," whereas our method Tree-KG, through
conv and aggr, ultimately keeps them distinct. It
avoids unnecessary branches in downstream tasks,
thereby improving efficiency.

A.5 Visualization

A.5.1 Overall KGs
We present an overview of the knowledge graphs
generated using different methods (a) Tree-KG,
(b) GraphRAG, (c) iText2KG, (d) LangChain and
(e) AutoKG, from a physics textbook in Figure 8.
For our method, blue represents section nodes, red
represents core entities, and yellow represents non-
core entities. For the comparison methods, all enti-
ties are colored brown.

A.5.2 Tree-KG Illustrations
As we can see from Figure 9, (a) shows the ex-
tracted hierarchical structure of the chapters, (b)
visualizes the entity hierarchy, including both core
and non-core entities, (c) illustrates the graph be-
fore the aggregation operation, while (d) shows the
graph after aggregation. Entities that have been
reclassified as non-core are colored yellow (from
red), and those that remain core entities are still
colored red.

B Prompt

B.1 General Techniques

B.1.1 Unified and Clear Structure
• Role: Assume a specific role.
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Figure 8: Comparison of overall KGs on Physics.

Figure 9: Partial KGs from Tree-KG.

• Task: Provide clear objectives.

• Constraints: Clearly define standards and re-
quirements.

• Output Template: Use formatted output to
increase stability.

• Example: Include few-shot examples to en-
sure output quality.

B.1.2 Quantification
For prediction, evaluation, and similar tasks, pri-
oritize requesting scores for specific metrics over
absolute choices. This helps obtain more precise
results.

B.2 Extraction
This section’s prompts are primarily used to gener-
ate summaries of source texts and asynchronously
extract entities and relationships through leaf chap-
ter summaries.

• Summary: Input the original text of a leaf
chapter or subchapter summary, output the
summary of that chapter.

• Extraction: First input the leaf chapter sum-
mary to output all entities; then input the leaf
chapter summary and the extracted entity list
to output relationships.

B.3 Expansion

These prompts are used by various operators for
graph augmentation.

• Convolution: Input an entity’s information
and all related relationships (or relationships
with entities), supplemented by model domain
knowledge, to enhance entity descriptions and
assess local interactions (or enhance relation-
ship descriptions).

• Aggregation: Input a central entity, adjacent
nodes, and relationships. Determine if ag-
gregation to the central entity is needed and
output aggregated entity information.

• Deduplication: Input entity pairs with high
similarity and overlapping local roles to deter-
mine if they represent the same entity.

• Edge Prediction: Input entity pairs with re-
lated information and model domain knowl-
edge to determine if a relationship exists, its
nature, and strength.

B.4 Evaluation

Prompts for assessing the quality of extracted
graphs compared to baselines.
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• Entities: Input domain knowledge, chap-
ter overview, and entities with descriptions.
Score entity relevance and completeness.

• Relationships: Input chapter overview and
relationship triples. Score relationship close-
ness, logicality, and significance.

B.5 Example

B.5.1 Entity Scoring
• Role

You are an educational knowledge graph ex-
pert skilled in evaluating entity extraction
quality.

• Task

Given a knowledge domain, chapter overview,
and extracted entities, score each entity’s
specificity and description completeness.

• Constraints

– Score two metrics (0 or 1, 0-10):
* Specificity: 0=irrelevant, 1=highly relevant.
* Completeness: 1=incomplete, 5=basic,

9=comprehensive.

– Output must be a valid JSON list.

• Output Template

1 [
2 {
3 "id": "Entity ID",
4 "specificity ": 0 or 1,
5 "completency ": 0-10
6 }
7 ]

B.5.2 Entity Extraction
• Role

You are a subject matter expert specializing in
entity and relationship extraction.

• Task

Users will provide a chapter summary from
a subject-specific textbook. Please extract en-
tities closely related to that subject in JSON
format.

• Constraints

– Entities should be concise, specific, and
strongly relevant to the subject.

– Different names for the same entity
should be merged into the ‘alias‘ field.

– Extracted entities should be noun
phrases.

– Output must be valid JSON.

• Output Template

1 {
2 "entities ": [
3 {
4 "name": "Entity Name",
5 "alias": [" Alias 1", "Alias

2"],
6 "type": "Entity Type",
7 "raw_content ": "Original text

describing the entity"
8 }
9 ]

10 }

B.5.3 Relationship Prediction
• Role

You are a relationship extraction expert.

• Task

Given two entities and their information, de-
termine possible relationships or conclude no
relationship exists.

• Constraints

– Output must be valid JSON.
– Relationship types should be concise and

meaningful.
– Relationship descriptions must be de-

tailed and grounded in provided infor-
mation.

• Output Template

1 {
2 "is_relevant ": true/false ,
3 "description ": "### Association

Description\n...\n###
Explanation\n...",

4 "type": "Relationship type(s)",
5 "strength ": 0-10,
6 "reason ": "Scoring rationale"
7 }
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