
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 18085–18108
July 27 - August 1, 2025 ©2025 Association for Computational Linguistics

Sparse Logit Sampling: Accelerating Knowledge Distillation in LLMs

Anshumann* and Mohd Abbas Zaidi* and Akhil Kedia* and Jinwoo Ahn
Taehwak Kwon and Kangwook Lee and Haejun Lee and Joohyung Lee

Samsung Research, Seoul
{anshu.mann, abbas.zaidi, akhil.kedia, jinwoo.ahn, taehwak.kwon}@samsung.com

Abstract

Knowledge distillation can be a cost-effective
technique to distill knowledge in Large Lan-
guage Models, if the teacher output logits can
be pre-computed and cached. However, suc-
cessfully applying this to pre-training remains
largely unexplored. In this work, we prove that
naive approaches for sparse knowledge distilla-
tion such as caching Top-K probabilities, while
intuitive, provide biased estimates of teacher
probability distribution to the student, resulting
in suboptimal performance and calibration. We
propose an importance-sampling-based method
‘Random Sampling Knowledge Distillation’,
which provides unbiased estimates, preserves
the gradient in expectation, and requires stor-
ing significantly sparser logits. Our method
enables faster training of student models with
marginal overhead (< 10%) compared to cross-
entropy based training, while maintaining com-
petitive performance compared to full distilla-
tion, across a range of model sizes from 300M
to 3B.

1 Introduction

Distilling the knowledge from a larger teacher into
a smaller student (Hinton et al., 2015) has been suc-
cessfully used to train more efficient and stronger
models across a range of applications (Fukuda
et al., 2017; Jiao et al., 2020; Ahn et al., 2019; Tian
et al., 2020; Sanh et al., 2019; Bergmann et al.,
2020; Zhao et al., 2022; Xu et al., 2024b). As
Large Language Models (LLMs) reach increasing
adoption, Knowledge Distillation has also been ap-
plied to improve smaller LLMs (Sreenivas et al.,
2024; Muralidharan et al., 2024; Gu et al., 2024;
Wang et al., 2021; Gu et al., 2023; Palo et al., 2024;
Boizard et al., 2024; Jiang et al., 2023).

Two common categories of Knowledge Distilla-
tion are distribution matching, where the teacher’s
final logits or output distribution are learned, and

*These authors contributed equally to this work

Figure 1: Sparse Knowledge Distillation Pipeline

representation matching, where intermediate-layer
representations are distilled (Wen et al., 2023). In
this work, we focus on the former, in a offline logits
setting, where the logits from the teacher are pre-
computed and cached, prior to training the student.

Particularly for LLMs, this setting has several ad-
vantages – The larger, more expensive teacher only
needs to run once, and the saved representations
can then be used to train a family of smaller models
of various sizes. Teacher inference can be done on
cheaper compute resources without fast multi-node
interlinks, and the student can be trained on smaller
clusters. Cluster size is further reduced by elimi-
nating the memory footprint of the teacher. Lastly,
this makes smaller-scale design experiments and
ablations feasible by eliminating the constant large
overhead of running the teacher model repeatedly
for each experiment or training.

While this is often done for post-training (Shum
et al., 2024) or for dataset generation/filtering (Gu
et al., 2024; Wen et al., 2023; Gunasekar et al.,
2023), extending this to pre-training is challenging.
In contrast to vanilla pre-training, knowledge dis-
tillation requires the information-dense soft targets
(teacher probabilities) to be stored. Due to the large
vocabulary size of modern LLMs, naively storing
all of these probabilities is infeasible (e.g., requir-
ing 128 PetaBytes of storage for 1T tokens for
Llama3 (Grattafiori et al., 2024)). Instead, sparse

18085



knowledge distillation approaches store an efficient
Top-K subset of logits from the teacher’s distribu-
tion (Raman et al., 2023; Peng et al., 2024). How-
ever, these methods still require a large number of
logits (6400) to be stored, or even observe a fall in
model performance (Peng et al., 2024).

In this work, via theoretical proofs, cross-
validated by empirical analysis, we show that the
performance drop in Top-K methods stem from two
primary causes - 1) Top-K provides a biased esti-
mator of the teacher’s probability distribution, and
2) It fails to expose the tail of teacher’s distribution
to the student model. These result in the student
learning a scaled-up and mis-calibrated distribution
of the teacher probability.

We rectify both of these issues by instead uti-
lizing importance sampling (Elvira and Martino,
2021) to randomly sample from the teacher’s dis-
tribution. We show that our proposed Knowledge
Distillation approach – 1) Provides an unbiased
estimate of the teacher’s probability distribution,
2) Preserves the gradient in expectation compared
to full distillation, and 3) Eliminates the overhead
of running the teacher inference, while maintain-
ing model performance to full distillation, using
extremely limited storage.

2 Top-K Knowledge Distillation

For storing KD logits, previous studies (Raman
et al., 2023; Peng et al., 2024; Shum et al., 2024)
have proposed to replace the full teacher distribu-
tion t in knowledge distillation with a sub-sampled
version ts. The most intuitive way is to use only the
top K probability values from the teacher ("Top-K
KD"), specifically tsi = ti, i ∈ K, and tsi = 0 oth-
erwise, where ti are the probabilities of the token i
in t. Note that

∑
tsi ̸= 1.

Theoretically, selecting the top K tokens results
in the least error from the teacher distribution for
a single token (Appendix A.3). This may be com-
bined with "Top-p" which dynamically adjusts K
to only keep a fixed probability mass p.

2.1 How Does Top-K perform compared to
FullKD?

To study Top-K KD, we pre-train multiple LLaMA
style 300M student models, while varying the
number of probabilities used K. We train on
web data using a well pre-trained 3B teacher (full
hyper-parameters in Table 17), using forward KL-
Divergence loss. As a baseline, we use a model

trained with only Cross Entropy loss ("CE"), and as
a ceiling, a model trained using the entire teacher
distribution ("FullKD") to compare student perfor-
mance on language modeling tasks.

As seen in the table Table 1, Top-K training lags
behind the FullKD performance on the language
modeling task. If a small number of Top-K tokens
(< 25) are used, the student loss is worse than just
than using CE loss without any distillation – Only
after 300 tokens does the model performance start
reaching close to FullKD. Using Top-p allows for
the use of fewer tokens, but performance is still
only 47% of FullKD.

We also measure the Expected Calibration Er-
ror (Guo et al., 2017) ("ECE") of these models, as
prior works (Shum et al., 2024) have shown that
calibration is strongly correlated with performance.
Even though our teacher model is almost perfectly
calibrated, we find that models trained with Top-K
are strongly mis-calibrated, with calibration wors-
ening as number of tokens (K) is being reduced.
Models trained using CE and FullKD are almost
perfectly calibrated, as has also been previously
observed (Zhu et al., 2023; Shum et al., 2024; Heb-
balaguppe et al., 2024).

Unique LM % CE to ECE
Tokens Loss ↓ FullKD ↑ %↓

CE 2.81 0% 1.2

3 3.04 −395% 10.6
5 2.96 −253% 7.7
12 2.87 −99% 4.7
25 2.82 −21% 3.2
50 2.80 5% 2.2

*50 2.78 47% 1.7
57 2.79 32% 2.0

100 2.77 55% 1.1
300 2.76 77% 1.5

FullKD 2.75 100% 0.7

Table 1: Vanilla Top-K KD. The row *50 uses Top-p
0.98 with K = 100. ‘% CE to FullKD’ refers to the %
gap covered between CE and FullKD models.

2.2 Top-K KD Analysis

In this section, we demonstrate fundamental prob-
lems with Top-K methods.

2.2.1 Up-scaled Teacher Probabilities
Synthetic Toy Distribution: When only the Top-
K values are kept from the teacher distribution, the
probabilities of the top tokens are inevitably scaled-

18086



(a) Visualizing Target Probabilities (b) Calibration on Synthetic Classes (c) Calibration on CIFAR-100

Figure 2: Comparing different sparse KD methods on synthetic examples (refer to Appendix B).

up compared to the original, as the probabilities
must be normalized to sum to 1. We illustrate this
in Figure 2a (see Appendix K for pseudo-code),
where we simulate a synthetic distribution follow-
ing a Zipf distribution (Kingsley, 1935). Similar
bias was also observed in previous research (Zadeh
and Schmid, 2021).

Gradients from KL-Divergence: When using
KL-Divergence loss with Top-K KD, the non Top-
K tokens are pushed to probability 0 due to restric-
tion of the target distribution to Top-K probabilities.
This happens even if one does not normalize the
Top-K teacher probabilities. The backward gradi-
ents result in the student effectively learning an
up-scaled version of the teacher probabilities as tar-
gets, with the remaining probability divided among
the Top-K tokens. Specifically, if pi and ti are the
student and teacher probabilities for the ith token,
the gradients for the ith logit xi in FullKD are:

∂L

∂xi
= pi − ti (1)

But for Top-K KD, as we prove in Appendix A.4,
the gradients are:

∂L

∂xi
= (
∑

j∈K
tj).pi − ti (2)

The student will hence be over-confident in the
Top-K tokens, and under-confident for the remain-
ing tokens (Appendix A.4). This over-confidence
for the top tokens is indeed what we observe with
top-K pre-training for LLMs (Figure 3a), causing
the calibration error in Table 1, which worsens as
K is decreased. Other works (Busbridge et al.,
2025) have also observed this top-K bias and mis-
calibration, while finding the full teacher distribu-
tion to be unbiased.

Synthetic Classification Task: This calibration
error can even be observed in a very simple syn-
thetic classification task (similar to Zhang et al.,
2023), where we train a toy 3-layer MLP for
classifying random points with Gaussian noise
around class means in 128-dimensional space (see
Appendix K for pseudo-code). As seen in Fig-
ure 2b, Top-K KD leads to over-confident models,
whereas CE and FullKD are almost perfectly cali-
brated. The same effect is observed when training
a toy ResNet (He et al., 2016) model on CIFAR-
100 (Krizhevsky et al., 2009) dataset, as shown in
Figure 2c.

Hence, we cannot apply KL-Divergence loss on
the Top-K target distribution without explicitly han-
dling the remaining probability.

2.2.2 Missing Tail Information

However, only handling the problem of up-scaled
teacher probabilities is not sufficient to fully re-
cover the performance (Sections 3.1 and 3.2). In
contrast to FullKD training, which utilizes the full
distribution, Top-K KD discards the tail informa-
tion which has been shown to be crucial for model
performance (Shumailov et al., 2024). For rare
ground truth tokens which fall in the tail of the
teacher distribution, Top-K KD throws away the
ground truth, providing a poor training signal com-
pared to CE training. The tail, even though it con-
tains a small probability mass, contains useful in-
formation and needs to somehow be learned.

3 Partial Empirical Solutions

In this section, we first discuss several empirical
solutions to the problems discussed above. We
apply these fixes to Top-K KD, and provide the
corresponding results in Table 2.

18087



(a) Calibration of Pre-trained models (b) Expected Calibration Error (c) LM Loss Performance

Figure 3: Comparing different sparse KD methods on Language Modeling Pre-Training

3.1 Label Smoothing
A straightforward solution is to distribute the resid-
ual probability over all the classes equally. Here,
residual probability refers to 1− p where p is the
sum of the probabilities of the top-K tokens from
the teacher’s probability distribution. While this
fixes the calibration error, smoothing leads to sig-
nificant degradation in the performance compared
to Top-K KD (Table 2). This is expected since
real-world token probabilities are not uniformly dis-
tributed and are instead hyperbolic (Zipf Kingsley,
1935). While some studies show benefits of using
smoothing (Menon et al., 2021), other works (Sul-
tan, 2023; Shum et al., 2024) also find that label
smoothing under-performs in KD.

Method Top-k New LM % CE to ECE 0-shot
Loss ↓ Loss ↓ FullKD ↑ % ↓ Score ↑

CE 2.81 - 0 1.2 40.4

Smoothing 2.80 2.85 −73 0.4 41.2
Ghost Token 2.80 2.77 59 0.4 42.9

Naive Fix: Remaining Probability to Ground Truth
Top-k 1 3.37 2.81 −5 7.1 41.3
Top-k 5 2.96 2.78 44 4.4 42.4
Top-k 10 2.88 2.77 61 3.3 42.4
Top-k 20 2.83 2.76 73 2.3 42.9
Top-k 50 2.80 2.76 83 1.3 42.8
Top-k 100 2.77 2.75 97 1.2 43.0

FullKD 2.74 - 100 0.7 42.1

Table 2: Naive Fixes for Top-K KD. Smoothing (Label
Smoothing) and Ghost Token use 50 tokens.

3.2 Ghost Token
Another method to handle residual probability
would be to create a "ghost token" which takes up
the accumulated probabilities of non Top-K tokens
for both the teacher and the student. We compute
loss on the K top tokens, between predicted prob-
abilities pi and target tsi = ti, and on the "ghost
token" with probability pghost = 1−∑i∈K pi and

target tsghost = 1−∑i∈K ti.
With the ghost token, the Top-K tokens receive

the same gradient as FullKD, while the remaining
tokens receive gradients proportional to the student
confidence (Appendix A.5). This significantly im-
proves both the LM loss and calibration (Table 2).
However, the performance is still worse compared
to FullKD – indicating that explicit supervision in
the tail is essential to bridge the performance gap.

3.3 Naive Fix
A trivial candidate for the residual probability of
the teacher is the ground truth itself. We label this
method as "Naive Fix", where the probability of
the target token is adjusted to ensure that the target
probabilities sum up to 1. One can expect that
this will result in probabilities more aligned to the
real target (Figure 2a). This method significantly
improves both performance and calibration error
Table 2, however, it still requires 100 tokens to
achieve performance comparable to FullKD.

The gradients for the logits are linked to the
target teacher probability (Appendix A.1 - Equa-
tion (4)). The methods above are either biased
estimators of the teacher probability distribution,
and/or lack adequate supervision in the tail.

4 Proposed Method: Random Sampling
KD

We propose a theoretically motivated method “Ran-
dom Sampling KD”, which overcomes all the draw-
backs of the previous approaches. Given a teacher
probability distribution tfull for each token i in the
vocab V , unlike Top-K which truncates the teacher
distribution, our method randomly samples tokens
from teacher distribution.

Motivation For a given probability distribution
t(x), importance sampling (Elvira and Martino,
2021) allows us to obtain unbiased estimates of a

18088



function f(x), by sampling from a different pro-
posal distribution q(x), and reweighing the samples
using the likelihood ratio t(x)/q(x).

E[f(x)] =

∫
f(x)t(x)dx =

∫
f(x)

t(x)

q(x)
q(x)dx

If the proposal q(x) = 0 at any x where t(x) ̸= 0
(e.g., Top-K), then the estimate is no longer un-
biased. While any non-zero proposal distribution
q(x) can be used to obtain an unbiased estimate,
under certain constraints, the proposal distribu-
tion with the lowest variance q∗(x) is of the form
q∗(x) ∝ t(x)|f(x)| (Salakhutdinov, 2014). Moti-
vated by these findings, we explore q(x) = t(x)τ

as a proposal distribution, where τ is the sampling
temperature.

Sampling Distribution We sample tokens from
tfull, using the proposal distribution q = tτfull, for
a fixed number of rounds N . Each occurrence of
a token i is assigned a likelihood ratio ti

qi
. Empiri-

cally, we find that for 0.8 < τ < 1.2, performance
does not vary significantly (Table 12). We hence
use τ = 1, simply sampling N token ids from 1 to
V (with replacement) with probability tfull.

Obtaining Sampled Probabilities For each to-
ken, the likelihood ratio of each sample is added,
and then normalized to obtain the sub-sampled tar-
get probability distribution ts. For τ = 1, the like-
lihood ratio is simply 1, and tsi is then ci

N , where
ci is the count of occurrences of each token i in
N samples. This will be very sparse, with maxi-
mum N non-zero probabilities, and significantly
less than N in practice (Appendix C).

Loss Calculation We use forward KL divergence
between non-zero ts and student predictions p,∑

tsi log
tsi
pi

. For τ = 1, this may also be viewed as
the sum of cross entropy loss between each sam-
pled token and the student predictions.

This sub-sampled teacher distribution ts can be
stored/cached on disk and re-used across multiple
experiments. The above gives us our final method,
‘Random Sampling KD’.

5 Analysis of Random Sampling KD

5.1 Calibration
The toy distribution (Figure 2a) demonstrates that
our method correctly estimates teacher distribution
by providing an unbiased probability estimates, It
achieves perfect calibration mirroring FullKD in

the synthetic classification tasks (Figure 2b), in
toy classification on CIFAR-100 (Figure 2c) and in
LLM pre-training (Figure 3a).

As compared to the other KD methods discussed
above, models trained with Random Sampling KD
are much better calibrated, and using fewer tokens
does not hurt the calibration (Figure 3b).

5.2 Gradient Similarity

In Appendix A.7, we prove that random sampling
preserves the expected gradients at the logits when
compared to FullKD. To further verify this empiri-
cally, we measure the gradients of the parameters of
a 300M model trained with FullKD for one batch.

Method ∆ Angle ↓ Norm Ratio

Top-K 12 58◦ 2.4
Top-K 50 48◦ 1.8
Top-K 300 30◦ 1.3
Random Sampling 12 4◦ 1.0

Table 3: Comparing sparse KD gradients with FullKD

We find that the gradients from using Random
Sampling are extremely similar to the gradients ob-
tained from FullKD – with an angular difference of
4◦ and the same norm (cosine similarity of 0.998,
and relative error of 0.07). Top-K methods on the
other hand, have large angles and significantly dif-
ferent gradient norms even at 300 tokens, compared
to just 12 unique tokens for Random Sampling.

5.3 Variance and Bias of Sampling Methods

While sampled distributions using Top-K have
the least error for a single token, they inherently
provide a biased estimate of the teacher distribu-
tion (Appendix A.3). This leads to the dissimi-
lar gradients observed in Section 5.2. While our
method is always unbiased, it is also crucial for the
estimator to exhibit low variance (error). Lower
variance will result in better approximation of the
teacher distribution and hence better gradient ap-
proximation.

For example, using τ = 0 in our proposal (sam-
pling uniformly across the vocabulary) causes train-
ing to diverge, as the estimate is too noisy (Ta-
ble 12). Similarly, using fewer tokens (with τ = 1)
will have higher error – but 12 tokens seems to be
sufficient (Table 6), and hence we use 12 unique
tokens in the rest of our experiments.

18089



5.4 Speed/Throughput Comparison

In this section, we compare the speed in tokens/sec
and TFlops for 300M / 3B student models with
3B / 8B teachers on 8 H100 GPUs. Our (RS-KD)
caching implementation is 1.7 to 2.6 times faster
than FullKD, and only slightly slower (≈ 10%)
than CE. This overhead stems from computing the
loss over the entire vocabulary for distillation com-
pared to a single ground truth token for CE.

Tokens/sec ↑ TFlops ↑
Method 300M 3B 300M 3B

CE 2.9x 1.77x 330 544
Random Sampling 2.6x 1.73x 295 530
Full KD 1.0x 1.00x 100 304

Table 4: Speed/Throughput Comparison.

5.5 Storage Comparison

For CE training, storing raw UTF-8 text for 100B
tokens requires ≈ 0.5TB storage for English (more
for other languages). Storing tokenized data con-
sumes 0.3TB, assuming 3 bytes per token. For Ful-
lKD storing the entire output distribution would re-
quiring infeasible 10PB of storage, assuming 1byte
for probability.

For sparse KD (KD) methods such as ours or
Top-K, need to additionally store the Vocabulary
Ids of the saved tokens. As detailed in Appendix D,
we use 17 bits for Vocabulary IDs, and 7 bits for
probabilities, totaling 24 bits (3 bytes) per unique
token. As we require only 12 tokens (Table 6), we
need only additional 3.6TB of space, 25x less than
Top-300.

Method Logits per Bytes per Total
Train Token Logit Memory (TB)

Full KD 100 000 1 10 000.0
Top-K 300 300 3 90.0
Ours 12 3 3.6
Vanilla CE 1 3 0.3

Table 5: Storage Requirements for 100B train tokens

6 Results

Evaluation Tasks We evaluate our method
across multiple metrics – LM loss on the pre-
training dataset, Expected Calibration Error, the ac-
ceptance rate on speculative decoding of the teacher
model, 0-shot NLU scores (settings detailed in Ap-
pendix E.1, full scores in Table 22) before and after

Instruction Following training, and 0-shot NLG
scores (settings detailed in Appendix E.3).

6.1 Small-Scale Results
We train LLaMA-style 300M student models
using a 3B teacher (hyper-parameters in Ta-
ble 17) for 10B tokens, 1.5x more than Chinchilla-
optimal (Hoffmann et al., 2022) number of tokens.
Our proposed method achieves very similar perfor-
mance and calibration compared to FullKD, while
using only 12 tokens (Table 6).

We also measure Speculative Decoding accep-
tance rate, as Top-1 agreement rate with the
teacher has been shown to correlate with perfor-
mance (Stanton et al., 2021). We find that our
method again performs comparable to FullKD.

Somewhat surprisingly, as the number of unique
tokens is increased, random sampling achieves
marginally better performance compared to Ful-
lKD. Prior work has found that perturbing teacher
logits results in better KD (Zhang et al., 2023), and
we conjecture this sampling may achieve some-
thing similar.

Unique LM ECE Speculative 0-shot
Tokens Loss ↓ % ↓ Accept % ↑ Score ↑

CE 2.81 0.4 59.95 40.4

2.4 2.77 1.0 61.47 42.1
5.0 2.75 1.1 61.83 42.6

12.1 2.75 0.8 61.85 43.0
24.5 2.75 1.1 61.93 43.1
57.0 2.74 0.9 61.97 42.9

FullKD 2.75 0.7 62.02 42.1

Table 6: Random Sampling KD (3B → 300M)

Effect of Longer Training On extending train-
ing of the student model for 100B tokens (16x
Chinchilla-optimal), our model again achieves per-
formance comparable to FullKD, both in specula-
tive decoding and in 0-shot NLU scores (Table 7).

Method LM ECE Speculative 0-shot
Loss ↓ % ↓ Accept % ↑ Score ↑

CE 2.48 0.7 64.6 45.0
Ours 2.48 0.3 65.7 46.2
FullKD 2.48 0.4 65.8 46.2

Table 7: Random Sampling KD 100B toks (3B→300M)

6.2 Large-Scale Results
In order to replicate our findings with open-source
LLMs on public datasets, we train student models

18090



using the LLaMA-3-8B model on the Fineweb-
edu (Penedo et al., 2024) dataset.

First, we train a 3B LLaMA-style student using
100B tokens (Table 8). The loss gap between Top-
K KD and FullKD is much higher in this regime.
On the contrary, the student trained using "Random
Sampling KD" (12 unique tokens) achieves similar
loss, calibration and speculative decoding accep-
tance rate with significantly better downstream and
instruction following performance. The improve-
ments observed in our small-scale experiments per-
sist for larger models with much longer training.

Method LM ECE Speculative 0-shot IF SFT
Loss ↓ % ↓ Accept % ↑ Score ↑ Score ↑

CE 2.37 0.3 71.1 55.6 54.5

Top-K 12 2.50 4.7 73.0 56.6 57.7
Top-K 50 2.40 1.8 73.1 57.1 58.3
Ours (12) 2.35 0.2 73.2 57.5 59.4
Ours (12)+ 2.32 1.7 73.5 57.9 59.1

FullKD 2.34 0.2 73.4 57.5 58.4

Table 8: Comparing sparse KD methods, 8B→ 3B 100B
toks. The row ‘Ours (12)+’ is described in Section 6.3.

Evaluation with LLM-as-a-judge on Genera-
tive Tasks We also evaluate the 3B models using
Llama 3.1 405B Instruct (Grattafiori et al., 2024) as
a judge on five instruction following tasks. The stu-
dent model trained with "Random Sampling KD"
outperforms all other methods across all the evalu-
ated tasks as seen in Table 9.

Dataset CE Top-K Top-K Ours FullKD
12 50 12

Dolly 64.2 59.0 65.4 71.3 66.1
SelfInst 64.6 60.9 63.4 73.1 66.1
Vicuna 49.1 48.9 53.1 58.2 56.9
S-NI 62.4 63.4 62.6 63.8 60.7
UnNI 60.4 58.0 58.3 61.4 61.0

Avg 60.2 58.0 60.6 65.6 62.2

Table 9: Evaluations of 3B models on downstream gen-
erative tasks, with LLM-as-judge (8B → 3B)

Effect of Student Size We also vary the student
sizes, training 100M, 300M, 1B and 3B all trained
using LLaMA-3-8B as teacher, for 30x model-size
tokens. The average performance on 0-shot down-
stream evaluations using "Random Sampling KD"
over CE consistently improves as the student model
size increases (Figure 4). While similar increasing
trends have been previously observed for Top-K

pre-training in Peng et al. (2024), they report a fall
in performance for smaller student models. We
conjecture that this may be attributed to the issues
with Top-K KD we highlight in this work.

Figure 4: Downstream Improvements vs Student Size

6.3 Orthogonal Improvements to KD

Some orthogonal methods have also been proposed
in the literature to improve the performance of Ful-
lKD. In this section, we show that these approaches
can also be applied to "Random Sampling KD".
Adding a combination of KLD and CE losses is of-
ten used during training (Gunter et al., 2024; Peng
et al., 2024; Zhang et al., 2024) where the final loss
is defined as L = α·LCE+(1−α)·LKLD where α
is the CE weight. Some prior works (Zhong et al.,
2024; Zhao et al., 2022; Jiang et al., 2023; Palo
et al., 2024) use different training modes for dif-
ferent tokens based on teacher’s confidence/score
in the target, where higher a score indicates that a
token is easy to learn.

Setup We apply a similar adaptive method to our
"Random Sampling KD" by categorizing tokens
in a batch as “Easy” and “Hard” based on their
target confidence percentile. Hard tokens use a
higher learning rate (by a factor of “LR Ratio”)
compared to the easy tokens during training, while
the average LR is kept constant. We train 300M
models using a 3B teacher, and simultaneously vary
the CE weight and the LR ratio together and report
the ’% CE to FullKD’ metric.

Results As seen in Table 10, these methods en-
able "Random Sampling KD" to surpass FullKD.
The best model is achieved with 0.1 CE weight and
2.0 LR Ratio. We further apply this approach to
train a 3B student with 8B teacher for 100B tokens.
This model (the row Ours (12)+ in Table 8), fur-
ther improves on "Random Sampling KD" in LM
loss, speculative acceptance rate, and 0-shot NLU
scores.

18091



Caveats However, this model does not improve
as much after Instruction Tuning. We conjecture
that up-weighing the "Hard" examples in the LR
tends to effectively up-weigh the tail of the distri-
bution. This was evidenced by the relatively higher
calibration error of this model – we find that this
model is under-confident in its predictions. While
this improves the pre-training scores, it negatively
impacts downstream fine-tuning of this model.

LR Ratio CE Weight α

0.3 0.2 0.1 0.0

1.0 101 111 95 98
1.5 124 121 120 111
2.0 116 124 125 112

Table 10: ‘% CE to FullKD’ with Orthogonal Improve-
ments to Random Sampling KD (8B → 300M)

6.4 Comparison with Prior Works

In Table 11, we compare our sampling approach
with those from prior works. For Raman et al.
(2023), we use Top-50, and for Peng et al. (2024),
Top-100 with p = 0.98. We also recreate
these works including other sampling-orthogonal
changes. Raman et al. (2023) uses a different LR
for harder tokens, and adds the CE Loss to training.
For Peng et al. (2024), we implement the temper-
ature before softmax, and the WSD scheduler for
the relative weight of CE and KD. Our method
significantly outperforms these prior works.

Method LM %CE ECE Spec.
Loss ↓ to FullKD ↑ % ↓ Accept % ↑

CE 2.81 0% 1.2 60.0

Peng et al. (2024)* 2.78 −47% 1.7 61.9
Peng et al. (2024) 2.85 −78% 1.4 61.5
Raman et al. (2023)* 2.80 5% 2.2 61.9
Raman et al. (2023) 2.77 57% 1.9 61.0
Ours 2.74 100% 0.9 62.0

FullKD 2.75 100% 0.7 62.0

Table 11: Comparison with Prior Works. Rows marked
with * only use the sampling method. (3B → 300M)

7 Ablations

7.1 Proposal Distributions

Choosing the optimal sampling temperature t can
reduce the variance of the probability estimates, by
allowing a trade-off between sampling more varied
tokens, vs. obtaining more accurate estimates for

higher-probability tokens. While this optimal tem-
perature would depend on the exact shape of the
distribution (and hence the teacher model), numer-
ical simulations show that t ∈ [0.8, 1.2] results in
the lowest variance. The post-training performance
of these was also comparable (Table 12).

While a better proposal distribution may be ob-
tained following Optimal Experimental Design (Fe-
dorov, 2013), our sampling method performs com-
parable to FullKD, hence for simplicity we choose
proposal with t = 1.0 in this work.

Sample Unique LM ECE 0-shot Speculative
Temp Tokens Loss ↓ % ↓ Score ↑ Accept % ↑
0.0 57 ∞ - - -
0.8 57 2.74 0.7 42.4 61.9
1.0 54 2.75 0.8 43.0 61.8
1.2 57 2.74 0.8 42.2 61.9

Table 12: Proposal Temperature Ablation (3B→300M)

7.2 Effect of Adapting Teacher

Sreenivas et al. (2024) found that if the student is
being trained on a data distribution different from
the teacher’s pre-training data, the teacher should
first be adapted (finetuned) on this data by train-
ing for a short while. We also observe the same
– when training a 300M student on Fineweb-edu
data with the LLaMA-3-8B model as teacher, us-
ing the original teacher model directly yields only
a small improvement over CE (Table 13). After
teacher adaptation for 50B tokens, this increases
significantly.

Method LM Loss ↓ 0-shot Score ↑
CE 2.99 40.1
KD w/o adapt 2.98 40.2
KD w adapt 2.96 41.1

Table 13: Adapting Teacher Model on Pre-training
Dataset (8B → 300M)

7.3 Effect of Different Student Architecture

Our method is independent of the model architec-
ture, and is equally applicable to other models such
as Qwen (Team, 2024). Using the above LLama-3-
8B as teacher, we train a 0.5B Qwen-style model
(same architecture as Qwen2.5-0.5B) using our
Random Sampling Method and with vanilla CE
for 10B training tokens. Our method improves
over CE as shown in Table 14.

18092



Method LM Speculative
Loss ↓ Accept % ↑

CE 2.99 58.9%
Ours 2.95 60.0%

Table 14: Pre-training Qwen-style models (3B → 0.5B)

7.4 Choice of Loss/Divergence Function

We also experiment with alternative loss/diver-
gence functions, by training 300M students with
8B Llama-3 teacher for 10B tokens. Some prior
works (Kim et al., 2021; Wu et al., 2024b; Gu et al.,
2023; Ko et al., 2024) find alternative objectives
such as Reverse KL Divergence, Mean Squared
Error as superior, while other works (Sultan, 2023;
Wen et al., 2023; Muralidharan et al., 2024; Peng
et al., 2024) have observed the opposite. In Ta-
ble 15, we observe that vanilla forward KLD out-
performs other objectives.

Metric CE L1 MSE KLD

R F+R F

LM Loss ↓ 2.81 ∞ 5.38 3.37 2.78 2.75

Table 15: Loss Ablation. F and R in KLD refer to
forward and reverse KLD respectively.

8 Related Work

Knowledge Distillation (Hinton et al., 2015) has
often been used to improve smaller LLMs (Jiao
et al., 2020; Sanh et al., 2019; Sreenivas et al.,
2024; Muralidharan et al., 2024; Wang et al., 2021;
Gu et al., 2023; Boizard et al., 2024). Many works
focus on using teacher models for dataset genera-
tion/filtering (Kim and Rush, 2016; Zhang et al.,
2023; Wen et al., 2023; Gunasekar et al., 2023;
Jiang et al., 2023; Gu et al., 2024; Palo et al., 2024).
These methods are somewhat complementary to
our method – our work is agnostic to the source of
the pre-training data corpus, and focuses on distill-
ing the teacher model’s logits on this data.

Similar to our work, Shum et al. (2024) stores the
Top-5 teacher probabilities from an LLM for train-
ing smaller students. They also observe that distilla-
tion with Top-K tokens leads to over-confident stu-
dents – which they solve by employing temperature
scaling. By sampling from the teacher distribution,
our method offers a principled approach of achiev-
ing a calibrated student (Figure 3b). While they

observe mis-calibration of their teacher as well, pre-
trained LLMs are well-calibrated, but alignment
may degrade this calibration (Zhu et al., 2023; Heb-
balaguppe et al., 2024). We find both our 3B as
well as Llama 8B teachers well calibrated, as they
are not instruction-tuned models.

Closest to our work are Raman et al. (2023),
Peng et al. (2024) and Kamath et al. (2025). Raman
et al. (2023) also observe that distillation improves
student model performance – but they store Top-5%
of the teacher logits, which is prohibitively large
for modern LLMs (6400 for the Llama3 model) –
we successfully bring this down to 12 logits in this
work.

Peng et al. (2024) explores caching teacher logits
in Knowledge Distillation in pre-training of LLMs
utilizing Top-K with Top-p. They also conclude
that forward KLD outperforms other objectives,
adding CE loss improves distillation, and increas-
ing performance improvement on scaling the model
size and pre-training corpus. However, they ob-
serve a fall in performance on smaller students –
vanilla Top-K may reduce model performance if
K is not large enough as we show in Table 1. Our
method remedies this issue, matching FullKD with
significantly sparser tokens.

Contemporaneous work Gemma3 (Kamath et al.,
2025) also used Knowledge Distillation for pre-
training. Their method seems to be the same as our
approach, sampling teacher logits weighed by orig-
inal teacher probabilities, using cross-entropy loss
on the sampled tokens. They successfully apply
this method for training model up-to 27B params
for 14T tokens, showing that our method can scale
to very large models and tokens.

9 Conclusion

In this work, we identified key issues of bias
and tail supervision with sparse teacher logits for
Knowledge Distillation. We theoretically proved
and empirically verified these claims in both syn-
thetic and real-world scenarios, and proposed an
importance-sampling based method to rectify them.
By preserving gradients and logits distribution in
expectation, we enable significantly sparser logits
than prior methods. Our method maintains model
performance while utilizing only 0.01% of pre-
computed teacher logits, across a range of model
sizes, training tokens, and evaluation metrics.

18093



Limitations

Due to limited compute resources, we were only
able to experiment upto 3B scale models trained for
100B tokens. Training longer with larger models
should be explored, but our experiments indicate
the benefits of our model only increase with model
scale. Representation matching, which distills inter-
mediate activations from the teacher, may improve
distillation further. However, caching teacher repre-
sentations due to limited compute resources was a
primary requirement for this work, which rendered
representation matching infeasible. Lastly, more
sophisticated sampling schemes can also be ex-
plored, but we did not attempt that as our methods
already achieved the desired outcome of matching
full KD with low storage requirements.

References
Rishabh Agarwal, Nino Vieillard, Yongchao Zhou, Piotr

Stanczyk, Sabela Ramos, Matthieu Geist, and Olivier
Bachem. 2023. On-Policy Distillation of Language
Models: Learning from Self-Generated Mistakes.

Sungsoo Ahn, Shell Xu Hu, Andreas C. Damianou,
Neil D. Lawrence, and Zhenwen Dai. 2019. Varia-
tional information distillation for knowledge trans-
fer. In IEEE Conference on Computer Vision and
Pattern Recognition, CVPR 2019, Long Beach, CA,
USA, June 16-20, 2019, pages 9163–9171. Computer
Vision Foundation / IEEE.

allenai. 2025. allenai/olmo-2-hard-coded · Datasets at
Hugging Face.

Paul Bergmann, Michael Fauser, David Sattlegger, and
Carsten Steger. 2020. Uninformed students: Student-
teacher anomaly detection with discriminative latent
embeddings. In 2020 IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, CVPR 2020,
Seattle, WA, USA, June 13-19, 2020, pages 4182–
4191. IEEE.

Yonatan Bisk, Rowan Zellers, Ronan LeBras, Jianfeng
Gao, and Yejin Choi. 2020. PIQA: reasoning about
physical commonsense in natural language. In The
Thirty-Fourth AAAI Conference on Artificial Intelli-
gence, AAAI 2020, The Thirty-Second Innovative Ap-
plications of Artificial Intelligence Conference, IAAI
2020, The Tenth AAAI Symposium on Educational
Advances in Artificial Intelligence, EAAI 2020, New
York, NY, USA, February 7-12, 2020, pages 7432–
7439. AAAI Press.

Nicolas Boizard, Kevin El Haddad, Céline Hudelot, and
Pierre Colombo. 2024. Towards Cross-Tokenizer
Distillation: The Universal Logit Distillation Loss
for LLMs.

Faeze Brahman, Sachin Kumar, Vidhisha Balachan-
dran, Pradeep Dasigi, Valentina Pyatkin, Abhilasha
Ravichander, Sarah Wiegreffe, Nouha Dziri, Khyathi
Chandu, Jack Hessel, Yulia Tsvetkov, Noah A. Smith,
Yejin Choi, and Hanna Hajishirzi. 2025. The Art of
Saying No: Contextual Noncompliance in Language
Models. Advances in Neural Information Processing
Systems, 37:49706–49748.

Dan Busbridge, Amitis Shidani, Floris Weers, Jason
Ramapuram, Etai Littwin, and Russ Webb. 2025.
Distillation scaling laws. ArXiv, abs/2502.08606.

Haw-Shiuan Chang, Nanyun Peng, Mohit Bansal, Anil
Ramakrishna, and Tagyoung Chung. 2024. REAL
Sampling: Boosting Factuality and Diversity of
Open-Ended Generation via Asymptotic Entropy.

Yevgen Chebotar and Austin Waters. 2016. Distilling
knowledge from ensembles of neural networks for
speech recognition. In Interspeech 2016, 17th An-
nual Conference of the International Speech Com-
munication Association, San Francisco, CA, USA,
September 8-12, 2016, pages 3439–3443. ISCA.

Zhihao Chi, Tu Zheng, Hengjia Li, Zheng Yang, Boxi
Wu, Binbin Lin, and Deng Cai. 2023. NormKD:
Normalized Logits for Knowledge Distillation.

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng,
Zhanghao Wu, Hao Zhang, Lianmin Zheng, Siyuan
Zhuang, Yonghao Zhuang, Joseph E. Gonzalez, Ion
Stoica, and Eric P. Xing. 2023. Vicuna: An Open-
Source Chatbot Impressing GPT-4 with 90%* Chat-
GPT Quality.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot,
Ashish Sabharwal, Carissa Schoenick, and Oyvind
Tafjord. 2018. Think you have Solved Question An-
swering? Try ARC, the AI2 Reasoning Challenge.

Mike Conover, Matt Hayes, Ankit Mathur, Jianwei Xie,
Jun Wan, Sam Shah, Ali Ghodsi, Patrick Wendell,
Matei Zaharia, and Reynold Xin. 2023. Free Dolly:
Introducing the World’s First Truly Open Instruction-
Tuned LLM.

Jiequan Cui, Zhuotao Tian, Zhisheng Zhong, Xiaojuan
Qi, Bei Yu, and Hanwang Zhang. 2023. Decoupled
Kullback-Leibler Divergence Loss.

Víctor Elvira and Luca Martino. 2021. Advances in
Importance Sampling.

V. V. Fedorov. 2013. Theory Of Optimal Experiments.
Elsevier.

Takashi Fukuda, Masayuki Suzuki, Gakuto Kurata,
Samuel Thomas, Jia Cui, and Bhuvana Ramabhadran.
2017. Efficient knowledge distillation from an en-
semble of teachers. In Interspeech 2017, 18th Annual
Conference of the International Speech Communica-
tion Association, Stockholm, Sweden, August 20-24,
2017, pages 3697–3701. ISCA.

18094

https://arxiv.org/abs/2306.13649
https://arxiv.org/abs/2306.13649
https://doi.org/10.1109/CVPR.2019.00938
https://doi.org/10.1109/CVPR.2019.00938
https://doi.org/10.1109/CVPR.2019.00938
https://huggingface.co/datasets/allenai/olmo-2-hard-coded
https://huggingface.co/datasets/allenai/olmo-2-hard-coded
https://doi.org/10.1109/CVPR42600.2020.00424
https://doi.org/10.1109/CVPR42600.2020.00424
https://doi.org/10.1109/CVPR42600.2020.00424
https://aaai.org/ojs/index.php/AAAI/article/view/6239
https://aaai.org/ojs/index.php/AAAI/article/view/6239
https://arxiv.org/abs/2402.12030
https://arxiv.org/abs/2402.12030
https://arxiv.org/abs/2402.12030
https://proceedings.neurips.cc/paper_files/paper/2024/hash/58e79894267cf72c66202228ad9c6057-Abstract-Datasets_and_Benchmarks_Track.html
https://proceedings.neurips.cc/paper_files/paper/2024/hash/58e79894267cf72c66202228ad9c6057-Abstract-Datasets_and_Benchmarks_Track.html
https://proceedings.neurips.cc/paper_files/paper/2024/hash/58e79894267cf72c66202228ad9c6057-Abstract-Datasets_and_Benchmarks_Track.html
https://api.semanticscholar.org/CorpusID:276287490
https://arxiv.org/abs/2406.07735
https://arxiv.org/abs/2406.07735
https://arxiv.org/abs/2406.07735
https://doi.org/10.21437/Interspeech.2016-1190
https://doi.org/10.21437/Interspeech.2016-1190
https://doi.org/10.21437/Interspeech.2016-1190
https://arxiv.org/abs/2308.00520
https://arxiv.org/abs/2308.00520
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://arxiv.org/abs/1803.05457
https://arxiv.org/abs/1803.05457
https://www.databricks.com/blog/2023/04/12/dolly-first-open-commercially-viable-instruction-tuned-llm
https://www.databricks.com/blog/2023/04/12/dolly-first-open-commercially-viable-instruction-tuned-llm
https://www.databricks.com/blog/2023/04/12/dolly-first-open-commercially-viable-instruction-tuned-llm
https://arxiv.org/abs/2305.13948
https://arxiv.org/abs/2305.13948
https://arxiv.org/abs/2102.05407
https://arxiv.org/abs/2102.05407
http://www.isca-speech.org/archive/Interspeech_2017/abstracts/0614.html
http://www.isca-speech.org/archive/Interspeech_2017/abstracts/0614.html


Leo Gao, Jonathan Tow, Baber Abbasi, Stella Bider-
man, Sid Black, Anthony DiPofi, Charles Foster,
Laurence Golding, Jeffrey Hsu, Alain Le Noac’h,
Haonan Li, Kyle McDonell, Niklas Muennighoff,
Chris Ociepa, Jason Phang, Laria Reynolds, Hailey
Schoelkopf, Aviya Skowron, Lintang Sutawika, and
5 others. 2024. A framework for few-shot language
model evaluation.

Jianping Gou, Baosheng Yu, Stephen J. Maybank, and
Dacheng Tao. 2021. Knowledge Distillation: A
Survey. International Journal of Computer Vision,
129(6):1789–1819.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri,
Abhinav Pandey, Abhishek Kadian, Ahmad Al-
Dahle, Aiesha Letman, Akhil Mathur, Alan Schel-
ten, Alex Vaughan, Amy Yang, Angela Fan, Anirudh
Goyal, Anthony Hartshorn, Aobo Yang, Archi Mi-
tra, Archie Sravankumar, Artem Korenev, Arthur
Hinsvark, and 542 others. 2024. The llama 3 herd of
models.

Yuxian Gu, Li Dong, Furu Wei, and Minlie Huang.
2023. MiniLLM: Knowledge Distillation of Large
Language Models. In The Twelfth International Con-
ference on Learning Representations.

Yuxian Gu, Hao Zhou, Fandong Meng, Jie Zhou, and
Minlie Huang. 2024. MiniPLM: Knowledge Distilla-
tion for Pre-Training Language Models.

Suriya Gunasekar, Yi Zhang, Jyoti Aneja, Caio
César Teodoro Mendes, Allie Del Giorno, Sivakanth
Gopi, Mojan Javaheripi, Piero Kauffmann, Gustavo
de Rosa, Olli Saarikivi, Adil Salim, Shital Shah,
Harkirat Singh Behl, Xin Wang, Sébastien Bubeck,
Ronen Eldan, Adam Tauman Kalai, Yin Tat Lee, and
Yuanzhi Li. 2023. Textbooks Are All You Need.

Tom Gunter, Zirui Wang, Chong Wang, Ruoming
Pang, Andy Narayanan, Aonan Zhang, Bowen Zhang,
Chen Chen, Chung-Cheng Chiu, David Qiu, Deepak
Gopinath, Dian Ang Yap, Dong Yin, Feng Nan, Floris
Weers, Guoli Yin, Haoshuo Huang, Jianyu Wang,
Jiarui Lu, and 136 others. 2024. Apple Intelligence
Foundation Language Models.

Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q. Wein-
berger. 2017. On calibration of modern neural net-
works. In Proceedings of the 34th International Con-
ference on Machine Learning, ICML 2017, Sydney,
NSW, Australia, 6-11 August 2017, volume 70 of
Proceedings of Machine Learning Research, pages
1321–1330. PMLR.

Seungju Han, Kavel Rao, Allyson Ettinger, Liwei Jiang,
Bill Yuchen Lin, Nathan Lambert, Yejin Choi, and
Nouha Dziri. 2024. WildGuard: Open One-Stop
Moderation Tools for Safety Risks, Jailbreaks, and
Refusals of LLMs.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. 2016. Deep residual learning for image recogni-
tion. In 2016 IEEE Conference on Computer Vision
and Pattern Recognition, CVPR 2016, Las Vegas,

NV, USA, June 27-30, 2016, pages 770–778. IEEE
Computer Society.

Ramya Hebbalaguppe, Mayank Baranwal, Jatin
Prakash, Neelabh Madan, Kartik Anand, and Chetan
Arora. 2024. Understanding Calibration Transfer in
Knowledge Distillation. OpenReview Preprint.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. 2015.
Distilling the Knowledge in a Neural Network.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch,
Elena Buchatskaya, Trevor Cai, Eliza Rutherford,
Diego de Las Casas, Lisa Anne Hendricks, Johannes
Welbl, Aidan Clark, Tom Hennigan, Eric Noland,
Katherine Millican, George van den Driessche, Bog-
dan Damoc, Aurelia Guy, Simon Osindero, Karen
Simonyan, Erich Elsen, and 3 others. 2022. An em-
pirical analysis of compute-optimal large language
model training. In Advances in Neural Information
Processing Systems 35: Annual Conference on Neu-
ral Information Processing Systems 2022, NeurIPS
2022, New Orleans, LA, USA, November 28 - Decem-
ber 9, 2022.

Or Honovich, Thomas Scialom, Omer Levy, and Timo
Schick. 2023. Unnatural instructions: Tuning lan-
guage models with (almost) no human labor. In
Proceedings of the 61st Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 14409–14428, Toronto, Canada.
Association for Computational Linguistics.

Tao Huang, Shan You, Fei Wang, Chen Qian, and Chang
Xu. 2022. Knowledge distillation from A stronger
teacher. In Advances in Neural Information Pro-
cessing Systems 35: Annual Conference on Neural
Information Processing Systems 2022, NeurIPS 2022,
New Orleans, LA, USA, November 28 - December 9,
2022.

Brian Kenji Iwana, Ryohei Kuroki, and Seiichi Uchida.
2019. Explaining convolutional neural networks us-
ing softmax gradient layer-wise relevance propaga-
tion. In 2019 IEEE/CVF International Conference
on Computer Vision Workshop (ICCVW), pages 4176–
4185. IEEE.

Sébastien Jean, Kyunghyun Cho, Roland Memisevic,
and Yoshua Bengio. 2015. On using very large tar-
get vocabulary for neural machine translation. In
Proceedings of the 53rd Annual Meeting of the As-
sociation for Computational Linguistics and the 7th
International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pages 1–10,
Beijing, China. Association for Computational Lin-
guistics.

Haozhe Ji, Pei Ke, Zhipeng Hu, Rongsheng Zhang,
and Minlie Huang. 2023. Tailoring language gener-
ation models under total variation distance. In The
Eleventh International Conference on Learning Rep-
resentations, ICLR 2023, Kigali, Rwanda, May 1-5,
2023. OpenReview.net.

18095

https://doi.org/10.5281/zenodo.12608602
https://doi.org/10.5281/zenodo.12608602
https://doi.org/10.1007/s11263-021-01453-z
https://doi.org/10.1007/s11263-021-01453-z
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783
https://openreview.net/forum?id=5h0qf7IBZZ
https://openreview.net/forum?id=5h0qf7IBZZ
https://arxiv.org/abs/2410.17215
https://arxiv.org/abs/2410.17215
https://arxiv.org/abs/2306.11644
https://arxiv.org/abs/2407.21075
https://arxiv.org/abs/2407.21075
http://proceedings.mlr.press/v70/guo17a.html
http://proceedings.mlr.press/v70/guo17a.html
https://arxiv.org/abs/2406.18495
https://arxiv.org/abs/2406.18495
https://arxiv.org/abs/2406.18495
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2016.90
https://openreview.net/forum?id=zEkvV65Wi1
https://openreview.net/forum?id=zEkvV65Wi1
https://arxiv.org/abs/1503.02531
http://papers.nips.cc/paper_files/paper/2022/hash/c1e2faff6f588870935f114ebe04a3e5-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/c1e2faff6f588870935f114ebe04a3e5-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/c1e2faff6f588870935f114ebe04a3e5-Abstract-Conference.html
https://doi.org/10.18653/v1/2023.acl-long.806
https://doi.org/10.18653/v1/2023.acl-long.806
http://papers.nips.cc/paper_files/paper/2022/hash/da669dfd3c36c93905a17ddba01eef06-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/da669dfd3c36c93905a17ddba01eef06-Abstract-Conference.html
https://doi.org/10.3115/v1/P15-1001
https://doi.org/10.3115/v1/P15-1001
https://openreview.net/pdf?id=VELL0PlWfc
https://openreview.net/pdf?id=VELL0PlWfc


Liwei Jiang, Kavel Rao, Seungju Han, Allyson Ettinger,
Faeze Brahman, Sachin Kumar, Niloofar Mireshghal-
lah, Ximing Lu, Maarten Sap, Yejin Choi, and Nouha
Dziri. 2024. WildTeaming at Scale: From In-the-
Wild Jailbreaks to (Adversarially) Safer Language
Models.

Yuxin Jiang, Chunkit Chan, Mingyang Chen, and Wei
Wang. 2023. Lion: Adversarial distillation of propri-
etary large language models. In Proceedings of the
2023 Conference on Empirical Methods in Natural
Language Processing, pages 3134–3154, Singapore.
Association for Computational Linguistics.

Xiaoqi Jiao, Yichun Yin, Lifeng Shang, Xin Jiang, Xiao
Chen, Linlin Li, Fang Wang, and Qun Liu. 2020.
TinyBERT: Distilling BERT for natural language un-
derstanding. In Findings of the Association for Com-
putational Linguistics: EMNLP 2020, pages 4163–
4174, Online. Association for Computational Lin-
guistics.

Gemma Team Aishwarya Kamath, Johan Ferret, Shreya
Pathak, Nino Vieillard, Ramona Merhej, Sarah Perrin,
Tatiana Matejovicova, Alexandre Ram’e, Morgane
Rivière, Louis Rouillard, Thomas Mesnard, Geoffrey
Cideron, Jean-Bastien Grill, Sabela Ramos, Edouard
Yvinec, Michelle Casbon, Etienne Pot, Ivo Penchev,
Gael Liu, and 191 others. 2025. Gemma 3 technical
report. ArXiv, abs/2503.19786.

Taehyeon Kim, Jaehoon Oh, Nakyil Kim, Sangwook
Cho, and Se-Young Yun. 2021. Comparing kullback-
leibler divergence and mean squared error loss in
knowledge distillation. In Proceedings of the Thir-
tieth International Joint Conference on Artificial In-
telligence, IJCAI 2021, Virtual Event / Montreal,
Canada, 19-27 August 2021, pages 2628–2635. ij-
cai.org.

Yoon Kim and Alexander M. Rush. 2016. Sequence-
level knowledge distillation. In Proceedings of the
2016 Conference on Empirical Methods in Natu-
ral Language Processing, pages 1317–1327, Austin,
Texas. Association for Computational Linguistics.

Zipf George Kingsley. 1935. The psycho-biology of
language: an introduction to dynamic philology.
Houghton Mifflin.

Jongwoo Ko, Sungnyun Kim, Tianyi Chen, and Se-
Young Yun. 2024. DistiLLM: Towards Streamlined
Distillation for Large Language Models.

Andreas Köpf, Yannic Kilcher, Dimitri von Rütte,
Sotiris Anagnostidis, Zhi Rui Tam, Keith Stevens,
Abdullah Barhoum, Duc Nguyen, Oliver Stan-
ley, Richárd Nagyfi, Shahul ES, Sameer Suri,
David Glushkov, Arnav Dantuluri, Andrew Maguire,
Christoph Schuhmann, Huu Nguyen, and Alexan-
der Mattick. 2023. Openassistant conversations -
democratizing large language model alignment. In
Advances in Neural Information Processing Systems
36: Annual Conference on Neural Information Pro-
cessing Systems 2023, NeurIPS 2023, New Orleans,
LA, USA, December 10 - 16, 2023.

Alex Krizhevsky, Geoffrey Hinton, and 1 others. 2009.
Learning multiple layers of features from tiny images.
" ".

Nathan Lambert, Jacob Morrison, Valentina Pyatkin,
Shengyi Huang, Hamish Ivison, Faeze Brahman,
Lester James V. Miranda, Alisa Liu, Nouha Dziri,
Shane Lyu, Yuling Gu, Saumya Malik, Victoria Graf,
Jena D. Hwang, Jiangjiang Yang, Ronan Le Bras,
Oyvind Tafjord, Chris Wilhelm, Luca Soldaini, and
4 others. 2024a. Tulu 3: Pushing Frontiers in Open
Language Model Post-Training.

Nathan Lambert, Jacob Morrison, Valentina Pyatkin,
Shengyi Huang, Hamish Ivison, Faeze Brahman,
Lester James V. Miranda, Alisa Liu, Nouha Dziri,
Shane Lyu, Yuling Gu, Saumya Malik, Victoria Graf,
Jena D. Hwang, Jiangjiang Yang, Ronan Le Bras,
Oyvind Tafjord, Chris Wilhelm, Luca Soldaini, and
4 others. 2024b. Tulu 3: Pushing Frontiers in Open
Language Model Post-Training.

Jia Li, Edward Beeching, Lewis Tunstall, Ben Lip-
kin, Roman Soletskyi, Shengyi Huang, Kashif Rasul,
Longhui Yu, Albert Q Jiang, Ziju Shen, and others.
2024a. Numinamath: The largest public dataset in
ai4maths with 860k pairs of competition math prob-
lems and solutions. Hugging Face repository, 13:9.

Peng Li, Yeye He, Dror Yashar, Weiwei Cui, Song Ge,
Haidong Zhang, Danielle Rifinski Fainman, Dong-
mei Zhang, and Surajit Chaudhuri. 2024b. Table-
GPT: Table Fine-tuned GPT for Diverse Table Tasks.
Proc. ACM Manag. Data, 2(3).

Chengyuan Liu, Fubang Zhao, Kun Kuang, Yangyang
Kang, Zhuoren Jiang, Changlong Sun, and Fei Wu.
2024. Evolving knowledge distillation with large lan-
guage models and active learning. In Proceedings of
the 2024 Joint International Conference on Compu-
tational Linguistics, Language Resources and Eval-
uation (LREC-COLING 2024), pages 6717–6731,
Torino, Italia. ELRA and ICCL.

Ziyang Luo, Can Xu, Pu Zhao, Qingfeng Sun, Xiubo
Geng, Wenxiang Hu, Chongyang Tao, Jing Ma, Qing-
wei Lin, and Daxin Jiang. 2023. WizardCoder: Em-
powering Code Large Language Models with Evol-
Instruct.

Aditya Krishna Menon, Ankit Singh Rawat, Sashank J.
Reddi, Seungyeon Kim, and Sanjiv Kumar. 2021.
A statistical perspective on distillation. In Proceed-
ings of the 38th International Conference on Ma-
chine Learning, ICML 2021, 18-24 July 2021, Vir-
tual Event, volume 139 of Proceedings of Machine
Learning Research, pages 7632–7642. PMLR.

Roy Miles and Krystian Mikolajczyk. 2024. Under-
standing the role of the projector in knowledge distil-
lation. In Thirty-Eighth AAAI Conference on Artifi-
cial Intelligence, AAAI 2024, Thirty-Sixth Conference
on Innovative Applications of Artificial Intelligence,
IAAI 2024, Fourteenth Symposium on Educational

18096

https://arxiv.org/abs/2406.18510
https://arxiv.org/abs/2406.18510
https://arxiv.org/abs/2406.18510
https://doi.org/10.18653/v1/2023.emnlp-main.189
https://doi.org/10.18653/v1/2023.emnlp-main.189
https://doi.org/10.18653/v1/2020.findings-emnlp.372
https://doi.org/10.18653/v1/2020.findings-emnlp.372
https://api.semanticscholar.org/CorpusID:277313563
https://api.semanticscholar.org/CorpusID:277313563
https://doi.org/10.24963/IJCAI.2021/362
https://doi.org/10.24963/IJCAI.2021/362
https://doi.org/10.24963/IJCAI.2021/362
https://doi.org/10.18653/v1/D16-1139
https://doi.org/10.18653/v1/D16-1139
https://arxiv.org/abs/2402.03898
https://arxiv.org/abs/2402.03898
http://papers.nips.cc/paper_files/paper/2023/hash/949f0f8f32267d297c2d4e3ee10a2e7e-Abstract-Datasets_and_Benchmarks.html
http://papers.nips.cc/paper_files/paper/2023/hash/949f0f8f32267d297c2d4e3ee10a2e7e-Abstract-Datasets_and_Benchmarks.html
https://arxiv.org/abs/2411.15124
https://arxiv.org/abs/2411.15124
https://arxiv.org/abs/2411.15124
https://arxiv.org/abs/2411.15124
https://doi.org/10.1145/3654979
https://doi.org/10.1145/3654979
https://aclanthology.org/2024.lrec-main.593
https://aclanthology.org/2024.lrec-main.593
http://proceedings.mlr.press/v139/menon21a.html
https://doi.org/10.1609/AAAI.V38I5.28219
https://doi.org/10.1609/AAAI.V38I5.28219
https://doi.org/10.1609/AAAI.V38I5.28219


Advances in Artificial Intelligence, EAAI 2014, Febru-
ary 20-27, 2024, Vancouver, Canada, pages 4233–
4241. AAAI Press.

Saurav Muralidharan, Sharath Turuvekere Sreenivas,
Raviraj Joshi, Marcin Chochowski, Mostofa Patwary,
Mohammad Shoeybi, Bryan Catanzaro, Jan Kautz,
and Pavlo Molchanov. 2024. Compact Language
Models via Pruning and Knowledge Distillation.

Team OLMo, Pete Walsh, Luca Soldaini, Dirk Groen-
eveld, Kyle Lo, Shane Arora, Akshita Bhagia, Yuling
Gu, Shengyi Huang, Matt Jordan, Nathan Lambert,
Dustin Schwenk, Oyvind Tafjord, Taira Anderson,
David Atkinson, Faeze Brahman, Christopher Clark,
Pradeep Dasigi, Nouha Dziri, and 21 others. 2025. 2
OLMo 2 Furious.

Flavio Di Palo, Prateek Singhi, and Bilal H Fadlal-
lah. 2024. Performance-Guided LLM Knowledge
Distillation for Efficient Text Classification at Scale.
In Proceedings of the 2024 Conference on Empiri-
cal Methods in Natural Language Processing, pages
3675–3687, Miami, Florida, USA. Association for
Computational Linguistics.

Denis Paperno, Germán Kruszewski, Angeliki Lazari-
dou, Ngoc Quan Pham, Raffaella Bernardi, Sandro
Pezzelle, Marco Baroni, Gemma Boleda, and Raquel
Fernández. 2016. The LAMBADA dataset: Word
prediction requiring a broad discourse context. In
Proceedings of the 54th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 1525–1534, Berlin, Germany.
Association for Computational Linguistics.

Sangun Park. 2012. Generalized Kullback-Leibler in-
formation and its extensions to censored and discrete
cases. Journal of the Korean Data and Information
Science Society, 23(6):1223–1229.

Guilherme Penedo, Hynek Kydlíček, Loubna Ben al-
lal, Anton Lozhkov, Margaret Mitchell, Colin Raffel,
Leandro Von Werra, and Thomas Wolf. 2024. The
fineweb datasets: Decanting the web for the finest
text data at scale.

Hao Peng, Xin Lv, Yushi Bai, Zijun Yao, Jiajie Zhang,
Lei Hou, and Juanzi Li. 2024. Pre-training Distilla-
tion for Large Language Models: A Design Space
Exploration.

Dennis Prangle and Cecilia Viscardi. 2019. Distilling
Importance Sampling for Likelihood Free Inference.

Nazneen Rajani, Lewis Tunstall, Edward Beeching,
Nathan Lambert, Alexander M. Rush, and Thomas
Wolf. 2023. No Robots.

Mrigank Raman, Pranav Mani, Davis Liang, and
Zachary Lipton. 2023. For Distillation, Tokens Are
Not All You Need. In NeurIPS 2023 Workshop on
Instruction Tuning and Instruction Following.

Ruslan Salakhutdinov. 2014. Deep learning. In The
20th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD ’14,
New York, NY, USA - August 24 - 27, 2014, page 1973.
ACM.

Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. 2019. Distilbert, a distilled version of
bert: smaller, faster, cheaper and lighter.

Arash Shahriari. 2017. Unified backpropagation for
multi-objective deep learning. ArXiv preprint,
abs/1710.07438.

Mohammad Shoeybi, Mostofa Patwary, Raul Puri,
Patrick LeGresley, Jared Casper, and Bryan Catan-
zaro. 2019. Megatron-lm: Training multi-billion
parameter language models using model parallelism.

KaShun Shum, Minrui Xu, Jianshu Zhang, Zixin
Chen, Shizhe Diao, Hanze Dong, Jipeng Zhang, and
Muhammad Omer Raza. 2024. FIRST: Teach A Reli-
able Large Language Model Through Efficient Trust-
worthy Distillation. In Proceedings of the 2024 Con-
ference on Empirical Methods in Natural Language
Processing, pages 12646–12659, Miami, Florida,
USA. Association for Computational Linguistics.

Ilia Shumailov, Zakhar Shumaylov, Yiren Zhao, Nicolas
Papernot, Ross Anderson, and Yarin Gal. 2024. Ai
models collapse when trained on recursively gener-
ated data. Nature, 631(8022):755–759.

Shivalika Singh, Freddie Vargus, Daniel Dsouza,
Börje F. Karlsson, Abinaya Mahendiran, Wei-Yin
Ko, Herumb Shandilya, Jay Patel, Deividas Mat-
aciunas, Laura OMahony, Mike Zhang, Ramith
Hettiarachchi, Joseph Wilson, Marina Machado,
Luisa Souza Moura, Dominik Krzemiński, Hakimeh
Fadaei, Irem Ergün, Ifeoma Okoh, and 14 others.
2024. Aya Dataset: An Open-Access Collection for
Multilingual Instruction Tuning.

Sharath Turuvekere Sreenivas, Saurav Muralidharan,
Raviraj Joshi, Marcin Chochowski, Mostofa Patwary,
Mohammad Shoeybi, Bryan Catanzaro, Jan Kautz,
and Pavlo Molchanov. 2024. LLM Pruning and Dis-
tillation in Practice: The Minitron Approach.

Samuel Stanton, Pavel Izmailov, Polina Kirichenko,
Alexander A. Alemi, and Andrew Gordon Wilson.
2021. Does knowledge distillation really work? In
Advances in Neural Information Processing Systems
34: Annual Conference on Neural Information Pro-
cessing Systems 2021, NeurIPS 2021, December 6-
14, 2021, virtual, pages 6906–6919.

Md Sultan. 2023. Knowledge Distillation \approx Label
Smoothing: Fact or Fallacy? In Proceedings of the
2023 Conference on Empirical Methods in Natural
Language Processing, pages 4469–4477, Singapore.
Association for Computational Linguistics.

Shangquan Sun, Wenqi Ren, Jingzhi Li, Rui Wang,
and Xiaochun Cao. 2024. Logit Standardization in

18097

https://arxiv.org/abs/2407.14679
https://arxiv.org/abs/2407.14679
https://arxiv.org/abs/2501.00656
https://arxiv.org/abs/2501.00656
https://doi.org/10.18653/v1/2024.emnlp-main.215
https://doi.org/10.18653/v1/2024.emnlp-main.215
https://doi.org/10.18653/v1/P16-1144
https://doi.org/10.18653/v1/P16-1144
https://doi.org/10.7465/jkdi.2012.23.6.1223
https://doi.org/10.7465/jkdi.2012.23.6.1223
https://doi.org/10.7465/jkdi.2012.23.6.1223
https://arxiv.org/abs/2406.17557
https://arxiv.org/abs/2406.17557
https://arxiv.org/abs/2406.17557
https://arxiv.org/abs/2410.16215
https://arxiv.org/abs/2410.16215
https://arxiv.org/abs/2410.16215
https://arxiv.org/abs/1910.03632
https://arxiv.org/abs/1910.03632
https://huggingface.co/datasets/HuggingFaceH4/no_robots
https://openreview.net/forum?id=2fc5GOPYip
https://openreview.net/forum?id=2fc5GOPYip
https://doi.org/10.1145/2623330.2630809
https://arxiv.org/abs/1910.01108
https://arxiv.org/abs/1910.01108
https://arxiv.org/abs/1710.07438
https://arxiv.org/abs/1710.07438
https://arxiv.org/abs/1909.08053
https://arxiv.org/abs/1909.08053
https://doi.org/10.18653/v1/2024.emnlp-main.703
https://doi.org/10.18653/v1/2024.emnlp-main.703
https://doi.org/10.18653/v1/2024.emnlp-main.703
https://arxiv.org/abs/2408.11796
https://arxiv.org/abs/2408.11796
https://proceedings.neurips.cc/paper/2021/hash/376c6b9ff3bedbbea56751a84fffc10c-Abstract.html
https://doi.org/10.18653/v1/2023.emnlp-main.271
https://doi.org/10.18653/v1/2023.emnlp-main.271
https://doi.org/10.1109/CVPR52733.2024.01489


Knowledge Distillation. In 2024 IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition
(CVPR), pages 15731–15740.

Akio Suzukawa, Hideyuki Imai, and Yoshiharu Sato.
2001. Kullback-Leibler Information Consistent Esti-
mation for Censored Data. Annals of the Institute of
Statistical Mathematics, 53(2):262–276.

Qwen Team. 2024. Qwen2.5: A party of foundation
models.

Yonglong Tian, Dilip Krishnan, and Phillip Isola. 2020.
Contrastive representation distillation. In 8th Inter-
national Conference on Learning Representations,
ICLR 2020, Addis Ababa, Ethiopia, April 26-30,
2020. OpenReview.net.

Takuma Udagawa, Aashka Trivedi, Michele Merler, and
Bishwaranjan Bhattacharjee. 2023. A comparative
analysis of task-agnostic distillation methods for com-
pressing transformer language models. In Proceed-
ings of the 2023 Conference on Empirical Methods in
Natural Language Processing: Industry Track, pages
20–31, Singapore. Association for Computational
Linguistics.

David Wadden, Kejian Shi, Jacob Morrison, Aakanksha
Naik, Shruti Singh, Nitzan Barzilay, Kyle Lo, Tom
Hope, Luca Soldaini, Shannon Zejiang Shen, Doug
Downey, Hannaneh Hajishirzi, and Arman Cohan.
2024. SciRIFF: A Resource to Enhance Language
Model Instruction-Following over Scientific Litera-
ture.

Abdul Waheed, Karima Kadaoui, and Muhammad
Abdul-Mageed. 2024. To Distill or Not to Distill?
On the Robustness of Robust Knowledge Distilla-
tion. In Proceedings of the 62nd Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 12603–12621, Bangkok,
Thailand. Association for Computational Linguistics.

Wenhui Wang, Hangbo Bao, Shaohan Huang, Li Dong,
and Furu Wei. 2021. MiniLMv2: Multi-head self-
attention relation distillation for compressing pre-
trained transformers. In Findings of the Association
for Computational Linguistics: ACL-IJCNLP 2021,
pages 2140–2151, Online. Association for Computa-
tional Linguistics.

Xinpeng Wang, Leonie Weissweiler, Hinrich Schütze,
and Barbara Plank. 2023a. How to distill your BERT:
An empirical study on the impact of weight initial-
isation and distillation objectives. In Proceedings
of the 61st Annual Meeting of the Association for
Computational Linguistics (Volume 2: Short Papers),
pages 1843–1852, Toronto, Canada. Association for
Computational Linguistics.

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa
Liu, Noah A. Smith, Daniel Khashabi, and Hannaneh
Hajishirzi. 2023b. Self-instruct: Aligning language
models with self-generated instructions. In Proceed-
ings of the 61st Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),

pages 13484–13508, Toronto, Canada. Association
for Computational Linguistics.

Yizhong Wang, Swaroop Mishra, Pegah Alipoormo-
labashi, Yeganeh Kordi, Amirreza Mirzaei, Atharva
Naik, Arjun Ashok, Arut Selvan Dhanasekaran, An-
jana Arunkumar, David Stap, Eshaan Pathak, Gian-
nis Karamanolakis, Haizhi Lai, Ishan Purohit, Is-
hani Mondal, Jacob Anderson, Kirby Kuznia, Krima
Doshi, Kuntal Kumar Pal, and 16 others. 2022.
Super-NaturalInstructions: Generalization via declar-
ative instructions on 1600+ NLP tasks. In Proceed-
ings of the 2022 Conference on Empirical Methods
in Natural Language Processing, pages 5085–5109,
Abu Dhabi, United Arab Emirates. Association for
Computational Linguistics.

Jason Wei, Maarten Bosma, Vincent Y. Zhao, Kelvin
Guu, Adams Wei Yu, Brian Lester, Nan Du, An-
drew M. Dai, and Quoc V. Le. 2022. Finetuned
language models are zero-shot learners. In The Tenth
International Conference on Learning Representa-
tions, ICLR 2022, Virtual Event, April 25-29, 2022.
OpenReview.net.

Yuqiao Wen, Zichao Li, Wenyu Du, and Lili Mou. 2023.
f-divergence minimization for sequence-level knowl-
edge distillation. In Proceedings of the 61st An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 10817–
10834, Toronto, Canada. Association for Computa-
tional Linguistics.

Cindy Wu, Ekdeep Singh Lubana, Bruno Kacper
Mlodozeniec, Robert Kirk, and David Krueger.
2024a. What Mechanisms Does Knowledge Dis-
tillation Distill? In Proceedings of UniReps: The
First Workshop on Unifying Representations in Neu-
ral Models, pages 60–75. PMLR.

Siyue Wu, Hongzhan Chen, Xiaojun Quan, Qifan Wang,
and Rui Wang. 2023. AD-KD: Attribution-driven
knowledge distillation for language model compres-
sion. In Proceedings of the 61st Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 8449–8465, Toronto,
Canada. Association for Computational Linguistics.

Taiqiang Wu, Chaofan Tao, Jiahao Wang, Runming
Yang, Zhe Zhao, and Ngai Wong. 2024b. Rethinking
Kullback-Leibler Divergence in Knowledge Distilla-
tion for Large Language Models.

Sang Michael Xie and Stefano Ermon. 2019. Repa-
rameterizable subset sampling via continuous relax-
ations. In Proceedings of the Twenty-Eighth Interna-
tional Joint Conference on Artificial Intelligence, IJ-
CAI 2019, Macao, China, August 10-16, 2019, pages
3919–3925. ijcai.org.

Wenda Xu, Rujun Han, Zifeng Wang, Long T. Le, Dhruv
Madeka, Lei Li, William Yang Wang, Rishabh Agar-
wal, Chen-Yu Lee, and Tomas Pfister. 2024a. Specu-
lative Knowledge Distillation: Bridging the Teacher-
Student Gap Through Interleaved Sampling.

18098

https://doi.org/10.1109/CVPR52733.2024.01489
https://doi.org/10.1023/A:1012414621245
https://doi.org/10.1023/A:1012414621245
https://qwenlm.github.io/blog/qwen2.5/
https://qwenlm.github.io/blog/qwen2.5/
https://openreview.net/forum?id=SkgpBJrtvS
https://doi.org/10.18653/v1/2023.emnlp-industry.3
https://doi.org/10.18653/v1/2023.emnlp-industry.3
https://doi.org/10.18653/v1/2023.emnlp-industry.3
https://arxiv.org/abs/2406.07835
https://arxiv.org/abs/2406.07835
https://arxiv.org/abs/2406.07835
https://doi.org/10.18653/v1/2024.acl-long.680
https://doi.org/10.18653/v1/2024.acl-long.680
https://doi.org/10.18653/v1/2024.acl-long.680
https://doi.org/10.18653/v1/2021.findings-acl.188
https://doi.org/10.18653/v1/2021.findings-acl.188
https://doi.org/10.18653/v1/2021.findings-acl.188
https://doi.org/10.18653/v1/2023.acl-short.157
https://doi.org/10.18653/v1/2023.acl-short.157
https://doi.org/10.18653/v1/2023.acl-short.157
https://doi.org/10.18653/v1/2023.acl-long.754
https://doi.org/10.18653/v1/2023.acl-long.754
https://doi.org/10.18653/v1/2022.emnlp-main.340
https://doi.org/10.18653/v1/2022.emnlp-main.340
https://openreview.net/forum?id=gEZrGCozdqR
https://openreview.net/forum?id=gEZrGCozdqR
https://doi.org/10.18653/v1/2023.acl-long.605
https://doi.org/10.18653/v1/2023.acl-long.605
https://proceedings.mlr.press/v243/wu24a.html
https://proceedings.mlr.press/v243/wu24a.html
https://doi.org/10.18653/v1/2023.acl-long.471
https://doi.org/10.18653/v1/2023.acl-long.471
https://doi.org/10.18653/v1/2023.acl-long.471
https://arxiv.org/abs/2404.02657
https://arxiv.org/abs/2404.02657
https://arxiv.org/abs/2404.02657
https://doi.org/10.24963/ijcai.2019/544
https://doi.org/10.24963/ijcai.2019/544
https://doi.org/10.24963/ijcai.2019/544
https://arxiv.org/abs/2410.11325
https://arxiv.org/abs/2410.11325
https://arxiv.org/abs/2410.11325


Xiaohan Xu, Ming Li, Chongyang Tao, Tao Shen,
Reynold Cheng, Jinyang Li, Can Xu, Dacheng Tao,
and Tianyi Zhou. 2024b. A Survey on Knowledge
Distillation of Large Language Models.

Shekoufeh Gorgi Zadeh and Matthias Schmid. 2021.
Bias in Cross-Entropy-Based Training of Deep Sur-
vival Networks. IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence, 43(9):3126–3137.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali
Farhadi, and Yejin Choi. 2019. HellaSwag: Can a ma-
chine really finish your sentence? In Proceedings of
the 57th Annual Meeting of the Association for Com-
putational Linguistics, pages 4791–4800, Florence,
Italy. Association for Computational Linguistics.

Rongzhi Zhang, Jiaming Shen, Tianqi Liu, Jialu Liu,
Michael Bendersky, Marc Najork, and Chao Zhang.
2023. Do Not Blindly Imitate the Teacher: Using
Perturbed Loss for Knowledge Distillation.

Songming Zhang, Xue Zhang, Zengkui Sun, Yufeng
Chen, and Jinan Xu. 2024. Dual-Space Knowledge
Distillation for Large Language Models. In Proceed-
ings of the 2024 Conference on Empirical Methods in
Natural Language Processing, pages 18164–18181,
Miami, Florida, USA. Association for Computational
Linguistics.

Youcai Zhang, Zhonghao Lan, Yuchen Dai, Fangao
Zeng, Yan Bai, Jie Chang, and Yichen Wei. 2020.
Prime-Aware Adaptive Distillation.

Borui Zhao, Quan Cui, Renjie Song, Yiyu Qiu, and
Jiajun Liang. 2022. Decoupled knowledge distilla-
tion. In Proceedings of the IEEE/CVF Conference
on computer vision and pattern recognition, pages
11953–11962.

Wenting Zhao, Xiang Ren, Jack Hessel, Claire Cardie,
Yejin Choi, and Yuntian Deng. 2024. WildChat:
1M ChatGPT Interaction Logs in the Wild. In The
Twelfth International Conference on Learning Repre-
sentations.

Qihuang Zhong, Liang Ding, Li Shen, Juhua Liu, Bo Du,
and Dacheng Tao. 2024. Revisiting Knowledge Dis-
tillation for Autoregressive Language Models. In
Proceedings of the 62nd Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 10900–10913, Bangkok, Thai-
land. Association for Computational Linguistics.

Helong Zhou, Liangchen Song, Jiajie Chen, Ye Zhou,
Guoli Wang, Junsong Yuan, and Qian Zhang. 2021.
Rethinking soft labels for knowledge distillation:
A bias-variance tradeoff perspective. In 9th Inter-
national Conference on Learning Representations,
ICLR 2021, Virtual Event, Austria, May 3-7, 2021.
OpenReview.net.

Qinhong Zhou, Zonghan Yang, Peng Li, and Yang Liu.
2023a. Bridging the gap between decision and log-
its in decision-based knowledge distillation for pre-
trained language models. In Proceedings of the 61st

Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 13234–
13248, Toronto, Canada. Association for Computa-
tional Linguistics.

Yongchao Zhou, Kaifeng Lyu, Ankit Singh Rawat,
Aditya Krishna Menon, Afshin Rostamizadeh, Sanjiv
Kumar, Jean-François Kagy, and Rishabh Agarwal.
2023b. DistillSpec: Improving Speculative Decod-
ing via Knowledge Distillation.

Chiwei Zhu, Benfeng Xu, Quan Wang, Yongdong
Zhang, and Zhendong Mao. 2023. On the calibra-
tion of large language models and alignment. In
Findings of the Association for Computational Lin-
guistics: EMNLP 2023, pages 9778–9795, Singapore.
Association for Computational Linguistics.

A Proofs

A.1 Backward Gradient through Softmax-KL
Divergence Loss

The output probability p is defined in terms of the
model’s logits x

p = Softmax(x)

pi =
exi

∑|V |
j=1 e

xj

The gradient through Softmax (Iwana et al.,
2019) is:

∂pi
∂xj

= pi.(1{i = j} − pj)

Given a target probability distribution t, the KL
divergence loss is defined as:

L =

|V |∑

i=1

ti log
ti
pi

(3)

For Softmax-KL Divergence Loss, the gradient
flowing to the jth logit xj can be calculated as
follows:

∂L

∂xj
= −

|V |∑

i=1

ti
1

pi

∂pi
∂xj

=

|V |∑

i=1

ti.(pj − 1{i = j})

= (

|V |∑

i=1

ti).pj − tj

18099

https://arxiv.org/abs/2402.13116
https://arxiv.org/abs/2402.13116
https://doi.org/10.1109/TPAMI.2020.2979450
https://doi.org/10.1109/TPAMI.2020.2979450
https://doi.org/10.18653/v1/P19-1472
https://doi.org/10.18653/v1/P19-1472
https://arxiv.org/abs/2305.05010
https://arxiv.org/abs/2305.05010
https://doi.org/10.18653/v1/2024.emnlp-main.1010
https://doi.org/10.18653/v1/2024.emnlp-main.1010
https://arxiv.org/abs/2008.01458
https://openreview.net/forum?id=Bl8u7ZRlbM
https://openreview.net/forum?id=Bl8u7ZRlbM
https://doi.org/10.18653/v1/2024.acl-long.587
https://doi.org/10.18653/v1/2024.acl-long.587
https://openreview.net/forum?id=gIHd-5X324
https://openreview.net/forum?id=gIHd-5X324
https://doi.org/10.18653/v1/2023.acl-long.738
https://doi.org/10.18653/v1/2023.acl-long.738
https://doi.org/10.18653/v1/2023.acl-long.738
https://arxiv.org/abs/2310.08461
https://arxiv.org/abs/2310.08461
https://doi.org/10.18653/v1/2023.findings-emnlp.654
https://doi.org/10.18653/v1/2023.findings-emnlp.654


If the full teacher distribution is provided∑|V |
i=1 ti = 1. However, in the most generalized

form, the gradient through Softmax-KL divergence
loss can be written as:

∂L

∂xj
= (

|V |∑

i=1

ti).pj − tj (4)

A.2 Cross Entropy Loss

The cross entropy loss L defined as follows:

LCE = −
|V |∑

i=1

ti log pi

= LKLD −
|V |∑

i=1

ti log ti

Compared to the KLD loss, the additional term
(
∑|V |

i=1 tilogti) is independent of the student model.
Hence, the gradient for CE loss remains the same
as that computed for KL Divergence loss in Equa-
tion (3). For cross entropy (and similarly for Ful-
lKD with KLD loss),

∑|V |
i=1 ti = 1. Hence, the

gradient can be further simplified to:

∂L

∂xj
= pj − tj

In this case, the theoretical optima lies at the point
where the predicted probabilities p become same
as target probabilities t across the vocabulary, re-
sulting in 0 gradient and minimum loss.

A.3 Vanilla Top-K has the Least L1 Error, but
is a Biased Estimate

For a given distribution t, if only K probabilities
from t must be kept, and they are then normalized
to sum to 1, we show that selecting the Top K
probabilities results in the least L1 error.

Let K be the set of tokens selected. Let a =∑
j∈K tj . This can be viewed as constructing a new

distribution v, where normalizing the probabilities

vi =
ti
a
, i ∈ K,

vi = 0, i ̸∈ K

Then the L1 error between t and v is

L1 =
∑

i

|ti − vi|

=
∑

i∈K
|ti − ti/a|+

∑

i ̸∈K
|ti − 0|

= (1/a− 1) ∗
∑

i∈K
ti + (1−

∑

i∈K
ti)

= (1/a− 1) ∗ a+ (1− a)

= 2 ∗ (1− a)

Hence L1 will be minimized when a is the
largest, which will happen when the K largest prob-
abilities are selected.

However, note that this gives us a biased esti-
mate, as E[vi] = 0 ̸= E[ti], i ̸∈ K.

A.4 Vanilla Top-K KD provides scaled teacher
as target

We can restrict the target probability to a subset of
tokens in our vocabulary. If we select K as the set
of tokens with top-k probabilities, then the loss is
defined as follows:

L =
∑

i∈K
ti log

ti
pi

This can be viewed as zeroing out the non-top-k
target probabilities in the original KLD loss. In this
case, the gradient flowing to the logits are (Equa-
tion (4)):

∂L

∂xj
= (
∑

i∈K
ti).pj − tj (5)

If j /∈ K, the gradient is (
∑

i∈K ti).pj . As op-
posed to the previous case, model’s optima lies
at the point where non-top-k probabilities are 0
and hence the student is under-confident in the
non-top-k probabilities. Similarly, the top-k pre-
dicted probabilities p are a scaled up version of
the target probabilities t across the top-k tokens,
pi = ti

(
∑

j∈K tj)
, hence making the student over-

confident in top-k probability predictions. At this
optima, the gradient is 0 (but the loss is negative).

A.5 Ghost Token Backward
One possible solution to the above discussed prob-
lem is to add a ghost token which accounts for the
remainder of the probability. This ghost token en-
sures that the sum of probability outside the top-k

18100



region is exactly the same for the teacher and stu-
dent. Ideally, it would ensure that the top-k tokens
receive the exact teacher probability as the target.
The modified loss function is written below-

L =

(∑

i∈K
ti log

ti
pi
+

(1−
∑

i∈K
ti)log

( 1−∑i∈K ti

1−∑i∈K pi

))

Let us consider the second term in the loss and
find its gradient

Lghost = (1−
∑

i∈K
ti)log

( 1−∑i∈K ti

1−∑i∈K pi

)

∂Lghost

∂xj
=
( 1−∑i∈K ti

1−∑i∈K pi

)
.

k∑

i=1

∂pi
∂xj

=
( 1−∑i∈K ti

1−∑i∈K pi

)
.

k∑

i=1

pi.(1{i = j} − pj)

The gradient becomes:

∂Lghost

∂xj
=

{(
1−∑i∈K ti

)
pj j ∈ K,

−
(

1−∑
i∈K ti

1−∑
i∈K pi

)
pj
∑

i∈K pi else.

Next we can add the gradient from top-k KD
loss Equation (5) and ghost token loss to obtain the
final gradient

∂L

∂xj
=

{
(pj − tj) j ∈ K,(∑

i∈K(ti−pi)

1−∑
i∈K pi

)
pj else.

For the non top-k tokens, the gradients can be
rewritten as

∂Lghost

∂xj
= pj −

( 1−∑i∈K ti

1−∑i∈K pi

)
pj /∈ K

By adding the ghost token, the top-k tokens get
the same gradient as KLD loss with FullKD, while
the remaining tokens receive gradient in proportion
of their predicted probability pi. The target prob-
ability for non top-k tokens is

(
1−∑

i∈K ti
1−∑

i∈K pi

)
pj . In

this case, if the predicted probability distribution is
exactly the same as that of teacher probability only
for top-k tokens, the gradient becomes 0 and loss
becomes minimum.

A.6 Random Sampling KD provides Unbiased
Estimates

Our method Random Sampling KD uses impor-
tance sampling. By definition, importance sam-
pling estimator is an unbiased estimator (Elvira
and Martino, 2021). We provide a short intuition
of this below for temperature t = 1.

We sample token ids N times with replacement
from proposal distribution qi = pi.

Each occurrence is assigned a likelihood ratio
pi
qi

= 1, and then normalized by dividing by N .
The expected counts of token i will then be

qi∗N
N = qi = pi. Hence this sampling is unbiased.

A.7 Unbiased Sampling preserves gradients in
expectation

For any partial knowledge distillation scheme
which sub-samples the full distribution, the ex-
pected gradients at the logits will be preserved in
expectation if sampling is unbiased.

Proof: The gradient gj for the logit xj through
the softmax-KL divergence loss is (replacing∑|V |

i=1 ti = 1 in Equation (4)))

gj = pj − tj (6)

Taking expectations on both sides

E[gj ] = E[pj ]− E[tj ]

Similarly, for a sub-sampling method which re-
duced t → ts, expected gradient is as follows

E[gsj ] = E[pj ]− E[tsj ]

The gradients at the logits are preserved in ex-
pectation if E[tj ] = E[tsj ] and the sub-sampling
process is unbiased.

B Synthetic Examples

Visualizing Target Probabilities We generate a
Zipf distribution where the probability of ith token

is proportional
1

i
. Next we select tokens and assign

them probabilities based on different sparse knowl-
edge distillation methods. We plot these probabili-
ties with the ground truth FullKD probabilities to
visualize the alignment of sparse KD target distri-
butions with FullKD.

18101



Calibration on Synthetic Classes As discussed
in the main paper and the psuedocode (Ap-
pendix K), we generate synthetic data by gener-
ating random points around randomly chosen class
means with Gaussian error distribution. We use a
simple 3-layer MLP as our model. We train the
model using different sparse KD techniques and
FullKD and plot the mean accuracy after binning
the probabilities.

Calibration on CIFAR-100 We follow the exact
same methodology as the synthetic classification
while using CIFAR-100 task and a weaker/smaller
version of ResNet-18 model.

C Number of Sampling Rounds for Given
Number of Effective Tokens

For a fair comparison between Top-K KD and ran-
dom sampling methods, the number of sampling
rounds N were chosen such that the number of
unique tokens sampled match K. This will be
specific to the dataset and the teacher model. For
example, N = 50, we find K = 12. The rela-
tionship between the two for pre-training data is
shown in Figure 5 (log-log scale), and is almost per-
fectly linear, showing an approximate power-law
relationship.

Figure 5: Number of unique tokens sampled vs sampling
rounds

D Implementation Concerns

D.1 Quantization for Teacher Probabilities

For our vocab size V = 100000, our token ids
require log2(V ) = 17 bits. We store the byte-
aligned data, which leaves us with 24 − 17 = 7
bits for teacher probabilities. As probabilities are
in range 0..1, for Top-K method, we use the 7 bits

to split the 0 to 1 range into 27 equal intervals. This
resulted in slightly lower performance compared to
storing the probabilities in fp16. Instead switching
to ratio encoding with sorted Top-K probabilities
resulted in significantly reduced quantization error
to almost 0, and results matched that of using un-
quantized probabilities.

In the case of our proposed random sampling,
we use 50 sampling rounds, so token probabilities
can only be of the form x/50, where x is some
integer. As this is less than 27, we can store all of
these exactly in 7 bits by only storing the numera-
tor. If sampling rounds are increased beyond 128,
ratio encoding with sorted probabilities can be used
instead.

D.2 Efficiency Concerns

Naively implementing the sampling and the loss
calculation incurred significant memory usage, due
to the large vocabulary size. Manual backward
and forward for the softmax KLD needed to im-
plemented (via plain Pytorch, custom kernels were
not created). Writing and reading the logits needed
to be streamlines via shared memory ring buffers
and async writer processes, so as to not block the
GPU.

D.3 Aligning Teacher and Student Sequences

In our pre-training, we pack shuffled training doc-
uments to maximum sequence length, but we do
not mask attention across document boundaries
due to efficiency reasons. In our initial implemen-
tation, different shuffling seed was used between
the teacher (during inference)and student (during
training) – This resulted in the prefix-context of
tokens seen by the teacher and student not being
aligned after the first document boundary. This had
a surprisingly large effect on student model per-
formance, particularly if smaller sequence lengths
were used during teacher inference. We conjecture
that with longer sequence lengths, far-away tokens
from other documents will have less of an impact
on the distribution of the logits. After fully aligning
the teacher and student sequences, this effect was
eliminated, and the offline run was within random
error of the online run.

E Downstream Evaluation Details

E.1 Natural Language Understanding

We evaluate the downstream natural language un-
derstanding performance of our trained models us-

18102



Shuffle Seeds Seq Len LM Loss % CE to online

Different 1024 2.760 79
Different 4096 2.753 90
Same 4096 2.749 96

Table 16: Effect of aligning teacher and student se-
quences, with different/same shuffle seeds and sequence
length of the teacher during inference. The last column
shows the performance of the offline (cached) imple-
mentation relative to an online implementation, where
the entire teacher model is run.

ing the following benchmarks: HellaSwag (Zellers
et al., 2019), Arc-Easy (Clark et al., 2018), LAM-
BADA (Paperno et al., 2016), and PiQA (Bisk
et al., 2020). We conduct zero-shot evaluation of
all benchmarks using LM-Eval-Harness (Gao et al.,
2024). In the main paper, we report the average
scores obtained across these tasks, and full scores
are provided in Table 22.

E.2 Supervised Finetuning for Instruction
Following

We used the Olmo2 (OLMo et al., 2025) version
of the Tulu (Lambert et al., 2024a) Instruction Fol-
lowing dataset for SFT training after Language
Modeling pre-training.

E.3 Instruction Following Evaluation
Similar to Gu et al. (2023), we evaluate the ability
of fine-tuned models to follow instructions on five
datasets:

• DollyEval (Conover et al., 2023): 15k human-
written instruction-response pairs. Following
Gu et al. (2023), we use the 500-sample test
set for evaluation.

• SelfInst (Wang et al., 2023b): A user-oriented
instruction following dataset containing 252
samples.

• VicunaEval (Chiang et al., 2023): 80 diverse
and challenging question-answer pairs.

• S-NI: The test set of Supernatural Instruc-
tion (Wang et al., 2022). We sample 1694
pairs whose ground-truth response length is
longer than 11.

• UnNI: A 10k subset of Unnatural Instruc-
tion (Honovich et al., 2023). Similar to S-
NI, we only use pairs where the ground-truth
length is longer than 11.

We adopt the LLM-as-a-Judge approach, where
we use Llama 3.1 405B Instruct (Grattafiori et al.,
2024) to score the quality of model responses. For
each instruction, we generate the response five
times using different seeds and temperature = 1.
We prompt the judge model to rate both the ground-
truth response and the model-generated response
on a scale of 1-10, and use the average ratio of the
total score of the ground-truth and model-generated
responses as the final score.

F Hyper-parameters

The hyper-paramerters for our experiments are de-
scribed in Tables 17, 19 and 20 and Appendix F

Parameters Values
Optimizer Adam
β1, β2 0.9, 0.95
Effective Batch Size 1024
Drop-out (p) 0.0
Sequence Length 1024
Train Iters 10, 000
Learning rate 4 ∗ 10−4

Schedule Cosine / Constant
LR Decay Iterations 100%
Warmup steps 4%
Min LR 4 ∗ 10−5

Gradient clipping 1.0

Table 17: Pre-Training Hyper-Parameters for 300M
model. The pre-training dataset was web data, primarily
Fineweb-Edu.

G Package versions

Versions of packages used are described in Ta-
ble 21.

H Computational Resources

All experiments were carried out on nodes with
8 Nvidia H100 GPUs with 80Gb memory. Most
experiments utilized one node or less, while the
large scale ones used 2− 4 nodes.

I Use of AI Assistants

AI assistants were consulted while writing a small
fraction of the code for this work, but their work
was carefully checked, and the majority of the code
was handwritten. AI assistants were not used in
writing the text of this paper.

18103



Parameters Values
Optimizer Adam
β1, β2 0.9, 0.95
Effective Batch Size 1024
Drop-out (p) 0.0
Sequence Length 4096
Train Iters 10, 000
Learning rate 3 ∗ 10−4

Schedule Cosine
LR Decay Iterations 100%
Warmup steps 4%
Min LR 3 ∗ 10−5

Gradient clipping 1.0

Table 18: Training Hyper-Parameters for 3B Llama
model

Parameters Values
Optimizer Adam
β1, β2 0.9, 0.95
Effective Batch Size 256
Drop-out (p) 0.0
Sequence Length 4096
Train Iters 1, 234
Learning rate 2 ∗ 10−5

Schedule Cosine
LR Decay Iterations 100%
Warmup steps 3%
Min LR 2 ∗ 10−6

Gradient clipping 1.0

Table 19: SFT Hyper-Parameters for 3B Llama model

J Artifacts

We use LLaMA-3-8B (Grattafiori et al., 2024) as
the teacher for some of experiments. We also used
the Llama-3.1-405b as a judge for evaluation. Both
of these uses are permitted under the license of
these models. The datasets used here are also
permitted for research use, and were only used
for research. The pre-training dataset Fineweb-
Edu (Penedo et al., 2024) is primarily composed of
English educational-style web data, and so is the
SFT data Tulu (Lambert et al., 2024a).

Parameters 300M Model 3B Model
Num Layers 24 28
Hidden Size 1024 3072
FFN Hidden Size 2816 8192
Num Attn Heads 8 24
Num Query Groups 8/4 8

Table 20: Student Model Architecture Details. The
100B experiments for 300M model used 4 query groups
for efficiency. The pre-training dataset was FineWeb-
Edu (Penedo et al., 2024)

Package Version
megatron 0.7.0
deepspeed 0.15.3
flash_attn 2.4.2
safetensors 0.4.5
scikit-learn 1.5.2
scipy 1.14.0
sentencepiece 0.2.0
torch 2.5.0
transformer_engine 1.11.0
transformers 4.46.1

Table 21: Package Versions for Pre-training

18104



K Pseudo-code

The pseudocode for topk sampling and random sampling approaches is provided below.

import torch

## Create downsampled probabilities
def create_prob(values, indices, probs):

downsampled_probs = torch.zeros_like(probs)
downsampled_probs.scatter_(1, indices, values)
return downsampled_probs

## Downsampling Functions
def downsample_topk(probs, k=50): # Top-k

topk_values, topk_indices = probs.topk(k)
return create_prob(topk_values, topk_indices, probs)

def downsample_ours(probs, N=50): # Sampling
sampled_indices = torch.multinomial(probs, N, replacement=True)
prob_value = 1.0 / N
values = torch.full((probs.size(0), N), prob_value, device=probs.device)
return create_prob(values, sampled_indices, probs)

## Knowledge distillation loss
def distillation_loss(student_logits, teacher_probs, downsample_fn):

# Downsample teacher distribution
downsampled_teacher_probs = downsample_fn(teacher_probs)

# Compute KL divergence
loss = torch.nn.functional.kl_div(

torch.nn.functional.log_softmax(student_logits, dim=-1),
downsampled_teacher_probs,

)
return loss

## Training step
def train_step(inputs, labels, teacher_model, student_model, downsample_fn, alpha=0.5):

# Forward pass through teacher and student
with torch.no_grad():

teacher_logits = teacher_model(inputs)
teacher_probs = torch.nn.functional.softmax(teacher_logits, dim=-1)

student_logits = student_model(inputs)

# Compute standard cross-entropy loss
ce_loss = torch.nn.functional.cross_entropy(student_logits, labels)

# Compute distillation loss
kd_loss = distillation_loss(student_logits, teacher_probs, downsample_fn)

# Combine losses
total_loss = alpha * kd_loss + (1 - alpha) * ce_loss

return total_loss

18105



The pseudocode for running different sampling strategies on a toy distribution.

# Set random seed for reproducibility
np.random.seed(12345)

# Configuration parameters
VOCAB_SIZE = 100000
TOP_K = 20
NUM_SAMPLES = 22
NUM_SAMPLING_ROUNDS = 1000
Y_MAX = 50

# Create synthetic data distribution
def create_synthetic_data(vocab_size):

idx = np.array(range(1, vocab_size + 1))
data_dist = 1 / idx
data_dist /= np.sum(data_dist) # Normalize to sum to 1
return idx, data_dist

# Generate data
idx, data_dist = create_synthetic_data(VOCAB_SIZE)

# Top-K method
def apply_top_k(data_dist, idx, top_k):

top_k_probs = data_dist[:top_k]
top_k_probs_redistributed = top_k_probs / np.sum(top_k_probs)
# top_k_probs_redistributed = top_k_probs

# Create top-k distribution with a small offset for visualization
top_k_dist = np.zeros_like(data_dist)
top_k_dist[:top_k] = top_k_probs_redistributed
top_k_dist = list(top_k_dist[:top_k]) + [0] + list(top_k_dist[top_k:])
return top_k_dist

data_dist_top_k = apply_top_k(data_dist, idx, TOP_K)

# Naive fix method
def apply_naive_fix(data_dist, idx, top_k):

naive_fix_dist = np.zeros_like(data_dist)
naive_fix_dist[:top_k] = data_dist[:top_k]
naive_fix_dist += data_dist * (1 - np.sum(naive_fix_dist))
return naive_fix_dist

data_dist_remaining_gt = apply_naive_fix(data_dist, idx, TOP_K)

# Random sampling method
def apply_random_sampling(data_dist, num_samples, num_rounds):

random_sampling_dist = np.zeros_like(data_dist)
num_samples_effective = 0

for _ in range(num_rounds):
current_dist = np.zeros_like(data_dist)
samples = np.random.choice(len(data_dist), size=num_samples, p=data_dist)
for i in samples:

current_dist[i] += 1
num_samples_effective += np.count_nonzero(current_dist)
current_dist /= num_samples
random_sampling_dist += current_dist

num_samples_effective /= num_rounds
random_sampling_dist /= np.sum(random_sampling_dist)
return random_sampling_dist, num_samples_effective

data_dist_random_sampling, num_samples_effective = apply_random_sampling(data_dist, NUM_SAMPLES, NUM_SAMPLING_ROUNDS)

def plot_probability_distributions(LINE_WIDTH=2.0, MARKER_SIZE=3):
plt.plot(idx[:Y_MAX], data_dist[:Y_MAX], label='Ground Truth', color='purple', linewidth=LINE_WIDTH, marker='o', markersize=MARKER_SIZE)

# Plot Top-K distribution
idx_topk = list(idx[:TOP_K]) + list(idx[TOP_K:])
data_dist_top_k_truncated = list(data_dist_top_k[:TOP_K]) + list(data_dist_top_k[TOP_K:])
plt.plot(idx_topk[:Y_MAX+1], data_dist_top_k_truncated[:Y_MAX+1],

label='Top-K (k=20)', color='royalblue', linewidth=LINE_WIDTH, marker='o', markersize=MARKER_SIZE)

plt.plot(idx[:Y_MAX], data_dist_remaining_gt[:Y_MAX],
label='Naive Fix', color='darkgoldenrod', linewidth=LINE_WIDTH, marker='o', markersize=MARKER_SIZE)

plt.plot(idx[:Y_MAX], data_dist_random_sampling[:Y_MAX],
label='Random Sampling', color='salmon', linewidth=LINE_WIDTH, marker='o', markersize=MARKER_SIZE)

# Add plot details
plt.ylim(-0.002, 0.15)
plt.legend(fontsize=12, framealpha=0.6)
plt.xticks(fontsize=11)
plt.yticks(fontsize=11)
plt.grid()
plt.xlabel(r'Token Index $\rightarrow$', fontsize=14)
plt.ylabel(r'Teacher Probability $\rightarrow$', fontsize=14)
plt.savefig("images/image.png", dpi=600, bbox_inches='tight')

plot_probability_distributions()
print(f"Effective number of samples: {num_samples_effective:.2f}")

18106



The pseudocode for running different top-k strategies on a synthetic classification task.

torch.random.manual_seed(1234)
torch.set_default_dtype(torch.float64)
device='cuda'
num_classes = 1024
sigma = 1.5
num_dim = 128
num_hidden_teacher = 128
num_hidden_student = 96
class_centers = torch.rand((num_classes, num_dim), device=device)
class_sigma = torch.unsqueeze(torch.rand((num_classes, ), device=device), dim=-1) * sigma
class_indices = torch.tensor(range(num_classes), device=device)
num_calibration_batches = 100

def get_batch(batch_size=4096):
idx = torch.randint(low=0, high=num_classes, size=(batch_size,), device=device)
class_centers_batch = class_centers[idx]
class_sigma_batch = class_sigma[idx]
batch = class_centers_batch + torch.randn((batch_size, num_dim), device=device)*class_sigma_batch
return batch, idx

def eval(model, method):
all_probs = []
all_acc = []
with torch.no_grad():

for i in tqdm(range(num_calibration_batches)):
model.eval()
batch, labels = get_batch()
probs = model(batch)
probs = torch.nn.functional.softmax(probs, dim=-1)
all_probs.append(torch.max(probs, dim=-1)[0])
all_acc.append(torch.argmax(probs, dim=-1).detach() == labels)

all_probs = torch.vstack(all_probs)
all_acc = torch.vstack(all_acc)
print(f'Accuracy for {method}', all_acc.float().mean().item()*100)

def train(model, method, teacher=None, lr=2e-3, num_rounds=20000, **kwargs):
optimizer = torch.optim.AdamW(params = model.parameters(), lr=lr, weight_decay=0.00)
for step in tqdm(range(num_rounds)):

optimizer.zero_grad()
batch, labels = get_batch()
logits = model(batch)
if teacher:

teacher.eval()
logits_teacher = teacher(batch)
probs_teacher = torch.nn.functional.softmax(logits_teacher, dim=-1).detach()
loss = loss_kd(logits, probs_teacher, method, **kwargs)

else:
loss = torch.nn.functional.cross_entropy(logits, labels)

loss.backward()
optimizer.step()

eval(model, method)
return model

def loss_kd(logits, probs_teacher, method, topk=7, to_sample=50):
if "topk" in method:

topk_probs, topk_ids = probs_teacher.topk(topk, dim=-1)
probs_teacher *= 0
probs_teacher.scatter_reduce_(dim=-1, index=topk_ids, src=topk_probs, reduce='sum')

elif "random_sampling" in method:
probs_teacher_cumsum = probs_teacher.cumsum(dim=-1)
rand_probs = torch.rand(size=(probs_teacher_cumsum.shape[0], to_sample), device=probs_teacher_cumsum.device)
rand_probs = rand_probs.sort(dim=-1)[0]
sample_token_ids = torch.searchsorted(probs_teacher_cumsum, rand_probs) # Inverse Transform Sampling
probs_teacher *= 0
probs_teacher.scatter_reduce_(dim=-1, index=sample_token_ids, src=torch.ones_like(probs_teacher), reduce='sum')
probs_teacher.div_(probs_teacher.sum(dim=-1, keepdim=True))

logits_exp = torch.exp(logits)
logits_sum_exp = torch.sum(logits_exp, dim=-1)
logits_log_sum_exp = torch.log(logits_sum_exp)
loss = - probs_teacher * (logits - torch.unsqueeze(logits_log_sum_exp, dim=-1))
loss = torch.sum(loss, dim=-1).mean()
return loss

class ToyModel(torch.nn.Module):
def __init__(self, num_hidden):

super().__init__()
self.layer1 = torch.nn.Linear(num_dim, num_hidden)
self.layer2 = torch.nn.Linear(num_hidden, num_hidden)
self.layer3 = torch.nn.Linear(num_hidden, num_classes)

def forward(self, x):
x = torch.nn.functional.gelu(self.layer1(x))
x = torch.nn.functional.gelu(self.layer2(x))
x = self.layer3(x)
return x

teacher = train(ToyModel(num_hidden_teacher).to(device), 'teacher')
student = train(ToyModel(num_hidden_student).to(device), 'student')
student_kd = train(ToyModel(num_hidden_student).to(device), 'student_full_kd', teacher=teacher)
student_topk = train(ToyModel(num_hidden_student).to(device), 'student_topk', teacher=teacher, topk=7)
student_random = train(ToyModel(num_hidden_student).to(device), 'student_random_sampling', teacher=teacher, to_sample=50)

18107



L NLU Tasks Full Scores

Experiment ARC Easy HellaSwag LAMBADA LAMBADA PIQA Avg.
OpenAI Standard

3B Teacher → 300M Student

Base
CE 46.59 41.18 38.85 30.80 67.41 44.97
Ours (12) 50.76 41.84 40.25 30.70 67.46 46.20
FullKD 51.56 41.98 40.69 29.52 67.25 46.20

8B Teacher → 3B Student

Base
CE 64.90 56.35 45.64 38.31 72.58 55.56
Top12 65.07 57.04 47.76 39.86 73.50 56.65
Top50 65.66 57.80 47.88 40.87 73.50 57.14
Ours (12) 66.29 58.93 47.47 40.99 73.83 57.50
Ours (12)++ 68.14 60.82 46.83 39.80 73.99 57.92
FullKD 66.08 58.76 48.01 40.71 73.88 57.49

SFT, Tulu
CE 58.84 57.51 45.66 37.92 72.69 54.52
Top12 63.51 58.49 50.92 42.97 72.47 57.67
Top50 66.58 59.26 50.86 42.07 72.91 58.34
Ours (12) 68.43 60.14 52.14 42.67 73.83 59.44
Ours (12)++ 66.96 60.91 50.71 42.23 74.48 59.06
FullKD 68.22 59.59 50.46 42.32 73.01 58.72

Table 22: Full performance results on various benchmarks for 300M and 3B experiments.

18108


