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Abstract

This study investigates the integration of di-
verse patient data sources into multimodal lan-
guage models for automated chest X-ray (CXR)
report generation. Traditionally, CXR report
generation relies solely on data from a patient’s
CXR exam, overlooking valuable information
from patient electronic health records. Utilising
the MIMIC-CXR and MIMIC-IV-ED datasets,
we investigate the use of patient data from emer-
gency department (ED) records — such as vital
signs measured and medicines reconciled dur-
ing an ED stay — for CXR report generation,
with the aim of enhancing diagnostic accuracy.
We also investigate conditioning CXR report
generation on the clinical history section of ra-
diology reports, which has been overlooked in
the literature. We introduce a novel approach
to transform these heterogeneous data sources
into patient data embeddings that prompt a mul-
timodal language model (CXRMate-ED). Our
comprehensive evaluation indicates that using
a broader set of patient data significantly en-
hances diagnostic accuracy. The model, train-
ing code, and dataset are publicly available.1,2

1 Introduction

Chest X-ray (CXR) exams, which consist of mul-
tiple images captured during an imaging session,
are essential for diagnosing and managing a wide
range of conditions, playing a significant role in pa-
tient care. Radiologists interpret these exams and
produce a written report with their findings. How-
ever, timely reporting is hindered by a multitude of
issues, including high patient volumes and limited
availability of radiologists (Bailey et al., 2022).

Automated CXR report generation using mul-
timodal language models is a promising solution
(Jones et al., 2021). Potential benefits include en-
hanced radiologist effectiveness, streamlining re-
port writing, and improved patient outcomes (Shen,

1https://huggingface.co/aehrc/cxrmate-ed
2https://github.com/aehrc/cxrmate-ed

INDICATION: Evaluate for pneumonia. 

HISTORY: Asthma and wheezing for two days.

COMPARISONS: Chest radiograph ___.

FINDINGS: The lungs are clear. There is no
pleural effusion or pneumothorax. There is no
focal airspace consolidation to suggest
pneumonia. Accounting for technique, the heart
size is normal. The mediastinal contours are
unremarkable.

IMPRESSION: No acute intrathoracic process.

Radiologist report

dicom_id PerformedProcedure... ViewPosition Rows Columns StudyDate
2ca11... CHEST (PA AND LAT) PA 3056 2544 21430703
918b4... CHEST (PA AND LAT) LATERAL 3056 2544 21430703

Metadata table

StudyTime ProcedureCode... ViewCode... PatientOrientation...
150237 CHEST (PA AND LAT) postero-anterior Erect
150237 CHEST (PA AND LAT) lateral Erect

MIMIC-CXR exam

intime outtime gender race arrival_transport disposition
2143-07-03

12:32:00
2143-07-03

22:06:14
F ASIAN -

CHINESE
WALK IN ADMITTED

ED stays

temperature heartrate resprate o2sat sbp dbp pain acuity chiefcomplaint
97.5 98 16 Null 130 81 8 3 ABD PAIN

Triage

charttime temperature heartrate resprate o2sat sbp dbp rhythm pain
2143-07-03

12:33:00
97.5 98 16 Null 130 81 Null 8

2143-07-03
13:26:00

98.1 97 15 99 121 78 Null 7

... ... ... ... ... ... ... ... ...

Aperiodic vital signs

charttime name gsn ndc etc_rn etccode etcdescription
2143-07-03

13:39:00
Dilaudid 004110 13107010701 1 00000583 Analgesic Opioid

Agonists
2143-07-03

13:39:00 fluticasone 019319 35356049401 1 00000371 Asthma Therapy -
Inhaled Cortico...

... ... ... ... ... ... ...

Reconciled medicines

charttime med_rn name gsn_rn gsn
2143-07-03 14:27:00 1 Ondansetron 2 061716
2143-07-03 14:27:00 2 HYDROmorphone (Dilaudid) 1 062823

... ... ... ... ...

MIMIC-IV-ED tables

Administered medicines

Images (CXRs)

Ground truth

Patient data

Figure 1: The patient data from a MIMIC-IV-ED stay
and its associated MIMIC-CXR exam. The exam was
taken during the ED stay. This includes the exam’s
images, the corresponding radiology report, and the
associated image metadata. The findings and impression
sections of the radiology report form the ground truth
for CXR report generation. Emergency-specific data,
such as reconciled medicines and aperiodic vital signs,
are also available for the patient.
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2021; Irmici et al., 2023). Early methods pro-
duced a separate report for each image within an
exam (Wang et al., 2018). Later methods improved
on this by considering all images of an exam to gen-
erate a single report (Miura et al., 2021; Nicolson
et al., 2024a), and incorporating prior exams for a
patient (Wu et al., 2022; Nicolson et al., 2024a). In-
cluding the reason for the exam (the indication
section in Figure 1) offered a further improve-
ment (Nguyen et al., 2023). This indicates that
CXR report generation benefits from the inclusion
of a more comprehensive set of patient data.

Incorporating clinical information, including
electronic health record (EHR) data, enhanced
the interpretation accuracy, clinical relevance,
and reporting confidence of radiologists’ findings
(Castillo et al., 2021). A growing push to integrate
EHR systems into radiology workflows highlights
the potential for CXR report generation models to
leverage patient data directly (Geeslin and Gaskin,
2016). In this study, we aim to empirically inves-
tigate if such data can also improve CXR report
generation. To facilitate this, we combine CXR
exams from MIMIC-CXR (Johnson et al., 2019)
with emergency department (ED) patient records
from MIMIC-IV-ED (Johnson et al., 2023). This
provides a wide variety of multimodal data per
exam, as shown in Figure 1. From MIMIC-CXR,
we utilise the images, their metadata, and several
sections of the radiology reports. Notably, we in-
corporate the (clinical) history section of the re-
port, which has not been investigated previously.
From MIMIC-IV-ED, we incorporate triage data,
aperiodic vital signs, medicines, and other data to
provide a wider clinical context.

We also investigate how to harmonise these het-
erogeneous data into patient data embeddings to
prompt a multimodal language model. In doing so,
we develop methods to transform tabular and aperi-
odic time series data into embeddings that can be
used alongside token and image embeddings. We
evaluate our model using metrics shown to closely
correlate with radiologists’ assessments of report-
ing (Yu et al., 2023). Through our evaluation, we
demonstrate that complementary information from
different data sources can improve the diagnostic
accuracy of CXR report generation. The main con-
tributions of this work are:
• An investigation demonstrating how integrating

diverse patient data sources, such as medicines,
vital signs, and clinical history, enhances CXR
report generation and improves diagnostic accu-

racy.
• Introducing methods to convert numerical, cate-

gorical, text, temporal, and image data into pa-
tient data embeddings for a multimodal language
model, termed CXRMate-ED.

• The following are made publicly available:
the dataset linking MIMIC-CXR exams with
MIMIC-IV-ED stays, the CXRMate-ED Hug-
ging Face model, and the training code.3,4

2 Background and Related Work

Incorporating more patient data has improved di-
agnostic accuracy in radiology reporting. Initial
improvements came from using multiple images
per exam, like EMNLI; CXR exams often include
complementary frontal and lateral views of the pa-
tient (Miura et al., 2021; Gaber et al., 2005). Meth-
ods such as CXRMate enhance diagnostic accuracy
by incorporating a patient’s prior exams to iden-
tify changes over time (Nicolson et al., 2024a; Wu
et al., 2022; Kelly, 2012; Bannur et al., 2023; Hou
et al., 2023). Including the indication section of the
radiology report to provide clinical context also pro-
vides an improvement (Nguyen et al., 2023). Our
investigation focuses on leveraging a more compre-
hensive set of patient data to improve diagnostic
accuracy.

ED records contain a wide range of data, as
shown in Figure 1. The reconciled medicines
may include furosemide, a diuretic administered to
manage fluid overload associated with pulmonary
edema or congestive heart failure. Elevated blood
pressure observed in a patient’s vital signs may be
associated with findings such as cardiomegaly or
aortic knob calcification. Vital signs such as high
temperature, elevated respiratory rate, and low oxy-
gen saturation, along with chief complaints such as
cough and shortness of breath, are often indicative
of respiratory infections such as pneumonia. Incor-
porating such data could complement radiographic
evidence and provide additional context to support
better predictions. Our findings demonstrate that
ED patient data can indeed improve CXR report
generation.

Recent advancements in integrating multimodal
patient data have improved diagnostic and pre-
dictive healthcare tasks. A Transformer encoder
combining imaging and non-imaging data outper-
formed single-modality models in diagnosing mul-

3https://huggingface.co/aehrc/cxrmate-ed
4https://github.com/aehrc/cxrmate-ed
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tiple conditions (Khader et al., 2023b). Similarly,
the MeTra architecture, integrating CXRs and clin-
ical parameters, outperformed CXR-only models
in predicting in-hospital survival (Khader et al.,
2023a). ETHOS, with zero-shot learning, sur-
passed single-modality models in predicting mortal-
ity, ICU length of stay, and readmission rate (Renc
et al., 2024). These studies underscore the value
of multimodal data, and our work demonstrates its
benefits for CXR report generation.

Multi-task learning has enhanced biomedical
models by leveraging shared knowledge across
tasks. Med-PaLM M, a generalist biomedical
model, excels in classification, question answering,
VQA, report summarisation, report generation, and
genomic variant calling, using diverse modalities
like images, text, and genomics, often outperform-
ing specialised models (Tu et al., 2024). Similarly,
MIMIC-CXR has been utilised in multi-task learn-
ing with models like MedXChat, which integrates
instruction-tuning and Stable Diffusion for tasks
like CXR report generation, VQA, and report-to-
CXR generation, surpassing other LLM multi-task
learners (Yang et al., 2025). RaDialog combines
visual features and pathology findings to generate
accurate radiology reports and enable interactive
tasks, improving clinical efficacy. CXR-LLaVA,
a multimodal LLM, outperformed models such as
GPT-4 Vision and Gemini Pro Vision in CXR re-
port generation (Lee et al., 2024).

Determining the state-of-the-art in CXR report
generation is challenging due to model unavailabil-
ity and limited comparisons with recent methods.
The 2024 Shared Task on Large-Scale Radiology
Report Generation (RRG24) aimed to address this
by benchmarking models on a common leader-
board. The winning model, CXRMate-RRG24
(Nicolson et al., 2024b), a derivative of CXRMate,
emerged as a strong contender for state-of-the-
art. In this work, we compare our model to es-
tablished models (e.g., EMNLI) and recent bench-
marks (e.g., CXRMate-RRG24, CXRMate, CXR-
LLaVA, MedXChat, and RaDialog). We ensure
a fair comparison by using available code or ob-
taining generated reports directly from the authors.
Our evaluation indicates that our model represents
a statistically significant improvement over these.

3 Dataset

We construct a dataset of 46 106 patients by linking
individual patient information from two separate

sources: (1) CXR exams from MIMIC-CXR and
(2) emergency records from MIMIC-IV-ED. We
consider MIMIC-CXR exams that occurred dur-
ing an ED stay from MIMIC-IV-ED. Both datasets
are publicly available and originate from the Beth
Israel Deaconess Medical Center in Boston, MA.

MIMIC-CXR was formed by first extracting pa-
tient identifiers for exams performed in the ED
between 2011–2016, and then extracting all exams
for this set of patients from all departments between
2011–2016. Each exam includes a semi-structured
free-text radiology report (Figure 1) written by a
practising radiologist contemporaneously during
routine clinical care. Models are often trained to
generate the findings and impression sections of a
radiology report, where the former details the in-
terpretation of a patient’s exam and the latter sum-
marises the most important findings. All images
and reports were de-identified to protect privacy.
Sections from the radiologist reports were extracted
using a modification of the official text extraction
tool in order to obtain the findings, impression,
indication, history, and comparison sections.5

MIMIC-IV-ED consists of de-identified data
from ED stays between 2011–2019. The data was
converted into a denormalised relational database
with six primary tables: ED stays, diagnosis, rec-
onciled medicines, administered medicines, triage,
and aperiodic vital signs. We do not consider the
diagnosis table in this work, as it indicates the
outcome of a patient’s ED stay. The patients of
MIMIC-CXR can be linked to MIMIC-IV-ED via
an identifier, allowing an ED-specific dataset to be
formed.

Example tables for a patient’s exam are shown
in Figure 1. The dataset was formed by extract-
ing patient exams that occurred within the ‘in-
time’ and ‘outtime’ of one of the patient’s ED
stays (the ‘StudyDate’ and ‘StudyTime’ columns
of the metadata table indicate when the exam was
conducted).6 Only the ED stay corresponding
to the exam was provided to the model; the pa-
tient’s prior ED stays were not considered. Events
during an ED stay that occurred after the exam
were removed to maintain causality. Exams with
either a missing findings or impression section
were not considered. Using the official splits of
MIMIC-CXR, this gave a train/validation/test split

5https://github.com/aehrc/cxrmate-ed/blob/
main/cxrmate_ed/create_section_files.py

6Exam 59128861 was removed as it overlapped with two
separate ED stays of a patient.
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Figure 2: CXRMate-ED; a multimodal language model that leverages auxiliary patient data for CXR report
generation. The patient data embeddings prompt the decoder to generate the findings and impression sections of a
radiology report.

of 45 527/343/236 patients, 76 398/556/958 exams,
and 151 818/1 137/1 812 CXRs. Further details are
provided in Appendix A.

4 Methods

We develop a novel approach to transform dif-
ferent sources of patient data from MIMIC-CXR
and MIMIC-IV-ED into embeddings; these are
then used to prompt a multimodal language model
(CXRMate-ED) to generate the findings and im-
pression sections of the radiology report, as illus-
trated in Figure 2. Each embedding of the prompt
is the summation of a patient data embedding, a
source embedding, a position embedding, and a
time delta embedding. Source embeddings differ-
entiate the source of the datum, for example, the
‘chief complaint’ column of the triage table, the
indication section, or an image. A time delta em-
bedding represents the time difference between an
event and the exam. The patient data embeddings
originate from three main groups: the tables of
MIMIC-IV-ED; the report, images, and metadata
of the current exam from MIMIC-CXR; and the pa-
tient’s prior exams (also originating from MIMIC-
CXR). The prior exam and image embeddings are
described in Appendix Section B and Appendix
Subsection D.2, respectively.

4.1 Time, Position, & Source Embeddings

Events from the patient data are more relevant as
they occur closer to the exam time (Ben Abacha
et al., 2023). Hence, time delta embeddings are
used to indicate this to the model. The time
delta is the event time subtracted from the exam
time, converted to hours, and mapped using D =
1/
√
∆+ 1, emphasising recent events. These

mapped time deltas are processed via a feedfor-
ward neural network (FNN), f(DW1)W2, where
W1 ∈ R1,2048, W2 ∈ R2048,H , f(·) is the SiLU
activation (Hendrycks and Gimpel, 2016), and H
is the decoder’s hidden size. As shown in Figure 2,
these embeddings are applied only to the prompt.

The position embeddings are ordered by the time
delta (Figure 3). This is due to the rotary posi-
tion embeddings of the decoder; tokens that are
closer together are given more importance. Hence,
the smaller the time delta, the closer the patient
data embedding’s position is to the report token
embeddings. Following Nicolson et al. (2024a),
each unique patient data source is given its own
source embedding. This includes the images, each
report section, each table’s text column and value-
category columns (described in the next section),
prior images, and prior report sections.

4.2 Patient Data Embeddings: Tabular Data

An example table and its conversion to embeddings
is shown in Figure 3. The columns of each ta-
ble were designated as value, category, text, or
time columns. Value columns contained numeric
data, while category columns contained categorical
data. To convert an exam’s tabular data to em-
beddings, data from value and category columns
were grouped by their time delta, where each group
formed a feature vector. The feature vector initially
consisted of zeros. Values and categories from the
group were then used to set its values based on
indices determined by a lookup table. For value
columns, the lookup table determined the index
where the numeric value was placed. For category
columns, it determined which indices were acti-
vated (set to 1).
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Figure 3: Proposed patient data embeddings from the multiple heterogeneous data types taken from MIMIC-IV-ED
and MIMIC-CXR. The embeddings are formed from numerical, categorical, textual, temporal, and image data.

Next, the feature vector was passed through an
FNN f(XiW1)W2 to form the embedding, where
Xi ∈ R|UC |,|Li| are the grouped features, UC is
the set of unique time deltas, W1 ∈ R|Li|,2048 and
W2 ∈ R2048,H , Li is a lookup table, and i desig-
nates the table. Each table has a unique FNN and
lookup table. Rows for a value column always had
a unique time, preventing multiple values from the
same column in a group. We investigated alter-
natives to form the value-category embeddings in
Section 6. The described framework was found to
be the most efficient. Columns with a high cardi-
nality were set as text columns. Text embeddings
were formed via the decoder’s tokenizer and token
embeddings. Text embeddings were given the time
delta embedding from their respective row. The
column designation for each table in Figure 1 is
described in the Appendix C.

4.3 Patient Data Embeddings: Report
Sections

We consider five sections of the radiology report:
the findings, impression, indication, history, and
comparison sections. The findings and impression
sections serve as the ground truth to be generated.
The remainder form part of the patient data em-
beddings. The indication section explains the rea-
son for the exam, such as symptoms or suspected

conditions. The history section provides relevant
clinical history, such as past conditions and treat-
ments. The comparison section mentions any prior
exams, which are used to capture disease progres-
sion. These sections provide context that guides the
interpretation of the exam, influencing the content
of the findings and impression sections. The em-
beddings were formed via the decoder’s tokenizer
and token embeddings. Of these, the history and
comparison sections have not been investigated for
CXR report generation. The comparison section
was used only when prior exams were considered.

5 Experiment Setup

Our multimodal language model, illustrated in Fig-
ure 2, is based on CXRMate-RRG24; it features
a Llama decoder and the UniFormer as the image
encoder. The training procedure for our model
involved three stages: (1) initial training on the
MIMIC-CXR training set using only images as
input with Teacher Forcing (TF) (Williams and
Zipser, 1989), (2) further training on the dataset
described in Section 1 with the inputs detailed in
Table 1, again using TF, and (3) reinforcement
learning on the same dataset through self-critical se-
quence training (SCST) (Rennie et al., 2017) (only
for Table 2). Our evaluation metrics included four
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Table 1: Results of the various patient data sources on the test set described in Section 3. Results were calculated
over ten training runs (n = 9580 exams; 958× 10 runs). Underlined scores indicate a significant difference to the
scores of ‘Images’. Evaluation is performed on both the findings and impression sections.

Patient data sources RG CX CB G BS R-L B4 |E[:, 0]|
Images only

Images 24.54 30.10 59.25 35.16 24.26 25.91 4.75 272.4
Patient emergency department data (MIMIC-IV-ED)

Images + ED stays 24.20 29.55 58.37 34.64 24.06 25.77 4.66 273.4
Images + triage 24.59 31.33 62.79 35.78 24.40 25.96 4.76 278.9
Images + vital signs 24.23 30.61 60.61 35.15 24.04 25.86 4.70 274.7
Images + reconciled medicines 25.10 32.05 64.70 36.32 24.71 26.29 4.93 355.6
Images + administered medicines 24.22 30.40 60.13 34.85 23.97 25.61 4.58 273.0

Patient radiology data (MIMIC-CXR)
Images + indication 25.01 32.78 65.49 35.88 24.73 26.32 5.15 279.5
Images + history 24.88 31.66 63.91 35.76 24.91 26.70 5.54 277.0
Images + metadata 24.07 30.42 59.75 34.79 23.86 25.59 4.58 273.4

Prior exams
Images + h = 1 24.71 30.98 62.60 35.81 24.38 26.00 4.82 603.0
Images + h = 2 24.56 31.43 62.09 35.43 24.04 25.80 4.84 878.1
Images + h = 3 24.50 30.73 59.89 35.21 24.03 25.82 4.70 1134.3
Images + h = 1 + comparison 24.92 31.46 62.93 35.84 24.34 26.03 4.89 607.4
Images + h = 2 + comparison 24.52 31.01 61.36 34.89 23.90 25.62 4.72 882.6
Images + h = 3 + comparison 24.31 30.93 60.10 34.35 23.31 25.39 4.72 1138.8

All effective sources (triage, reconciled medicines, indication, and history)
Images + effective sources (h = 0) 25.52 32.49 65.93 36.26 25.16 26.81 5.34 373.9
Images + effective sources (h = 1) 25.11 31.14 61.19 35.80 24.95 26.45 5.21 704.5
Images + effective sources (h = 1 + comparison) 25.05 30.68 60.99 35.94 24.94 26.48 5.24 709.0

Ablation from Images + effective sources (h = 0)
- triage 25.65 32.85 65.38 36.33 25.25 26.75 5.33 367.4
- reconciled medicines 25.43 32.48 65.63 36.42 25.23 26.86 5.40 290.7
- indication 25.46 32.92 65.69 36.41 25.21 26.79 5.36 366.7
- history 25.41 32.53 65.82 36.65 25.12 26.72 5.37 369.2
- time delta 25.31 33.03 65.72 36.17 25.10 26.75 5.34 373.9

that capture the semantics of radiology reporting
— RadGraph-F1 (RG), CheXbert-F1 (CX), CXR-
BERT (CB), and GREEN (G) — as well as three
natural language generation metrics: BERTScore-
F1 (BS), ROUGE-L (R-L), and BLEU-4 (B4). We
also propose a metric that measures n-gram repeti-
tion rate, namely the absence of repeated n-grams
(ARN). Comprehensive details on ARN and the
other metrics, the model architecture, training pro-
cedure, significance testing, and comparison meth-
ods are provided in Appendix D.

6 Results & Discussion

The impact of different patient data sources on
the performance of CXR report generation is sum-
marised in Table 1. This analysis identifies which
patient data sources outperform an image-only
baseline. Significant improvements were observed
by incorporating either triage data or reconciled
medicines. Notably, this data markedly improved
scores on the radiology report metrics (RG, CX,
CB, and G). These findings demonstrate that ED
patient data can improve the diagnostic accuracy

of CXR report generation. Aperiodic vital sign and
administered medicine data did not significantly
improve the scores overall, likely due to their fre-
quency of occurrence in the exams (62% and 37%,
respectively). However, as shown in Table F.1, a
significant improvement in performance was at-
tained when evaluated solely on exams that include
an aperiodic vital sign table.

Incorporating the indication or history section
led to significant score improvements. This demon-
strates the substantial influence these sections have
on the findings and impression sections. Con-
versely, adding the metadata table did not result in
significant score improvements, indicating it lacks
valuable information for CXR report generation.
While previous studies have established that the
indication section boosts CXR report generation
(Nguyen et al., 2023), our findings demonstrate that
the history section is equally important.

When examining the impact of prior exams, we
considered a maximum history size h of up to three,
incorporating the findings and impression sections,
and images from prior exams. A history size of one
or two significantly increased the scores, which
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Table 2: Comparison to benchmark models on the test set described in Section 3 (n = 958). Evaluation is on the
findings section only. Underlined indicates statistical significance to the top scoring benchmark model (p < 0.05).
In the ‘Train samples’ column, ‘images’ means the model generates reports per image, while ‘exams’ means a
report generated per exam.

Model Train samples RG CX CB G BS R-L B4 ARN

EMNLI (Miura et al., 2021) 152 173 exams 29.1 28.9 66.6 41.5 24.4 29.3 4.1 95.1
CMN (Chen et al., 2021) 270 790 images 23.6 24.3 49.4 36.6 19.7 27.8 4.0 99.3
TranSQ (Kong et al., 2022) 368 960 images 28.7 30.4 62.3 38.2 20.4 23.3 4.1 98.5
RGRG (Tanida et al., 2023) 166 512 images 22.9 22.8 37.9 31.1 23.4 22.0 3.7 96.5
CvT2DistilGPT2 (Nicolson et al., 2023) 270 790 images 23.9 29.3 59.8 37.0 24.8 28.6 5.4 99.0
RaDialog (Pellegrini et al., 2023) 276 778 images 24.4 38.4 60.7 34.9 26.2 26.7 4.8 94.4
MedXChat (Yang et al., 2025) 270 790 images 21.0 13.1 21.3 31.4 19.3 23.8 4.0 97.9
CXR-LLaVA-v2 (Lee et al., 2024) 193 513 images 19.4 20.7 44.1 24.0 23.6 21.1 1.7 99.7
CXRMate (Nicolson et al., 2024a) 125 395 exams 26.5 33.9 71.3 40.3 30.5 29.1 7.5 98.2
CXRMate-RRG24 (Nicolson et al., 2024b) 550 395 exams 28.9 31.2 58.2 40.2 31.0 28.7 6.6 97.7

Images + effective sources (h = 0) 76 398 exams 25.1 29.6 66.0 36.9 29.4 27.8 5.8 98.5
+ RL (CXR-BERT + BERTScore reward) 76 398 exams 30.4 35.7 79.1 41.6 37.2 31.6 8.7 93.5

+ reward per section 76 398 exams 30.1 33.7 78.3 41.6 37.5 32.2 8.4 94.6
+ ARN reward (CXRMate-ED) 76 398 exams 30.2 33.6 78.0 40.7 37.3 31.9 7.6 99.3

Indication: New endotracheal tube placement.
heartrate o2sat acuity pain chiefcomplaint

57 90 1 0 ULCER/CHF

Image (Model: Images from Table 1)
Generated findings: There is an endotracheal tube in satisfactory position, terminating 3.1 cm above the level of the carina. A right-sided PICC now
terminates at the cavoatrial junction. An enteric tube is seen coursing below the level of the diaphragm, inferior aspect out of the field of view. There is
moderate cardiomegaly. The lungs are clear without focal consolidation, pleural effusion or pneumothorax. 
Generated impression: 1. Appropriate position of a right sided PICC, terminating at the cavoatrial junction. 2. No acute cardiopulmonary process.

Image + triage + reconciled medications + indication +  (Model: Images + effective sources (h=0) from Table 1)
Generated findings: An endotracheal tube is in place with the tip terminating at the level of the thoracic inlet approximately 4 cm above the carina. A
right upper extremity PICC is in place with the tip terminating in the low SVC. A nasogastric tube is seen coursing below the diaphragm and out of view
on this image. A right upper lobe opacity has resolved from prior study. The heart is moderately enlarged, as before. There is mild pulmonary edema.
No pleural effusion or pneumothorax is detected. There is no focal consolidation concerning for pneumonia.
Generated impression: Endotracheal tube tip at the level of the thoracic inlet 4 cm above the carina and nasogastric tube in appropriate position. Mild
pulmonary edema and cardiomegaly.

Case studyTriage:

Radiologist findings: There has been interval placement of an endotracheal tube, which is low lying with tip approximately 1.6 cm above the carina.
An esophageal tube is in place coursing inferior to the diaphragm; however, tip out of view of the radiograph. Lung volumes remain low with mild
pulmonary edema. No significant pleural effusion or pneumothorax is identified. The cardiomediastinal silhouette is enlarged, however, unchanged.
Radiologist impression: Interval placement of endotracheal tube with tip low lying, approximately 1.6 cm above the carina. Mild pulmonary edema.
Distal tip of esophageal tube not within the field of view of radiograph.

Reconciled medications (names): Metoprolol Tartrate, Thiamine HCl, Albuterol Sulfate, Provigil, spironolactone,
Fluoxetine, nicotine (polacrilex), Imdur, Multivitamin, Ibuprofen, Sanctura XR, Metformin, Abilify, Plavix, Furosemide, ProAir
HFA, Briefs, Adult-Extra Large, Omeprazole, ProFit Precision Scale, Senna, Estrace, Lac-Hydrin, triazolam, Lisinopril.

Figure 4: Case study demonstrating how incorporating auxiliary patient data can aid with report generation.

is consistent with previous findings (Wu et al.,
2022). However, performance gradually degraded
as the history size increased, which contradicts ear-
lier studies. We suspect this is due to the size of
the prompt increasing as h grows, combined with
the limitations of our model architecture. |E[:, 0]|
in Table 1 is the average prompt length over the
test set, where E = [E0,E1, · · · ]. It can be seen
that |E[:, 0]| increases substantially as h increases.
Since we provide all inputs to the decoder’s self-
attention, a large input size may cause attention
dilution (Qin et al., 2022). With more inputs, the at-
tention weights must be distributed across a larger
number of inputs, resulting in each input receiving
a smaller share of the attention, making it harder

for the model to focus on the most relevant inputs.

Next, we combined all effective sources of
patient data (those providing a significant im-
provement). This included ‘triage’, ‘reconciled
medicines’, ‘indication’, and ‘history’. The best
performance was observed with no prior exams
(h = 0), indicating that using any prior exams in
combination with other sources is detrimental with
our model, possibly due to attention dilution. With
h = 0, the combination of all effective sources
outperformed each individual source. We then con-
ducted an ablation study using ‘Images + effective
sources (h = 0)’, which demonstrated that remov-
ing any individual patient data source did not result
in a significant change in performance.
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Following this, we further trained ‘Images + ef-
fective sources (h = 0)’ with reinforcement learn-
ing (RL), as described in Subsection 5. Its per-
formance is shown in Table 2; a CXR-BERT and
BERTScore composite reward was used, which
demonstrates a marked improvement for each met-
ric, except ARN. The low ARN indicates that this
reward introduced repetitions. We also propose
to calculate the reward separately for the findings
and impression section, as described in Appendix
E. While this produces similar results for the find-
ings section as shown in Table 2, this significantly
improves the scores on the impression section as
shown in Table E.1. Finally, we incorporate ARN
into the composite reward. This effectively reduces
repetitions, as evidenced by the improved ARN,
albeit with a slight trade-off in the other metrics.
Compared to other benchmark CXR report genera-
tion models in the literature that included MIMIC-
CXR in their training data, our model significantly
outperformed them on multiple metrics in Table
2, despite having substantially fewer training sam-
ples. This demonstrates the impact of incorporating
auxiliary patient data on CXR report generation.

Figure 4 provides an example of how auxiliary
patient data enhances CXR report generation. Mild
pulmonary edema was identified by the model
only when the auxiliary patient data was incorpo-
rated. The patient’s low oxygen saturation, chief
complaint of congestive heart failure (CHF) — a
common cause of pulmonary edema — and recon-
ciled medicines (Furosemide, Metoprolol Tartrate,
Lisinopril, Spironolactone) indicate active manage-
ment of fluid overload. Although the low oxygen
saturation and these medicines alone are not defini-
tive for pulmonary edema, together they provide
corroborative evidence of mild pulmonary oedema.

In Appendix G, we perform an error analysis to
assess the influence of auxiliary patient data on the
generated reports. Our findings show that incor-
porating auxiliary patient data increases the AUC
for 10 out of the 14 CheXpert labels (Figure G.1),
demonstrating its utility across multiple patholo-
gies. Additionally, we analysed its impact on the
generated reports for eight exams, with the follow-
ing key observations:
True positives (n = 2): The model utilised sup-
portive auxiliary patient data effectively. (See Ap-
pendix G.2.1 and G.2.2.)
False positives (n = 2): The model was misled by
confounding auxiliary patient data. (See Appendix
G.2.3 and G.2.4.)

Table 3: Patient data embedding strategies. Underlined
indicates a stat. sig. difference to ‘Baseline’ (p < 0.05).

Embeddings RG CX CB BS

Images
Baseline 29.00 25.81 59.04 23.85

Images + triage + reconciled medicines
Grouped embeddings 31.69 26.72 64.01 24.38

Separate embeddings 25.28 25.32 46.29 23.51

Values-to-text, categories-
to-embeddings

30.70 26.46 58.62 24.58

True negatives (n = 2): The model correctly ig-
nored confounding auxiliary patient data. (See Ap-
pendix G.2.5 and G.2.6.)
False negatives (n = 2): The model failed to
leverage supportive auxiliary patient data. (See Ap-
pendix G.2.7 and G.2.8.)
Auxiliary patient data sources—including the in-
dication and history sections, triage data, and rec-
onciled medicines—collectively contributed to the
model’s predictions. No single source consistently
dominated in providing evidence, with the interplay
between these sources frequently complementing
one another. A critical challenge for the model
lies in its ability to appropriately balance the aux-
iliary patient data evidence with radiographic ev-
idence, particularly when conflicting signals are
present. To address this limitation, we propose
two key improvements: increasing the size of the
training dataset, which is currently relatively small,
and adopting an LLM-based decoder. LLMs of-
fer advanced reasoning capabilities, enabling them
to better synthesise and prioritise evidence from
diverse sources.

Table 3 compares different methods for convert-
ing value and category columns into embeddings
using the triage and reconciled medicines table, as
these contain multiple value and category columns.
The aforementioned method of producing embed-
dings by grouping data from value and category
columns (‘Grouped embeddings’) is compared to
two other methods. The first is separate embed-
dings for each datum, where each value column
datum is separately transformed using the previ-
ously described FNN, while each category column
datum is converted to an embedding using a learn-
able weight matrix, akin to how token embeddings
are produced (‘Separate embeddings’). The second
method modifies ‘Separate embeddings’ by instead
converting the value column data to text and us-
ing the decoder’s tokenizer and token embeddings
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Table 4: Results on exams from the MIMIC-CXR test
set not associated with an ED stay (n = 666).

Model G CB BS B4

CXRMate-RRG24 31.99 72.48 25.88 3.37
CXRMate-ED (ours) 32.56 78.76 31.13 4.80

(‘Values-to-text, categories-to-tokens’). The results
indicate that the grouped embeddings method was
the best representation of heterogeneous patient
data for a multimodal language model.

To evaluate the generalisability and robustness
of CXRMate-ED, we evaluated it on 666 exams
from the MIMIC-CXR test set not associated with
an ED stay, explicitly excluding ED patient data.
As shown in the results presented in Table 4, our
model consistently outperformed the next-best per-
forming model from Table 2, CXRMate-RRG24,
despite the absence of ED patient data. The dy-
namic nature of the attention mechanism, enables
the model to be robust to missing data. This in-
dicates that CXRMate-ED is able to generalise to
departments other than emergency.

7 Conclusion

This paper demonstrates the value of incorporat-
ing diverse patient data into automated CXR re-
port generation. By integrating patient data from
the MIMIC-CXR and MIMIC-IV-ED datasets, we
have shown significant improvements in the diag-
nostic accuracy of generated radiology reports. Our
empirical evaluation uncovers new sources of pa-
tient information that enhance CXR report gener-
ation, including triage data, reconciled medicines,
and the history section of radiology reports. We
present specific methods to convert multimodal pa-
tient data into embeddings for a language model,
encompassing numerical, categorical, textual, tem-
poral, and image data. We encourage further
research and experimentation with our released
dataset, code, and model checkpoint to further ex-
plore methods for multimodal patient data language
modelling, with the ultimate goal of enhancing di-
agnostic accuracy and patient care.

8 Limitations

Despite the promising results demonstrated in this
study, several limitations must be acknowledged.
Firstly, the generalisability of our findings may be
constrained by the datasets utilised, specifically
MIMIC-CXR and MIMIC-IV-ED, which are de-

rived from a single institution, the Beth Israel Dea-
coness Medical Center. This could introduce biases
unique to the demographic and clinical practices of
this institution, potentially limiting the applicabil-
ity of our model to other healthcare settings with
different patient populations or clinical workflows.
Our reliance on these datasets is due to the fact that
they are the only publicly available sources that
link CXR exams with ED stays.

This study currently lacks subjective evaluation
by radiologists, which is essential for assessing the
quality of generated reports. We plan to address
this by conducting a retrospective evaluation with
a private dataset and radiologist evaluators. To fa-
cilitate this, we are securing agreements and ethics
approval for access to patient data and radiologist
time. However, this process is extensive and be-
yond the scope of this study, and will instead be
used to subjectively evaluate future models.

Another limitation pertains to the completeness
and quality of the patient data. Despite incorporat-
ing a wide range of data sources, the datasets still
contain missing or incomplete information, which
can affect model performance. For example, not
all exams include a history section, and not all ED
patient records have administered medicines avail-
able, leading to potential gaps in the data that the
model can utilise. However, this reflects the nature
of real patient records where issues of data quality
and completeness are to be expected.

Our model’s architecture, while effective, has
certain limitations. It struggles with large input
sizes, especially when incorporating multiple prior
exams, likely due to attention dilution. It also at
times struggles with supportive or confounding ev-
idence from the auxiliary patient data, introducing
false positive or false negative predictions. Future
work should explore advanced attention mecha-
nisms, hierarchical models, and LLMs to better
manage large input sequences and to better balance
auxiliary patient data evidence with radiographic
evidence.

The interpretability of the model also poses a
challenge. While our model shows improved di-
agnostic accuracy, the decision-making process
within the multimodal language model remains a
black box. Developing methods to enhance the
interpretability and explainability of the model’s
outputs would be beneficial, especially in clinical
settings where understanding the rationale behind
a diagnosis is critical.

Finally, while we provide a comprehensive set of
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metrics to evaluate our model’s performance, these
metrics focus primarily on the diagnostic accuracy
and quality of the generated reports. Broader eval-
uations considering clinical outcomes, such as the
impact on patient management or reduction in ra-
diologist workload, would offer a more holistic
view of the benefits and limitations of CXR report
generation models in general. Conducting such
assessments could help to better understand the
practical implications of deploying these models in
a clinical setting.

In summary, while our study provides valuable
insights into the integration of multimodal patient
data for CXR report generation, addressing these
limitations will be crucial for further advancements
and broader adoption of such models in clinical
practice. Future research should explore alternative
architectures and training strategies, find alternative
datasets to evaluate generalisability, improve model
interpretability, and comprehensively assess the
practical impact on patient care and radiologist
workflow.

9 Ethical Considerations

In this research, we used real-world patient data
from the MIMIC-CXR and MIMIC-IV-ED datasets.
Since these datasets are de-identified, we consider
privacy leakage risks to be minimal. Our method
employs a language model to generate medical re-
ports from patient data. However, we acknowledge
that language models can exhibit bias and produce
hallucinations, which may result in incorrect con-
tent in the generated reports.
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A Dataset Details

Each of the exams for the dataset described in Sec-
tion 3 had one ED stay and triage row; 53% had at

least one reconciled medicines row with up to 106
rows; 62% had at least one vital signs row with up
to 69 rows; and 37% had at least one administered
medicines row with up to 52 rows. Exams had an
indication section 66% of the time with a maximum
of 75 words, a history section 34% of the time with
a maximum of 74 words, and a comparison section
97% of the time with a maximum of 129 words.
Only one exam had both an indication and a history
section.

B Prior Exam Embeddings

The images, findings section, and impression sec-
tion from previous exams were considered. For
prior exams, the time delta was positive, calculated
by subtracting the time of the prior exam from the
current exam. The images, findings section, and
impression section from prior exams were given
distinct source embeddings, separate from the cur-
rent exam, to enhance differentiation. The compari-
son section from the current exam was also investi-
gated, anticipating that it would prompt the model
to reference the prior exam in the generated report.
We explored prior exams with a history size h of
up to three. Note that all exams from MIMIC-CXR
were considered for the priors (train/validation/test
222 758/1 808/3 269 exams), including those that
did not occur during an ED stay and those that did
not have a findings and/or impression section.

C Table Column Determination

The columns from the tables described in Figure 1
were given the following designations:

• For the ED stay table, the patients ‘intime’
was used as the event time. Gender (e.g., ‘F’),
race (e.g., ‘HISPANIC OR LATINO’), and
arrival transport (e.g., ‘AMBULANCE’) were
designated as category columns. The disposi-
tion column was not considered.

• For the triage table, the ‘intime’ from the
ED stay table was used. Temperature (e.g.,
‘100.6’), heart rate (e.g., ‘93’), respiratory rate
(e.g., ‘16’), O2 saturation (e.g., ‘94’), systolic
blood pressure (SBP) (e.g., ‘110’), diastolic
blood pressure (DBP) (e.g., ‘56’), and acuity
(e.g., ‘2’) were designated as value columns.
Pain (e.g., ‘6-9’ and ‘yes.’) and the chief
complaint (e.g., ‘BILATERAL FOOT PAIN’)
were designated as text columns.
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• The column designations for the aperiodic vi-
tal signs table were identical to the triage table,
except for the rhythm column (e.g., ‘Normal
Sinus Rhythm’), which was treated as a cate-
gory column. The aperiodic vital signs table
also had no chief complaint column and the
‘charttime’ column was used as the event time.

• For the reconciled medicines table, the ‘in-
time’ from the ED stay table was used as
the event time, as it pertains to the patient’s
medicine history prior to the ED stay. The
name column was designated as a text col-
umn, while the gsn, ndc, etc_rn, and etccode
columns were designated as category columns.
The etcdescription column was not consid-
ered, as it is a description of the etccode col-
umn.

• For the administered medicines (pyxis) table,
‘charttime’ was used as the event time. The
med_rn, name, gsn_rn, and gsn columns were
all treated as category columns. The name col-
umn for the administered medicines column
did not have as high of a cardinality as the
name column from the reconciled medicines
column, allowing it to be considered as a cate-
gory column.

• For the metadata table, the ‘PerformedProce-
dureStepDescription’, ‘ViewPosition’, ‘Proce-
dureCodeSequence_CodeMeaning’, ‘View-
CodeSequence_CodeMeaning’, and ‘Patien-
tOrientationCodeSequence_CodeMeaning’
columns were considered, and designated as
category columns.

D Detailed Experiment Setup

D.1 Metrics

We perform evaluation with GREEN (Ost-
meier et al., 2024), CheXbert-F1 (Smit et al.,
2020), RadGraph-F1 (Delbrouck et al., 2022),
BLEU-4 (Papineni et al., 2001), BERTScore-
F1 (roberta-large_L17_no-idf_rescaled)
(Zhang et al., 2020), CXR-BERT (Boecking et al.,
2022; Nicolson et al., 2024a), and ROUGE-L
(Lin and Hovy, 2003). Ostmeier et al. (2024)
found that several of these were moderately
correlated with radiologists’ pairwise preferences:
GREEN (0.63), ROUGE-L (0.53), RadGraph-F1
(0.47), BERTScore (0.44), and BLEU (0.33).
Yu et al. (2023) presented similar results on

radiologists’ error analysis for RadGraph-F1
(0.53), CheXbert (0.54), BERTScore (0.51), and
BLEU (0.41). Hence, these metrics can be used
as approximate measures of clinical semantic
similarity to radiologists’ evaluations.

We also propose a new metric that measures
n-gram repetition rate, namely the absence of re-
peated n-grams (ARN). It is calculated as:

ARN =

{
1.0 if L < n,

1.0−
∑M

i=1(Count(gi)−1)
M if L ≥ n,

(1)
where L is the total number of tokens in the gener-
ated report, n is the n-gram size, M = L−n+1 is
the total number of n-grams in the report, gi is the
ith unique n-gram in the report, Count(gi) is the
n-gram frequency in the report. The tokenizer de-
scribed in Appendix D.2 was used with an n-gram
size of three.

For the models in Table 2 that generate a report
for each image in an exam, the average score was
taken across all reports for an exam. Following
this, the final average score was computed across
all exams for both models that generate a report per
image and those that generate a report per exam.

For CheXbert, the macro-averaged F1 was com-
puted between the 14 CheXbert observations ex-
tracted from the generated and radiologist reports.
“No mention”, “negative”, and “uncertain” were
considered negative, while “positive” was consid-
ered positive. The true positives, false positives,
and false negatives were averaged over the reports
of each exam for the models that generate a report
per image.

We also perform statistical testing; first, a Lev-
ene’s test was conducted to reveal if the variances
across model scores was homogeneous or not. If
the assumption of equal variances was upheld, a
one-way ANOVA was conducted to determine if
there was a significant difference between mod-
els. Finally, pairwise Tukey-HSD post-hoc tests
were used for pairwise testing. If the assumption of
equal variances was violated, a one-way Welch’s
ANOVA was conducted to determine if there was
a significant difference between models. Finally,
Games-Howell post hoc tests were used for pair-
wise testing. A p-value of 0.05 was used for all
significance testing. Statistical testing was not per-
formed for CheXbert, as it is a classification metric.

189



D.2 Model

Our model is illustrated in Figure 2; following
Nicolson et al. (2024b), we utilised UniFormer
as the image encoder (in particular, the 384× 384
base model warm started with its token labelling
fine-tuned checkpoint) (Li et al., 2023). The image
embeddings are formed by processing each image
in the exam separately with the image encoder and
then projecting its last hidden state to match the
decoder’s hidden size using a learnable weight ma-
trix. Each image was resized using bicubic inter-
polation so that its smallest side had a length of
384 and its largest side maintained the aspect ratio.
Next, the resized image was cropped to a size of
R3×384×384. The crop location was random during
training and centred during testing. Following (El-
gendi et al., 2021), the image was rotated around its
centre during training, where the angle of rotation
was sampled from U [−5◦, 5◦]. Finally, the image
was standardised using the statistics provided with
the UniFormer checkpoint. A maximum of five
images per exam were used during training. If
more were available, five were randomly sampled
uniformly without replacement from the exam for
each epoch.

Again following (Nicolson et al., 2024b), we
employed the Llama architecture for the decoder,
which is notable for features such as its rotary posi-
tional encoding (RoPE), root mean square normali-
sation (RMSNorm), and SwiGLU activation func-
tion (Touvron et al., 2023). A byte-level byte pair
encoding tokenizer (Wang et al., 2020) was trained
with a vocabulary size of 30 000. It was trained
on the findings, impression, indication, and history
sections (not the comparison section) of the entire
MIMIC-CXR training set, as well as the ‘pain’ and
‘chiefcomplaint’ columns from the triage table, the
‘name’ column of the reconciled medicines table,
and the ‘pain’ column from the vital signs table
(from the entire MIMIC-IV-ED dataset). Newline,
tab, repeated whitespaces, and leading and trailing
whitespaces were removed from any text before
tokenization.

The hyperparameters of the Llama decoder were
six hidden layers, a hidden size of 768, 12 attention
heads per layer, and an intermediate size of 3 072.
The maximum number of position embeddings was
set to 2 048 to accommodate all the patient data
embeddings and the report tokens. The maximum
number of tokens that could be generated was set
to 256, which was also the limit for the radiologist
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Figure D.1: Attention mask for the decoder. Non-causal
masking was used for the patient data embeddings and
causal masking for the report token embeddings.

reports during training. During testing, a beam size
of four was utilised. The Llama decoder allows a
custom attention mask to be provided in current im-
plementations.7 This enabled non-causal masking
to be utilised for the prompt and causal masking for
the report token embeddings, as shown in Figure
D.1. This ensured that the self-attention heads were
able to attend to all of the patient data embeddings
at each position.

D.3 Training

Three stages of training were performed. Each
stage used AdamW (Loshchilov and Hutter, 2022)
for mini-batch gradient descent optimisation and
gradient clipping with a maximum norm of 1.0 to
prevent exploding gradients and maintain training
stability. Training and evaluation was performed
on a 94GB NVIDIA H100 GPU. The three stages
were as follows:

1. Teacher forcing (TF) (Williams and Zipser,
1989) was performed on the MIMIC-CXR
dataset with only the images for each exam
as input, and exams that contained both a
findings and impression section. This gave a
training/validation split of 232 855/1 837 im-
ages, 125 417/991 exams, and 57 102/436 pa-
tients. Training was performed with an initial
learning rate of 5e-5, a mini-batch size of 8,
a maximum of 32 epochs, and with float16
automatic mixed precision. All model param-
eters were trainable during this stage. The

7https://huggingface.co/blog/poedator/4d-masks
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validation macro-averaged CheXbert-F1 was
the monitored metric for checkpoint selection.
This stage was necessary, as the language
model struggled to learn to generate reports
from multiple patient data sources without
first learning generating reports solely from
images.

2. TF was used in the second stage of train-
ing, with the MIMIC-CXR & MIMIC-IV-ED
dataset described in Section 3 with the inputs
described in Table 1. The training strategy
was identical to the previous stage, except that
a maximum of 16 epochs was performed, and
the image encoder’s parameters were frozen
(except for its projection). The models fea-
tured in Table 1 were trained using only the
first two stages.

3. Reinforcement learning using self-critical se-
quence training (SCST) (Rennie et al., 2017)
was performed with the rewards described in
Appendix E in the final stage of training. The
sample report for SCST was generated with
top-k sampling (k = 50). Training was per-
formed with an initial learning rate of 5e-6,
a mini-batch size of 32, a maximum of 32
epochs, and with float32 precision. A warmup
phase of 5 000 training steps was used for
the learning rate, linearly increasing from
zero. The image encoder’s parameters were
frozen during this stage (except for its pro-
jection). The validation BERTScore-F1 was
the monitored metric for checkpoint selection.
This stage of training was only applied to the
best model from Table 1, ‘Images + effective
sources (h = 0)’, with the results presented in
Table 2.

D.4 Comparison Models

The generated reports for the models in Table 2
were attained as follows:

• EMNLI reports were generated follow-
ing https://github.com/ysmiura/ifcc
(Miura et al., 2021).

• CMN reports were generated follow-
ing https://github.com/zhjohnchan/
R2GenCMN (Chen et al., 2021).

• TranSQ reports were kindly provided by the
authors (Kong et al., 2022).

• RGRG reports were generated follow-
ing https://github.com/ttanida/rgrg
(Tanida et al., 2023).

• CvT2DistilGPT2 reports were generated
following https://github.com/aehrc/
cvt2distilgpt2 (Nicolson et al., 2023).

• RaDialog reports were kindly provided by the
authors (Pellegrini et al., 2023).

• MedXChat reports were kindly provided by
the authors (Yang et al., 2025).

• CXR-LLaVA-v2 reports were generated fol-
lowing https://huggingface.co/ECOFRI/
CXR-LLAVA-v2 (Lee et al., 2024).

• CXRMate reports were generated following
https://huggingface.co/aehrc/cxrmate
(Nicolson et al., 2024a).

• CXRMate-RRG24 reports were generated fol-
lowing https://huggingface.co/aehrc/
cxrmate-rrg24 (Nicolson et al., 2024b).

CXRMate-RRG24 was trained on five datasets, in-
cluding MIMIC-CXR. RGRG was trained on the
ImaGenome dataset derived from MIMIC-CXR —
which may have some overlap with our test set.

E Reinforcement Learning Rewards

The separate reward per section was calculated as:

rs(ŵf ,wf , ŵi,wi) =α1 · rf (ŵf ,wf )+

α2 · ri(ŵi,wi),
(2)

where rs(·) is the composite reward for the sections
of the report, rf (·) is the reward for the findings
section, and ri(·) is the reward for the impression
section, ŵf is the generated findings section, wf is
the radiologist findings section, ŵi is the generated
impression section, wi is the radiologist impression
section, and α1 and α2 are weights. Normally,
rr(ŵr,wr) is calculated, where ŵr and wr are the
generated and radiologist reports, which include
both the findings and impression sections.

The reward rf (·), ri(·), or rr(·) is calculated as:

r(ŵ,w) =λ1 · CXR-BERT(ŵ,w)+

λ2 · BERTScore(ŵ,w)+

λ3 · ARN(ŵ,w),

(3)

where λ1, λ2, and λ3 are weights. For ‘Images +
effective source (h = 0) + RL with CXR-BERT
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+ BERTScore reward’, λ1 = 0.5, λ2 = 0.5, and
λ3 = 0.0. For ‘Images + effective source (h =
0) + RL with CXR-BERT + BERTScore reward
per section’, α1 = 0.75, α2 = 0.25, λ1 = 0.5,
λ2 = 0.5, and λ3 = 0.0. A higher weight was
used for the findings section, as it is longer on
average than the impression section. For ‘Images
+ effective source (h = 0) + RL with CXR-BERT
+ BERTScore + ARN reward per section’, α1 =
0.75, α2 = 0.25, λ1 = 0.45, λ2 = 0.45, and
λ3 = 0.1. Only a weak contribution of the ARN
was required to prevent repetitions.

The improvement that separating the reward per
section has on the findings section is negligible, as
seen in Table 2. However, separating the reward
per section improves the scores for the impression
section, as shown in Table E.1. Separating the re-
ward likely enables the model to better optimise for
the concise and summarised nature of the impres-
sion section, which was previously overshadowed
by the dominance of the findings section’s require-
ment for comprehensive detail when both were
jointly considered.

F Ancillary Results

In Figure F.1, the F1-scores for each CheXbert la-
bel are shown. The ‘Images + effective sources
(h = 0)’ model from Table 1 attained a higher
score than the ‘Images’ model for 11 of the 14
labels. This suggests that incorporating auxiliary
patient data from MIMIC-IV-ED and MIMIC-CXR
provides a general improvement, rather than bene-
fiting any specific pathology.

Further improvements can be seen for most la-
bels when reinforcement learning (RL) is used (i.e.,
our model from Table 2). However, there are perfor-
mance decreases for ‘enlarged cardiomediastinum’,
‘pneumothorax’, and ‘fracture’. This might be due
to these pathologies being underrepresented in the
MIMIC-CXR dataset, leading the model to opti-
mise for more common pathologies during rein-
forcement learning.

The results for exams that include an aperiodic
vital signs table are shown in Table F.1. Adding it
produced a significant improvement in the scores
for CXR-BERT, indicating that it should be consid-
ered if available. The results for exams that include
an administered medicines table are shown in Table
F.2. Adding did not produce a significant improve-
ment in the scores, indicating that it is not useful
for CXR report generation.

G Error analysis

G.1 Impact of Auxiliary Patient Data on the
CheXpert Labels

Figure G.1 demonstrates the impact of incorporat-
ing auxiliary patient data for different CheXpert
labels. The GREEN score for the ‘Images + ef-
fective sources (h=0)’ model is compared to the
‘Images’ model from Table 1 for each exam. Note
that the generated and radiologist report for each
exam will often include findings other than the
CheXpert label. Hence, the GREEN scores do not
exclusively represent a particular CheXpert label,
rather, they represent exams with that label present.
The horizontal dashed line where ∆ = 0 divides
exams where auxiliary patient data improved per-
formance from those where it decreased perfor-
mance. CheXpert labels with a higher area under
the curve (AUC) above the horizontal dashed line
suggest that there is a stronger overall benefit from
leveraging auxiliary patient data.

Leveraging auxiliary patient data yielded a
higher AUC for 10 out of the 14 CheXpert labels,
indicating that it is beneficial for many patholo-
gies. For certain CheXpert labels, the influence of
auxiliary patient data is less clear, particularly for
those associated with smaller sample sizes, such as
enlarged cardiomediastinum (n = 10), consolida-
tion (n = 10), fracture (n = 15), pneumothorax
(n = 5), and lung lesion (n = 35). The no findings
AUC of 6.85 for ∆ > 0 being lower than the AUC
of 7.72 for ∆ < 0 suggests that the auxiliary pa-
tient data increases the false positive rate for this
model.

G.2 Impact of Auxiliary Patient Data on the
Generated Reports

To gain a better understanding of how the auxil-
iary patient data impacts the generated reports, we
analyse multiple case studies where it contributes
to either true positive, false positive, true negative,
or false negative findings in the generated report:

• A true positive is where the model has identi-
fied a positive occurrence of a pathology that
is also identified as positive in the radiologist’s
report.

• A false positive is where the model has in-
correctly identified a positive occurrence of a
pathology that is not identified as positive in
the radiologist’s report.
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Table E.1: Impact of the reward on the impression section of the test set described in Section 3 (n =
9580 exams; 958 × 10 runs for ‘Images + effective sources (h = 0)’, n = 1916 exams; 958 × 3 runs for
the remaining models). Evaluation is on the impression section only.

Model RG CX CB G BS R-L B4 ARN

Images + effective sources (h = 0) 20.21 26.81 57.61 28.71 27.90 25.02 4.77 99.59
+ RL (CXR-BERT + BERTScore reward) 23.96 28.07 62.85 30.58 31.58 28.48 7.84 99.89

+ reward per section 24.89 31.08 71.12 30.89 36.27 30.27 6.70 99.33
+ ARN reward 24.87 32.88 71.12 32.14 36.31 30.61 6.84 99.83
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Figure F.1: F1-score for each CheXbert label. (n = 9580 exams; 958 × 10 runs for ‘Images’ and ‘Images +
effective sources (h = 0)’ and n = 2874 exams; 958× 3 runs for ‘Images + effective sources (h = 0) + RL with
CXR-BERT + BERTScore + ARN reward per section’.

• A true negative occurs when a pathology is
omitted or absent in the radiologist’s report
and this is correctly reflected in the generated
report, either implicitly through omission or
explicitly by stating its absence.

• A false negative is where a pathology is posi-
tively identified in the radiologist’s report but
is not positively identified in the generated
report.

Exams with a high ∆ from Figure G.1 were se-
lected for true positive and true negative examples,
while those with a low ∆ were chosen for false
positive and false negative examples.8 This anal-
ysis, though based on only eight exams, exempli-
fies how auxiliary patient data can both enhance
and hinder the CXR report generation process, pro-
viding valuable insights into its impact. A more
comprehensive analysis would be required to fully
characterise the influence of auxiliary patient data
across diverse exams and pathologies.

8Out of the 10 training runs, the ‘Images + effective
sources (h = 0)’ and ‘Images’ models that attained the high-
est average GREEN score over the test set were selected for
the error analysis.

G.2.1 True Positive: Example 1

Table G.1 demonstrates how auxiliary patient data
contributed to the true positive detection of in-
creased interstitial markings, which are suggestive
of pulmonary fibrosis. The model not using aux-
iliary patient data failed to detect the interstitial
markings. The patient’s triage data included a res-
piratory rate consistent with tachypnoea and a chief
complaint of dyspnoea, both consistent with pul-
monary fibrosis. Additionally, the patient’s history
of pulmonary fibrosis and worsening shortness of
breath provided further context supporting the ob-
served increase in interstitial markings. In this case,
the inclusion of auxiliary patient data facilitated a
true positive detection.

G.2.2 True Positive: Example 2

Table G.2 demonstrates how auxiliary patient data
contributed to the true positive detection of pul-
monary edema, which was not detected by the
model that does not use auxiliary patient data.
Recorded in the patient’s triage data was a respi-
ratory rate consistent with tachypnoea and a chief
complaint of dyspnoea (also documented in the
history section), both of which are indicative of
pulmonary edema. Additionally, furosemide was
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Table F.1: Results for exams that have an aperiodic vital sign table (n = 5250; studies 525× 10 runs). Underlined
scores indicate a significant difference to the scores of ‘Images’ (p < 0.05).

Model RG CX CB G BS R-L B4

Images 24.73 29.41 58.63 35.11 24.33 25.85 4.89
Images + vital signs 24.55 29.73 60.32 35.21 24.17 25.97 4.87

Table F.2: Results for exams that have a administered medicines table (n = 3520; studies 352 × 10 runs).
Underlined scores indicate a significant difference to the scores of ‘Images’ (p < 0.05).

Model RG CX CB G BS R-L B4

Images 25.19 28.29 59.24 36.13 24.81 26.61 5.15
Images + administered medicines 24.70 29.53 59.53 35.82 24.46 26.38 4.85

listed in the patient’s reconciled medicines, which
is commonly used to manage pulmonary edema.
This example underscores how incorporating auxil-
iary patient data can enhance true positive detection
in CXR report generation.

G.2.3 False Positive: Example 1
Table G.3 provides an example of where the model
leveraging auxiliary patient data introduced a false
positive prediction into the generated report. It in-
correctly specifies that there are streaky opacities
in the lung bases, which are reflective of atelec-
tasis. The model that does not leverage auxiliary
patient data did not produce this false positive. At-
electasis is often asymptomatic or, when extensive,
may present with mild dyspnoea or cough, whereas
tachypnoea and wheezing are uncommon except
in severe cases; none of these features were doc-
umented in the indication section or triage data.
Although codeine — listed among the patient’s rec-
onciled medicines — can cause hypoventilation
and impaired cough, thereby indirectly increasing
the risk of secretion retention, there was no clini-
cal evidence of respiratory depression or overdose
in this case. This example suggests that weak or
ambiguous evidence in the auxiliary data may have
influenced the false positive prediction. Further
refinement is needed to improve the model’s abil-
ity to appropriately weigh auxiliary patient data
evidence against radiographic evidence.

G.2.4 False Positive: Example 2
Table G.4 illustrates a case in which the model in-
corporating auxiliary patient data produced false
positives for mild pulmonary vascular congestion
and cardiomegaly, whereas the model without these
data correctly omitted those findings. The patient’s
presenting symptoms — shortness of breath and
wheezing, with a history of pneumonia — are

highly non-specific and do not reliably indicate
either vascular congestion or cardiac enlargement.
Triage vitals showed a high respiratory rate and a
high systolic blood pressure, the latter represent-
ing isolated systolic hypertension, a long-term risk
factor for cardiac remodelling but not acute car-
diomegaly. Furosemide on the reconciled medica-
tion list denotes prescribed management of fluid
overload but does not confirm current pulmonary
congestion, and antihypertensives such as lisinopril
and diltiazem reflect chronic blood pressure con-
trol rather than definitive evidence of cardiomegaly.
In this instance, reliance on weak or ambiguous
auxiliary data skewed the model’s interpretation,
underscoring the need for improved calibration be-
tween auxiliary patient and imaging findings to
avoid such false positives.

G.2.5 True Negative: Example 1

Table G.5 illustrates an exam in which the model
incorporating auxiliary patient data still produced
a true-negative report despite confounding clinical
information. The patient’s history of renal failure
and right upper-quadrant pain could raise suspicion
for pleural effusion secondary to fluid overload or
ascites. Diuretic therapy with furosemide and meto-
lazone supports active fluid management, while
antihypertensives such as lisinopril and amlodip-
ine denote underlying cardiovascular disease that
might be associated with pulmonary congestion
or cardiomegaly. Hypotension noted at triage fur-
ther complicates the clinical picture, as it can mask
signs of volume overload. Nonetheless, the model
correctly prioritised the radiographic evidence and
avoided false-positive findings. This case exem-
plifies the model’s ability to appropriately bal-
ance auxiliary patient data against radiographic
evidence, maintaining high diagnostic specificity.
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Table G.1: True positive example for exam 51707133. The triage data and the history section provide additional
evidence supporting increased interstitial markings. Only the patient data that Images + effective sources (h=0)
utilises is shown.

Patient data

Image

History ___-year-old female with pulmonary fibrosis and CHF with worsening shortness of breath.

Reconciled
medicines;
name

atorvastatin, azelastine [Astelin], aspirin, calcium carbonate-vitamin D3 [Calcium 500 + D], loratadine, metoprolol
succinate, multivitamin, glucosamine sulfate [Glucosamine], acetaminophen, ferrous sulfate [Feosol], torsemide,
pantoprazole, lidocaine, ketotifen fumarate.

Triage
temperature heartrate resprate o2sat sbp dbp pain acuity chiefcomplaint

99.7 90.0 36.0 100.0 118.0 70.0 0 2.0 Dyspnea
Radiologist

Findings AP and lateral views of the chest. Low lung volumes are seen compatible with patient’s history of fibrosis.
Diffusely increased interstitial markings are seen throughout the lungs, but these appear overall slightly worse
when compared to prior. Cardiomediastinal silhouette is grossly unchanged. No acute osseous abnormality is
detected.

Impression Findings compatible with pulmonary fibrosis with likely superimposed edema. Please note that infection cannot
be excluded and clinical correlation is necessary.

Images + effective sources (h = 0) (GREEN = 0.375)
Findings Frontal and lateral views of the chest. Low lung volumes are again noted. Increased interstitial markings seen

more extensive on the left than on the right. There is no evidence of overt consolidation nor effusion. The
cardiomediastinal silhouette is stable. No acute osseous abnormality is identified. Degenerative changes are seen
at the shoulders.

Impression Increased interstitial markings throughout the lungs which could be due to chronic lung disease and possible
chronic lung disease. No definite superimposed acute process, although clinical correlation suggested.

Images (GREEN = 0.091)
Findings Assessment is limited due to patient rotation and patient rotation. Lung volumes are low. Heart size appears mildly

enlarged. The aorta appears to be calcified. Perihilar haziness and vascular indistinctness is compatible with mild
pulmonary edema. Streaky opacities in the lung bases likely reflect areas of atelectasis. No large pleural effusion
or pneumothorax is seen. Multilevel degenerative changes are noted in the thoracic spine.

Impression Mild pulmonary edema and bibasilar atelectasis.

G.2.6 True Negative: Example 2

Table G.6 illustrates an exam in which the model
incorporating auxiliary patient data still produced a
true-negative report, despite potential confounders
in the auxiliary patient data. The indication section
— with a request for evaluation for fluid overload
or pneumonia in a woman presenting with chest
pain — could have biased the model towards find-
ings such as pulmonary edema, pneumonia, pleural
effusion or cardiomegaly. Likewise, the reconciled
medicines of furosemide and nitroglycerin suggest
management of heart failure or ischaemic chest
pain, both of which can be associated with pleural
effusion or an enlarged cardiac silhouette. Never-
theless, the model that uses auxiliary patient data

correctly prioritised the radiographic evidence —
reporting clear lungs, normal pulmonary vascular-
ity and an unremarkable cardiac contour — and
thus avoided false-positive predictions.

G.2.7 False Negative: Example 1
Table G.7 is an example where the model failed to
leverage auxiliary patient data to detect trace bilat-
eral pleural effusions and the increased opacity in
the right mid-to-lower lung (concerning for pneu-
monia). The history section notes dyspnoea and
hypoxia, which are a symptom and a sign, respec-
tively, of pleural effusion and pneumonia, among
other conditions, although “trace” bilateral pleural
effusions seldom cause dyspnoea or hypoxia. The
indication section requests evaluation for fluid over-
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Table G.2: True positive example for exam 52841174. The triage data and reconciled medicines provide additional
evidence indicative of pulmonary edema. Only the patient data that Images + effective sources (h=0) utilises is
shown.

Patient data

Image

History ___-year-old with dyspnea.

Reconciled
medicines;
name

Coumadin, furosemide, metoprolol succinate, Calcarb 600 With Vitamin D, simvastatin, Tylenol Extra Strength,
levothyroxine, docusate sodium.

Triage
temperature heartrate resprate o2sat sbp dbp pain acuity chiefcomplaint

97.0 81.0 22.0 100.0 102.0 58.0 0 2.0 DYSPNEA
Radiologist

Findings AP upright and lateral views of the chest were provided. Midline sternotomy wires are again noted. Patient is
rotated somewhat limiting the evaluation of the cardiomediastinal silhouette, though cardiomediastinal silhouette
appears grossly stable. There are small layering bilateral effusions with mild interstitial edema. Overall, there has
been no significant change from prior study. Bony structures are intact.

Impression Mild interstitial edema, stable cardiomegaly with small bilateral effusions.
Images + effective sources (h = 0) (GREEN = 0.375)

Findings AP upright and lateral views of the chest were provided. Midline sternotomy wires and mediastinal clips as well
as a prosthetic cardiac valve. Low lung volumes limit evaluation. There is hilar congestion and mild pulmonary
edema. Small bilateral pleural effusions persist. There is left basilar atelectasis. The heart is mildly enlarged. Bony
structures appear intact. No free air below the right hemidiaphragm.

Impression Pulmonary edema, small bilateral pleural effusions, left greater than right.
Images (GREEN = 0.222)

Findings The patient is status post median sternotomy and CABG. Large hiatal hernia is present. The cardiac silhouette size
is mildly enlarged. The aorta is tortuous. Crowding of bronchovascular structures is present with probable mild
pulmonary vascular congestion. Small right pleural effusion is present. Patchy opacities in the lung bases may
reflect atelectasis. No pneumothorax is demonstrated. There are moderate multilevel degenerative changes seen in
the thoracic spine.

Impression 1. Small right pleural effusion and bibasilar opacities likely reflect atelectasis. Infection at the lung bases cannot
be completely excluded. 2. Mild pulmonary vascular congestion. 3. Moderate cardiomegaly.

load or pneumonia, both of which should prompt
the model to assess for pleural effusion and opaci-
ties. The significantly reduced oxygen saturation
recorded in the triage data indicates severe hypox-
aemia (also noted in the history section), which
can be caused by pleural effusion or pneumonia.
Despite evidence from the auxiliary patient data to
support pleural effusion and the opacity, the model
failed to combine this with the radiographic evi-
dence to make the correct predictions.

G.2.8 False Negative: Example 2
Table G.8 illustrates a false-negative case for the
model that incorporates auxiliary patient data: it
failed to detect a new right lower lobe opacity in-
dicative of pneumonia. The patient’s history of

dyspnoea and right lower lobe infiltrate should
have heightened the suspicion for consolidation,
yet the model neglected this. Although the chief
complaint of pneumonia signifies a working diag-
nosis rather than a confirmed finding, it nonetheless
provides the model with strong evidence. The pa-
tient’s triage vitals (normal temperature and heart
rate) do not reliably exclude pneumonia and should
not have down-weighted its likelihood. The patient
is on a systemic antibiotic (erythromycin); how-
ever, it is unclear whether this was prescribed for
the pneumonia. Despite the evidence from the aux-
iliary patient data, the model failed to leverage it
alongside the radiographic evidence to detect pneu-
monia.
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Table G.3: False positive example for exam 51274564. This example demonstrates how weak auxiliary patient data
evidence may have misled the model. Only the patient data that Images + effective sources (h=0) utilises is shown.

Patient data

Image

Indication Status post new central line placement.

Reconciled
medicines;
name

colchicine, Aspirin, nifedipine, blood sugar diagnostic [OneTouch Ultra Test], labetalol, calcitriol, insulin needles
(disposable) [BD Insulin Pen Needle UF Mini], fluticasone, codeine-guaifenesin, lisinopril, insulin lispro [Humalog
KwikPen], insulin glargine [Lantus Solostar], prednisone, acetaminophen, torsemide, albuterol sulfate [ProAir
HFA], mycophenolate mofetil, Multivitamin, tacrolimus, Vitamin E, allopurinol, ferrous sulfate.

Triage
temperature heartrate resprate o2sat sbp dbp pain acuity chiefcomplaint

98.1 72.0 16.0 0.0 95.0 46.0 8 2.0 Abnormal labs, Weakness, Diar-
rhea

Radiologist
Findings A new central venous catheter terminates in the left brachiocephalic vein. There is no pneumothorax. Otherwise,

there has been no significant short-term change.

Impression Status post placement of new left internal jugular central venous catheter; no pneumothorax identified.
Images + effective sources (h = 0) (GREEN = 0.143)

Findings There is interval placement of a left internal jugular central venous catheter with tip terminating in the lower
SVC. Lung volumes are low. This accentuates the size of the cardiac silhouette which appears mildly enlarged.
Mediastinal and hilar contours are unchanged. There is crowding of the bronchovascular structures without overt
pulmonary edema. Streaky opacities are noted in the lung bases, likely reflective of atelectasis. No large pleural
effusion or pneumothorax is demonstrated. Mild degenerative changes are noted in the thoracic spine.

Impression Interval placement of a left internal jugular central venous catheter with tip in the lower SVC. Low lung volumes
with streaky bibasilar opacities, likely atelectasis.

Images (GREEN = 0.25)
Findings A PICC line terminates in the mid-to-lower SVC. The cardiomediastinal and hilar contours are within normal

limits. The lung fields are clear. There is no pneumothorax, fracture or dislocation. Limited assessment of the
abdomen is unremarkable.

Impression Left PICC terminates in the mid-to-lower SVC.
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Figure G.1: The mean pairwise difference GREEN score for the generated report (findings and impression sections)
of each exam from the test set between 10 training runs of the “Images” model and the “Images + effective
sources (h=0)” model. This illustrates the performance change (increase or decrease) over the exams resulting from
incorporating auxiliary patient data for different CheXpert labels. ∆, m and n are the number of training runs for
each model (m = n = 10) and s is the GREEN score for one of the models. The subplots are sorted in descending
order based on the ratio of AUC(∆ > 0) to AUC(∆ < 0).
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Table G.4: False positive example for exam 54082940. This example demonstrates how the model failed to balance
auxiliary patient data evidence with radiographic evidence. Only the patient data that Images + effective sources
(h=0) utilises is shown.

Patient data

Image

Indication Shortness of breath and wheezing, previously diagnosed with pneumonia or infectious process.

Reconciled
medicines;
name

prednisolone acetate, albuterol sulfate [ProAir HFA], gabapentin, Humulin 70/30, cholecalciferol (vitamin D3),
sennosides [senna], furosemide, Trusopt, lisinopril, AERO CHAMBER, levobunolol, insulin aspart, insulin
aspart [Novolog], fluticasone-salmeterol [Advair Diskus], latanoprost, dorzolamide [Trusopt], aspirin [Enteric
Coated Aspirin], diltiazem HCl [DILT-XR], blood sugar diagnostic [FreeStyle Lite Strips], magnesium hydroxide
[Milk of Magnesia], Acetaminophen, lidocaine, docusate sodium, brimonidine, calcium carbonate, nebulizer and
compressor, olanzapine [Zyprexa].

Triage
temperature heartrate resprate o2sat sbp dbp pain acuity chiefcomplaint

98.0 81.0 24.0 100.0 151.0 66.0 0 2.0 SHORTNESS OF BREATH
Radiologist

Findings There is no evidence of focal consolidation. There is left lower lobe atelectasis. There is no pleural effusion or
pneumothorax. The cardiac and mediastinal contours are normal.

Impression No acute cardiopulmonary process.
Images + effective sources (h = 0) (GREEN = 0.429)

Findings There is mild pulmonary vascular congestion. No definite focal consolidation is seen. No pleural effusion or
pneumothorax is seen. Cardiac silhouette is mildly enlarged. The cardiac and mediastinal silhouettes are grossly
stable with the cardiac silhouette possibly slightly enlarged compared to prior.

Impression Mild pulmonary vascular congestion. Cardiomegaly.
Images (GREEN = 0.8)

Findings There is no confluent consolidation. No pulmonary edema or pleural effusions are identified. Cardiomediastinal
and hilar contours are within normal limits. No pneumothorax is evident.

Impression No acute cardiopulmonary process.
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Table G.5: True negative example for exam 52428322. This demonstrates how the model can avoid false positives
despite confounding evidence from the auxiliary patient data. Only the patient data that Images + effective sources
(h=0) utilises is shown.

Patient data

Image

History ___-year-old female with renal failure and right upper quadrant pain. Hypotension.

Reconciled
medicines;
name

aspirin, FreeStyle Lite Strips, metolazone, furosemide, omeprazole, oxycodone-acetaminophen [Endocet], prochlor-
perazine maleate, calcitriol, fentanyl, insulin glargine [Lantus], sevelamer HCl [Renagel], clonidine [Catapres-
TTS-1], Humulin R, Colace, insulin lispro [Humalog], potassium chloride [Klor-Con M20], FreeStyle Lite Meter,
ferrous sulfate, lisinopril, BD Insulin Syringe Ultra-Fine, Glucose Meter, Disp & Strips, Lipitor, amlodipine.

Triage
temperature heartrate resprate o2sat sbp dbp pain acuity chiefcomplaint

0.0 0.0 0.0 0.0 0.0 0.0 None 1.0 GI BLEED
Radiologist

Findings Single portable view of the chest is compared to previous exam from ___. The lungs are clear. Cardiomediastinal
silhouette is normal. Osseous and soft tissue structures are unremarkable. No visualized free intraperitoneal air is
seen below the diaphragm.

Impression No acute cardiopulmonary process.
Images + effective sources (h = 0) (GREEN = 1.0)

Findings PA and lateral views of the chest were provided. The lungs are clear bilaterally without focal consolidation,
effusion, or pneumothorax. The heart and mediastinal contours are normal. The imaged osseous structures are
intact. There is no free air below the right hemidiaphragm.

Impression No acute findings in the chest.
Images (GREEN = 0.5)

Findings Single portable frontal chest radiograph demonstrates unremarkable cardiomediastinal and hilar contours. Lungs
are clear. No pleural effusion or pneumothorax evident.

Impression No acute intrathoracic process.
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Table G.6: True negative example for exam 52169517. This demonstrates how the model can avoid false positives
despite confounding evidence from the auxiliary patient data. Only the patient data that Images + effective sources
(h=0) utilises is shown.

Patient data

Image

Indication ___-year-old woman with chest pain. Evaluate for fluid overload or pneumonia.

Reconciled
medica-
tions;
name

Humalog, atorvastatin, aspirin, gabapentin, nitroglycerin, methylprednisolone, valsartan [Diovan], insulin glargine
[Lantus], One Touch Ultra Test, metoprolol tartrate, isosorbide mononitrate, cephalexin, colchicine [Colcrys],
furosemide

Triage
temperature heartrate resprate o2sat sbp dbp pain acuity chiefcomplaint

0.0 0.0 0.0 0.0 0.0 0.0 None 2.0 CHEST PAIN
Radiologist

Findings The lungs are clear. The hilar and cardiomediastinal contours are normal. There is no pneumothorax or pleural
effusion. Pulmonary vascularity is normal. A dual-lead pacemaker is present.

Impression No acute cardiopulmonary process.
Images + effective sources (h = 0) (GREEN = 0.833)

Findings The lungs are clear without focal consolidation. No pleural effusion or pneumothorax is seen. The cardiac and
mediastinal silhouettes are unremarkable. Dual lead left-sided pacemaker is stable in position. Patient is status
post median sternotomy and CABG.

Impression No acute cardiopulmonary process.
Images (GREEN = 0.25)

Findings PA and lateral views of the chest provided demonstrate a left chest wall pacer device with leads extending to
the region of the right atrium and right ventricle. Midline sternotomy wires and mediastinal clips are again
noted. Mild left basal atelectasis is noted. No convincing signs of pneumonia, effusion, or pneumothorax. The
cardiomediastinal silhouette is stable. Bony structures are intact. No free air below the right hemidiaphragm.

Impression No acute findings in the chest.
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Table G.7: False negative example for exam 55715754. The model failed to identify the pleural effusions despite
evidence from the auxiliary patient data. Only the patient data that Images + effective sources (h=0) utilises is
shown.

Patient data

Image

History Dyspnea and hypoxia, assess for fluid overload or pneumonia.

Triage
temperature heartrate resprate o2sat sbp dbp pain acuity chiefcomplaint

96.4 83.0 20.0 76.0 145.0 70.0 10 1.0 SORE THROAT
Radiologist

Findings Semi-upright portable AP view of the chest provided. The heart is massively enlarged. There are trace pleural
effusions. Increased opacity in the right mid-to-lower lung is concerning for pneumonia. The left lung appears
essentially clear. No pneumothorax. The mediastinal contour appears normal. Bony structures are intact.

Impression Massive cardiomegaly with trace bilateral pleural effusions. Opacity within the right mid-to-lower lung is
concerning for pneumonia.

Images + effective sources (h = 0) (GREEN = 0.2)
Findings Single portable radiograph of the chest demonstrates moderate enlargement of the cardiac silhouette, not sig-

nificantly changed compared to the prior examination. There is mild pulmonary vascular congestion. No focal
consolidation, pleural effusion or pneumothorax is seen. The visualized upper abdomen is unremarkable.

Impression Persistent enlargement of the cardiac silhouette, not significantly changed compared to ___. Unchanged mild
pulmonary vascular congestion and stable enlargement of the cardiac silhouette.

Images (GREEN = 0.333)
Findings There is moderate enlargement of the cardiac silhouette. The aorta is unfolded. Mediastinal and hilar contours are

otherwise unremarkable. Pulmonary vasculature is not engorged. Hazy opacity in the right lung is compatible
with pneumonia. Right midlung linear opacity may be due to atelectasis. No pleural effusion or pneumothorax is
identified. No acute osseous abnormalities seen.

Impression 1. Moderate enlargement of the cardiac silhouette, compatible with pneumonia. 2. Moderate enlargement of the
cardiac silhouette. 3. Right lung base opacity, likely scarring. No definite evidence of pneumonia.
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Table G.8: False negative example for exam 53964812. Despite strong evidence from the auxiliary patient data
supporting pleural effusion, the model failed to detect it. Only the patient data that Images + effective sources (h=0)
utilises is shown.

Patient data

Image

History Asthma, coronary disease, myocardial infarction, diabetes, presenting with dyspnoea and right lower lobe infiltrate.

Reconciled
medicines;
name

metformin, acetaminophen, erythromycin, fluticasone-salmeterol [Advair Diskus], Boost Diabetic, bupropion
HCl, diltiazem HCl, albuterol sulfate, losartan [Cozaar], lorazepam, sennosides [senna], gabapentin, aspirin,
tiotropium bromide [Spiriva with HandiHaler], tobramycin-dexamethasone [TobraDex], atorvastatin, tramadol,
nut.tx.gluc.intol,lac-free,soy [Glucerna], clopidogrel, ReliOn Ultra Thin Plus Lancets, melatonin, lidocaine, cal-
cium carbonate-vitamin D3 [Calcium 600 + D(3)], furosemide, compression socks, medium, sertraline, L.acidoph
& sali-B.bif-S.therm [Acidophilus], travoprost [Travatan Z], montelukast [Singulair], Multivitamin with Iron-
Mineral, fluticasone.

Triage
temperature heartrate resprate o2sat sbp dbp pain acuity chiefcomplaint

98.2 83.0 18.0 98.0 162.0 100.0 0 2.0 PNEUMONIA
Radiologist

Findings T0he cardiac, mediastinal and hilar contours appear stable. There is no pleural effusion or pneumothorax. Since
the very recent prior studies, there is a substantial new opacity in the right lower lobe concerning for pneumonia.
The bones appear demineralized. There is mild-to-moderate rightward convex curvature again centered along the
lower thoracic spine with incompletely characterized lumbar compression deformities. Moderate degenerative
changes are again noted along lower thoracic levels.

Impression Findings consistent with pneumonia in the right lower lobe. Depending on clinical circumstances, the possibility
of aspiration could also be considered.

Images + effective sources (h = 0) (GREEN = 0.0)
Findings Frontal and lateral views of the chest. Right apical scarring is again seen. The lungs are otherwise clear without

consolidation or effusion. Mild cardiomegaly is again noted. Slightly tortuous descending thoracic aorta is similar
to prior. No acute osseous abnormality is identified.

Impression No acute cardiopulmonary process.
Images (GREEN = 0.333)

Findings There is bibasilar atelectasis without definite focal consolidation. No pleural effusion or pneumothorax is seen.
The cardiac and mediastinal silhouettes are stable. Mild loss of height anteriorly of a lower thoracic vertebral body
is unchanged. Evidence of DISH is seen along the spine.

Impression No acute cardiopulmonary process. No significant interval change.
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