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Abstract

Code embeddings capture the semantic repre-
sentations of code and are crucial for various
code-related large language model (LLM) ap-
plications, such as code search. Previous train-
ing primarily relies on optimizing the InfoNCE
loss by comparing positive natural language
(NL)-code pairs with in-batch negatives. How-
ever, due to the sparse nature of code contexts,
training solely by comparing the major differ-
ences between positive and negative pairs may
fail to capture deeper semantic nuances. To
address this issue, we propose a novel order-
augmented strategy for improved code search
(OASIS). It leverages order-based similarity
labels to train models to capture subtle differ-
ences in similarity among negative pairs. Exten-
sive benchmark evaluations demonstrate that
our OASIS model significantly outperforms
previous state-of-the-art models focusing solely
on major positive-negative differences. It un-
derscores the value of exploiting subtle differ-
ences among negative pairs with order labels
for effective code embedding training.

1 Introduction

Code search tasks aim to retrieve the code snippet
that best matches a given natural language (NL)
query, thereby significantly enhancing developer
productivity. A common approach is to leverage
code embedding vectors to represent the seman-
tics of the code for measuring its similarity to
NL queries in code-NL matching tasks (Nie et al.,
2016; Husain et al., 2019; Shuai et al., 2020; Parvez
et al., 2021; Zeng et al., 2022; Di Grazia and Pradel,
2023). Building on LLM advancements, code em-
beddings have significantly benefited recent code
applications, including Retrieval-Augmented Gen-
eration (RAG) (Asai et al., 2023; Gao et al., 2023)
and code completion (ReAcc) (Lu et al., 2022; Tan
et al., 2024a) and repairing (Xiang et al., 2024).

*Jing Li is the corresponding author.

Figure 1: An example of NL query and its three candi-
date code snippets from the CSN Python dataset. Snip-
pets 1 and 2 exhibit higher word overlap (i.e., superficial
similarity), yet Snippet 3 is the correct target.

Code embedding models are typically trained
with contrastive learning. Here, the model learns
embeddings of NL queries or codes by pulling se-
mantically similar positive pairs closer and pushing
semantically unrelated negative pairs apart (Shi
et al., 2023; Li et al., 2022a; Zhang et al., 2024).
Each batch contains multiple positive pairs, and a
sample in a positive pair forms a negative pair with
another sample outside the pair. The training objec-
tive is to minimize the distance between positive
pairs relative to all in-batch negative pairs using the
InfoNCE loss function (Oord et al., 2018).

However, most previous work relies on the dif-
ference between positive and negative pairs (i.e.,
major difference). This approach may result in
superficial semantics due to the sparse nature of
code context, where even a subtle change can lead
to significant variations in functionality and mean-
ing. To illustrate this insight, we present a sample
from the CSN Python dataset in Figure 1. Focusing
solely on major differences may lead to matching
the query with code snippets 1 and 2, which only
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exhibit superficial similarity through word overlap.
Detailed elaboration can be found in appendix A.

To address this concern, we aim to research how
to exploit subtle differences among negative pairs
to improve code search. Prior work has primarily
focused on intra-differences among negative pairs
in two ways: some models have investigated “hard”
negative pairs, which are difficult for models to dif-
ferentiate (Karpukhin et al., 2020; Gao et al., 2021a;
Zhang et al., 2021), while others have adopted
weighted optimization objectives to automatically
balance learning from both hard and easy negatives
(Li et al., 2022b, 2023; Zhuang et al., 2024). De-
tails of existing methods for hard negative samples
can be found in appendix B. In contrast, we propose
OASIS (Order-Augmented Strategy for Improved
code Search), which leverages order-based similar-
ity labels to capture deeper semantic nuances. In
this way, OASIS can better distinguish subtle differ-
ences among negative pairs through finer-grained
comparisons for effective code search.

Concretely, OASIS leverages LLMs to gener-
ate high-quality docstrings for function-level code
snippets, treating these docstrings as equivalent
to queries (Li et al., 2022a; Zhang et al., 2024).
Within the same repository, it pairs these code snip-
pets with docstrings from other functions to create
highly similar negative pairs, assigning them sim-
ilarity labels. They act as order labels, providing
additional order-augmented training signals to help
the model distinguish between negative pairs. To
further improve the quality of the similarity labels,
a program analysis approach is employed to iden-
tify inaccurately labeled sample pairs, and an LLM
is utilized to generate refined similarity labels.

Building on OASIS, we automatically synthe-
sized a large-scale training dataset with 53 million
NL-Code pairs across 9 programming languages
for code search. Subsequently, high-quality code
embeddings were trained on this dataset and evalu-
ated on three widely-used code search benchmarks:
AdvTest (Lu et al., 2021), CodeSearchNet (Husain
et al., 2019), and CoSQA (Huang et al., 2021).

The main results first show that OASIS achieved
state-of-the-art (SOTA) performance across all
datasets, with an average improvement of 3% in the
NL2Code tasks and 9% in the Code2Code tasks.
These demonstrate the usefulness of capturing sub-
tle differences among negative samples and the ef-
fectiveness of order labels in identifying them. An
ablation study then indicates that all components
of OASIS contribute positively to its effectiveness.

Finally, we further analyze OASIS outputs, uncov-
ering its superiority in handling hard (challenging)
cases and interpreting how it enhances code search.

In summary, our contributions are as follows:
• To the best of our knowledge, OASIS is the

first code embedding model to explore subtle dif-
ferences among negative pairs using order labels.
• Building on OASIS, we contributed syn-

thesized training data with million-scale, multi-
language NL-Code pairs to advance code search.
• Extensive experimental results demonstrate

that subtle differences among negative pairs are
crucial for effective code embedding training.

2 Related Work

OASIS is in line with previous work on code em-
bedding, which builds upon the concept of text
embedding. Text embedding aims to generate high-
dimensional vectors that encode the semantic repre-
sentations of text based on its context. Many prior
studies have utilized contrastive learning to inves-
tigate semantic similarity for embedding learning
(Zhang et al., 2020; Gao et al., 2021b; Chuang
et al., 2022; Zhuo et al., 2023). Given the presence
of similarity labels in the STS (Semantic Textual
Similarity) datasets, many studies concentrate on
utilizing this label as an additional optimization tar-
get to enhance text embedding capabilities, which
proved to be effective (Liu et al., 2023; Seonwoo
et al., 2022; Huang et al., 2024; Li and Li, 2023).
However, code embeddings remain relatively un-
derdeveloped due to the challenges of similarity
labeling compared to text, attributed to the sparse
context of code. Our work aims to mitigate the gap.

OASIS is also related to broader code-related
tasks. Inspired by the NLP paradigm, the typical
practice involves representation learning through
pre-training on a large code corpus, followed by
fine-tuning for specific downstream tasks (Feng
et al., 2020; Tan et al., 2024b). Here, code em-
bedding is a crucial pre-training task, aiming to
align code semantics with NL queries for code
search. Following text embedding, they employ
contrastive learning to explore code similarity (Guo
et al., 2022; Shi et al., 2023; Zhang et al., 2024).
Some also incorporated code structures, such as
data flow or Abstract Syntax Trees (AST), as auxil-
iary objectives (Guo et al., 2020, 2022).

However, most previous work relies on major
positive-negative differences, ignoring subtle dif-
ferences among negative pairs crucial for learning
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code semantics in sparse contexts. While some
explored weighted training to emphasize harder-
to-distinguish negative pairs (Li et al., 2022a,b,
2023), OASIS proposed order labels to enable finer-
grained comparisons to explore subtle differences.

3 OASIS Framework

In this section, we will introduce the fundamental
framework of the OASIS method, as depicted in
Figure 2. Initially, the dosctring generation and
similarity generation module will be discussed in
Section 3.1. This will be followed by an exposition
on the refinement approach for similarity in Section
3.2. Section 3.3 will encompass the optimization
objectives for the overall training phase of OASIS.

3.1 Similarity Annotation

The essential thought of OASIS is to fully exploit
the implicit information among negative sample
pairs, which necessitates high-quality queries of
code and high-quality sample pair similarity data.
Docstrings can serve as the natural language de-
scription for code which is functionally considered
semantically analogous to a query. The code and
the corresponding docstring are considered as a
positive pair and should be embedded to the same
vector space (Li et al., 2022a; Zhang et al., 2024).

The data for the OASIS method is sourced from
open-source code on GitHub. To ensure the quality
and consistency of the docstrings, the initial step 1
in the training methodology involves the generation
of docstrings for code snippets. This process begins
with program analysis at the repository level, where
information about the function’s callers and callees
is extracted. This additional information, along
with the code itself, is incorporated into a prompt to
facilitate the generation of docstrings by an LLM.

Subsequently, the docstrings generated for all
functions within a repository are utilized for data
augmentation and similarity generation in step
2. Specifically, for a given docstring A, K other
code snippets are randomly selected from the same
repository to form negative sample pairs. The simi-
larity labels for these negative sample pairs are then
calculated using embeddings generated by another
embedding model. The rationale for this approach
is that code within the same repository often shares
similar semantics and functions, and may even
overlap lexically to a significant extent. This natu-
rally results in a large pool of high-quality negative
sample pairs, which, while similar to the original

sample pairs, still exhibit subtle differences. The
similarity score can help to distinguish the false
negative pairs by simply assigning a high similar-
ity. In Equation 1, Q represents the query, which
is the docstring for code fragment i during train-
ing. N signifies the number of functions within a
repository, and Cjk∈N\{i} denotes the procedure
of randomly selecting K code snippets other than i,
to be paired with Q to form new sample pairs. The
term sim is the similarity score calculated from
embeddings, which lies in the interval [0, 1).

(Cjk∈N\{i}, Qi, sim ∈ [0, 1)), k ∈ {1, ...,K} (1)

3.2 Similarity Refinement

The third step involves finely calibrating the simi-
larity derived from the second step. The similarity
labels from the second step can help the model
shape an approximate similarity relationship, but
utilizing data annotated with similarity scores de-
rived from an embedding model may constrain the
performance of the model below that annotation
model. Therefore, precisely adjusting the similar-
ity can further enhance performance. A ‘candidate
pair’ refers to an inaccurately annotated pair within
the negative sample pairs, which are derived from a
positive pair. The similarity refinement is done by
selecting candidate pairs and adjusting similarity.

Two methods are employed to extract candidate
pairs requiring refinement. The first method filters
candidate pairs based on the similarity scores, em-
ploying Gaussian Mixture Model (GMM) to fit the
distribution of similarity scores across all sample
pairs. Here, the similarity scores exhibit a bimodal
distribution, with one peak corresponding to pos-
itive pairs and the other to negative pairs. The
intersection of these two distributions is taken as
the threshold value s∗ for delineating positive and
negative sample pairs. The equation is as below:

f(x) =
1√
2πσ2

1

exp

(
− (x− µ1)

2

2σ2
1

)

=
1√
2πσ2

2

exp

(
− (x− µ2)

2

2σ2
2

)
= g(x)

(2)

where f, g are the resulting distributions from
GMM. If the similarity of a negative pair exceeds
this threshold s∗ or surpasses the similarity of the
corresponding positive pair’s, then the similarity
score of this negative pair is likely to be inaccurate.

The other method selects candidate pairs whose
code and the original code’s parsed Abstract Syntax
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Figure 2: The overall framework of OASIS. OASIS begins by using program analysis to enhance prompts for
pairing code with generated docstrings. Then, these pairs are augmented and annotated for similarity, after which
suboptimal labeled negative pairs will be selected with AST and threshold strategies and similarity will be adjusted
subsequently. Finally, these refined similarity labels are used in the optimization of hybrid objective.

Tree (AST) have a low ratio of edit distance to the
sum of the nodes of both trees, which means only a
few of the nodes are required to be modified to be
the other AST. This selection method compensates
for candidate pairs that are structurally similar in
code but dissimilar at the lexical level.

Finally, an LLM is used to determine, with the
docstring as a query, whether the candidate code
or the code of the positive pair better answers the
query. If LLM determines the candidate code can
also satisfy docstring, then similarity of candidate
pair is adjusted positively with ∆s, which is the op-
timal value attained by grid search. This approach
is inspired by the robust performance of LLMs in
binary choice tasks. Directly scoring pairs with an
LLM typically results in most negative pairs’ scores
clustering near zero, which makes it challenging to
provide high-quality similarity adjustment. Elabo-
ration with example is presented in appendix C.

3.3 Training Process of OASIS

During the training phase of OASIS, we adopt two
distinct optimization objectives. The first objec-
tive employs the traditional InfoNCE loss function,
where the similarity of positive sample pairs within
a batch serves as the numerator, and the similarity
across all other negative samples within the batch

forms the denominator, as follows:

Libn = −
∑

b

m∑

i=1

log
[ exp(cos(hi, h

+
i ))/τ∑N

j=1 exp(cos(hi, hj))/τ

]
(3)

where τ is a temperature hyperparameter, b stands
for the b-th batch, hi and h+i represents the embed-
dings of a positive pair, and hj is the embedding
of every sample from the same batch, m represents
the number of positive pairs in b-th batch, N is the
batch size, and cos() is the cosine similarity.

The second loss function utilizes CoSENT
(Huang et al., 2024), which uses the order of sam-
ple pair similarities within a batch as the objec-
tive. It aims to align the predicted rank of sample
pair similarities with that of the ground-truth la-
bels. This optimization objective does not focus
on the specific similarity values of sample pairs
but rather on their relative relationships. For in-
stance, if the ground-truth label indicates that the
similarity between pairs (i, j) is greater than that
between (m,n), and model predicted similarity is
smn > sij , this will contribute to the loss; con-
versely, if the prediction is correct, it will be disre-
garded. The order objective function is as below:

Lcos = log


1 +

∑

sij>smn

exp
(cosnm − cosij

τ

)



where cosij = cos(hi, hj)

(4)

18454



where τ is a temperature hyper-parameter, sij is
the similarity between embeddings hi and hj , smn

is the similarity between embeddings hm and hn.
smn > sij is relationship from the ranking of train-
ing data labels generated from previous step.

Through this approach, the model can learn
more nuanced differences between sample pairs
and uncover implicit information that may be over-
looked by InfoNCE. Essentially, InfoNCE focuses
on forming a general embedding for the positive
pair, whereas CoSENT concentrates on refining the
embedding through relative relationships.

L = w1 · Libn + w2 · Lcos (5)

Ultimately, two loss functions above are combined
to form the overall optimization objective, with
w1 and w2 serving as hyper-parameters to balance
these objectives. The exact values of all hyper-
parameters are specified in appendix E.

4 Experimental Setup

In this section, we will provide a detailed elabora-
tion of the experimental setup, including datasets,
baselines, and evaluation metrics. An extensive
training setting is available in the appendix F.

Dataset. Following the experimental setup of
CodeSage (Zhang et al., 2024), we utilized the
Stack (Kocetkov et al., 2022) dataset as our training
data, which is collected from open-source reposito-
ries on GitHub. We randomly sampled 140k repos-
itories containing various languages from the Stack
dataset. These repositories were subsequently pro-
cessed using the method described in Section 3,
resulting in 53 million high-quality data across
nine languages. The statistics of the dataset are
presented in Table 2. We maintained a comparable
quantity across the various languages, demonstrat-
ing that our data synthesis method can enhance
model performance across diverse languages.

For evaluation purposes, we conducted assess-
ments on several widely used code search datasets.
The benchmarks were categorized into two types:
natural language to code (NL2Code) and code to
code (Code2Code) searches. The NL2Code cate-
gory includes the datasets CoSQA (Huang et al.,
2021), AdvTest (Lu et al., 2021), and CodeSearch-
Net (Husain et al., 2019), which is extended with
extra candidate codes in GraphCodeBert (Guo
et al., 2020), named CSN (CodeSearchNet). For the
Code2Code section, we employed CodeSage’s ex-

tended language dataset, which includes additional
6 languages along with the original 3 languages.

Evaluation Metrics. For the NL2Code tasks, all
three datasets employ natural language queries to
retrieve code from repositories, where there is only
one target code. Consequently, Mean Reciprocal
Rank (MRR) is commonly used as the evaluation
metric, with higher scores awarded for higher rank
of the target code in the retrieval results. In this
instance, we adhere to the CodeSage setting by
employing an MRR@1000 configuration. For the
Code2Code retrieval tasks, as each code query has
multiple relevant codes, the Mean Average Preci-
sion (MAP) is utilized as the metric for evaluation.

Baselines. In our study, we conducted compar-
isons with several prominent code embedding mod-
els. Open-source models included CodeBERT
(Feng et al., 2020) and GraphCodeBERT (Guo
et al., 2020), which utilize masked language mod-
eling (MLM) for pretraining, and UnixCoder (Guo
et al., 2022), which uses contrastive learning. Ad-
ditionally, we evaluated CodeSage (Zhang et al.,
2024), which have been fine-tuned after pretrain-
ing with extensive data. Closed-source models
in the comparison comprised OpenAI-Embedding-
Ada-002 (OpenAI, 2023b) and OpenAI-Text-
Embedding-3-Large (OpenAI, 2023a).

The primary objective of the OASIS method was
to propose a novel training approach for code em-
bedding models. To validate the effectiveness of
this method, training was not conducted using the
dataset included in the benchmark. Instead, train-
ing utilized data augmented from open-sourced
code from github, which excludes data from the
test set. Consequently, many code embedding mod-
els that were trained on the CodeSearchNet (Hu-
sain et al., 2019) training set were not considered
in this analysis. It should be noted that some of
zero-shot performance results for some baselines
was sourced from CodeSage (Zhang et al., 2024).

5 Experimental Results

Section 5.1 will present the main experimental com-
parative results, while Section 5.2 will be dedicated
to ablation studies. Subsequently, in Section 5.3,
we will further discuss the OASIS framework.

5.1 Main Comparison Results

In the NL2Code search domain, Table 1 demon-
strates that OASIS (1.5B) consistently outperforms
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Model CoSQA AdvTest CSN

Python Java JS PHP Go Ruby Avg

Closed-source Models

OpenAI-ada-002 44.23 38.08 68.02 71.49 67.50 60.62 85.63 74.72 71.33
Text-Embedding-3-Large 55.38 46.84 70.84 72.92 68.13 59.59 87.64 75.25 72.40

Open-source Models

CodeBERT 0.24 0.06 0.05 0.03 0.04 0.02 0.14 0.34 0.10
GraphCodeBERT 16.20 5.58 10.37 8.59 7.29 8.07 12.47 20.79 11.26
UnixCoder 42.11 27.32 42.17 43.92 40.46 35.21 61.39 55.22 46.39
CodeSage-large 47.53 52.67 70.77 70.21 69.50 61.33 83.71 71.92 71.24

OASIS 55.77 57.27 73.69 73.97 69.80 63.84 88.21 75.47 74.16

Table 1: Evaluation results (MRR scores) of NL2Code Search in zero-shot setting. Results of open-source baselines
are obtained from Zhang et al. (2024) and closed-source by our re-implementation. OASIS achieves the best results
in all columns (in boldface) with significant performance gains compared to all others on average (p < 5%).

Language Number Proportion %

Python 9, 138, 603 16.98
Java 6, 033, 337 11.21
JavaScript 8, 307, 821 9.55
TypeScript 4, 690, 087 15.43
C# 5, 141, 546 8.71
C 1, 032, 574 1.92
Ruby 4, 487, 369 15.43
PHP 6, 686, 344 12.43
GO 8, 307, 821 8.34

Total 53, 825, 502 100

Table 2: Number and Proportion of order-augmented
sample pairs in each language of training dataset.

all open-source baseline models and closed-source
models on every language. Compared to the pre-
vious open-source state-of-the-art (SOTA) model,
Codesage-Large, OASIS achieved a relative im-
provement of 17.34% (an absolute increase of
8.24%) on the CoSQA dataset, and a relative
improvement of 8.73% (an absolute increase of
4.60%) on the AdvTest dataset. Across all lan-
guages in the CodeSearchNet, OASIS surpassed
Codesage, with an average performance gain of
4.10% (2.92% in absolute terms) across six lan-
guages. Notably, OASIS’s performance exceeded
that of two closed-source models by OpenAI across
three datasets. It is important to highlight that
although OASIS’s similarity labels were gener-
ated by Text-Embedding-3-Large, OASIS’s perfor-
mance exceeded that of Text-Embedding-3-Large,

further evidencing the efficacy of the method.
In the code-to-code search context, Table 3 illus-

trates that OASIS consistently surpasses all base-
lines in the same-language searches across all nine
languages. Specifically, OASIS achieved an av-
erage relative improvement of 75.16% (an abso-
lute increase of 20.54%) and 63.66% (an abso-
lute increase of 18.62%) over the closed-source
embedding models OpenAI-ada-002 and Text-
Embedding-3-Large, respectively. These improve-
ments are notably significant. Compared to the
open-source state-of-the-art model, CodeSage, OA-
SIS registered an average improvement of 24.31%
(9.36% in absolute terms). Remarkably, in Python,
C, Javascript, and PHP, OASIS achieved an in-
crease of over 10% in absolute MAP score, under-
scoring its robust performance in these languages.

From the results of the two experiments above,
the following observations can be made: 1. OA-
SIS significantly outperforms all the baselines on
average. 2. The margin on the Code2Code task
(which is more challenging) is larger, indicating
that subtle differences are crucial for code seman-
tic understanding. 3. Performance improvements
are observed across all languages, supporting the
language-agnostic effectiveness of OASIS.

5.2 Ablation Study

OASIS demonstrated robust performance in previ-
ous benchmarks, prompting us to conduct ablation
experiments to investigate the contributions of dif-
ferent modules. The results are depicted in Table 4.
Initially, we assessed the impact of 2 loss functions
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Model Python Java JS TS C# C Ruby PHP GO Avg

Closed-source Models

OpenAI-ada-002 35.91 25.13 19.01 21.86 10.17 29.15 40.85 40.47 23.43 27.33
Text-Embedding-3-Large 41.51 25.75 22.40 22.45 11.56 32.82 41.70 43.47 21.57 29.25

Open-source Models

CodeBERT 14.40 7.62 5.47 6.05 3.66 5.53 13.55 10.28 6.27 8.09
GraphCodeBERT 19.23 10.78 7.38 8.65 5.54 8.48 19.69 15.67 9.65 11.68
UnixCoder 30.77 16.45 21.32 21.95 6.19 15.62 32.33 31.93 13.94 21.17
CodeSage-large 46.70 33.13 37.16 41.18 16.81 32.89 54.12 52.13 32.48 38.51

OASIS 66.27 37.26 47.71 51.15 22.18 49.38 58.60 64.06 34.18 47.87

Table 3: Evaluation results (MAP scores) of zero-shot Code2Code Search. Results of open-source baselines are
obtained from Zhang et al. (2024) and closed-source by our re-implementation. OASIS achieves the best results in
all columns (in boldface) with significant performance gains compared to all others on average (p < 5%).

Model MRR

OASIS 69.75
OASIS (w/o sim refinement) 69.15

Objective

only order objective 67.33
only contrastive objective 65.49

Selecting Strategy

only use AST candidate pair 69.46
only use threshold candidate pair 69.26

Table 4: The ablation study of OASIS on NL2Code
benchmarks (average MRR@1000 on 3 datasets).

on the performance of OASIS. The experiment in-
dicated that removing either of the loss functions
resulted in performance degradation, and combined
loss yielded optimal results. However, the order-
based optimization objective is more critical than
the contrastive optimization objective, which con-
tributes more significantly to the training outcomes.

Secondly, adopting different strategies to adjust
similarity labels can produce more precise similari-
ties, thereby enhancing the quality of the training
data. Two adjustment strategies focus on different
aspects: the threshold selection strategy directly
extracts a small number of suspicious pairs, while
the AST strategy is employed to filter out a large
volume of low-similarity pairs. Both candidate pair
selection strategies are equally important and con-
tribute to the performance improvement of OASIS.

Thirdly, Table 4 also proved that our perfor-
mance improvements are not solely attributed to

LLM-generated docstrings. Our model achieves
an NL2Code task performance of 65.49 when
using only vanilla InfoNCE loss and the LLM-
generated dataset (baseline loss with llm-generated
docstring), which is even slightly below the average
performance of CodeSage-Large (65.96). Notably,
CodeSage’s dataset is derived from docstrings ex-
tracted directly from the original code using AST.
The slightly lower performance could be attributed
to the lack of weight term for negatives in the In-
foNCE loss, potentially making the model suscep-
tible to false negative pairs. When incorporating
order-based loss on the same dataset, the model
achieves a 1.8% improvement in MRR. Further-
more, the two distinct similarity refinement strate-
gies each contributes additional improvements to
the model’s overall 4.26% improvement, which
proves the effectiveness of our method does not
stem from high-quality LLM-generated docstrings.

Finally, as our model is slightly bigger, we con-
ducted experiments on earlier and smaller-scale
models to mitigate the influence of the model’s in-
herent capabilities. The results demonstrate that
the performance improvement does not stem from
the inherent strength of the backbone model itself
but rather from the generalizability of the method.
Appendix D presents a detailed analysis.

5.3 Further Analysis

To provide further insights, we deeply explored
how OASIS can generate high-quality embeddings.
We probed the effectiveness of OASIS from three
perspectives: through analysis of hard subsets, vi-
sualization of embeddings, and case studies.
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Hard Subset. To provide a more detailed evalu-
ation of OASIS’s performance within the test set,
we extracted a hard subset from the CodeSearch-
Net dataset, specifically from the Python subset,
comprising samples where all three models under
study exhibited poor performance. These poorly
performing samples are defined as instances where,
given a query, the target code snippet does not rank
first among the retrieved candidate snippets. OA-
SIS utilizes order-augmented data, wherein sam-
ple pairs with different similarity labels are sep-
arately calculated for distance in comparison to
positive sample pairs. Order-augmented approach
enables the model to better discern which compo-
nents contribute to the functionality required by the
query. Consequently, the number of poorly per-
forming samples in OASIS is relatively low, and in
these samples, the rank of target code in retrieved
candidates is generally higher. In the python sub-
set, OASIS’s Mean Reciprocal Rank (MRR) sig-
nificantly surpasses that of CodeSage-Large and
Text-Embedding-3-Large, with the improvements
of 5.46% and 5.35% as shown in Table 5. Other
languages’ results can be found in the appendix G.

Figure 3: Comparison of MDS visualizations between
the model without the order-augmented data (left) and
OASIS (right), where each colored dot represents a
query and its corresponding top 50 candidate codes.
Dots with black edges indicate queries and their target
codes. Color depth denotes the magnitude of similarity.

Visualization. Figure 3 presents a MDS visual-
ization, where the model with the same setting

Model MRR

CodeSage-Large 45.67
Text-embedding-3-large 45.78
OASIS 51.13

Table 5: The Performance on hard samples of Code-
SearchNet Python subset (MRR@1000)

Figure 4: An example of similarity reassignment in-
volves a step function and docstring from a Reinforce-
ment Learning system. Below is a similar candidate
function of the same repo. The yellow sections mark
functional equivalent parts of the functions. The candi-
date code also satisfies the description in the docstring,
then, the similarity score for the negative pair of the
docstring and candidate code was increased by 10%.

except for the absence of the order-augmented data
on the left and the OASIS model on the right.

It is observable that, in comparison with the
model without order-augmented data, the embed-
dings produced by OASIS result in shorter dis-
tances between each query and its target code. Each
query and all its retrieved candidate codes are dis-
tributed within a relatively distinct space, exhibit-
ing less overlap with other queries and candidate
codes. This distribution indicates that subtle differ-
ences aid in learning in-depth semantics and helps
model attend to more essential features, which is
particularly important in code’s sparser context.

Case Analysis. To more intuitively understand
how the OASIS method assists the model in more
effectively learning code embeddings, we also
present a case in Figure 4. The docstring is gen-
erated by LLM for the reference code, forms a
positive pair with the reference code, exhibiting a
similarity score of 1.0. This docstring accurately
describes the main functionality of the code, which
is to perform a single update step in a reinforcement
learning system and then return updated reward and
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other information. The code snippet shown below,
drawn from the same repository, forms a negative
pair with the docstring, annotated with a similarity
score of 0.6397, which indicates that this candidate
code is also highly similar to the docstring.

The yellow rectangles highlight similar sections
between the two code snippets, with the primary
difference that the candidate code includes condi-
tional checks on object’s lives and some additional
processing. The candidate code could also fulfill
the description in the docstring, albeit with some
variations in the implementation details; thus, the
model suggests that candidate code could poten-
tially be closer to the docstring. Based on this as-
sessment, the similarity score of the docstring and
candidate code pair was increased from 0.6397 to
0.7037 (a 10% increase). This adjustment reduces
the distance between this code embedding and the
docstring while increasing the distance from other
negative pairs with lower similarity in the same
batch, thereby achieving more precise code em-
beddings. Order-augmented data provides an ad-
ditional, ladder-like signal that enables the model
to incrementally approach the code from the query
step by step. It instructs the model to focus on
the components that fundamentally represent the
functionality, as well as on those aspects that subtly
distinguish the code from the intent of the query.

6 Conclusion

This paper presents OASIS, a novel code embed-
ding model that employs order labels to explore
subtle differences among negative NL-code pairs.
It engages a three-step data synthesis method with
a hybrid order-based optimization objective, con-
tributing million-scale multi-language training data.
Extensive evaluation on popular code search bench-
marks shows that OASIS pushes SOTA results for-
ward on both NL2Code and Code2Code tasks.

Limitations

Due to constraints in GPU resources, we were
unable to extend our method to larger-scale mod-
els. Besides, Our approach is dependent on Ope-
nAI’s LLM, and employing alternative open-source
LLMs may yield nuanced variations in searching.

Ethics Considerations

This study exclusively uses OpenAI’s model for
research purposes, fully adhering to OpenAI’s busi-
ness terms. We rely on OpenAI’s services for data

annotation and do not engage in the development
or commercialization of competing products. Fur-
thermore, we ensure that no derived models are
distributed or shared with third parties, strictly com-
plying with all ethical and legal standards.
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A Elaboration of Motivation Case

The Figure 1 demonstrates the failure to retrieve
the correct result, the inability to effectively re-
trieve relevant results can be attributed to primar-
ily focusing on superficial major features, such as
keyword overlaps or approximate semantic match-
ing. For instance, the code snippet ranked first was
prioritized due to direct overlaps of keyword “pa-
rameter”, while the second-ranked snippet gained
precedence by including more keyword “layer” (7,
compared to 4 in the third-ranked example). In
the top-2 cases, it appears that parameter names
were matched to the query to some extent. How-
ever, subtle differences that are critical for semantic

alignment were overlooked. Specifically, in rank
1, the snippet actually returns the column count
or cached output rather than the parameter itself,
and rank 2 also returns an output rather than the
parameter. By contrast, the target code correctly
returns the actual parameter, highlighting the in-
adequacy of existing methods in capturing these
nuanced distinctions.

B Analysis of Existing Method for Hard
Negative Samples

The methods of leveraging hard negative samples
for training can be categorized into two approaches.

The first approach (Karpukhin et al., 2020; Gao
et al., 2021a; Zhang et al., 2021) involves selecting
hard negative pairs by identifying sequences with
high similarity to the current sequence based on
metrics such as cosine similarity or BM25, while
ensuring these sequences are actually dissimilar.
These hard negative pairs are then combined with
the original positive pairs and randomly selected
negatives to construct the training dataset. During
training, the loss function does not apply any spe-
cial treatment to the hard negative samples. The
model may be confused and struggle to identify the
nuanced differences that decide whether it is the
target code.

The second approach (Li et al., 2022b, 2023;
Zhuang et al., 2024) does not explicitly construct
hard negative pairs. Instead, it introduces a weight-
ing mechanism into the InfoNCE loss, where the
model assigns lower weights to hard negatives. Es-
sentially, this approach ignores the high similarity
of hard negatives and treats them as regular nega-
tive samples. Consequently, the observed perfor-
mance improvement may stem from mitigating the
adverse impact of false negatives on the model.

C A Detailed Elaboration with Examples
for Main Method

The case presented in the introduction demonstrates
that existing methods struggle to capture subtle dif-
ferences, particularly for code snippets that appear
to match the query but are, in fact, dissimilar. These
code snippets along with the query comply with
the definition of hard-negative pairs. Traditional
approaches for incorporating hard negative pairs
suffer from their respective limitations. To address
this, in our method, after Step 3.1, we obtain triplet
data in the form of (NL,Code, Sim), where each
natural language (NL) or code query is associated
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with multiple code snippets. For a given NL query,
the dataset contains multiple pairs with different
code with varying similarity scores, such as:

(NL1, code1, sim1 = 1.0(0.6)),

(NL1, code2, sim2 = 0.7),

(NL1, code3, sim3 = 0.5),

(NL1, code4, sim4 = 0.2).

(6)

The similarity of 0.6 is annotated by embedding
model, it is manually set to 1.0 during training as it
is a positive pair.

While code2 and code3 are not the target code,
their similarity scores with remain relatively high
compared to unrelated samples. This indicates that
(NL1, code2) and (NL1, code3) constitute hard
negative pairs. Unlike traditional methods, our
approach has two key features:

Preserving Relative Similarity through Order
Loss: Instead of treating hard negative pairs as
purely negative samples, the order-based loss lever-
ages the relative similarity among these pairs. It
trains the model to preserve the order relationship
of similarity scores, capturing the subtle distinc-
tions between them.

Progressive Learning with Hard Negatives:
Each NL or code query forms multiple hard neg-
ative pairs with varying degrees of similarity, cre-
ating a sequence of progressively harder negative
samples closer to the positive target. For instance,
the model may learn that the dissimilarity between
code3 and the target code arises from two minor dif-
ferences, whereas the dissimilarity between code2
and the target code stems from only one small de-
tail. This progressive learning enables the model
to focus on the nuanced variations that distinguish
hard negatives from the target code, rather than
fully regarding them as irrelevant negatives. By
doing so, the proposed framework effectively cap-
tures these fine-grained differences and enhances
the model’s ability to distinguish between similar
yet non-identical code snippets.

C.1 Concrete details of two methods (filtering
strategies)

To fully utilizing hard negative pairs with order-
based loss, it is essential to ensure that the similar-
ity labels provided have a high degree of accuracy.
However, the labels generated by other embedding
models are often suboptimal and require more fine-
grained adjustments. To address this, we propose

two distinct strategies for selecting pairs that re-
quire refinement. Using the earlier example of:

(NL1, code1, sim1 = 1.0(0.6)),

(NL1, code2, sim2 = 0.7),

(NL1, code3, sim3 = 0.5),

(NL1, code4, sim4 = 0.2).

(7)

The two strategies are as follows:
Threshold-Based Suspicious Candidate Fil-

tering: If, for a given NL-query (e.g., NL1), any
negative pair with NL1 exhibits a similarity score
that exceeds the original annotated similarity of the
positive pair (e.g., code2) or crosses the threshold
where the distribution of positive and negative sam-
ples overlaps (e.g., code3), such pairs are chosen
as suspicious candidate pairs. Because these pairs
exhibit a higher similarity compared to the posi-
tive pair or compared to the statistical boundary
of average positive and negative pairs. This indi-
cates that these negative pairs may require further
adjustment.

Structural Similarity-Based Filtering: Even if
a negative sample has a low similarity score (e.g.,
code4 with sim4 = 0.2), it is also marked as a sus-
picious candidate pair if its Abstract Syntax Tree
(AST) exhibits a certain degree of structural sim-
ilarity to the AST of the target code (e.g., code1
). This suggests that structurally similar negative
samples may warrant additional adjustment.

The flagged suspicious candidate pairs (e.g.,
(NL1, codek, simk)) are then input to LLM along-
side the positive pair (e.g., NL1, code1). The
model is tasked with determining whether the neg-
ative samples (e.g., codek) better address the NL-
query (e.g., NL1) in some way. If the model con-
firms this hypothesis, the original similarity score
simk is adjusted by applying a small positive offset
proportional to a scaling factor ∆s, such that:

simk = simk ∗ (1 + ∆s) (8)

This adjustment process refines the similarity
scores, leading to improved overall performance.
The purpose of both strategies is to identify and flag
potentially inaccurate suspicious candidate pairs
for further processing and refinement.

D Smaller Backbone Model

The performance margin may source from the
capacity and scale of the backbone model, and
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Model CoSQA AdvTest CSN

Python Java JS PHP Go Ruby AVG

Qwen2.5-Coder-1.5B (w/o training) 0.0186 0.0051 0.0048 0.0039 0.0067 0.0011 0.0034 0.0193 0.0065
OASIS (codebert-mlm) (125M) 56.71 42.49 63.32 65.66 60.04 55.82 83.12 67.84 65.97
CodeSage-small (130M) 49.92 41.28 64.38 63.19 60.01 54.71 77.66 63.20 63.68

Table 6: Detailed result (MRR score) of NL2Code Search in zero-shot setting. The results highlighted in bold
represent the global best performance. OASIS with codebert-mlm backbone achieved the best overall performance.

Qwen2.5-Coder-1.5B is indeed a powerful back-
bone model and it is slightly bigger than CodeSage-
Large (1.3B). To guarantee the generalization of
our method, we conducted experiments when train-
ing on small-scale and earlier non-decoder back-
bone model CodeBERT (Feng et al., 2020).

Table 6 shows the results of NL2Code tasks
when using codebert-base-mlm as backbone model.
We use the hidden states of cls token as the em-
bedding. It clearly shows that the backbone model
Qwen2.5-Coder-1.5B w/o training lacks the capa-
bility to perform retrieval tasks. When training with
backbone model of codebert, OASIS can still out-
perform CodeSage-small in the same scale. With a
margin of 2% on MRR on CSN, 6.8% on CoSQA,
and 1.21% on AdvTest, which proves the effective-
ness of our method on different scales of models.

E Training Settings

Model and Data. For training model, the train-
ing of OASIS utilized Qwen/Qwen2.5-Coder-1.5B
(Team, 2024) as the backbone model. For training
data, the statistical details of the training dataset
are presented in Table 2, which displays the quan-
tity and proportion of data in different languages
within the training dataset after processing through
OASIS. Evaluation scripts are available at https:
//github.com/Zuchen-Gao/OASIS.

Hyper-Parameter. In the order-augmented
phase, the parameter K was set to 5. The model
utilized for generating similarity scores was the
Text-embedding-3-large. Within the threshold
strategy for filtering candidate pairs, the threshold
s∗ was established at 0.4. Furthermore, in the AST
strategy, the filtering threshold was set at 0.25.
During the training of OASIS, the temperature
τ in the optimization objective was configured
to 0.05, and the weight for the contrastive loss
w1 was set at 0.98, while the weight for the order
objective loss w2 was configured at 0.02. The
input length was established at 1024 tokens, and

the pooling strategy employed was last token
pooling. A learning rate of 5e − 4 was utilized,
with a batch size of 5120. The random seed for the
training process was set to 3407, adhering to the
conclusions presented in Picard (2021). The results
were recorded from the first epoch. In the third
step of similarity refinement, it was necessary to
adjust the similarity of sample pairs that satisfy the
filtering criteria. We utilized grid search to explore
performance variations with different values of ∆s
on all of the NL2code validation set. Finally, from
three different values tested (0.05, 0.1, 0.2), the
optimal ∆s value of 0.1, which provided the best
results in Table 7, was used for the final setting.

This result explains why when adjusting sim-
ilarity judgments, we retain the original posi-
tive/negative role to avoid performance degrada-
tion caused by fluctuations in LLM outputs. This
decision ensures that the labeling quality of the
dataset is not entirely dictated by the LLM. As
demonstrated in Table 7, when the ∆s is in-
creased to 0.2—allowing for greater LLM inter-
vention—performance actually deteriorates.

F Evaluation Dataset

The data statistics for the NL2Code and
Code2Code benchmarks are displayed in Table 8.

NL2Code. The NL2Code task involves using a
natural language query to retrieve relevant code
snippets. We followed the settings of (Zhang et al.,
2024) and conducted evaluations across three dif-
ferent benchmarks. CoSQA consists of 500 queries
sourced from the web and 6268 candidate entries
from CodeSearchNet. CSN is a filtered version of
CodeSearchNet, encompassing six languages. Ad-
vTest is an adversarial benchmark processed from
python subset of CodeSearchNet, where identifiers
have been renamed to obscure semantic informa-
tion within variables, allowing for the assessment
of the model’s generalization capabilities.
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Model CoSQA AdvTest CSN Avg
Python Java JS PHP Go Ruby

OASIS (∆s = 0.05) 57.14 64.61 73.56 74.77 69.92 64.15 89.66 79.36 71.65
OASIS (∆s = 0.2) 57.65 64.73 73.31 74.65 69.62 63.91 89.40 79.33 71.58

OASIS (∆s = 0.1) 56.96 65.03 73.66 75.01 70.03 64.19 89.68 79.74 71.79

Table 7: Evaluation result (MRR score) of NL2Code Search in zero-shot setting on validation dataset. The results
highlighted in bold represent the global best performance. Best results are acquired when ∆s is set to 0.1.

Num
CoSQA AdvTest CSN

Python Python Python Java JS PHP Go Ruby

Query 500 19, 210 14, 918 10, 955 3, 291 14, 014 8, 122 1, 261
Candidate 6, 268 19, 210 43, 827 40, 347 13, 981 52, 660 28, 120 4, 360

Num Python Java JS TS C# C Ruby PHP GO

Query 15, 594 23, 530 6, 866 3, 385 11, 952 11, 260 11, 744 6, 782 9, 720
Candidate 15, 594 23, 530 6, 866 3, 385 11, 952 11, 260 11, 744 6, 782 9, 720

Table 8: Evaluation benchmark statistics of NL2Code (top) and Code2Code (bottom) Search.

Code2Code. The Code2Code task involves us-
ing a given code snippet as a query to retrieve all
relevant code snippets. We conducted tests using
an extended test dataset same to that in (Zhang
et al., 2024), which includes the original languages
of Python, Java, and Ruby, as well as six addi-
tional languages: C, C#, JavaScript, TypeScript,
Go, and PHP. The evaluation setup involves search-
ing within a codebase of the same language, mean-
ing the language of the given query is the same as
the language of the codebase being searched.

G Detailed Experimental Result

Ablation Study. Table 9 presents detailed results
of the ablation study for Table 4, demonstrating
that the OASIS model, when incorporating all mod-
ules, achieved the best performance overall. The
removal of any optimization objective from the
model invariably led to a degradation in perfor-
mance, with the hybrid optimization objective de-
livering the most superior results. Regarding dif-
ferent label refinement selection strategies, OA-
SIS consistently performs the best across all 6 lan-
guages in the CSN, and while there were minor fluc-
tuations in performance on CoSQA and AdvTest,
it still maintained equivalent levels of efficacy.

Detailed Hard Dataset Results. Table 10 show-
cases performance results in other languages, akin
to those displayed in Table 5, within the hard
dataset. It is important to note that since the hard
dataset does not contain samples where the tar-
get code rank is 0, the Mean Reciprocal Rank
(MRR) is highly likely to be less than 0.5. The
results indicate that across all hard datasets in
the NL2code search, OASIS consistently outper-
forms both CodeSage-Large and Text-Embedding-
3-large. This demonstrates that in samples where
performance is generally suboptimal across differ-
ent datasets, the search results of rank of target
code by OASIS tends to be superior on the whole.

Detailed Comparison. Table 11 provides de-
tailed insights into the comparisons for 6 languages
of CSN. Consistent with trends observed in Python,
OASIS, compared to CodeSage-Large and Text-
Embedding-3-large, demonstrates a greater num-
ber of wins than losses across all other datasets,
indicating a superior overall performance.

H Choice of Embedding Model

The accuracy of code similarity annotations sig-
nificantly affects the final performance of the
model. Different embedding models often ex-
hibit distinct similarity distributions. For example,
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Model CoSQA AdvTest CSN Avg
Python Java JS PHP Go Ruby

OASIS (full) 55.77 57.27 73.69 73.97 69.80 63.84 88.21 75.47 69.75
OASIS (w/o sim refinement) 54.87 57.52 73.21 73.69 68.84 62.70 87.77 74.60 69.15

Objective

only order objective 55.24 54.56 71.18 71.32 66.43 59.30 88.06 72.54 67.33
only contrastive objective 49.40 54.59 69.55 70.33 65.46 58.86 83.04 72.66 65.49

Selecting Strategy

only use AST candidate pair 55.81 57.16 73.29 73.87 69.47 63.43 87.76 74.86 69.46
only use threshold candidate pair 55.00 57.14 73.43 73.66 69.02 63.00 87.88 74.92 69.26

Table 9: Detailed ablation study result (MRR score) of NL2Code Search in zero-shot setting. The results highlighted
in bold represent the global best performance. OASIS achieved the best overall average performance.

Model CoSQA AdvTest CSN

Python Java JS PHP Go Ruby

OASIS 49.17 41.77 51.13 49.56 44.45 43.89 63.82 50.74
CodeSage-Large 38.72 35.53 45.67 42.11 44.19 39.96 49.87 43.34
Text-Embedding-3-Large 48.84 27.61 45.78 47.36 41.64 37.27 62.00 50.18

Table 10: Detailed result (MRR score) of NL2Code Search in zero-shot setting on hard datasets. The results
highlighted in bold represent the global best performance. OASIS achieved the best performance in every language.

Text-Embedding-3-Large tends to assign similarity
scores around 0.5 for positive pairs and approxi-
mately 0.05-0.3 for negative pairs. In contrast, gte-
Qwen1.5-7B-instruct assigns similarities around
0.4 for positive pairs and 0.2 for negative pairs, re-
sulting in a narrower similarity range. However,
while the absolute similarity scores vary across dif-
ferent embedding models, the order of similarity
scores within a sample group remain the same. For
instance, consider a positive pair and three corre-
sponding negative pairs:

(NL1, code1, sim1 = 1.0(0.6)),

(NL1, code2, sim2 = 0.7),

(NL1, code3, sim3 = 0.5),

(NL1, code4, sim4 = 0.2).

(9)

Here, the similarity score 0.6 for the positive pair
is manually adjusted to 1.0 during training. The
range of similarity scores (max-min) is 0.5. When
switching to another embedding model, the simi-
larity scores for the same group may shrink to a

narrower range, such as:

(NL1, code1, sim1 = 1.0(0.5)),

(NL1, code2, sim2 = 0.55),

(NL1, code3, sim3 = 0.4),

(NL1, code4, sim4 = 0.25).

(10)

In this case, the range is reduced to 0.3. Yet, the
relative order of similarity scores within the group
remains consistent. Since the loss function depends
on the relative ranking of similarity scores rather
than their absolute values, using different embed-
ding models may lead to changes in score variance
but does not affect the loss computation or the fi-
nal training outcomes. To empirically verify that
the similarity rankings annotated by different em-
bedding models are approximately consistent, we
evaluated two alternative models by re-annotating
similarity scores for the same dataset and measur-
ing the rank correlation. Specifically, for each NL,
the similarity scores of its corresponding code pairs
(e.g., (NL1, code1), (NL1, code2), etc.) were re-
annotated using the alternative models, and the
ranking consistency of a group was assessed using
the nDCG metric. The evaluation was conducted
on a randomly selected subset of 500,000 samples,
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VS. Win Tie Lose Total

CSN-Python

CS-L 3711 8526 2681 14918
TE3L 3492 9009 2417 14918

CSN-Java

CS-L 2718 6494 1743 10955
TE3L 2073 7080 1802 10955

CSN-JavaScipt

CS-L 714 1883 694 3291
TE3L 742 1933 616 3291

CSN-PHP

CS-L 4210 6514 3290 14014
TE3L 4431 6802 2781 14014

CSN-Go

CS-L 1375 6059 688 8122
TE3L 848 6538 736 8122

CSN-Ruby

CS-L 315 764 182 1261
TE3L 211 843 207 1261

Table 11: Detailed comparison of OASIS against other
models in 6 languages. CS-L is short for CodeSage-
Large, and TE3L is short for Text-Embedding-3-large.

containing approximately 90,000 unique NL-code
groups. The average nDCG scores for the two al-
ternative models are as follows:
• gte-Qwen2-1.5B-instruct: 0.9610
• e5-mistral-7b-instruct: 0.9914
These results demonstrate that when using dif-

ferent embedding models for similarity annotation,
the relative ranking of similarity scores within the
group of pairs with the same NL remain the same.
As a result, the training process and final loss re-
main consistent regardless of the embedding model
used for annotation.

I More Details

Computational Cost For similarity annotation
cost, due to separate annotation process, only a
rough estimate of the time can be provided. Over-
all, it took approximately 7 days to complete the
similarity annotation for the entire 53M dataset on
4 nodes (100 multi-process each). After the simi-
larity annotations and adjustments were finalized,
there was no additional computational overhead
during the training phase. This is because order-
based loss only relies on the hidden states from the
final layer of the model for computation, ensuring
that training efficiency remains unaffected.

Details about similarity refinement For simi-
larity refinement, the threshold-based strategy re-
quired approximately 84 hours (3.5 days) to com-
plete, whereas the AST-based strategy took around
60 hours (2.5 days). The refinement process was
conducted on a single node with 100 processes.
The final training dataset comprises 53,825,502
samples, of which 647,521 samples (1.2%) were
refined using the threshold strategy, 115,689 sam-
ples (0.2%) were refined using the AST strategy,
and the 98.6% of the samples remained unchanged.

J More Cases

Figures 5 and 6 illustrate two additional examples
of similarity refinement. Figure 5 presents a case
that triggered the AST filtering strategy. The ref-
erence code is derived from a solution to the pro-
gramming challenge of Advent of Code 2020, Day
10, which aims to identify all possible adapter ar-
rangements. The candidate code, predominantly
using single-letter variable names, loses semantic
information, resulting in a low initial similarity
score of 0.2662. However, the structural similarity
between the candidate and reference codes, due
to low AST edit distance, triggered the selection
strategy. Upon confirmation through the LMM, the
candidate code was an alternative implementation
for the challenge, so the similarity was increased
from 0.2662 to 0.2928.

Figure 6 presents another example where the
threshold filtering strategy was employed for simi-
larity refinement. The docstring describes the func-
tionality of the reference code as setting up a con-
figuration and then performing assertions on the
fields within this configuration dictionary. The can-
didate code also completes the configuration setup,
as highlighted by the yellow rectangles in the fig-
ure, which mark sections of identical functional-
ity. Although the candidate code tests different
fields, it also includes assertion, thereby fulfilling
the requirements described in the docstring. Con-
sequently, the similarity score was increased from
0.4871 to 0.5358.
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Figure 5: An example of similarity refinement when it
triggers AST filtering strategy. The docstring describes
a programming challenge from Advent of Code 2020,
Day 10 (Wastl, 2020). The use of single-letter variables
resulted in a notably low initial similarity score. How-
ever, the low edit distance between the ASTs of the two
code segments led to the selection of the candidate code.
The assessment by LLM confirmed that the candidate
code fulfills the requirements specified in the docstring,
thereby justifying a refinement of the similarity.

Figure 6: Another example of similarity refinement ob-
served in threshold filtering strategy. The docstring de-
scribes the function of the reference code as initializing
a configuration followed by performing assertions. The
candidate code also accomplishes configuration setup
and assertion evaluation. Consequently, adjustments
were made to the similarity measurement.
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