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Abstract

Topic modeling aims to discover the distribu-
tion of topics within a corpus. The advanced
comprehension and generative capabilities of
large language models (LLMs) have introduced
new avenues for topic modeling, particularly
by prompting LLMs to generate topics and re-
fine them by merging similar ones. However,
this approach necessitates that LLMs gener-
ate topics with consistent granularity, thus re-
lying on the exceptional instruction-following
capabilities of closed-source LLMs (such as
GPT-4) or requiring additional training. More-
over, merging based only on topic words and
neglecting the fine-grained semantics within
documents might fail to fully uncover the un-
derlying topic structure. In this work, we pro-
pose a semi-supervised topic modeling method,
LiSA, that combines LLMs with clustering
to improve topic generation and distribution.
Specifically, we begin with prompting LLMs
to generate a candidate topic word for each
document, thereby constructing a topic-level
semantic space. To further utilize the mutual
complementarity between them, we first cluster
documents and candidate topic words, and then
establish a mapping from document to topic
in the LLM-guided assignment stage. Subse-
quently, we introduce a collaborative enhance-
ment strategy to align the two semantic spaces
and establish a better topic distribution. Ex-
perimental results demonstrate that LiSA out-
performs state-of-the-art methods that utilize
GPT-4 on topic alignment, and exhibits com-
petitive performance compared to Neural Topic
Models on topic quality. The codes are avail-
able at https://github.com/ljh986/LiSA.

1 Introduction

Topic modeling is a key technique in text analysis,
aiming at uncovering underlying themes or top-
ics within a collection of documents, allowing for
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Figure 1: Cluster imbalance issues caused by topic
words of various granularities on bills from U.S. con-
gresses. Red color denotes topic words that are too
coarse-grained.

the automatic categorization of text based on these
themes (Abdelrazek et al., 2023). Conventional
topic models, such as Latent Dirichlet Allocation
(LDA) (Blei et al., 2003), model the topic-word
distribution and the document-topic distribution in
an unsupervised manner. BERTopic (Grootendorst,
2022), a cluster-based topic model, clusters docu-
ment embeddings derived from pre-trained models
on a large corpus, such as BERT variants (Devlin
et al., 2019), to identify topics. However, these
methods represent topics as word combinations
and often require domain expert annotations for
users to interpret them directly.

To address the above shortcuts, several topic
models based on large language models (LLMs)
have emerged, such as TopicGPT (Pham et al.,
2024) and PromptTopic (Wang et al., 2023). These
methods first rely on the language understanding
and generation capabilities of large language mod-
els (LLMs) (Radford et al.) to achieve compre-
hensive semantic analysis of documents and gen-
erate semantically consistent topic words. Then,
they simulate the clustering process by instructing
LLMs to classify a large number of topic words
into fewer themes, thereby refining and merging
the topics. However, due to the limited instruction-
following ability of LLMs, the consistency in the
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granularity of all topics during the topic generation
phase could not be guaranteed (Mu et al., 2024a),
as represented by the different colored blocks for
various levels of topics in Figure 1. Consequently,
LLMs are inclined to incorporate lower-level top-
ics into a few high-level topics, resulting in obvi-
ous long tail distribution after the topic refining
phase, where the topics are too coarse-grained to
mine latent information in the document or pro-
vide meaningful topics for subsequent applications.
Taking an example of PromptTopic (Wang et al.,
2023) as shown in Figure 1, when dealing with
Bills dataset, it tends to refine most topic words
to the law or regulation theme, resulting in most
documents concentrated in high-level topics. More-
over, relying on LLMs to merge similar topic words
from a large set introduces significant randomness
(the order of topic words in the prompts heavily
influences performance (Saito et al., 2025)), further
undermining the robustness of these methods. As
for TopicGPT, it directly instructs GPT-4 (Achiam
et al., 2023) to generate topics of consistent gran-
ularity with seed topics, alleviating long-tail dis-
tribution during the refinement stage. However, it
may require substantial resources and rely heavily
on seed topics provided by humans.

Additionally, since each topic word is derived
from summarizing the topic-level information of
the documents, these words often lose the semantic
details contained in the original documents. Conse-
quently, refining topic words only based on their in-
trinsic semantic information fails to fully uncover
the underlying topic structure within the docu-
ment. Moreover, when overly coarse-grained topic
words are present, directly assigning documents to
the cluster corresponding to its topic words, which
are formed during refinement, could lead to inac-
curate cluster assignments for documents. As
present in Figure 1, if LLMs generate a broad topic
word law for a document with main content about
education, this document would be assigned to the
wrong cluster that is semantically related to law.

To address the above issues, we propose LiSA,
a novel topic modeling method that collaborates
LLMs and clustering to obtain topics, and further
integrates neighboring semantic information from
topic-level and document-level to achieve a better
topic distribution. To fully mine the topics under
the corpus, we first construct a topic-level seman-
tic space by iteratively instructing LLMs to gener-
ate candidate topic words along with descriptions.
Then, we perform clustering on both candidate

topic words and documents to identify inconsisten-
cies between the semantic space of document-level
and topic-level, as well as reduce the randomness
of LLMs in merging candidate topic words. Subse-
quently, recognizing the complementarity between
the two semantic spaces, we establish a mapping
between them by assigning a sample from topic-
level to document-level and utilize LLMs to aid in
checking the low-confidence points, thereby initiat-
ing the alignment between the two semantic spaces
from a localized, single-point perspective. Fur-
thermore, we design a collaborative enhancement
strategy that trains two topic prediction networks
with a sophisticated loss function to achieve align-
ment from a global perspective, as well as obtain
the topic distribution of documents.

Our key contributions are as follows:

• We propose LiSA, a novel topic model that uti-
lizes LLMs to construct a topic-level seman-
tic space, which provides strong guidance in
modeling the topic distribution of documents.

• LiSA identify inconsistencies between the
topic-level and document-level semantic
spaces and then align them from a local to
global perspective, thereby reducing the im-
pact of topic words with inconsistent granu-
larities.

• We conduct extensive experiments and demon-
strate that our method outperforms state-of-
the-art method that utilizes GPT-4 in clus-
tering performance, i.e., an average of 1.5%,
6.0%, 2.0% improvement on Bills and Wiki
dataset for P1, ARI, and NMI, respectively.

2 Related work

Traditional Topic Models and Neural Topic
Models To mine the topics within the corpus,
conventional topic models (Steyvers and Griffiths,
2007; Larochelle and Lauly, 2012; Shi et al., 2018),
such as LDA (Blei et al., 2003), model the topic-
word distribution and the document-topic distri-
bution in an unsupervised manner. Neural Topic
Models directly optimize parameters without re-
quiring model-specific derivations, achieving better
scalability and flexibility.

Cluster-based Topic Models Sia et al. propose
to cluster pre-trained word embeddings and re-
rank top words, which is straightforward to im-
plement, and feasible for regular-length documents.
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Figure 2: An overview of our proposed LiSA.

BERTopic (Grootendorst, 2022) follows this way
and utilizes c-TF-IDF to obtain topic words. Sub-
sequently, some methods directly leverage LLMs
to generate topic words for documents (Wang et al.,
2023; Mu et al., 2024b), and PromptTopic (Wang
et al., 2023) simulates clustering by merging these
topic words to derive the topic distribution of doc-
uments. As for topic-word distribution, it follows
BERTopic to generate the bag-of-words represen-
tation. Similarly, TopicGPT (Pham et al., 2024)
leverages GPT-4 to generate and merge topic words,
directly producing descriptions and bypassing the
cumbersome process of creating a topic-word dis-
tribution followed by summarizing top words. Re-
cently, Mu et al. challenge the issues of topic granu-
larity and hallucination in the above work. They ad-
dress these problems by fine-tuning LLMs using Di-
rect Preference Optimization (Rafailov et al., 2024),
enabling the generation of topic words with con-
sistent granularity. However, they concentrate on
fine-tuning LLMs to consistently generate granular
topic words but overlook the topic merging stage,
failing to produce the topic distribution of docu-
ments. In this work, we follow cluster-based meth-
ods and explore how to obtain the topic distribution
using the topic words generated by open-source
LLMs, i.e., Llama-3 (Meta, 2024) and Mistral-2
(Jiang et al., 2023), without fine-tuning.

3 Methodology
Figure 2 illustrates LiSA’s overall architecture. In
the first stage, an LLM generates a candidate topic
word along with a description for each document.
Subsequently, the candidate topics and documents
are separately organized into K clusters. Since
each document has a unique candidate topic, this
stage assigns two categories to each document.

The first category reflects the fine-grained seman-
tics of the document itself, while the other is the
topic-level semantics of the document. In the sec-
ond stage, we introduce an LLM-guided assign-
ment strategy designed to first establish a mapping
from document-level to topic-level and then uti-
lize LLMs to aid in checking the low-confidence
points. In the third stage, we propose a collabora-
tive enhancement strategy that leverages neighbor-
ing information to improve the alignment between
topic-level and document-level semantic spaces,
resulting in a more optimal topic distribution.

3.1 Problem Statement and Notations
Consider a collection of documents D =
{d1, · · · , d|D|}, the conventional methods (Blei
et al., 2003) model the word distribution for topics
as well as the topic distribution for documents. The
former is to represent the topic with words or some
other observations, and the latter is to indicate the
probabilities of a document belonging to each topic.
Unlike conventional topic models, LLMs can gen-
erate semantically coherent topic words, allowing
for the replacement of word distribution with natu-
ral language (Pham et al., 2024; Wang et al., 2023),
referred to here as topic representation. Therefore,
the objective of this work is to leverage candidate
topic words generated by LLMs to establish the
topic representation and subsequently determine
the topic distribution of documents.

3.2 Topic Generation
In this stage, we prompt an LLM to generate a
candidate topic word for each document, accom-
panied by a description that aids in understanding
topic word’s meaning. Specifically, for documents
D = {d1, d2, · · · , d|D|}, candidate topic words
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T = {t1, t2, · · · , t|T |} (where |T | ≤ |D|) and
topic descriptions TDs = {td1, td2, · · · , td|D|}
are generated. The complete prompt template
is shown in Appendix Table D1. In this way, a
one-to-one mapping (M1 : D → T ) from docu-
ments to candidate topic words, as well as a one-
to-many mapping (M2 : T → S(TDs), where
S(TDs) is the power set of TDs) between candi-
date topic words and descriptions has been estab-
lished. By generating candidate topic words and de-
scriptions, we effectively establish a topic-level se-
mantic space. Each document retains its document-
level semantics while also being endowed with
topic-level semantics. Subsequently, we mine the
topic distribution of documents based on the above
two semantic spaces.

Previous LLM-based methods (Wang et al.,
2023; Pham et al., 2024) often rely on LLMs to
merge semantically redundant topic words, but
this process tends to be unstable, mainly because
LLMs are very sensitive to the positioning of
prompts (Saito et al., 2025). Additionally, the top-
ics of documents are prone to a long-tailed distri-
bution, meaning that the majority of documents
are assigned to several high-level topics. To en-
hance the stability of topic merging, we design a
cluster-based merging strategy. Specifically, for
each candidate topic word t ∈ T , we leverage all
relevant descriptions to generate the representation
of candidate topic words RT as follows:

RT (t) =
1

|M2(t)|

|M2(t)|∑

j=1

embedder(tdj) (1)

where tdj ∈ M2(t) represents the jth description
of candidate topic word t, and embedder is the em-
bedding model1. To obtain document representa-
tions RD, we similarly input each document d into
the same embedder as RD(d) = embedder(d).
Then, we cluster both candidate topic representa-
tion RT and document representation RD into K
categories2. Let CD and CT represent the cluster of
documents and candidate topic words, respectively.
In this way, semantically redundant candidate topic
words are merged into K distinct categories. Let
M3 : D → CD represents the mapping between
D and CD. Using the categories of candidate topic

1In this work, we adopt sentence bert, which can be ac-
cessed from https://huggingface.co/sentence-transformers/all-
MiniLM-L6-v2

2In the main experiment, we adopted KMeans, and ex-
periments on various clustering methods are shown in Ap-
pendix E.1.

Algorithm 1 Find Mapping
Input: Clustering results CD , CT

Output: Mapping of clustersM4

Parameters: UD is unique labels in CD; UT is unique labels
in CT ; J is Confusion matrix;
1: UD ← unique(CD)
2: UT ← unique(CT )
3: J← initialize_matrix(length(UD), length(UT ))
4: for each ud in UD do
5: for each ut in UT do
6: J[ud][ut]←

count_common_elements(CD, ud, CT , ut)
7: end for
8: end for
9: r, c← hungarian_algorithm(M)

10: M4 ← initialize_mapping()
11: for each (row, col) in (r, c) do
12: M4[UD[row]]← UT [col]
13: end for
14: returnM4

words as the initial topics, we obtain the topic rep-
resentation by prompting an LLM to generate a
new summarizing topic word ω that can describe as
many candidate topic words as possible within each
topic cluster from CT . Finally, a set of summariz-
ing topic words Ω = {ω1, · · · , ωK} is composed,
thus obtaining the mapping MΩ : CT → Ω.

3.3 LLM-Guided Assignment

Although candidate topic words for documents
can assist in identifying initial topics, their accu-
racy is significantly constrained by the reliance on
topic-level semantic information alone. Therefore,
we propose an LLM-guided assignment strategy,
which integrates both topic-level and document-
level semantic information to establish a mapping
between two semantic spaces. Broadly, we match a
summarizing topic word to the document’s cluster-
ing category CD. For each document, if topic-level
and document-level summarizing topic words are
consistent, the document is assigned to that topic.
In cases of inconsistency, an LLM is prompted to
select the most appropriate candidate topic.

As illustrated in Algorithm 1, we first construct
a confusion matrix J, where J[i][j] represents the
number of common sample in Ci

D and Cj
T and

i, j ∈ [1,K] (Lines 1-8). Then, the Hungarian
algorithm (Kuhn, 1955) is utilized to establish
the mapping (M4 : CD → CT ) between CD

and CT (Lines 9-14). However, there are docu-
ments with conflict summarizing topic words, i.e.,
Dw = {d′|M1(d

′) /∈ M4(M3(d
′)) and d′ ∈ D}.

Therefore, for each d′i ∈ Dw, we retrieve the near-
est λ neighbors from D between their document
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representation:

disi,j = ∥RD(d
′
i)−RD(dj)∥2, j ∈ [1, |D|], d′i ̸= dj

(2)
where disi,j represents the Euclidean Distance be-
tween document d′i and dj . Then, we filter λ near-
est neighbors N ′

i = {dj |disi,j ≤ ˆdisi}, where

ˆdisi = sort{disi,1, · · · , disi,|D|}[λ] (3)

Subsequently, for each d′i ∈ Dw and calculated
corresponding neighbor set N ′

i , we prompt LLM
to choose the most suitable topic words from
MΩ(M4((M3(N

′
i)))). Based on the response of

LLMs, we assign the document to the chosen topic.
Detailed prompt is presented in Appendix D.

3.4 Collaborative Enhancement
In the previous stage, for each inconsistent doc-
ument in Dw, we search for neighboring sample
points within the document-level semantic space,
disregarding the neighboring information embed-
ded in the topic-level semantic space. Therefore, to
further align the two semantics from a global per-
spective, we propose a collaborative enhancement
strategy. Specifically, we first design two topic
prediction networks (TPN), i.e., PD : RD(di) →
pi,∗ ∈ RK and PT : RT (ti) → qi,∗ ∈ RK , to pre-
dict the soft cluster distribution of a document and
a topic word, respectively, which can be formulated
as follows:

PD(D) =




p1,1 · · · p1,K
...

. . .
...

p|D|,1 · · · p|D|,K


 ,PT (M′

1(D)) =




q1,1 · · · q1,K
...

. . .
...

q|D|,1 · · · q|D|,K




(4)
where pij and qij indicates the probability of doc-
ument di and topic word ti of di belonging to jth
cluster, respectively.

Then, to make TPN align the clustering of each
document di with its topic word, we introduce the
consistent loss function L1 defined as:

L1 = −log
1

|D|

|D|∑

i=1

< pi,∗, qi,∗ > (5)

where < ·, · > denotes the dot product operator.
L1 encourages the prediction result of TPN on di
and its corresponding topic word to be consistent.
Meanwhile, it guides TPN to produce more distinct
prediction results, i.e., both pi,∗ and qi,∗ to become
one-hot vectors.

Next, consider the following observations: a sin-
gle document can be associated with multiple topic
words, and a single topic word can correspond to
multiple documents. Additionally, the fundamental

characteristic of clustering is that samples within
the same cluster are typically close to each other
in the feature space. Based on these considera-
tions, we design a nearest-neighbor matching loss
function. First, for each document di ∈ D, we
search the corresponding µ nearest neighbors N i

D

by calculating the Euclidean distance between di
and other documents in the document clustering
space RD. Similarly, for each topic word M ′

1(di),
we also search the corresponding µ nearest neigh-
bors N i

T in the topic clustering space RT . During
the training, for each document di and its corre-
sponding topic word M ′

1(di), in each epoch, a near-
est neighbor is randomly selected from the neigh-
bor sets N i

D and N i
T , respectively, to construct the

neighbor clustering probability matrix. The formal
representation is shown as follows:

PD(ND) =




p̂1,1 · · · p̂1,K
...

. . .
...

p̂|D|,1 · · · p̂|D|,K


 ,PT (NT ) =




q̂1,1 · · · q̂1,K
...

. . .
...

q̂|D|,1 · · · q̂|D|,k




(6)
where ith row of PD(ND) and PT (NT ) represents
the clustering probability of randomly chosen near-
est neighbor of di and M ′

1(di).
Subsequently, the nearest-neighbor matching

loss function L2 can be defined as:
L2 = LTD + LDT (7)

LTD = −
K∑

i=1

log
e(<p∗i,q̂∗i>/τ)

K∑
j=1

e(<p∗i,q̂∗j>/τ) +
∑
l ̸=i

e(<q̂∗i,q̂∗l>/τ)

(8)

LDT = −
K∑

i=1

log
e(<q∗i,p̂∗i>/τ)

K∑
j=1

e(<q∗i,p̂∗j>/τ) +
∑
l ̸=i

e(<p̂∗i,p̂∗l>/τ)

(9)

where τ is the temperature of softmax. The pur-
poses of L2 are: (1) By enhancing the similarity
between a document and the nearest topic words
surrounding its candidate topic word, LTD realizes
that a document can be described by multiple topic
words, enabling the semantic features of several
similar topic words to be perceived by the same
document. This also increases the distinction be-
tween different clusters in topic word clustering.
(2) Similarly, by enhancing the similarity between
a candidate topic word and the nearest documents
surrounding its documents, LDT realizes that a
topic word can describe multiple different docu-
ments, enabling the semantic features of several
similar documents to be perceived by the same
topic word. Meanwhile, this increases the distinc-

18424



tion between different clusters in document clus-
tering. Finally, to prevent TPN from learning the
trivial solution that assigns a majority of samples
into a minority of clusters, we design a balanced
cluster loss function to avoid the issue, which can
be defined as follows:

L3 = −
K∑

i=1

xi log xi −
K∑

i=1

yi log yi (10)

where

xi =
1

|D|

|D|∑

j=1

pji, yi =
1

|D|

|D|∑

j=1

qji

Finally, the overall loss function can be formulated
as follows:

L = L1 + L2 − α× L3 (11)

where α is a hyperparameter that regulates the
weights.

4 Experiments

In this section, we first evaluate LiSA on three
widely-used datasets, assessing its performance in
terms of topic alignment, topic quality, and through
human evaluation. Subsequently, we present abla-
tion studies to investigate the impact of different
loss functions on LiSA. Finally, additional abla-
tion experiments on hyperparameters and cluster-
ing methods can be found in Appendix B and Ap-
pendix E.1, respectively.

4.1 Experimental Setup

4.1.1 Dataset

We select three widely used datasets to evalu-
ate our LiSA, including Bills, Wiki, and Twitter.
The Bills dataset is derived from bill summaries
from the 110th to 114th U.S. Congresses. Hoyle
et al. (2022) collected 32,661 bills and manually an-
notated each document with topics, which include
21 high-level and 114 low-level labels. Similarly,
Hoyle et al. (2022) selected 14,290 "good" articles
from Wikipedia (Merity et al., 2018) and manu-
ally annotated each document with topics, which
consist of 15 high-level and 279 low-level labels.
Antypas et al. (2022) collected short tweets from
September 2019 to August 2021 and annotated
each tweet with a high-level topic label. The Twit-
ter dataset contains 11,171 documents, encompass-
ing 6 high-level labels. The statistical information
of the datasets is shown in Appendix A.

4.1.2 Evaluation Metrics
The consistency between quantitative evaluation
metrics for topic models and human evaluation
has long been a highly debated issue. Hoyle et al.
demonstrated that NPMI, a widely used automatic
evaluation metric for measuring Topic Coherence,
exaggerates differences between models relative
to human judgments. To address this issue, Hoyle
et al. proposed datasets with human annotations
to measure the alignment between topic models
and human-labeled topics from the perspective of
content analysis. Therefore, we evaluate the perfor-
mance of LiSA from two aspects: Topic Alignment
and Topic Quality, which is also adopted by Wu
et al..

Topic Alignment Following previous work
(Hoyle et al., 2022; Pham et al., 2024; Wu et al.,
2024b), we adopt the harmonic mean of purity
(P1) (Amigó et al., 2009), Adjusted Rand Index
(ARI), and Normalized Mutual Information (NMI)
to evaluate the performance of clustering. Metrics
are detailed in Appendix C.2.

Topic Quality Since our model did not gener-
ate the bag-of-words topic representation, we em-
ployed c-TF-IDF scores to compute each cluster’s
most representative words for evaluation (Wang
et al., 2023; Grootendorst, 2022). (1) Topic Co-
herence: We employ the widely-used metric, Co-
herence Value (CV ), which has been empirically
shown to outperform the traditional metrics, NPMI,
UCI, and UMass (Röder et al., 2015; Wu et al.,
2023). (2) Topic Diversity: We utilize the Topic
Diversity metric (TD, Dieng et al. 2020) to evaluate
the differences between discovered topics.

4.1.3 Baselines
In this work, we evaluate our LiSA against tra-
ditional topic models (LDA (Blei et al., 2003),
NMF (Févotte and Idier, 2011), CTM (Song
et al., 2020)), neural topic models (FASTopic (Wu
et al., 2024b)) and cluster-based topic mod-
els (BERTopic (Grootendorst, 2022), Prompt-
Topic (Wang et al., 2023), TopicGPT (Pham
et al., 2024)). We directly adopt the results of
EDTM (Dhanania et al., 2024) and TopicGPT, and
for the rest, we reproduce their results.

4.2 Main Results
4.2.1 Topic Alignment
The main results of topical alignment with ground
truth are shown in Table 1. It can be concluded
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Table 1: Experimental results of our LiSA and baselines. The best results are denoted in bold and the second-best
results are marked by underline. It is worth noting that we additionally provide the MI score for the Twitter dataset
to achieve a fair comparison to TopicGPT. For all baselines except TopicGPT, we set k=21,15,6 on Bills, Wiki,
and Twitter, respectively. The only exception is that we report results on Twitter when k = 10 because the K of
TopicGPT is the same as the ground truth.

Datasets
Bills Wiki Twitter

P1 ARI NMI P1 ARI NMI P1 ARI MI NMI

LDA (Blei et al., 2003) 0.52 0.31 0.42 0.72 0.63 0.71 0.50 0.21 0.34 0.22
BERTopic (Grootendorst, 2022) 0.41 0.18 0.37 0.62 0.50 0.59 0.53 0.18 0.31 0.23
NMF (Févotte and Idier, 2011) 0.24 0.04 0.15 0.58 0.38 0.55 0.29 0.02 0.03 0.02

CTM (Song et al., 2020) 0.37 0.19 0.32 0.61 0.46 0.62 0.45 0.11 0.23 0.14
PromptTopic (Wang et al., 2023) 0.36 0.17 0.28 0.62 0.46 0.59 0.66 0.45 0.59 0.41
EDTM (Dhanania et al., 2024) 0.58 - - 0.65 - - 0.72 - 0.70 -

TopicGPT (GPT-4) (Pham et al., 2024) 0.57 0.40 0.49 0.74 0.60 0.70 0.75 - 0.70 -
FASTopic (Wu et al., 2024b) 0.40 0.30 0.33 0.65 0.56 0.60 0.59 0.30 0.53 0.34

K=24 K=22 K=6
LiSA (Llama-3) 0.59 0.42 0.51 0.73 0.66 0.71 0.78 0.65 0.71 0.46
LiSA (Mistral-2) 0.58 0.45 0.49 0.75 0.67 0.72 0.77 0.63 0.72 0.47

K=21 K=15 K=10
LiSA (Llama-3) 0.57 0.40 0.51 0.74 0.66 0.71 0.77 0.64 0.70 0.46
LiSA (Mistral-2) 0.58 0.43 0.51 0.74 0.66 0.72 0.76 0.64 0.70 0.45

that collaborating LLMs with clustering methods
is most effective, achieving state-of-the-art results
and outperforms the GPT-4-based method, Top-
icGPT (Pham et al., 2024), on all datasets. Ad-
ditionally, LiSA achieves better topic distribution
of documents by incorporating neighboring infor-
mation. Across all datasets, it achieves average
improvements of 1.7%, 6.0%, and 2.0% over the
state-of-the-art in P1, ARI, and NMI, respectively.

The conventional topic model, LDA, demon-
strated superior performance compared to language
model-based approaches, such as BERTopic and
PromptTopic, on Bills and Wiki. However, on Twit-
ter, LDA’s performance was inferior to Prompt-
Topic and comparable to BERTopic. This limita-
tion highlights the challenge traditional methods
face in short text scenarios (Qiang et al., 2020),
where the insufficient number of words in docu-
ments significantly constrains their effectiveness.
PromptTopic exhibits the poorest performance on
Bills and Wiki, primarily due to issues related to
inconsistent topic granularity during the topic merg-
ing stage. This shortcut was particularly evident
on the more complex Bills dataset, where the ARI
was 28% lower than LiSA.

To provide a clear overview of the clustering
results, we visualize the features of documents ob-
tained by sentence-bert and LiSA in Figure 3. It can
be observed that the topic prediction network has
learned more effective document representations by

(a) Sentence-bert Embedding

ARI=49%

(b) COIN Representation

ARI=66%

Figure 3: Clustering results of documents. (a) We di-
rectly perform K-Means (Macqueen, 1967) clustering
on document embeddings obtained by Sentence-BERT.
(b) We report the result of TPN’s topic prediction and
embeddings derived from TPN. For Figure (a), clus-
tering is performed using K-Means. For Figure (b),
document features are extracted from the final layer of
TPN, and the clustering results from TPN are depicted
in different colors.

better integrating the semantic information of topic
words and documents, thereby achieving improved
topic clusters. Specifically, Figure 3 (a) shows the
results of k-means clustering on the sentence-bert
embeddings of the documents. It can be seen that
the distribution of documents with the same topic
is not sufficiently concentrated, while the distinc-
tion between topics is not sufficiently clear. In
contrast, Figure 3 (b) illustrates that our topic pre-
diction network generates more distinct document
representations while ensuring greater similarity
among documents within the same topic cluster.
This enhancement is attributed to the incorporation
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of neighboring information from both topic words
and documents.

Table 2: Topic Quality. We realize LDA by MALLET.
For NMF and CTM, we utilize OCTIS to evaluate.

Datasets
Bills Wiki Twitter

CV TD CV TD CV TD
LDA 0.52 0.63 0.61 0.83 0.46 0.39

BERTopic 0.45 0.46 0.37 0.31 0.44 0.38
NMF 0.49 0.55 0.62 0.77 0.48 0.52
CTM 0.58 0.93 0.72 0.96 0.44 1.00

FASTopic 0.47 1.00 0.51 1.00 0.47 1.00
LiSA 0.70 0.96 0.79 0.97 0.48 0.91

4.2.2 Topic Quality
The comparison between LiSA and traditional topic
models, as well as neural topic models, is shown
in Table 2. We see that our LiSA surpasses all
traditional topic models, as well as reaches compet-
itive performance against strong neural topic mod-
els (FASTopic). Recent studies have highlighted
that variations in dataset pre-processing settings,
including factors such as minimum and maximum
document frequency, vocabulary size constraints,
and the use of stop word sets, significantly influ-
ence the outcomes of topic modeling (Wu et al.,
2023, 2024a).

4.2.3 Human Evaluation on Granularity
To evaluate whether the generated topic labels (i.e.,
summarizing topic words) are consistent with the
human-annotated ground truth labels, we invited
three experts to assess the quality and granularity
of the topics. For topic quality, we first measured
the proportion of missing topics by having the ex-
perts report the number of true labels that could
not be found in the topic labels generated by our
model as semantically equivalent. Similarly, we
measured whether the generated labels exhibited
semantic redundancy, with experts identifying pairs
of semantically equivalent topic labels produced
by the model. For topic granularity, we predefined
1-2 overly broad and overly narrow topic words for
each dataset. For example, in the Bills dataset, an
overly broad topic word is "Law," while an overly
narrow topic word is "radiological materials secu-
rity." The experts were then asked to report the
number of topic labels generated by the model that
matched the given word granularity. The evaluation
results are shown in Table 3. It can be observed
that LiSA successfully uncovers most of the topics,
demonstrating the effectiveness of our approach in

Table 3: Human evaluation results.

PromptTopic LiSA
undetected 33% 23%
repeated 12 5
broad 11 4
narrow 1 0

topic mining. Additionally, the granularity of the
topics generated by LiSA is more consistent, with
significantly fewer overly broad topics compared to
PromptTopic. The summarizing topic words along
with a case study can be found in the Appendix E.2.
More details about human evaluation are listed in
Appendix C.1.

4.3 Implementation Details
Following previous work (Pham et al., 2024; Groo-
tendorst, 2022), we take sentence-bert (Reimers
and Gurevych, 2019) as our embedder. Our ex-
periments were conducted on a single A100 GPU
using Llama-3-8B-Instruct and Mistral-7B-Instruct-
v0.2. In the topic generation stage, we truncate the
document if the prompt exceeds the context win-
dow length. Our TPN is an MLP network with a
dimension of 256-256-K and produces a soft clus-
ter assignment of each document. For evaluation,
we choose the topic with the highest probability.
We train TPN by AdaGrad (Duchi et al., 2011) op-
timizer with an initial learning rate of 1e-3 with a
batch size of 128. We set τ = 1.5 and α = 0.8
for all datasets, and the training lasts 30 epochs on
Bills, and 20 on Wiki and Twitter. For all baselines
except TopicGPT, we set the number of topics (K)
the same as that of the human-labeled ground truth.
To achieve a fair comparison, we also report the per-
formance of LiSA with the same number of topics
as TopicGPT. For all datasets, we set the number
of neighbors in the LLM-guided assignment stage
(λ) as 5. As for the number of neighbors in the col-
laborative enhancement stage (µ), we set µ = 15
for the Bills dataset, and µ = 20 for the Wiki and
Twitter datasets.

4.4 Ablation Study
4.4.1 Stages
Firstly, to provide a comprehensive understanding
of the effectiveness of stages in our LiSA, we eval-
uate LiSA with different stages removed, i.e., the
collaborative enhancement stage and the LLMs-
guided assignment stage. As shown in Table 4,
the performance of LiSA without the collaborative
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Table 4: The performance of our LiSA with different
stages: without Collaborative Enhancement (w/o train);
without check in LLMs-Guided Assignment stage (w/o
check); without both of them (w/o train, check).

Dataset
Bills (K=21) Wiki (K=15)

P1 ARI NMI P1 ARI NMI

LiSA 0.57 0.40 0.51 0.74 0.66 0.71
w/o train 0.55 0.38 0.50 0.67 0.54 0.60
w/o check 0.56 0.40 0.48 0.70 0.56 0.61

w/o train, check 0.51 0.33 0.47 0.65 0.54 0.65

enhancement stage suffers a slight drop on Bills
and a more significant decrease on Wiki, indicating
the success of this stage in collaborating different
levels of semantic granularity. Furthermore, after
removing the LLM-guided assignment stage, our
model’s performance on the Bills dataset exhib-
ited a slight decline, suggesting that it effectively
leverages the language understanding capabilities
of LLMs to rectify erroneous topic distributions.

4.4.2 Loss Function
Furthermore, we conduct an ablation experiment
with various combinations of our loss functions L1,
L2, and L3 to evaluate the effectiveness of each
part, shown in Table 5. We can draw the follow-
ing conclusion: (1) Among L1, L2, and L3, L1

plays a role in establishing a performance baseline.
The primary function of L1 is to ensure the consis-
tency between each document and its topic word.
Optimizing L1 results in model performance con-
verging to that of KMeans (Macqueen, 1967) on
document embeddings.

(2) L2 further leverages the features of the neigh-
bors surrounding the documents and topic words
to enhance the performance. While the removal
of L2 did not affect the performance on the Wiki
dataset, for the more challenging Bills dataset, uti-
lizing the neighbor information of both topic words
and documents is necessary. (3) We can find that
L3 successfully prevents the predictions into the
trivial solution that assigns most samples into a
single cluster. Without L3, the model assigns most
documents to only a few clusters, leading to poor
clustering performance on both datasets.

5 Conclusion

In this work, we propose LiSA to integrate clus-
tering and LLMs for topic modeling. To address
the instability issues in the topic refinement stage
caused by topic words of varying granularities,

Table 5: The performance of our LiSA with different
combinations of loss functions L1,L2,L3.

Dataset
Bills Wiki

P1 ARI NMI P1 ARI NMI

L 0.57 0.40 0.51 0.74 0.66 0.71
L2 + L3 0.49 0.31 0.48 0.60 0.46 0.63
L1 + L3 0.56 0.39 0.50 0.74 0.66 0.71
L1 + L2 0.54 0.36 0.49 0.70 0.63 0.69

L1 0.44 0.25 0.43 0.62 0.48 0.66
L2 0.52 0.29 0.49 0.62 0.49 0.65
L3 0.17 0.03 0.09 0.30 0.13 0.17

LiSA construct a topic-level semantic space and
then establish a mapping from documents to top-
ics after clustering. Additionally, we address the
inconsistencies between topic-level and document-
level semantic spaces by training TPNs to learn
neighboring information. Experimental results
demonstrate that LiSA consistently outperforms
the method based on GPT-4 with respect to the
clustering metrics reflecting alignment with human-
labeled ground truth, and shows competitive per-
formance against strong Neural Topic Models on
topic quality.

Limitations

Contexts Limits One limitation of our current
method is the need to truncate documents to fit
the context length limitations of LLMs. While
truncation was necessary in our experiments, we
do not consider it an ideal solution. Future work
could explore the use of LLMs with longer context
windows or generate topic words iteratively for
documents that exceed the context window size.

Multilinguality We did not evaluate LiSA on
non-English datasets, partly because LLaMA and
Mistral were primarily pre-trained and fine-tuned
on English language data. As a result, the
instruction-following ability of these models signif-
icantly decreases for non-English languages. We
look forward to assessing the performance of LiSA
on multilingual models in the future.
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A Dataset Details

The statistical information of our chosen datasets
is shown in Table A1. The average number of
tokens per document was calculated using Llama-
3’s tokenizer3 (Meta, 2024).

Table A1: Statistical information of datasets: number of
documents in the train split (# Train), average number
of tokens per document in train (Doc length), number
of documents in the test split (# Test), average number
of tokens per document in test (Doc length), number of
ground truth classes/labels.

Dataset # Train Doc length # Test Doc length # Classes

Bills 32,661 259 15,242 407 21
Wiki 14,290 3,406 8,024 3,869 15

Twitter 6,798 46 4,373 45 6

B Parameter Analysis

B.1 Number of topic clusters (K)
It can be seen from Figure B1 (a) that the P1 score
of LiSA remains relatively stable across differ-
ent values of K, indicating the robustness of our
method. Moreover, ARI and NMI exhibit contrast-
ing trends as K varies: as the number of clusters de-
viates from the ground truth, ARI generally shows
a declining trend. This behavior can be attributed
to ARI’s heightened sensitivity to cluster number,
which favors alignment with the ground truth. In
contrast, NMI exhibits an increasing trend as the
K value rises.

B.2 Number of Neighbors (λ)
As illustrated in Figure B1 (b), LiSA demonstrates
robust stability in performance with respect to
changes in the number of neighbors in the LLM-
guided assignment stage. When λ varies within a
smaller range, LiSA’s performance remains rela-
tively consistent across all datasets. However, as
λ increases to 15, there is a noticeable decline on
the Bills dataset, contrasting with the stable trend
observed on the Wiki dataset. This discrepancy
may be attributed to the presence of topics in the
Bills dataset that contain relatively few documents.
In this case, neighbors may introduce erroneous
information, thereby increasing noise and reducing
the accuracy of LLMs’ responses.

B.3 Number of Neighbors (µ)
Figure B1 (c) shows that LiSA demonstrates strong
stability concerning the number of neighbors in the

3https://huggingface.co/meta-llama/Meta-Llama-3-8B

collaborative enhancement stage. While smaller
values of µ may hinder the model’s ability to fully
utilize neighbors, resulting in a slight performance
decline, the performance of LiSA stabilizes once µ
exceeds 15.

C Implementation Details

Following previous work (Pham et al., 2024; Groo-
tendorst, 2022), we take sentence-bert (Reimers
and Gurevych, 2019) as our embedder. Our ex-
periments were conducted on a single A100 GPU
using Llama-3-8B-Instruct and Mistral-7B-Instruct-
v0.2. In the topic generation stage, we truncate the
document if the prompt exceeds the context win-
dow length. Our TPN is an MLP network with a
dimension of 256-256-K and produces a soft clus-
ter assignment of each document. For evaluation,
we choose the topic with the highest probability.
We train TPN by AdaGrad (Duchi et al., 2011) op-
timizer with an initial learning rate of 1e-3 with a
batch size of 128. We set τ = 1.5 and α = 0.8
for all datasets, and the training lasts 30 epochs on
Bills, and 20 on Wiki and Twitter. For all base-
lines except TopicGPT, we set the number of topics
(K) the same as that of the human-labeled ground
truth. To achieve a fair comparison, we also report
the performance of LiSA with the same number of
topics as TopicGPT.

C.1 Human Evaluation Details

In this section, since our dataset involves the fields
of legal, linguistic, and social networks, we invited
three experts from law, linguistics, and the school
of computer science at the author’s institution to
evaluate the generated topic words. The evalua-
tion involved comparing the topic words generated
by (Wang et al., 2023), as well as LiSA, with the
standard labels annotated in the original dataset
(denoted as A). Importantly, they did not know that
the comparison context was topic modeling in ad-
vance and only evaluated the generated topic words
based on their own knowledge. Detailed evaluation
steps are as follows:

We initially categorized topic words along four
dimensions: undetected, repeated, broad, and nar-
row. Then, for each dimension, we set specific
requirements:

a) For the undetected dimension, we randomly
sampled one topic from A and asked experts to de-
termine whether this topic shared the same meaning
with any topic generated by topic models. Thus,
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Figure B1: Parameter analysis results on three hyperparameters.

for each topic, this dimension had two possible
options: appeared or not appeared.

b) For the repeated dimension, we paired the top-
ics generated by the same topic model and asked
the experts whether they shared the same mean-
ing. For instance, Solicitor and Lawyer, Car and
Automobile, Computer and Magazine. Thus, for
each pair of topics, this dimension had two options:
repeated or not repeated.

c) For the broad dimension, we predefined an
upper-level topic granularity for each dataset. Ex-
amples include Law for the Bills dataset, Knowl-
edge for the Wiki dataset, and Post for the Twitter
dataset. We asked the experts to assess whether a
generated topic surpassed the predefined level of
topic granularity. If it exceeded or matched this
granularity level, the dimensional value would be
set to not broader. Thus, for each topic, this dimen-
sion had two options: broader or not broader.

d) For the narrow dimension, we predefined a
lower-level topic granularity for each dataset. For
example, for the Bills dataset, the lower-level cate-
gory topic is "radiological materials security"; for
the Wiki dataset, the lower-level category topic is
"intellectually disabled services"; and for the Twit-
ter dataset, the lower-level category topic is "DC
extended universe". We asked experts to assess
whether the generated topic word was at or below
the predefined level of topic granularity. If so, the
dimension value would be set to narrower. Thus,
for each topic, this dimension had two options: nar-
rower or not narrower.

In the human evaluation, we requested three ex-
perts to evaluate three datasets within a specified
time frame. The post-processing steps were as fol-
lows: For each of the above four dimensions, the
score of the three experts were aggregated using a
voting mechanism—if two or more experts chose
the same option, the corresponding topic would be
classified under that option. The calculation meth-
ods for the results reported in this paper are defined

as follows:

a) For the undetected dimension, the result is
calculated as:

|Not appeared|
|A| × 100

b) For the repeated dimension, the result is rep-
resented as: |Repeated|.

c) For the broad dimension, the result is repre-
sented as | ≥ |.

d) For the narrow dimension, the result is repre-
sented as | ≤ |.

Each expert assessed a total of 150 samples from
Wiki (15 topics), 273 samples from Bills (21 top-
ics), and 33 samples from Twitter (6 topics), re-
sulting in a total of 456 evaluation samples. The
evaluation was carried out over five days, with a to-
tal compensation of 22.8 USD, calculated based on
a rate of 0.05 USD per sample (456×0.05 = 22.8).

C.2 Evaluation Metric Details
Given a set of ground truth classes X =
{x1, . . . , xJ} and a set of predicted assignment
clusters Y = {y1, . . . , yK}, we evaluated the align-
ment between Y and X using external evaluation
metrics for clustering, as detailed below. P1 mea-
sures clustering purity, and its values lie between 0
and 1. ARI evaluates the agreement between clus-
tering results and the ground truth, and its possible
values range from -1 to 1. NMI measures the corre-
lation between two clusters, with values spanning
from 0 to 1. Higher values of these metrics indicate
better clustering performance.

C.2.1 P1

The Harmonic Mean of Purity (Amigó et al., 2009)
is a clustering evaluation metric that balances pu-
rity and inverse purity. It ensures clusters are both
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homogeneous and comprehensive, providing a sin-
gle measure that accounts for both cluster accuracy
and completeness:

P1 =
∑

k

|yk|
N

max
j

F (yj , xk) (12)

where

F (yk, xj) =
2 · Precision(yk, xj) · Recall(yk, xj)
Precision(yk, xj) + Recall(yk, xj)

(13)
and

Precision(xk, yj) =
|xk ∩ yj |

|xk|
(14)

Recall(X,Y) = Precision(Y,X) (15)

C.2.2 ARI
Rand Index (RI) calculates the proportion of pairs
of elements that are consistently clustered together
or consistently separated in both the true clustering
and the predicted clustering. ARI adjusts the Rand
Index for the chance grouping of elements. It com-
pares the actual Rand Index to the expected Rand
Index (under random labeling), taking into account
the possibility that clusters could be matched by
chance:

ARI(X,Y ) =
RI − E[RI]

max(RI)− E[RI]
(16)

where

RI(X,Y ) =
TP + TN

TP + FP + FN + TN
(17)

C.2.3 NMI and MI
Mutual Information (MI) is a measure of the mutual
dependence between the ground truth labels (X)
and the predicted clusters (Y ). It quantifies the
amount of information obtained about one random
variable through the other. MI is calculated by
summing the joint probability of X and Y over all
possible values, weighted by the logarithm of the
ratio between the joint probability and the product
of the individual probabilities.

MI(X,Y ) =
∑

x∈X

∑

y∈Y
p(x, y) log

(
p(x, y)

p(x)p(y)

)

(18)
where p(x, y) is the joint probability distribution
of clusters x in set X and y in set Y . p(x) and
p(y) are the marginal probability distributions of
clusters x and y respectively.

Normalized Mutual Information (NMI) is a met-
ric used to measure the similarity between the
ground truth labels (X) and the predicted clusters
(Y ). It quantifies how much information is shared
between X and Y , normalized by the average en-
tropy of both. This normalization ensures that NMI
values range between 0 and 1, where 1 indicates
perfect correlation between the clustering results
and the true labels, while 0 indicates no correlation.
NMI is particularly useful in scenarios where the
number of clusters may differ from the number of
true classes, making it a robust measure for compar-
ing clustering algorithms across various datasets.

NMI(Y,X) =
MI(Y,X)[
H(Y )+H(X)

2

] (19)

D Prompt Templates

In this section, we provide the prompt template for
Llama-3 used in topic generation in Table D1, sum-
marizing topic word generation in Table D2, and
the LLM-guided assignment in Table D3. To better
regulate the output from Mistral, we configure it
to return all responses in JSON format, compen-
sating for its relatively lower ability in following
instructions in Table D2 and Table D3.

Table D1: Prompt template for topic generation, where
{text} serves as a placeholder to be replaced by different
document content.

Prompt Template for Topic Generation

Given the following document, your task is to
generate a topic word for the article, followed by
a short description of the meaning of the topic
given by you. Your response should follow the
JSON format, with the first key being
’topic_word’, the second key being ’description’.
The value corresponding to the first key is the
topic word, and the value corresponding to the
second key is the description of the topic. The
description should be no more than two sentences.
Return only the JSON data without any
explanation.
[Instructions]
- The topic should be a single word or a short
phrase of 2-3 words.
[Document] {text}
[Your response]
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Table D2: Prompt template for summarizing topic word
generation, where {topic_list} serves as a placeholder
to be replaced by topic words from the same cluster.

Prompt Template for Summarizing Topic Word

Given a group of topic words, your task is to
generate one general topic word that can describe
as many topic words from this group as possible.
Just tell me the topic word without any
explanation or context.
Topic words: {topic_list}
Your response:

Table D3: Prompt template for LLM-guided assignment,
where {text} serves as a placeholder to be replaced by
different document content from Dw, and {topic_list}
represents the corresponding topic words from its λ
neighbors.

Prompt Template for Topic Generation

Given a document and several candidate topics,
you should decide which topic the document
belongs to. If the document is not related to any of
the candidate topics, you should respond "None".
Return the topic that best describes the document.
Do not provide any explanation or context.
Document: {text}
Candidate topics: {topic_list}
Your chosen topic:

E Additional Experimental Results

In this section, we experiment with different cluster-
ing methods for our LiSA. Also, the summarizing
topic words generated on Wiki (Hoyle et al., 2022)
and Twitter (Antypas et al., 2022) are shown in
Table E2. In all experiments, the hyperparameter
K was set to match the number of ground truth
labels, and all experiments were conducted using
llama-3 (Meta, 2024).

E.1 Clustering Methods

In the main experiment, we chose K-Means (Mac-
queen, 1967) as it is the most widely used cluster-
ing method. To explore whether our method is ap-
plicable to different clustering algorithms, we per-
formed experiments using three additional cluster-
ing techniques, including Spectral Clustering (Ng
et al., 2001), Agglomerative Clustering (Gowda
and Krishna, 1978), and HDBSCAN, which rep-
resent soft and hard clustering approaches. We

chose HDBSCAN (McInnes et al., 2017) be-
cause it is also the clustering method adopted by
BERTopic (Grootendorst, 2022). Table E1 illus-
trates the strong robustness of our model across var-
ious clustering algorithms. This robustness stems
from our method’s ability to improve model per-
formance through the mutual optimization of both
topic word clustering and document clustering. No-
tably, K-Means and Spectral Clustering demon-
strate superior performance compared to the other
algorithms. In contrast, HDBSCAN’s performance
is comparatively weaker. This discrepancy arises
because HDBSCAN is a soft clustering method,
which limits our ability to control the number of
clusters K. Consequently, we utilized the official
BERTopic package for clustering, merging the re-
sults into K clusters by adjusting the ‘nr_topics’
hyperparameter. Despite the slight performance
drop observed with HDBSCAN, it still outperforms
other clustering algorithms on certain metrics, fur-
ther confirming the robustness and stability of our
model.

E.2 Case Study on All Datasets
It can be observed from Table E2 that the topic
words generated by our model exhibit a high level
of consistency with the ground truth labels in the
dataset. Additionally, we present the number of
documents assigned to each topic, ranking them
from highest to lowest. Our topic partitioning on
the Wiki and Twitter datasets aligns more closely
with the ground truth, particularly for topics con-
taining a larger number of documents, where the
model-generated topic words are more accurate.
Conversely, for topics with many fewer documents,
our method is less likely to produce consistent topic
words. Additionally, the consistency of the Ω of the
Bills dataset (Hoyle et al., 2022) with the ground
truth is lower compared to the other two datasets.
This discrepancy arises because the Bills test set
contains documents from only 19 topics, rather
than the 21 topics present in the training set. Con-
sequently, our model produced finer-grained topics,
potentially decomposing some of the ground truth
topics into multiple subtopics.
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Table E1: Experimental results of our LiSA with different clustering methods. The best results are denoted in bold.

Clustering Methods
Bills Wiki Twitter

P1 ARI NMI P1 ARI NMI P1 ARI MI NMI

HDBSCAN 0.56 0.42 0.50 0.73 0.66 0.71 0.76 0.65 0.71 0.46
Agglomerative Clustering 0.57 0.42 0.50 0.73 0.67 0.70 0.77 0.64 0.71 0.47

Spectral Clustering 0.57 0.42 0.51 0.75 0.67 0.71 0.76 0.65 0.71 0.46
K-Means 0.57 0.40 0.51 0.74 0.66 0.71 0.77 0.64 0.70 0.46

Table E2: Summarizing topic words generated by LiSA and the corresponding ground truth labels.

Dataset Topic Words

Bills

Ground Truth
health: 2316 government operations: 1937 domestic commerce: 1323

Defense: 1297 Public Lands: 1232 Law and Crime: 967
Environment: 692 Transportation: 663 Energy: 661

Macroeconomics: 610 International Affairs: 554 Labor: 493
Foreign Trade: 471 Education: 448 Social Welfare: 436
Civil Rights: 353 Technology: 321 Housing: 306
Agriculture: 162

LiSA
healthcare :1336 government :1207 national heritage: 1161

human services: 1086 defense :1034 policy reform: 942
veterans: 850 energy: 779 disaster relief: 755

transportation safety: 669 employee benefits: 669 water: 665
education: 648 trade: 628 medical: 584
civil rights: 565 criminal justice: 450 immigration: 428

chemicals regulation: 311 reform: 247 regulation: 228

Wiki

Ground Truth
Media and drama: 1217 Sports and recreation: 1018 Warfare: 978

Music: 976 Natural sciences: 952 Engineering and technology: 615
Social sciences and society: 589 History: 446 Video games: 362

Geography and places: 276 Language and literature: 235 Art and architecture: 199
Philosophy and religion: 114 Agriculture, food, and drink: 38 Mathematics: 9

LiSA
sports: 969 music: 887 television: 862

transportation: 759 education: 702 science: 597
warships: 476 biography: 462 war: 447
weather: 424 mythology: 395 gaming: 356
biology: 257 government: 235 history: 196

Twitter

Ground Truth
pop_culture: 1705 sports__gaming: 1528 daily_life: 647

science_ _technology: 209 business__entrepreneurs: 195 arts__culture: 90
LiSA

sports: 1479 music: 1233 technology: 514
environment: 505 celebrity and culture: 403 health: 240
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