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Abstract

Recent advancements in large language mod-
els (LLMs) have demonstrated their impres-
sive generative capabilities, primarily due to
their extensive parameterization, which en-
ables them to encode vast knowledge. How-
ever, effectively integrating new knowledge
into LLMs remains a major challenge. Current
research typically first constructs novel knowl-
edge datasets and then injects this knowledge
into LLMs through various techniques. How-
ever, existing methods for constructing new
datasets either rely on timestamps, which lack
rigor, or use simple templates for synthesis,
which are simplistic and do not accurately re-
flect the real world. To address this issue, we
propose a novel knowledge dataset construction
approach that simulates biological evolution
using knowledge graphs to generate synthetic
entities with diverse attributes, resulting in a
dataset NovelHuman. We then evaluate exist-
ing training strategies and knowledge augmen-
tation methods on NovelHuman. Systematic
analysis on NovelHuman reveals that the intra-
sentence position of knowledge significantly
affects the acquisition of knowledge. There-
fore, we introduce an intra-sentence permuta-
tion to enhance knowledge acquisition. Fur-
thermore, given that potential conflicts exist
between autoregressive (AR) training objec-
tives and permutation-based learning, we pro-
pose PermAR, a permutation-based language
modeling framework for AR models. PermAR
seamlessly integrates with mainstream AR ar-
chitectures, endowing them with bidirectional
knowledge acquisition capabilities. Extensive
experiments demonstrate the superiority of Per-
mAR1, outperforming knowledge augmenta-
tion methods by 3.3%-38%.

*Equal contribution.
†Corresponding author.
1Our code and data are available at https://github.

com/zyshawn/PermAR

1 Introduction

Recently, LLMs (OpenAI, 2023; Touvron et al.,
2023) have gained widespread attention for their
training on massive corpora, acquisition of vast
factual knowledge, demonstrating remarkable ca-
pabilities in generating high-quality text (Gatt
and Krahmer, 2018), in-context learning (Brown
et al., 2020), and following complex instruc-
tions (Ouyang et al., 2022). However, the para-
metric knowledge of LLMs is constrained to their
pre-training corpus, which predominantly comes
from public resources like Wikipedia (Lemmerich
et al., 2019), Github (GitHub, 2025), and Common-
Crawl (Raffel et al., 2020), covering only a specific
period. This limitation prevents LLMs from access-
ing other information beyond their training corpus.
Consequently, efficiently integrating continuously
updated knowledge into LLMs has emerged as a
crucial task (Jiang et al., 2024b; Saito et al., 2025;
Allen-Zhu and Li, 2024; Shi et al., 2025).

Although recent works have attempted to con-
struct novel knowledge datasets that LLMs have
not encountered during pre-training and proposed
various training strategies to inject unseen knowl-
edge, Jiang et al. found that LLMs can correctly
answer nearly 10% of questions about knowledge
that appeared on Wikipedia after their pre-training,
even without external information. This finding
underscores a key limitation in the construction of
novel knowledge datasets: selecting new knowl-
edge based on timestamps is inherently unre-
liable. First, there is no guarantee that the col-
lected data did not appear in the LLMs’ pre-training
corpus. Knowledge on the internet is widely dis-
tributed, and the accessible information may sim-
ply be a post-processed or organized version of
existing content, i.e., this novel knowledge could
have been collected in pre-training (Tirumala et al.,
2024). This suggests that such datasets may primar-

18348

https://github.com/zyshawn/PermAR
https://github.com/zyshawn/PermAR


 Corpus: 

(a) Autoregressive

Paul was born on

(b) Intra-Sentence Permutation

15 ...

Paul was born on 15 ...

Paul was born on June ...

Paul was born on June ...

(c) PermAR

Paul was born on June ...

Paul was born on June 15 , 1874 .

Paul was born on June ...

Paul was born on 15 ...

Same prediction for same prefix

Same Prefix Tokens

Prefix tokens Target tokens Future tokens Position embeds

June

June

1874

15

15

1874

June

Different Position-aware Embeds

Different Target Token Different Target Token

Same Prefix Tokens

Figure 1: Illustration of the same new knowledge un-
der different training methods: (a) AR models predict
left-to-right. (b) Intra-sentence permutation with AR
objectives cannot tackle different ground truths for the
same prefix. (c) The PermAR framework adds position-
aware embeddings for permutations, enabling different
ground truth predictions.

ily reactivate a model’s internal memory rather than
facilitate genuine learning or application of novel
knowledge. Second, the training data used by dif-
ferent LLMs varies significantly, with inconsistent
cut-off dates, thereby requiring substantial human
effort to collect novel knowledge. Additionally, ex-
isting work (Allen-Zhu and Li, 2024) generates syn-
thetic novel knowledge using template-based meth-
ods, which results in the synthetic dataset being
overly simplistic and failing to reflect real-world
complexity.

To tackle the above challenges, inspired by the
process of biological evolution producing new
species, we propose a novel knowledge construc-
tion method involving inheritance, mutation, and
expansion operations based on existing large-scale
knowledge graphs (KGs) (Dong et al., 2014), aim-
ing to generate totally novel knowledge for all
LLMs. We synthesize a large-scale dataset with hu-
man subjects called NovelHuman, which contains
8,507 human subjects and 143K triples. For each
subject, we convert its corresponding triples into
linguistically fluent natural language text passages
with the help of a more advanced LLM, and finally
collect more than 144k questions.

Additionally, recent works (Allen-Zhu and Li,
2024; Saito et al., 2025) have revealed that LLMs’
ability to master knowledge declines as the sen-
tence containing the knowledge appears later in
the document, i.e., inter-sentence sensitivity. To
address this issue, previous research has explored

various knowledge augmentation strategies, such
as sentence permutation and rewriting, which have
been shown to enhance knowledge acquisition.
However, this finding often relies on relatively sim-
ple knowledge datasets, where each sentence con-
tains only a single piece of knowledge, limiting the
ability to fully assess the generalizability of meth-
ods. To this end, we evaluate existing methods on
NovelHuman. Beyond prior observations, we find
that LLMs exhibit not only inter-sentence sensi-
tivity but also intra-sentence sensitivity, meaning
their ability to master knowledge varies even within
different positions of the same sentence.

A straightforward alternative solution is to adapt
existing inter-sentence permutation strategies into
intra-sentence permutation. However, we find
that intra-sentence permutation inherently conflicts
with mainstream autoregressive (AR) modeling.
Mainstream LLMs typically rely on an autoregres-
sive (AR) architecture (Radford, 2018), which em-
ploys a strict left-to-right processing mechanism
during both training and inference to facilitate in-
formation memorization and generation. In certain
scenarios, simply intra-sentence permutation may
not be sufficient to achieve the desired goal within
standard AR, as shown in Figure 1. In the standard
AR modeling, intra-sentence permutation leads to
issue illustrated in Figure 1 (b), where given the
same prefix tokens, model generates identical fea-
ture representations and predictions, even when
the corresponding ground truth differs. Although
XLNet (Yang et al., 2019) mitigates this problem
by introducing a two-stream attention mechanism,
it requires modifying the model architecture and
retraining LLMs, making it highly costly.

To address this issue, we build upon the AR
structure and propose the permutation language
modeling framework for AR, PermAR, as shown
in Figure 1 (c). PermAR introduces minimal modi-
fications by learning a single position embedding
for the next token’s original position, enabling accu-
rate prediction of various permutations, even when
the prefix remains unchanged. Meanwhile, Per-
mAR maximizes the expected likelihood over all
possible inter-sentence and intra-sentence permuta-
tions, facilitating bidirectional contextual learning
within the AR transformer while enhancing the
model’s ability to comprehend knowledge across
different positions. Additionally, we propose a per-
mutation annealing training strategy, which gradu-
ally restores LLMs from fully permutation factor-
izations to the original natural language sequence
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order, allowing LLMs to reconstruct fragmented
knowledge points into a coherent knowledge repre-
sentation. Extensive experiments and ablation stud-
ies demonstrate the superiority and adaptability of
PermAR, outperforming knowledge augmentation
methods by 3.3%-38%.

2 Building Dataset for Continual
Knowledge Acquisition

Drawing inspiration from the organization of
knowledge on Wikipedia, where each page intro-
duces a subject whose distilled knowledge can be
abstracted into KGs, the generation of new knowl-
edge can be seen as the expansion of KGs, i.e. ,
the creation of new subjects. To obtain reasonable
and diverse new subjects, we propose three opera-
tions that mimic biological evolution: inheritance,
mutation, and expansion.

Suppose a specific KG G = {Gf ,Go} is given
as the benchmark, where Gf = {Vf ,Rf , Tf} and
Go = {Vo,Ro, To} stand for the instance and ontol-
ogy sub-graph, while V∼, R∼, and T∼ (∼∈ {f, o})
denote the set of entity, relation, triple, respectively.
Moreover, Tf = {(hf , rf , tf )|hf , tt ∈ Vf , rf ∈
Rf}, Tf = {(ho, ro, to)|ho, to ∈ Vo, ro ∈ Ro},
where h∼, r∼, and t∼ (∼∈ {f, o}) denote the sub-
ject, predicate, object of a triple, respectively. New
subjects hnewf , can be categorized into two types:
(1) Novel at the instance level while the ontology
remains unchanged. (2) Novel both at the instance
and ontology levels. To construct a reasonable
new subject, we focus solely on the first type, i.e.,
hnewf ̸∈ Vf , h

new
o ∈ Vo.

To create a specific new subject within a given
ontology, it is necessary to establish connections
with existing subjects (inheritance). This involves
linking the new subject to the existing ontology,
ensuring it inherits certain fundamental character-
istics. To distinguish this new subject from its
predecessors, it is essential to endow it with unique
attribute values (mutation). Finally, we expand the
existing attribute values of the current new subject
to achieve diversity (expansion).

Inheritance Specifically, we begin by randomly
selecting an ontology hIo ∈ Vo, to which the new
subject will belong. To mimic sexual reproduction
in biological evolution, we randomly select two ex-
isting, distinct subjects as the dad hDf and the mom
hMf from {hf | hf ∈ Vf ∧ ho = hIo}. The new
subject hnewf inherits all attributes from hDf and

hMf , and merges the same relation. For instance,
in the case of humans, parents have a birth date,
and we consolidate these dates, allowing the new
subject to have two objects for the birth date.

Mutation Next, we introduce mutation to pre-
determine the important attributes rIf for the new
subject, such as the birth date for humans, by se-
lecting a random date between the birth dates of
hDf and hMf .

Expansion Subsequently, to enhance the diver-
sity of attributes for hnewf , we introduce an anchor
relation, raf ∈ Rf , based on prior knowledge. For
example, for human entities, raf could represent a
relation such as professions. We first obtain two
candidate expansion subject sets n∗ = {haddf |
haddf ∈ Vf and haddo = hIo and (h∗f , r

a
f , t) ∈

Gf and (haddf , raf , t) ∈ Gf}, where ∗ ∈ {D,M},
corresponding to the dad subject hDf and mom sub-
ject hMf , respectively. Then, to minimize potential
conflicts, it is essential to filter the candidate ex-
pansion subject sets by integrating prior knowledge
and important relations of the new subject. For
example, in the case of humans, a person cannot
participate in events that occurred before the birth
date. Therefore, we apply this logical constraint
to filter two candidate expansion sets, obtaining
n∗
f = RULE(n∗), where RULE is the constraint

function of important relations. Ultimately, the
structured triple set of Thnew

f
corresponding to hnewf

can be obtained through the process of inheriting
and mutating attributes from the refined candidate
expansion subject sets. Given the rich and complex
attributes of human entities, we synthesize a large
number of novel human entities. The detailed con-
struction process of these novel triples is presented
in Appendix A.1.

Knowledge & general question generation The
process of generating new entities and their at-
tributes can be summarized as assigning them as
many diverse attributes and values as possible, in a
logically consistent manner. However, during the
inheritance, mutation, and expansion, we identi-
fied triple conflict, i.e., while we construct novel
knowledge, the attribute values of the new entity
intuitively do not align with the current logic of the
real world. To address this, we employ more pow-
erful LLMs, such as GPT-4, to perform consistency
checks. Subsequently, to obtain natural language
text corresponding to the triple set Thnew

f
of hnewf ,

we harness the language generation capabilities of
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advanced LLMs (GPT-4). By providing a sophis-
ticated prompt, it can generate text in the style of
Wikipedia, effectively creating novel knowledge.

To further assess whether LLMs effectively learn
constructed new knowledge, we employ a common
question-answering (QA) for evaluation. Since the
new knowledge is generated directly from triple
sets, we can also derive evaluation questions from
these triples. Specifically, we explain the meaning
of each relation in the triples to GPT-4 and instruct
it to create various question templates. However,
due to the inherent hallucination phenomenon of
LLMs, not all triples are accurately reflected in the
generated text. To mitigate this, we further filter
the triple set to identify which triples are correctly
represented in the generated text. These confirmed
triples are then used to fill in the question templates,
ensuring that the answers to these questions are ex-
plicitly present in the generated text. Appendix D
includes all the prompt templates used for knowl-
edge and question generation.

2.1 Dataset Summary

Through the above steps, we construct the Novel-
Human dataset, which contains 8,507 new human
entities covering 435 attributes, with each entity
initially associated with an average of 20 attributes.
After triple consistency checking and the knowl-
edge generation phase, the average number of at-
tributes per entity was refined to 16. For the gener-
ated knowledge, each piece of knowledge contains
an average of 410 tokens2, resulting in a total of
144,221 QA pairs, with questions averaging 15
tokens and corresponding answers averaging 4 to-
kens. Further detailed dataset statistics, along with
the corresponding training and test set splits, can
be found in Appendix A.2.

3 Preliminary Experiments

3.1 Background

We begin with an overview of autoregressive (AR)
language modeling with the next-token prediction
objective. Consider a discrete token sequence
x = [x1, x2, · · · , xT ] of length T . The goal of AR
modeling involves maximizing the sequence like-
lihood through sequential token prediction, where
each token is conditioned on its preceding con-
text (Kitouni et al., 2024). The training objective
seeks to optimize the joint probability distribution

2No special instructions, the token statistics are based on
the Llama-3 tokenizer.

by factorizing it into a product of conditional prob-
abilities:

max
θ

pθ(x) =
T∏

t=1

pθ (xt | x<t) (1)

where pθ represents a neural network parameter-
ized by θ that models the token distribution and
x<t = [x1, x2, . . . , xt−1] denotes the preceding to-
ken context. Currently, most mainstream LLMs
follow the AR pre-training paradigm. Similarly, to
align with the representations learned during pre-
training, existing AR-based CPT also adheres to
Equation 1.

3.2 Knowledge Acquisition Techniques

Building upon prior research (Allen-Zhu and Li,
2024; Jiang et al., 2024b; Saito et al., 2025),
we evaluated prevalent continued pre-training,
instruction-tuning and knowledge augmentation
paradigms in NovelHuman based on Llama-2-7B
and Llama-3-8B, including standard continued pre-
training (CPT), continued pre-training with su-
pervised fine-tuning (CPT+SFT), continued pre-
training with forgetting-resistant SFT (CPT+SFT
w/o F), mixed training involving both pre-training
and SFT simultaneously (MT) (Allen-Zhu and Li,
2024), mixed training involving pre-training and
SFT (prompt for loss computation) (Allen-Zhu and
Li, 2024), human-like learning approaches for ac-
quiring new knowledge (R&A), pre-instruction-
tuning (PIT++) (Jiang et al., 2024b), Attn Drop,
D-AR (Saito et al., 2025) and inter-sentence per-
mutation (InterSP) (Allen-Zhu and Li, 2024). More
introduction and hyperparameter settings of these
methods can be seen in Appendix B.

3.3 Evaluation Metrics

In the evaluation process, we follow settings
of Jiang et al., where LLMs are required to gener-
ate answers for given questions using greedy de-
coding. Given that our questions tend to yield
short and precise answers, exact match (EM) is
employed as the primary metric to assess whether
the answers are completely identical to the ground
truth (Kwiatkowski et al., 2019). Furthermore,
considering that some answers may be order-
independent, we also report the recall rate (R)
to measure whether the ground truth appears
within LLMs’ generated responses. Additionally,
ROUGE-L (R-L) is used to evaluate the longest
common subsequence between the LLMs’ outputs
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Model Training Pattern Text Number Date All
EM R R-L EM R R-L EM R R-L EM R R-L

Llama-2-7B

Original 0.0 1.8 0.9 0.0 0.0 0.9 0.0 2.1 0.9 0.0 1.9 0.9
CPT 0.0 1.5 1.5 0.0 0.0 1.6 0.0 1.5 1.5 0.0 1.5 1.5

CPT + SFT 20.7 22.9 26.7 4.6 4.6 4.6 32.5 54.3 63.3 21.2 26.6 29.2
CPT + SFT (w/o F) 26.8 28.5 32.8 5.4 5.4 5.4 40.3 61.5 69.1 27.3 32.3 35.0

MT 32.8 33.7 38.2 10.4 10.4 10.4 42.0 65.9 72.6 32.8 37.3 40.2
MT (prompt) 37.6 38.8 43.1 11.1 11.1 11.1 42.8 66.9 73.5 37.1 41.7 44.5

R&A 17.4 20.4 23.6 3.2 3.2 3.2 14.6 40.6 52.5 16.6 22.7 25.4
Attn Drop 19.3 20.8 24.5 4.0 4.0 4.0 18.9 23.5 24.1 19.6 23.8 26.6

D-AR 23.1 25.4 28.7 4.9 4.9 4.9 34.5 62.6 70.8 25.3 28.2 31.9
PIT++ 22.1 25.8 27.9 11.5 11.5 11.5 24.4 52.5 61.8 22.0 30.0 30.3
InterSP 36.5 37.6 41.8 15.8 15.8 15.8 52.8 71.6 77.1 37.3 41.5 44.0

Llama-3-8B

Original 0.0 2.2 1.2 0.0 0.0 1.2 0.0 2.0 1.1 0.0 2.1 1.2
CPT 0.0 2.5 1.5 0.0 0.0 1.5 0.0 2.3 1.3 0.0 2.5 1.5

CPT + SFT 19.3 21.9 25.1 6.8 6.8 6.8 36.1 55.1 24.3 20.4 26.0 28.0
CPT + SFT (w/o F) 24.8 25.6 30.2 7.5 7.5 7.5 38.2 57.7 25.8 22.8 27.9 32.4

MT 28.9 30.9 33.7 29.8 29.8 29.8 58.8 58.6 83.2 31.5 31.9 37.8
MT (prompt) 28.8 31.2 34.3 30.6 30.6 30.6 59.1 59.1 84.9 31.7 32.6 38.9

R&A 22.3 26.9 27.4 23.7 23.7 23.7 50.1 63.4 75.2 25.4 30.8 36.7
Attn Drop 15.4 18.3 23.2 6.3 6.3 6.3 35.7 50.8 23.9 18.4 22.5 26.8

D-AR 20.6 23.5 26.7 7.3 7.3 7.3 37.2 56.1 24.9 21.5 26.3 30.0
PIT++ 21.2 24.7 26.3 21.0 21.0 21.0 50.7 68.4 74.8 24.0 30.4 30.7
InterSP 39.4 42.1 44.6 28.3 28.3 28.3 73.1 84.2 87.3 42.2 47.6 48.0

Table 1: Preliminary experimental results. Bold numbers denote the best results. Underline numbers imply the
second-best results.

and the ground truth (Lin, 2004). During eval-
uation, for LLMs that have not been fine-tuned
with instructions, five QA pairs are provided as in-
context demonstrations that are used to ensure the
output follows the specified format.

3.4 Experimental Results

As shown in Table 1, the relatively low knowl-
edge QA performance of the original Llama-2
and Llama-3 (0% EM across all evaluations) in-
dicates that all knowledge in the test set is not in-
cluded in the original pre-training corpus. It can
be seen that these methods are struggling to ac-
quire novel knowledge, even though the perplex-
ity has been reduced to 1 during the continued
pre-training phase. Compared to only CPT, the
EM after SFT increased to 21.2% and 20.4% for
Llama-2 and Llama-3, respectively, indicating the
effectiveness of the standard paradigm and that
LLMs have captured some new knowledge. No-
tably, integrating pre-training and fine-tuning ob-
jectives shows superior performance compared to
the separated CPT+SFT pipeline. Specifically, MT
and MT (prompt) consistently outperform the stan-
dard separated training paradigm. This highlights
the superiority of mixed training strategies over a
sequential, distinctly separated training pipeline.
Among the knowledge augmentation methods, In-
terSP achieved the best performance, achieving EM

improvements of 0.2% and 10.5% for Llama-2 and
Llama-3 over MT (prompt), respectively, highlight-
ing the importance of sentence positioning within
passages for effective knowledge learning. How-
ever, despite these improvements, current methods
remain insufficient for enabling LLMs to master
novel knowledge comprehensively.

4 Intra-sentence Permutation and
PermAR Framework

Given the failures of various mainstream CPT and
augmentation paradigms in new knowledge sce-
narios, we aim to further enhance LLM’s learning
effectiveness of new knowledge. Drawn inspiration
from (Golovneva et al., 2024; Guo et al., 2024), we
conducted a position-based systematic analysis of
CPT+SFT and InterSP to explore the relationship
between the effectiveness of its learning by LLMs
and the position of knowledge between and within
sentences. Statistical results indicate both the posi-
tion within and between sentences have a signif-
icant influence on prediction accuracy. Specifi-
cally, the average EM of the first three knowledge
in the sentences that are positioned differently in
passage of the test set is depicted in Figure 2 (a)
and (c). It can be observed that for the same po-
sition within different sentences, the earlier a sen-
tence appears in the passage, the more easily LLMs
can learn that knowledge. Additionally, it can be
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Figure 2: EM of CPT+SFT and InterSP on the test set using Llama-3-8B. (a) and (b) show the results for CPT+SFT, while (c)
and (d) correspond to InterSP. (a) and (c) represent the EM scores of the ith (i=1, 2, 3) knowledge from different sentences, with
the horizontal axis indicating the sentence index in passages. (b) and (d) categorize sentences based on their knowledge density,
where G1-G6 represent groups with increasing numbers of knowledge points per sentence (G1: one knowledge point, G6: six
knowledge points). The right vertical axis denotes the average position of sentences within the passage for each group.

observed that applying inter-sentence permutation
enhances knowledge retention across different sen-
tences. However, when observing Figure 2 (b), a
distinct downstair-like pattern emerges within sen-
tences meaning knowledge positioned earlier in a
sentence is more easily retained, whereas knowl-
edge appearing later remains significantly harder
to grasp. Furthermore, Figure 2 (d) indicates that
inter-sentence permutation alone is insufficient to
bridge the accuracy gap between knowledge posi-
tioned earlier and later within the same sentence.

Therefore, to improve LLM’s ability to per-
ceive knowledge at different positions within a
sentence, a straightforward approach is to ap-
ply intra-sentence permutation alongside inter-
sentence permutation (InterSP+IntraSP). Inspired
by XLNet (Yang et al., 2019), InterSP+IntraSP can
be viewed as a subset of permutation language mod-
eling. Formally, the permutation language model-
ing objective can be expressed as an expectation
over all possible factorization orders:

max
θ

pθ(x) = Eτ∼ST

[
T∏

t=1

pθ (xτt | xτ<t)

]
(2)

where ST denotes the symmetric group containing
all T ! permutations of the index set {1, 2, . . . , T},
and τ = [τ1, τ2, . . . , τT ] denotes a randomly sam-
pled permutation from ST . Here, τt indicates the
token index at position t in the permuted order,
, while xτ<t = [xτ1 , xτ2 , . . . , xτt−1 ] encompasses
all tokens preceding position t in the current per-
mutation τ .

Since the same model parameters θ are shared
across all factorizations, each token xi encounters
diverse contextual configurations during training.
This exposure enables the model to learn compre-
hensive token interdependencies, since across all

permutations, every token xi is eventually condi-
tioned on every other token xj , j ̸= i and vice
versa. Consequently, the model develops bidirec-
tional understanding while maintaining the compu-
tational efficiency and causal structure inherent to
AR modeling.

However, directly applying the permutation lan-
guage modeling objective from Equation 2 to
the standard AR model can fail in certain sce-
narios. For example, consider a sequence of
length T corresponding to two different permu-
tation orders τa = [1, 2, 3, · · · , T − 1, T ] and
τb = [1, 2, 3, · · · , T, T − 1]. When predicting the
second-to-last token, the standard AR model would
return identical logits, despite the ground truth be-
ing different. The fundamental reason for this lies
in the fact that the standard AR model, during next-
token prediction, cannot incorporate the positional
information of the target token.

Position-aware Instruction Embedding To en-
able a standard AR model to perceive differences
in target positions when predicting the next token,
we introduce a set of position-aware instruction em-
beddings to encode positional information of the
next predicted token. We define a position-aware
instruction embedding set p = [p1,p2, · · · ,pT ] ∈
RT×dim, where pi corresponds to the position-
aware instruction embedding for predicting the to-
ken at position i and dim is the embedding dimen-
sion. These position embeddings are integrated
with the input token embedding through element-
wise addition, yielding the target position-aware
token embedding xτ :

xp
τ = xτ + pτ (3)

= [xτ1 + pτ2 ,xτ2 + pτ3 , · · · ,xτT−1 + pτT ,xτT ]

18353



where xτ represents the token embeddings of the
original sequence after permutation τ , and pτ rep-
resents the shifted position-aware instruction em-
beddings. Specifically, each token xτt receives the
position-aware instruction embedding pτt+1

cor-
responding to its next permuted token’s original
position. The final token xτT receives no addi-
tional position-aware instruction embedding since
no subsequent prediction is required.

For obtaining the position-aware instruction em-
bedding, we design a parameter-efficient approach
that learns a single shared embedding for all po-
sitions, e ∈ R1×dim, and applies rotational posi-
tion encoding to incorporate positional information.
Specifically, we leverage RoPE-1D (Su et al., 2024)
to rotate e according to the coordinate of the target
prediction position. The position-aware instruction
embedding for predicting a token at position t is
computed as:

pt = RoPE(e, t) (4)

This design offers computational efficiency by shar-
ing parameters across all positions while maintain-
ing distinct positional representations through ro-
tation. Alternative implementations are feasible,
including learning independent dense vectors for
each position or employing trainable fusion mecha-
nisms (e.g., learned linear combinations) in place
of the additive operation in Equation 3. We provide
comprehensive ablation studies comparing these
design choices in Appendix C.4.

Permutation Annealing Strategy Although the
proposed PermAR framework can be seamlessly
integrated into existing AR models, enabling mod-
els to effectively learn new knowledge even when
faced with small-scale knowledge, the number of
possible permutations for a token sequence is ex-
ceedingly large. For instance, for a token sequence
of length 1024, the number of possible permuta-
tions is 1024!, which would overwhelm the model
and significantly reduce training efficiency. Mean-
while, based on the observation in Figure 2: stan-
dard AR models tend to better learn knowledge
from earlier sentences of the passage, and even
from earlier positions of the sentence.

Furthermore, we propose a permutation anneal-
ing strategy designed to help model reconstruct the
fragmented knowledge learned during permutation
training into more coherent and logically consistent
knowledge, enabling a smooth transition from per-
mutation to natural sequential order. Specifically,

we introduce a dynamic probability r ∈ [0, 1] to
control whether permutation is applied to the train-
ing samples, i.e., each sample is permuted with
probability r. When r = 1, the model undergoes
full permutation training where token orders are
completely permuted, while r = 0 corresponds to
standard sequential training with preserved orig-
inal token order. Formally, r can be modeled as
follows:

r = clip
(
1− epoch− start

end− start
, 0, 1

)
(5)

where clip(x, a, b) = max(a,min(x, b)), epoch
denotes the current epoch during training, and
start and end represent the beginning and end-
ing epochs of the permutation annealing strategy,
respectively.

5 Experiments

5.1 Settings
Baselines. We further compare knowledge aug-
mentation methods with PermAR, including intra-
sentence permutation (IntraSP) and the combina-
tion of inter-sentence and intra-sentence permuta-
tion (InterSP+IntraSP). Details of knowledge aug-
mentation are shown in Appendix B.3 and B.4.

5.2 Main Results
The experimental results are shown in Table 2,
from which we can draw the following conclusions:
(1) Knowledge augmentation is essential for en-
abling LLMs to learn novel knowledge to some ex-
tent. Compared to the best non-augmented method,
MT (prompt), the best augmentation-based method,
InterSP+IntraSP, improves EM by 34.9%/22.2%
(Llama-2/Llama-3), demonstrating the effective-
ness of permutation patterns in enhancing knowl-
edge learning. (2) A combination of InterSP and
IntraSP is necessary, as neither alone is sufficient.
InterSP+IntraSP outperforms single augmentation
by 15.9%/5.8%. Additionally, IntraSP proves more
critical for complex knowledge, surpassing InterSP
alone by 18.8%/5.9%. (3) PermAR effectively mit-
igates conflicts between permutation-based knowl-
edge augmentation and the AR objective, signif-
icantly improving knowledge comprehension at
different positions. It enhances EM by 3.3%/9.8%
compared to the best augmentation method.

Furthermore, we visualize the impact of knowl-
edge augmentation and PermAR in Figure 3, reveal-
ing: (1) Knowledge augmentation methods strug-
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Model Method Text Number Date All
EM R R-L EM R R-L EM R R-L EM R R-L

Llama-2-7B

InterSP 36.5 37.6 41.8 15.8 15.8 15.8 52.8 71.6 77.1 37.3 41.5 44.0
IntraSP 55.8 56.5 59.5 36.5 36.5 36.5 67.5 80.6 84.3 56.1 59.2 60.8

InterSP+IntraSP 71.9 73.7 75.2 45.4 45.4 45.4 83.2 91.9 93.4 72.0 75.8 75.8
PermAR 75.3 76.5 78.0 54.3 54.3 54.3 83.2 92.0 93.5 75.3 78.3 78.6

Llama-3-8B

InterSP 39.4 42.1 44.6 28.3 28.3 28.3 73.1 84.2 87.3 42.2 47.6 48.0
IntraSP 44.4 57.2 55.2 49.9 49.9 49.9 81.5 93.1 94.5 48.1 62.3 58.9

InterSP+IntraSP 51.3 61.6 60.2 48.0 48.0 48.0 80.2 92.2 93.8 53.9 65.9 63.2
PermAR 61.7 69.2 68.0 57.4 57.4 57.4 84.4 93.8 95.1 63.7 72.7 70.4

Table 2: Comparison of QA performance (%) between knowledge augmentation and PermAR.

gle to bridge the accuracy gap between knowledge
positioned earlier and later within passages and sen-
tence, resulting in a downward trend observed in
Figure 3 (a) and (c). However, as seen in Figure 3
(b) and (d), overall knowledge retention improves
across positions. Despite this, knowledge located
at earlier positions (loc1) is still learned more effec-
tively. This is primarily due to the inherent conflict
between permutation-based augmentation and the
AR training objective, causing later knowledge in
the sequence to be learned with greater difficulty.
(2) PermAR overcomes this issue with position-
aware embeddings, significantly improving knowl-
edge acquisition across all positions. As shown in
Figure 3 (e), knowledge at all positions exhibits
a significant improvement. Notably, knowledge
appearing at the end of the sequence (third knowl-
edge in the 7th sentence) surpasses the retention
of many earlier knowledge points. Additionally,
Figure 3 (f) further illustrates the substantial im-
provement in learning for knowledge positioned
later in the sequence, exhibiting an upward trend
within each group.

Moreover, to verify the robustness of PermAR,
we evaluate it on the Wiki2023 dataset in Ap-
pendix C.1, which was collected in previous
work (Jiang et al., 2024b) and contains knowledge
that is novel only for Llama-2.

5.3 Ablation Experiments
Different Permutation Granularities. While In-
terSP operates at the sentence level, IntraSP re-
quires careful consideration of permutation gran-
ularity. We investigate three categories of permu-
tation granularities: token-level, word-level, and
multi-word phrase-level permutation. Each granu-
larity presents distinct trade-offs between preserv-
ing semantic coherence and enabling positional
learning flexibility. To systematically evaluate the
impact of different permutation granularities on
novel knowledge acquisition, we conduct compre-
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Figure 3: Comparison of knowledge augmentation and
PermAR in learning novel knowledge at different posi-
tions. (a) (b): IntraSP. (c) (d): InterSP+IntraSP. (e) (f):
PermAR. Vertical axis ∆EM represents the difference in
EM between the corresponding method and CPT+SFT.

hensive experiments on the NovelHuman dataset.
The detailed results and analysis are presented in
Table C2 of Appendix C.2. Our findings reveal that
multi-word phrases serve as the optimal permu-
tation granularity, achieving the balance between
maintaining linguistic coherence and enabling ro-
bust positional knowledge learning. Multi-word
phrase-level granularity preserves natural word de-
pendencies while providing sufficient permutation
diversity for model to learn position-invariant rep-
resentations.

Permutation Annealing Strategy. To enable
models to consolidate fragmented knowledge ac-
quired during permutation training into coherent
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representations, we introduce a permutation an-
nealing strategy that gradually transitions from
full permutation to natural sequential order. This
three-stage approach is controlled by two hyper-
parameters: start and end, defining the annealing
period. The training process follows a progres-
sive annealing schedule: initially, the model un-
dergoes full permutation training to learn position-
invariant knowledge representations; during the
annealing phase (from start to end epochs), the
permutation probability gradually decreases, allow-
ing the model to begin integrating scattered knowl-
edge fragments. Finally, the model focuses exclu-
sively on natural sequential order to consolidate
the learned knowledge into coherent representa-
tions. We systematically analyze the impact of dif-
ferent annealing schedules on model performance
across the NovelHuman dataset. Detailed exper-
imental results comparing various start and end
configurations are presented in Table C3 of Ap-
pendix C.3. Our findings demonstrate that this pro-
gressive annealing strategy significantly enhances
novel knowledge acquisition, with optimal perfor-
mance achieved when models undergo substantial
full permutation training followed by gradual tran-
sition and focused sequential consolidation. This
three-stage approach effectively transforms dis-
persed knowledge fragments into comprehensive,
coherent representations.

6 Related Work

To explore the mechanisms of LLMs learning novel
knowledge, most works (Allen-Zhu and Li, 2024;
Jiang et al., 2024b; Saito et al., 2025) first construct
novel knowledge datasets and then train LLMs on
this dataset by optimizing the organization of train-
ing data. For dataset construction, Allen-Zhu and
Li built a dataset of human knowledge and tasks
with six basic attributes, Jiang et al. built a dataset
of film domains based on timestamps. However,
these benchmarks are either too simple for LLMs
or cannot ensure they have not appeared in the
pre-training corpus of LLMs. It is worth noting
that although counterfactual datasets have likely
not been encountered during pre-training, they are
completely contrary to reality and inherently lack
rationality. Subsequently, Allen-Zhu and Li trained
LLMs from scratch and found that standard AR
does not enable LLMs to fully grasp new knowl-
edge. To address this, they augmented the knowl-
edge using techniques such as sentence shuffling

and rewriting, allowing LLMs trained on the aug-
mented dataset to successfully master most of the
knowledge. However, this method failed on our
more complex and diverse dataset NovelHuman.
Meanwhile, some studies (Jiang et al., 2024b; Saito
et al., 2025) explored the effects of AR training
methods and data augmentation during the con-
tinual pretraining phase. Nevertheless, even with
the most advanced training and data augmentation
methods, LLMs’ ability to acquire new knowledge
remains fundamentally limited.

7 Conclusion

We first propose a method for constructing novel
knowledge datasets based on the theory of biolog-
ical evolution and then synthetic a new dataset,
called NovelHuman with humans as the subjects.
Subsequently, we evaluate the impact of predom-
inant CPT and SFT paradigms on NovelHuman.
We find that LLMs exhibit not only inter-sentence
sensitivity but also intra-sentence sensitivity. To
address this issue, we propose a permutation
modeling-based framework, PermAR, which can
seamlessly integrate with existing AR models, en-
dowing them with bidirectional learning capabili-
ties and efficiently learning knowledge of different
positions. Extensive experiments demonstrate the
superiority of PermAR, providing insight for the
future advancement of LLMs.

Limitations

Although we have proposed a knowledge synthe-
sis method based on species evolution, it can be
applied to a wide range of domains, such as moun-
tains, rivers, and etc. Since the focus of this paper
is on exploring the learning mechanisms of new
knowledge in LLMs, we have only generated new
knowledge for human entities, which are the most
attribute-rich. Other domains have not been fully
explored. Additionally, while our work primarily
focuses on novel knowledge acquisition, the ob-
served position sensitivity in knowledge learning
is not confined to this specific scenario but rather
represents a fundamental limitation inherent to au-
toregressive language models. The effectiveness of
PermAR in addressing reasoning-intensive knowl-
edge, math reasoning, or complex multi-hop rea-
soning tasks remains to be systematically validated
in future investigations.
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A Novel Human Dataset

A.1 Novel Triple Construction

Data Source. We use the knowledge graph Wiki-
data 3 as the data source and utilize the QLever 4

SPARQL engine to extract all triples.

Ontology. For all subjects in Wikidata, we filter
their corresponding ontology (instance of 5) to be
"human", i.e., hIo = human.

Important Attribute. For human subjects, we
set the important attribute to be the date of birth,
i.e., rIf = date of birth.

Anchor Relation. Anchor relation is set to be the
occupation, i.e., raf = occupation. The basic idea
is that the attribute expansion for groups of people
with the same occupation is more reasonable.

Constraint Function. Constraint function
RULE is that the date of birth of the subject to be
expanded must be later than the date of birth of the
newly generated subject.

In the practical construction process, we set the
size of the parent set for expansion to a maximum
of 10 subjects for attribute expansion. Addition-
ally, when constructing unique names for new sub-
jects, we take into account the specificity of human
names. We use the tokenizer of GPT-4 to segment
the names of the father and mother, then randomly
select the first token of each word and randomly
concatenate the remaining tokens to ensure that the
generated names closely resemble real names.

A.2 Statistical Distribution

For the 8,507 new human subjects we constructed,
we first generated a histogram of their relation-
ships, as shown in Figure A1 (a). Then, as shown
in Table A1 for each number of relationships cor-
responding to the subjects, we randomly selected
80% of the subjects as the training set and the re-
maining 20% as the testing set. Subsequently, we
constructed the corresponding QA questions for
both the training and testing sets.

Since we used GPT-4 in the process of construct-
ing novel knowledge, its inherent knowledge bias
tends to eliminate parts of our existing triples that
are currently unreasonable with world knowledge.

3https://dumps.wikimedia.org/wikidatawiki/
entities

4https://github.com/ad-freiburg/qlever
5In wikidata, the instance of is used to denote the ontology

to which it belongs.

For example, party X 6 currently has no African
members. After generating the novel knowledge,
we analyzed the changes in the number of relations
(amount of knowledge) in the generated knowl-
edge, as shown by the green bars in Figure A1 (a).
It can be seen that for new entities with more at-
tributes, the generated knowledge does not reflect
these attributes, mainly because GPT-4 has helped
us eliminate some unreasonable aspects. Subse-
quently, we use the tokenizer of Llama-3-8B to
tokenize the generated novel knowledge, and the
results are shown in Figure A1 (b). Additionally,
we tokenize generated questions, which are dis-
played in Figure A1 (c). Figure A1 (d) also shows
the length of the answers. It can be seen that the
answers are relatively concise and accurate, which
is the reason we use EM as an evaluation metric.

B Experimental Setting

B.1 Introduction of Baselines in Preliminary
Experiment

CPT. CPT (Shi et al., 2025; Zhao et al., 2024)
involves continuously training LLM on new data to
update its parameters. This process helps LLMs to
adapt to new information and maintain up-to-date
knowledge. It focuses on minimizing the perplexity
of passage to improve the model’s performance.

In our experiments, CPT is trained on all docu-
ments, including a mixture of training and test set
documents. During evaluation, five demonstrations
are provided to guide the model in following the
answer format while responding to the QA from
the test set.

CPT + SFT. Continued Pre-training + Super-
vised Fine-Tuning (CPT + IT) (Jiang et al., 2025;
Siriwardhana et al., 2024) is a method designed
to enhance LLMs’ capabilities by first updating
its knowledge base through training on both exist-
ing training passage and new test passage (train
knowledge + test knowledge), and then fine-tuning
the model with instruction tuning using question-
answer (QA) pairs, i.e., train QA. This approach
ensures the LLM incorporates the latest informa-
tion while reinforcing its foundational knowledge,
and then focuses on improving its ability to fol-
low specific instructions and respond accurately to
queries.

CPT + SFT (w/o F). Continued Pre-training +
Supervised Fine-Tuning without Forgetting (CPT +

6It’s not a typo, it’s a proxy.
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Data Split Number of novel knowledge Number of general question
Train 6,790 115,019
Test 1,717 29,202

Table A1: Statistical results of the Novel Human dataset.

Figure A1: Statistical results of the NovelHuman dataset. (a) denotes the change in relation numbers owned by new
human subjects after generating novel knowledge. (b) means the token distribution of generated novel knowledge.
(c) implies the token distribution of questions. (d) presents the token distribution of the answer.

IT (w/o forget)) (Kalajdzievski, 2024; Zhai et al.,
2024) is a training paradigm where the model is
first trained on both new passages (train knowl-
edge) and test passages (test knowledge) to update
its parameters with the latest information. After
this phase, the LLM undergoes instruction tuning
using question-answer (QA) pairs (train QA) while
continuing to include test passages (test knowl-
edge) in the training process. This approach en-
sures that the model retains its previously learned
knowledge from the initial passage training phase
while learning how to respond to specific queries
through instruction tuning. By incorporating test
passages during both training phases, the model
continuously reinforces its understanding of the
new information, preventing the loss of previously
acquired knowledge and enhancing its ability to
accurately respond to queries based on both old
and new data.

MT. LLM is trained simultaneously on question-
answer (QA) pairs, training passages (train
knowledge), and new test passages (test knowl-
edge) (Chen et al., 2024). This integrated training
process allows the model to learn how to respond
to specific queries through QA pairs while simul-
taneously updating its knowledge base with both
existing and new information from the training and
test documents.

MT (prompt). This variant of mixed training in-
cludes prompting alongside continued pre-training
and instruction tuning. Prompts are used to guide
the model’s learning process (i.e., In addition to
outputs, prompt is also used to calculate losses),

helping it to focus on relevant information and im-
proving its ability to generate accurate and contex-
tually appropriate responses.

Reading&Answering (referred to R&A). The
Reading&Answering paradigm involves training
the LLM by providing a passage followed by cor-
responding QA pairs (Lehmann et al., 2024). This
method mimics a real-world scenario where the
LLM reads a passage and then answers questions
based on the information it has just read. It can be
broken down into 1) Train & Test passage (Train
knowledge): LLM is continued pre-trained on all
passages. This phase simulates the human reading
and learning stage of knowledge. 2) Train passages
+ Train QA + Test passages: Similar to MT, LLM
is given a passage and related questions about the
passage (which appear sequentially), and then the
test passage is used for continued pre-training. This
process simulates the scenario where a person re-
views the book and then answers questions after
reading (i.e., doing homework after a class).

Attn Drop. Attention Dropout (Hinton, 2012)
(Attn Drop) follows the same process as CPT+SFT,
with the difference being that during the pre-
training phase, attention is randomly dropped in
the self-attention module.

D-AR. D-AR (Saito et al., 2025) (Denoising
Auto-Regressive Training) is a method that en-
hances knowledge extraction by introducing noise
into the training data (You et al., 2022; Hao et al.,
2024). It works by randomly replacing a certain
percentage of token positions in the input with ran-
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dom tokens, perturbing the model’s input. The
training objective is then modified to focus on pre-
dicting the correct tokens while ignoring the cor-
rupted ones. This approach encourages the model
to learn to predict the next token under diverse con-
ditions, promoting robust information extraction
during testing. Essentially, D-AR improves the
model’s performance by diversifying the input se-
quences, similar to how BERT uses token masking
in its training.

PIT++. Jiang et al. (Jiang et al., 2024b) hypothe-
size that exposing LLMs to QA pairs before con-
tinued pre-training on passage is beneficial, as it
allows the model to consider how knowledge from
complex passages is obtained through questions
during the encoding process. They proposed Pre-
Instruction Tuning (PIT) and its variant PIT++ with
the best performance, a method that guides and ad-
justs the questions before passage pre-training.

B.2 Preliminary Experiment Detail Setting

Hyperparameter. Typically, pre-training pro-
cesses corpus data by concatenating all samples
into a continuous sequence, with individual sam-
ples separated by a [SEP] token (Guo et al., 2025;
Jiang et al., 2024a; Zheng et al., 2024). However,
since our constructed NovelHuman dataset con-
sists of relatively independent samples, we do not
adopt the traditional concatenation approach. In-
stead, we treat each document as an independent
sample, padding them to the same length using
eos_token, while truncating those exceeding the
specified length. In our experiments, during the
continued pre-training phase, we set the maximum
sequence length to 2048, with a per-GPU batch
size of 8 and a total batch size of 64, full parame-
ters fine-tuning using ZeRO-2 (Rasley et al., 2020)
for optimization. We train with bf16 precision, an
initial learning rate of 1.0e − 4, a warm-up ratio
of 0.1, and a cosine scheduler, running for 150
epochs with an early stopping strategy. We use
AdamW (Loshchilov and Hutter, 2018) with β1 =
0.9, β2 = 0.95, and a weight decay of 0.1. Dur-
ing continued pre-training, we evaluate perplexity
(PPL) on the training set at each epoch and termi-
nate training early if PPL drops below 2 and the
change in PPL between consecutive epochs is ≤
0.1.

For supervised fine-tuning (SFT), our experi-
ments show that full fine-tuning and LoRA fine-
tuning yield similar performance. Given computa-

Permutation Example

Original

Billabel Kinnamon was born on June 18,
1918, in Utica, United States of America.
Kinnamon was educated at Bryn Mawr
College...

Inter-sentence

Kinnamon was educated at Bryn Mawr
College. Billabel Kinnamon was born on
June, 18, 1918, in Utica, United States of
America...

Intra-sentence 1918, in Utica, Billabel Kinnamon was born
on June 18, United States of America.

Table B1: An example of permutation pattern, with k is set
to 5.

tional constraints, we adopt LoRA fine-tuning for
all SFT stages. In our experiments, we set the rank
size to 8, with a per-GPU batch size of 128 and a
total batch size of 1, 024. Training is conducted
using bf16 precision, with an initial learning rate of
8.0e−5, a warm-up ratio of 0.1, a cosine scheduler,
and a total of 10 epochs.

B.3 PermAR Setting

In pre-training, we set the start epoch to 100 and
the end epoch to 120. During intra-sentence per-
mutation, three words are treated as the permuta-
tion granularity. Other experimental details remain
consistent with those in Appendix B.2.

B.4 Knowledge Augmentation Setting

An instance of InterSP and IntraSP is shown in
Table B1. Specifically, inter-sentence refers to the
permutation of sentences within passages. Intra-
sentence involves the permutation of words within
a sentence. To maintain a certain level of seman-
tic coherence, we ensure that up to k words are
not permuted. For InterSP, each passage was per-
muted at the sentence level 20 times. For IntraSP,
each sentence was permuted at the word level 20
times, while maintaining the original sentence or-
der within the passage. For InterSP+IntraSP, pas-
sages were first permuted 4 times at the sentence
level, and then each of the four shuffled passages
underwent 5 rounds of word-level permutation
within sentences, resulting in 20 permuted passages
per person.

C Additional Experiments

C.1 Experiments on Wiki2023

To verify the robustness of PermAR on other
datasets, we conduct experiments using Llama-2-
7B on the Wiki2023 dataset (Jiang et al., 2024b).
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Method EM R R-L
PIT 46.5 52.3 61.9

PIT++ 48.1 54.4 66.4
PermAR 55.5 63.8 69.3

Table C1: Comparison of QA performance between
PermAR and PIT on the test set of the Wiki2023 dataset.

Model Granularity
InterSP+IntraSP PermAR

All All
EM R R-L EM R R-L

Llama2-7B

Token 30.7 35.6 41.3 30.8 37.6 42.3
Word 66.8 71.3 72.5 70.6 72.2 72.8

M-Word

2 68.9 72.8 73.2 73.3 75.9 76.2
3 72.0 75.8 75.8 75.3 78.3 78.6
4 69.5 73.4 73.8 74.4 77.1 77.9
5 69.3 73.1 73.4 73.5 75.8 76.1

Llama3-8B

Token 29.6 38.8 40.2 28.4 37.2 38.2
Word 51.0 57.1 56.1 60.5 70.9 69.8

M-Word

2 51.7 57.9 56.2 61.6 71.2 70.3
3 53.9 65.9 63.2 63.7 72.7 70.4
4 52.4 58.5 59.6 62.5 72.1 70.0
5 51.9 58.2 58.5 61.1 71.8 69.3

Table C2: Comparison of QA performance for differ-
ent permutation granularities in knowledge acquisition,
where M-word refers to multi-word.

The Wiki2023 dataset, proposed by Jiang et al.,
is a timestamp-based novel knowledge dataset de-
signed to explore how LLMs acquire new knowl-
edge. It primarily focuses on the film domain and
is currently compatible only with the Llama-2 se-
ries models, making it unsuitable for other models.
The experimental results are presented in Table C1.
As seen in the table, PermAR demonstrates good
robustness on Wiki2023, outperforming PIT++ by
7.4% in the EM metric.

C.2 Ablation Experiment on Different
Permutation Granularities

From Table C2, we observe that token-level permu-
tation performs the worst, primarily because LLMs
do not always tokenize complete words as a single
token. Instead, prefixes and suffixes are often split,
leading to increased complexity when different pre-
fixes and suffixes are recombined. This disrupts
the model’s ability to extract meaningful patterns,
forcing it to process disordered sequences, which
negatively impacts knowledge learning.

In contrast, word-level permutation signifi-
cantly improves model performance, indicating
that LLMs can better learn novel knowledge at
different positions when using complete word per-
mutations. Furthermore, considering the intrinsic
characteristics of natural language, many words

Start Epoch End Epoch All
EM R R-L

0 0 20.9 26.8 29.7
0 20 25.9 36.2 38.8
0 50 33.5 39.9 45.1
0 100 39.8 47.4 53.0
0 150 41.2 47.8 55.3

50 50 55.4 65.1 66.3
50 100 59.2 66.8 67.0
50 150 60.2 67.3 68.9
100 100 62.3 71.2 69.4
100 120 63.7 72.7 70.4
100 150 62.6 71.9 70.1
120 120 61.0 70.8 68.9
120 140 61.7 71.5 68.6
150 150 61.4 71.3 68.2

Table C3: Comparison of QA performance for different
start and end epochs in permutation annealing training.

form tightly connected phrases that should not be
arbitrarily disrupted. To address this, we extend
the permutation granularity from single words to
multi-word phrases. Experimental results show
that selecting an appropriate phrase length as the
permutation granularity further enhances model
performance.

It is worth noting that precisely determining
which words exhibit strong interdependence falls
beyond the scope of this study, and we leave this
as a direction for future research.

C.3 Ablation Experiment on Permutation
Annealing Strategy

We conducted experiments using Llama-3-8B on
the NovelHuman dataset, and the results are shown
in Table C3. The following observations can be
made: (1) When start = 0 and end = 0, the
model starts permutation annealing right from the
beginning, and the experimental results are al-
most identical to those of CPT+SFT. (2) When
start = 150 and end = 150, the model remains in
the permutation phase throughout, without termina-
tion due to early stopping. This indicates that there
are too many possible permutations for the model
to learn within a limited time. Although there is a
noticeable performance improvement compared to
CPT+SFT, it is still lower than the optimal parame-
ter configuration. This suggests that the model is
learning scattered knowledge in various contexts
without integrating it into a complete knowledge
system. (3) When start = 100 and end = 120,
the model achieves the best performance, demon-
strating the advantage of extensive permutation
learning followed by appropriate annealing train-
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Position-aware
Embedding Operation EM R R-L

Dense add 52.3 55.8 60.1
merge 48.3 50.6 53.7

RoPE-1D add 63.7 72.7 70.4

Table C4: Comparison of QA performance of different
position-aware embedding producing methods.

ing, and finally focusing on the original knowledge.

C.4 Ablation Experiment on Position-aware
Instruction Embedding.

We learn a single embedding and obtain position-
aware instruction embeddings for all positions us-
ing RoPE-1D, which are directly fused with token
embeddings via an additive operation. Additionally,
we explore two alternative approaches: learning a
separate dense vector for each position and training
a linear fusion layer to merge position-aware in-
struction embeddings with token embeddings. The
experimental results are presented in Table C4.

Our findings show that the additive operation
with RoPE-1D achieves the best performance. The
main reason is that individually learning a dense
vector for each position makes the model difficult
to converge. Furthermore, RoPE-1D’s additive
fusion efficiently scales to sequences of varying
lengths, making it a more flexible and effective
solution.

D Prompt Templates and Instances

Table D1 shows a prompt template for creating
Wikipedia-style paragraphs from triples about indi-
viduals, including an example for Abelervéh Vill.

Table D2 provides a template for generating
questions aimed at uncovering the object entity
in a given triple. It includes detailed instructions
and an example output format in JSON.

Table D3 and Table D4 show the prompt of
checking the potential conflict or common sense
violation of triples.

Table D5 describes a novel human subject, Paul
Von Guillaume, from the Novel Human dataset. It
details his biographical information, key achieve-
ments, and associated knowledge triples. It in-
cludes novel knowledge such as his birth, career,
and personal life, and structured data like relations
and questions pertaining to his life events.
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Prompt Template for novel Knowledge Generation
Please convert the following collections of triples about individuals into detailed, cohesive paragraphs. Each paragraph
should resemble the style of Wikipedia biographical entries, focusing on integrating the triples directly into the text. It’s
crucial to incorporate each triple as it is presented, without paraphrasing or altering the original wording, and without
drawing attention to any elements that might not be accurate. The narrative should flow naturally, engaging the reader with a
formal tone and structured content akin to Wikipedia’s encyclopedic profiles. The triples cover various aspects of each
person’s life, including personal background, achievements, relationships, and impact. Ensure that the integration of these
triples into the paragraphs is seamless, maintaining the integrity of the original information.
Here are the triples:
{The list of triples}
Ensure the generated text is rich with detail, mimicking the depth and formal tone of a Wikipedia entry, to provide a thorough
and engaging profile.
An instance of {the list of triples}
1.(Abelervéh Vill,award received,Maître d’art)2.(Abelervéh Vill,languages spoken, written or signed,Spanish)3.(Abelervéh
Vill,social media followers,2471)4.(Abelervéh Vill,country of citizenship,France) 5.(Abelervéh Vill,date of birth,1963-11-23
22:01:48) 6.(Abelervéh Vill,place of birth,Pamplona) 7.(Abelervéh Vill,Directory of Maîtres d’art,maitre-art/herve-obligi)
8.(Abelervéh Vill,instrument,viola) 9.(Abelervéh Vill,educated at,Hochschule für Musik Freiburg) 10.(Abelervéh
Vill,employer,Berlin University of the Arts) 11.(Abelervéh Vill,field of work,visual arts) 12.(Abelervéh Vill,student
of,Harmut Rohde) 13.(Abelervéh Vill,residence,New York City) 14.(Abelervéh Vill,place of death,Boulogne-Billancourt)
15.(Abelervéh Vill,sibling,Julian Grosvenor, Viscount Grey de Wilton) 16.(Abelervéh Vill,social classification,nobility)
17.(Abelervéh Vill,native language,French) 18.(Abelervéh Vill,student,Pierre Lénert) 19.(Abelervéh Vill,record label,Virgin
Music) 20.(Abelervéh Vill,copyright status as a creator,copyrights on works have expired) 21.(Abelervéh Vill,has works in
the collection,Metropolitan Museum of Art) 22.(Abelervéh Vill,work location,Prague)

Table D1: Prompt template for novel knowledge generation and the corresponding instance.

Prompt Template of General Question Generation
I’m looking forward to generating at least five question templates specifically designed to uncover information about the
‘object’ entity within a given triple of (subject, relation, object). Each question template should effectively probe for details
that lead to the ‘object’ as an answer. For this task, I will provide the ‘subject’, the ‘relation’, and a description of the relation
to help you understand the relationship between subject and object.
Here are the details:
Subject:
{subject}
Relation:
{relation}
Relation Description:
{description}
Objectives:
1. Direct Information Retrieval: Each interrogative question is carefully crafted to directly solicit the entire "object" entity
without intermediate steps or answers that are not the entire "object" itself.
2. Clarity and Precision: Ensure the questions are clear, concise, and precisely targeted at uncovering the whole ’object’
entity based on the given ’relation’ and its description.
3. Ensure that the question is an interrogative sentence, while avoiding types of questions such as Could, Can, Does, Do.
4. Questions can only consist of subjects, relations, and at most descriptions of relations.
5. Produce your output as JSON. The format should be:
{

"question1": "Where was [T] born?",
"question2": "What is the birth location of [T]?",

}

Table D2: Prompt template of general question generation for novel knowledge.
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Prompt Template of Triple-checking
I have provided a list of triples (subject, predicate, object) concerning the attributes of a "Novel Human." The data you receive
pertains to the attributes of this hypothetical entity, and it is important to identify any contradictions between these attribute
values or any violations of common sense (e.g., values that are unrealistic or cannot logically coexist with each other).
Please carefully review the given triples and determine if any of the attribute values contradict each other, or if any values
deviate significantly from what would be expected for a human in reality. This includes checking for conflicts or
inconsistencies within the same set of triples and ensuring that the provided information aligns with what is commonly
understood about humans.
If contradictions or unrealistic values are identified, please make the necessary corrections. If a triple is fundamentally
inconsistent with other triples or violates common sense, mark it for deletion.
The provided triples are as follows:
{The list of triples}
Instructions:
Identify Contradictions: Check for contradictions between the attribute values of the "Novel Human." For example:
Conflicting birth or death dates.
Inconsistent or impossible combinations of attributes (e.g., a person listed as both alive and dead).
Identify Common Sense Violations: Check for attribute values that are unrealistic or violate common sense, such as: An age
that is not plausible (e.g., someone born in 1800 but participating in modern activities). Attributes related to height, weight,
or achievements that would be physically or logically impossible.
Modify: Adjust any attribute values that are unrealistic, illogical, or contradict the context of the "Novel Human."
Delete: Remove any triples that cannot logically coexist with other provided data, violate common sense, or are inconsistent
with the characteristics of the "Novel Human."
Output Format:
The response should consist of one single JSON object, containing all modifications or deletions.
The key in the JSON object should be the original triple, and the value should be either:
The modified triple (if the triple needs to be adjusted to correct contradictions or violations).
"Delete" (if the triple should be removed due to contradictions or common sense violations).
Here’s the structure of the JSON file you should output:
{

"(original triple 1)": "(modified triple 1)",
"(original triple 2)": "(modified triple 2)",
"(original triple 3)": "Delete",
...

}

Table D3: Prompt template of checking the potential conflict or common sense violation of triples.
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Prompt Example of Triple-checking
I have provided a list of triples (subject, predicate, object) concerning the attributes of a "Novel Human." The data you receive
pertains to the attributes of this hypothetical entity, and it is important to identify any contradictions between these attribute
values or any violations of common sense (e.g., values that are unrealistic or cannot logically coexist with each other).
Please carefully review the given triples and determine if any of the attribute values contradict each other, or if any values
deviate significantly from what would be expected for a human in reality. This includes checking for conflicts or
inconsistencies within the same set of triples and ensuring that the provided information aligns with what is commonly
understood about humans.
If contradictions or unrealistic values are identified, please make the necessary corrections. If a triple is fundamentally
inconsistent with other triples or violates common sense, mark it for deletion.
The provided triples are as follows:
1.(Paul Von Guillaume,place of birth,Cologne) 2.(Paul Von Guillaume,date of death,1963-11-25 00:17:56) 3.(Paul Von
Guillaume, sport,auto racing) 4.(Paul Von Guillaume,award received,National Inventors Hall of Fame) 5.(Paul Von
Guillaume,place of death,Monteagle) 6.(Paul Von Guillaume,languages spoken, written or signed,German) 7.(Paul Von
Guillaume,participant in,24 Hours of Le Mans) 8.(Paul Von Guillaume,country of citizenship,United States of America)
9.(Paul Von Guillaume,date of birth,1874-06-15 07:12:58) 10.(Paul Von Guillaume,educated at,Northwestern University)
11.(Paul Von Guillaume,position held,Alderman of Corporation of the City of Adelaide) 12.(Paul Von
Guillaume,residence,North Adelaide) 13.(Paul Von Guillaume,writing language,English) 14.(Paul Von Guillaume,copyright
status as a creator,works protected by copyrights) 15.(Paul Von Guillaume,employer,Bonanza Air Lines) 16.(Paul Von
Guillaume,place of burial,Memory Gardens Memorial Park) 17.(Paul Von Guillaume,height,316) 18.(Paul Von
Guillaume,mass,100) 19.(Paul Von Guillaume,social media followers,130605) 20.(Paul Von Guillaume,different from,Joan
Hubbard Wolf) 21.(Paul Von Guillaume,member of political party,National Fascist Party) 22.(Paul Von Guillaume,number of
children,4) 23.(Paul Von Guillaume,sibling,Jim Hubbard) 24.(Paul Von Guillaume,owner of,I.H.Farm) 25.(Paul Von
Guillaume,stepparent,Pavel Tykač) 26.(Paul Von Guillaume,native language,Portuguese) 27.(Paul Von
Guillaume,pseudonym,Jojo la Moto) 28.(Paul Von Guillaume,member of sports team,Bernhard-Webber-Hartley) 29.(Paul
Von Guillaume,number of matches played/races/starts,44) 30.(Paul Von Guillaume,number of wins,0) 31.(Paul Von
Guillaume,podium finishes,1) 32.(Paul Von Guillaume,points for,5) 33.(Paul Von Guillaume,pole positions,0) 34.(Paul Von
Guillaume,sponsor,Red Bull GmbH) 35.(Paul Von Guillaume,country for sport,Italy)
Instructions:
Identify Contradictions: Check for contradictions between the attribute values of the "Novel Human." For example:
Conflicting birth or death dates.
Inconsistent or impossible combinations of attributes (e.g., a person listed as both alive and dead).
Identify Common Sense Violations: Check for attribute values that are unrealistic or violate common sense, such as: An age
that is not plausible (e.g., someone born in 1800 but participating in modern activities). Attributes related to height, weight,
or achievements that would be physically or logically impossible.
Modify: Adjust any attribute values that are unrealistic, illogical, or contradict the context of the "Novel Human."
Delete: Remove any triples that cannot logically coexist with other provided data, violate common sense, or are inconsistent
with the characteristics of the "Novel Human."
Output Format:
The response should consist of one single JSON object, containing all modifications or deletions.
The key in the JSON object should be the original triple, and the value should be either:
The modified triple (if the triple needs to be adjusted to correct contradictions or violations).
"Delete" (if the triple should be removed due to contradictions or common sense violations).
Here’s the structure of the JSON file you should output:
{

"(original triple 1)": "(modified triple 1)",
"(original triple 2)": "(modified triple 2)",
"(original triple 3)": "Delete",
...

}
Response of GPT-4

{
"(Paul Von Guillaume, height, 316)": "(Paul Von Guillaume, height, 176)",
"(Paul Von Guillaume, mass, 100)": "(Paul Von Guillaume, mass, 76)",
"(Paul Von Guillaume, place of birth, Cologne)": "(Paul Von Guillaume, place of birth, Germany)",
"(Paul Von Guillaume, place of death, Monteagle)": "(Paul Von Guillaume, place of death, United States of America)",
"(Paul Von Guillaume, languages spoken, written or signed, German)": "Delete",
"(Paul Von Guillaume, member of political party, National Fascist Party)": "Delete",
"(Paul Von Guillaume, sponsor, Red Bull GmbH)": "Delete",
"(Paul Von Guillaume, country for sport, Italy)": "Delete"

}

Table D4: Prompt example of triple checking and the response of GPT-4.
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Table D5: A specific novel human subject in NovelHuman dataset.

A Novel Person
Name Paul Von Guillaume

Triple

1.(Paul Von Guillaume,place of birth,Germany) 2.(Paul Von Guillaume,date of
death,1963-11-25 00:17:56) 3.(Paul Von Guillaume, sport,auto racing) 4.(Paul Von Guil-
laume,award received,National Inventors Hall of Fame) 5.(Paul Von Guillaume,place of
death,United States of America) 6.(Paul Von Guillaume,participant in,24 Hours of Le
Mans) 7.(Paul Von Guillaume,country of citizenship,United States of America) 8.(Paul
Von Guillaume,date of birth,1874-06-15 07:12:58) 9.(Paul Von Guillaume,educated
at,Northwestern University) 10.(Paul Von Guillaume,position held,Alderman of Corpora-
tion of the City of Adelaide) 11.(Paul Von Guillaume,residence,North Adelaide) 12.(Paul
Von Guillaume,writing language,English) 13.(Paul Von Guillaume,copyright status as
a creator,works protected by copyrights) 14.(Paul Von Guillaume,employer,Bonanza
Air Lines) 15.(Paul Von Guillaume,place of burial,Memory Gardens Memorial Park)
16.(Paul Von Guillaume,height,176) 17.(Paul Von Guillaume,mass,76) 18.(Paul Von
Guillaume,social media followers,130605) 19.(Paul Von Guillaume,different from,Joan
Hubbard Wolf) 20.(Paul Von Guillaume,number of children,4) 21.(Paul Von Guil-
laume,sibling,Jim Hubbard) 22.(Paul Von Guillaume,owner of,I.H.Farm) 23.(Paul Von
Guillaume,stepparent,Pavel Tykač) 24.(Paul Von Guillaume,native language,Portuguese)
25.(Paul Von Guillaume,pseudonym,Jojo la Moto) 26.(Paul Von Guillaume,member
of sports team,Bernhard-Webber-Hartley) 27.(Paul Von Guillaume,number of matches
played/races/starts,44) 28.(Paul Von Guillaume,number of wins,0) 29.(Paul Von Guil-
laume,podium finishes,1) 30.(Paul Von Guillaume,points for,5) 31.(Paul Von Guil-
laume,pole positions,0)

Continued on next page
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Table D5 – continued from previous page
A Novel Person

Generated
knowledge

Paul Von Guillaume (born June 15, 1874 – November 25, 1963) was a German-born
American auto racing driver, engineer, and public official. Over the course of his
diverse career, he made significant contributions to both the automotive and aviation
industries, while also serving in municipal government. He was recognized for his
innovations with an induction into the National Inventors Hall of Fame. Von Guillaume
was born in Germany and later became a citizen of the United States of America. He
pursued higher education at Northwestern University, which laid the foundation for his
varied professional endeavors. He established his residence in North Adelaide, where
he became actively involved in public service, holding the position of Alderman of
the Corporation of the City of Adelaide. His professional career extended into the
aviation sector, where he worked for Bonanza Air Lines. In addition to his technical
and administrative pursuits, Von Guillaume had a deep passion for auto racing. He was
a participant in the prestigious 24 Hours of Le Mans and competed as a member of
the Bernhard-Webber-Hartley racing team. Over his career, he took part in 44 races,
achieving one podium finish and earning five points in competitive racing. Despite his
dedication to the sport, he did not secure any victories or pole positions. His height and
weight were recorded as 176 cm and 76 kg, respectively. He was widely known within
the racing community by his pseudonym, Jojo la Moto. Beyond his career in motorsports
and governance, Von Guillaume was also an individual of cultural and intellectual depth.
His native language was Portuguese, though he was proficient in English, which he used
for his writing. His creative works remained protected by copyrights, ensuring their
intellectual integrity. He was the owner of I.H. Farm, suggesting an involvement in
agriculture or rural affairs. Von Guillaume maintained a complex personal life. He had
four children and was a sibling to Jim Hubbard. His stepparent was Pavel Tykač, though
details regarding their relationship remain limited. He was noted to be distinct from
Joan Hubbard Wolf, possibly in response to historical misidentifications. At the time of
his passing, Von Guillaume resided in the United States, where he died on November
25, 1963. He was laid to rest at Memory Gardens Memorial Park. Despite his passing,
his legacy in engineering, motorsports, and civic leadership endures, marked by both
his professional achievements and his significant social media presence, where he had
130,605 followers.

Relation
and the
corre-
sponding
QA

"place of birth":
{

"value": "Germany",
"questions":

[
["What is the most specific known birth location of Paul Von Guillaume?", "Ger-

many"]
...
]

}
...
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