Enhancing Text Editing for Grammatical Error Correction:
Arabic as a Case Study

Bashar Alhafni’ and Nizar Habash
Computational Approaches to Modeling Language Lab
New York University Abu Dhabi
TMohamed bin Zayed University of Artificial Intelligence
{alhafni,nizar.habash}@nyu.edu

Abstract

Text editing frames grammatical error correc-
tion (GEC) as a sequence tagging problem,
where edit tags are assigned to input tokens,
and applying these edits results in the corrected
text. This approach has gained attention for
its efficiency and interpretability. However,
while extensively explored for English, text
editing remains largely underexplored for mor-
phologically rich languages like Arabic. In
this paper, we introduce a text editing approach
that derives edit tags directly from data, elim-
inating the need for language-specific edits.
We demonstrate its effectiveness on Arabic, a
diglossic and morphologically rich language,
and investigate the impact of different edit rep-
resentations on model performance. Our ap-
proach achieves SOTA results on two Arabic
GEC benchmarks and performs on par with
SOTA on two others. Additionally, our models
are over six times faster than existing Arabic
GEC systems, making our approach more prac-
tical for real-world applications. Finally, we
explore ensemble models, demonstrating how
combining different models leads to further per-
formance improvements. We make our code,
data, and pretrained models publicly available.'

1 Introduction

Grammatical Error Correction (GEC) is a well-
studied problem, particularly in English, with nu-
merous datasets and shared tasks (Ng et al., 2013,
2014; Bryant et al., 2019). GEC has applications
in both writing assistance for native speakers (L1)
and language learning for second-language (L2)
learners. While neural machine translation (NMT)
approaches have long dominated GEC and con-
tinue to achieve strong results when trained on
large amounts of data (Stahlberg and Kumar, 2024;
Bryant et al., 2023), they are not inherently the
most efficient. Unlike MT, where input and out-
put sequences differ significantly, GEC typically

"https://github.com/CAMeL-Lab/text-editing

involves minimal changes, with most input tokens
copied to the output. Employing full-sequence au-
toregressive models in such cases can be computa-
tionally wasteful (Stahlberg and Kumar, 2020).

A highly efficient and competitive alternative
to sequence-to-sequence (Seq2Seq) models is text
editing, which frames GEC as a sequence tagging
problem. Instead of generating text autoregres-
sively, text editing models assign edit labels to input
tokens, leading to a more efficient and interpretable
corrections. However, most popular text editing ap-
proaches require effort to design language-specific
edit tag sets (Awasthi et al., 2019; Omelianchuk
et al., 2020; Mesham et al., 2023). This limits their
adaptability for morphologically rich languages
like Arabic (Kwon et al., 2023), where the space of
possible edits is large.

Inspired by recent advancements in text edit-
ing (Awasthi et al., 2019; Malmi et al., 2019;
Omelianchuk et al., 2020; Straka et al., 2021; Me-
sham et al., 2023), we introduce a novel text editing
approach that eliminates the need for language-
specific edits. Instead, our method derives edit tags
directly from data, making it more adaptable and
scalable across different linguistic settings. We
demonstrate the effectiveness of our approach on
Arabic GEC. Our contributions are as follows:

1. We introduce the first successful application
of text editing to Arabic GEC and study the
effect of edit representation on the task.

2. We achieve SOTA results on two Arabic GEC
benchmarks and perform on par with SOTA
on two others.

3. Our models are over six times faster than exist-
ing Arabic GEC systems, making them more
practical for real-world applications.

4. We show through ensembling experiments
how different models complement each other,
leading to significant performance gains.

17892

Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 17892—-17914

July 27 - August 1, 2025 ©2025 Association for Computational Linguistics

https://github.com/CAMeL-Lab/text-editing

2 Background and Related Work

2.1 Grammatical Error Correction

GEC has been approached using a variety of meth-
ods, with Transformer-based systems being the
most popular (Bryant et al., 2023). The use of
Transformer-based architectures in GEC began
by framing the task as a neural machine trans-
lation (NMT) problem (Junczys-Dowmunt et al.,
2018; Yuan et al., 2019; Zhao et al., 2019; Grund-
kiewicz et al., 2019; Katsumata and Komachi,
2020; Kaneko et al., 2020; Wan et al., 2020; Yuan
et al., 2021; Yuan and Bryant, 2021; Stahlberg and
Kumar, 2021; Rothe et al., 2021; Zhou et al., 2023;
Luhtaru et al., 2024).

To improve efficiency and interpretability, text
editing models have emerged as an alternative to
Seq2Seq approaches (Awasthi et al., 2019; Malmi
et al., 2019; Stahlberg and Kumar, 2020; Mallinson
et al., 2020; Omelianchuk et al., 2020; Straka et al.,
2021; Mallinson et al., 2022; Tarnavskyi et al.,
2022; Mesham et al., 2023; Zhang et al., 2023).
Unlike Seq2Seq models, which generate corrected
text from scratch, text editing models treat GEC
as a sequence tagging task, producing a set of edit
operations that modify the erroneous input. Our
work follows this text editing paradigm.

LLMs have also been evaluated on GEC (Fang
et al., 2023; Coyne et al., 2023; Wu et al., 2023;
Loem et al., 2023; Raheja et al., 2023; Kaneko
and Okazaki, 2023; Raheja et al., 2024; Davis
et al., 2024; Katinskaia and Yangarber, 2024;
Omelianchuk et al., 2024; Mita et al., 2024; Kaneko
and Okazaki, 2024). However, despite their strong
generalization capabilities, they remain less effec-
tive than Seq2Seq and text editing models.

2.2 Arabic Grammatical Error Correction

Arabic exhibits a diglossic (Ferguson, 1959) lin-
guistic nature where a non-standard variety, Dialec-
tal Arabic (DA), coexists with Modern Standard
Arabic (MSA), the standard form of the language.

MSA GEC The first major efforts on MSA
GEC were initiated by the Qatar Arabic Language
Bank (QALB) project (Zaghouani et al., 2014,
2015), which organized the QALB-2014 (Mohit
et al., 2014) and QALB-2015 (Rozovskaya et al.,
2015) shared tasks. More recently, Habash and
Palfreyman (2022) introduced the ZAEBUC cor-
pus, a dataset of essays written by native Arabic-
speaking university students. Approaches to MSA

GEC have included feature-based classifiers (Ro-
zovskaya et al., 2014; Farra et al., 2014; Bougares
and Bouamor, 2015; Nawar, 2015) and NMT-based
systems (Watson et al., 2018; Solyman et al., 2021,
2022, 2023). LLMs have also been evaluated for
MSA GEC (Kwon et al., 2023; Alhafni et al., 2023;
Magdy et al., 2024), but attempts to adapt text
editing models have been largely ineffective. The
current SOTA was established by Alhafni et al.
(2023), who incorporated contextualized morpho-
logical preprocessing and grammatical error detec-
tion (GED) features into Seq2Seq models, achiev-
ing SOTA results on the QALB-2014, QALB-2015,
and ZAEBUC datasets.

DA GEC Dialectal Arabic (DA) comprises mul-
tiple regional varieties that differ from MSA and
each other in phonology, morphology, and lexicon.
While primarily spoken, DA lacks standardized
orthography, though its written use has grown on
social media, where it appears in varied and noisy
forms. To address this, Habash et al. (2012a, 2018)
introduced the Conventional Orthography for Di-
alectal Arabic (CODA), a standardized spelling
convention for DA. CODA has since been used to
develop multiple DA datasets (Habash et al., 2012b;
Eskander et al., 2013; Maamouri et al., 2014; Diab
et al., 2014; Pasha et al., 2014; Jarrar et al., 2016;
Khalifa et al., 2018). Building on this work, Eryani
et al. (2020) created the MADAR CODA Corpus,
which consists of parallel sentences in CODA and
their original raw form for five Arabic city dialects.
CODAfication—the process of normalizing DA into
CODA-has been addressed using feature-based
methods (Eskander et al., 2013) and morphological
disambiguation models (Pasha et al., 2014; Zal-
mout et al., 2018; Khalifa et al., 2020; Zalmout
and Habash, 2020; Obeid et al., 2022). More re-
cently, Alhafni et al. (2024) framed CODAfication
as a DA GEC problem, benchmarking pretrained
Arabic Seq2Seq models on the MADAR CODA
corpus and demonstrating that incorporating dialect
identification improves performance.

In this work, we propose a generalizable and
efficient text editing approach and evaluate its ef-
fectiveness on both MSA and DA GEC. For MSA
GEC, we benchmark our models against Alhafni
et al. (2023) on QALB-2014, QALB-2015, and
ZAEBUC. For DA GEC, we build on Alhafni et al.
(2024) by framing CODAfication as a DA GEC
problem, evaluating our approach on the MADAR
CODA corpus and comparing it to their results.

17893

Corrected * : f -1 (a)
Alnfsyh AISHhR symA wlA bAISHA AlAhtmAm yjb
7 6 5 4 3 2 1 0
Erroneous]l \ ¢ LYy < r\.:.:a}/\ 5 (b)
Alnfsyh AISHh 1 wlAsymA ISHh b AlAhtmAm yjb
Word Edits |KKKKKKR [5]A_[.]| KKKKR [5] |DD|KKKI [JKKKK | MI_[]KKKR [5] | K | KKR [IJKKKKK [KKK|(c)
Word Edits
*R_[5]A [*R_[5] |D*| KKKI []K* NK*R [3] |K* x| K*
(Compressed) K*R_[3]A_[.] K*R_[3] 11 MI_['JK*R_[5] KKR_[]K (d)
7b 7a 6b 6a 5 4 3b 3a 2 1b la 0
Tokenized ottt o)l | o C“’M 3 e ottt C""J o (L,:»## Yooz ©
Erroneous #ith /i'lnfsy #ith | AISH | fy wiAsymA #ith ISH #htmAm: AIA | yjb
Subword Edits[R_[5]A_[.] KKKKKK| R [5] [KKKK |DD|KKKI_[JKKKK | R_[5] MI_['JKKK| K | KKKKK \KKR_[1]|KKK| (f)
Subword Edits
’ . K* ° K* |D*| KKKI []K* 5] i MI ['][K* |K* K* K*R _[']| K*
(Compressed) R_E1AL] R [e] [R_[e] [M (2

Figure 1: An example showing the different edit representations: words, words (compressed), subwords, and
subwords (compressed). The edit operations are keep (K/K*), delete (D/D*), merge before (M), replace (R_[c]),
insert (I_[c]), and append (A_[c]). Solid lines indicate word alignments between the corrected and erroneous
sentences, while dotted lines denote erroneous subword boundaries. The sentence in the figure can be translated as

“Health, especially mental health, must be taken care of .

3 Approach

We adopt a text editing approach to GEC and
frame the task as a sequence tagging problem. For-
mally, given an input erroneous sequence r =
x1,Z2, ..., Tn, the goal is to assign a sequence of
edit operations e = ey, ea, ..., e,; €; € F, where F
is the edit vocabulary, such that applying edit e; on
the input token x; at each position ¢ would result in
the corrected sequence y = ¥y1, Y2, ..., Ym. In the
next two sections, we describe how we extract the
edits and the edit representations we use to build
our edit-based taggers.

3.1 Edit Extraction

We begin by aligning erroneous and corrected sen-
tence pairs at the word level using a weighted Lev-
enshtein edit distance (Levenshtein, 1966), which
represents the minimum number of insertions, dele-
tions, and replacements required to correct the er-
roneous sentence, with each edit affecting a sin-
gle word. However, some errors span multiple
words. To capture multi-word edits, we follow
the approach of Alhafni et al. (2023) by extending
the alignment process with an iterative algorithm
that greedily merges or splits adjacent words, mini-
mizing the overall cumulative edit distance. After
obtaining the word-level alignment, we apply the
algorithm again, this time to each aligned word
pair rather than the entire sentence, to determine
character-level alignments. This process identifies
the minimal character edits in terms of keep (K),

delete (D), merge before (M), insert (I_[c]), and
replace (R_[c]) that are needed to transform each er-
roneous word into its correction, where the inserted
or replaced character (c¢) is explicitly specified.
Figure 1 presents an example of an aligned
erroneous-corrected sentence pair along with the
corresponding edits. For instance, in row b, the
erroneous word fh;.a}l\ AlAhtmAm? (word 1) re-

quires the edit KKR_[1JKKKKK (row c¢) which con-
sists of eight character edits—one replacement
and seven keeps—to produce its corrected form

a1 AlAAtmAm. Similarly, ax.a) ISHh (row b,
word 3), must be merged with the word before it,
in addition to one insertion and one replacement
(MI_[VIKKKR_[8], row c).

In some cases, corrections require the inser-
tion of entirely new characters, forming additional
words in the erroneous input. Since we frame the
task as a sequence tagging problem, we represent
these insertions as appends (A_[c]) to existing ed-
its rather than introducing standalone edits. This
ensures that all edits, including word insertions,
remain within the tagging framework. For exam-
ple, to insert a period at the end of the erroneous
sentence in Figure 1, we append the tag (A_[.]) to
the edit of the final word (row ¢, word 7).

3.2 [Edit Representation

The edit representation directly influences the size
of the edit vocabulary (|E|), creating an impor-

2 Arabic HSB transliteration (Habash et al., 2007).

17894

tant trade-off: a larger vocabulary offers more pre-
cise corrections but increases model complexity,
whereas a smaller vocabulary enhances learning ef-
ficiency at the cost of expressiveness. Controlling
|E| is crucial to avoid the explosion of possible ed-
its, which is particularly important when working
with morphologically rich languages like Arabic.
We explore four methods for controlling | E'| while
maintaining sufficient coverage.

Edit Compression Once we obtain character-
level edits for each word, we compress them into
a more compact representation. The motivation
behind this transformation is that while different
words may undergo the same type of correction,
their character-level edits can differ due to varia-
tions in word length. For example, in row b of
Figure 1, both words 0 and 2 share a keep edit,
yet they receive different edit labels because of
their length differences (row c). To address this,
we introduce a generalized notation for common
edit patterns. Consecutive keep (K) and delete
(D) operations are represented as K* and D*, re-
spectively. Similarly, consecutive insertions and
appends are merged into a single operation, rep-
resented as I_[c*] for insertions and A_[c¢*] for
appends, indicating the insertion or appending of
multiple characters.

Since there are multiple ways to compress an
edit sequence, we select the optimal strategy based
on the frequency distribution of edit patterns in
the training data. This approach ensures that the
most common transformations are encoded in a
way that balances expressiveness with efficiency,
resulting in a more structured and learnable edit
representation.

Input Unit Since Transformer-based models op-
erate at the subword level, we project character-
level edits onto subwords while maintaining their
boundaries to ensure proper alignment. This not
only ensures consistency with the model’s input
representation but also helps reduce the edit vocab-
ulary size. Our approach is inspired by the method
of Straka et al. (2021), but it differs in several key
aspects: (1) Straka et al. (2021) tokenize the erro-
neous and corrected sentence pairs before aligning
them to extract the edits at the subword level. In
contrast, our method extracts edits at the word level
and then projects them onto subwords; (2) They
limit the number of character-level edits per sub-
word edit, while our approach imposes no such
restrictions, allowing for broader coverage.

Input Comp. Subset Prune Edits OOV% Fys
Word X All - 16221 1.00% 98.4
Subword X All - 9,060 0.36% 98.7
Word v All - 10410 1.00% 98.4
Subword v/ All - 6,170 036% 98.7
Subword v NoPnx - 4,799 0.27% 98.8
Subword v/ Pnx - 160 0.01% 99.4
Subword v/ All 10 683 075% 98.1
Subword v/ Al 20 442 1.02% 97.7
Subword v/ All 30 329 124% 974
Subword v/ NoPnx 10 520 0.56% 98.2
Subword v/ NoPnx 20 335 0.75% 97.8
Subword v NoPnx 30 250 092% 97.5
Subword v/ Pnx 10 48 0.02% 99.4
Subword v/ Pnx 20 35 0.05% 99.4
Subword v/ Pnx 30 29 0.05% 99.3

Table 1: Edit statistics on QALB-2014. Input is the
input unit (word or subword). Comp. indicates whether
the edit is compressed. Subset specifies whether the ed-
its capture all errors, punctuation-only errors (Pnx), or
non-punctuation errors (NoPnx). Edits represents the to-
tal number of unique edits in the training set. OOV % is
the percentage of out-of-vocabulary edits (non-unique)
in the Dev set of QALB-2014.

Figure 1 presents the subword-level edits in both
their uncompressed (row f) and compressed (row
g) forms. In the uncompressed subword-level edits,
we observe that two subwords (3b and 6b in row
e), which belong to different words, share the same
edit (R_L&]). In the compressed representation, we
notice that several subwords—such as 0, 1b, 2, 6a,
and 7a—end up sharing the same edit (K*).

Edit Segregation Both the MSA GEC datasets
we report on, QALB-2014 and ZAEBUC, exhibit
high frequencies of punctuation errors, with punc-
tuation accounting for 40% of the errors in QALB-
2014 and 15% in ZAEBUC training sets (Alhafni
et al., 2023). To reduce the number of edits that
the MSA GEC models must learn, we segregate
punctuation edits from non-punctuation edits. This
results in two versions of the data: one where only
non-punctuation errors are tagged, and another
where all non-punctuation errors are corrected,
leaving only punctuation errors for the model to
focus on. Note that this separation is applied only
to the MSA GEC datasets we report on, and not to
the DA GEC dataset. Additionally, this approach
requires training two systems to be applied sequen-
tially during inference: the first system fixes non-
punctuation errors, while the second system ad-
dresses only punctuation errors.

17895

Edit Pruning Morphologically rich languages,
in particular, tend to have many infrequent edits
in GEC datasets. To improve the model’s learning
ability, we analyze the distribution of edits in the
training data and prune those that occur less fre-
quently than a threshold 7', replacing them with
the “keep” edit. This pruning is applied exclusively
during training, enabling the model to focus on
frequent and informative edits.

3.3 Edit Coverage

Table 1 presents edit statistics for QALB-2014, il-
lustrating the impact of our strategies to reduce the
edit vocabulary size | E'| on edit coverage and upper-
bound (oracle) performance on the development
(Dev) set. Edit coverage measures the proportion
of training edits found in the Dev set, while ora-
cle performance is evaluated using the MaxMatch
(M?) scorer (Dahlmeier and Ng, 2012) Fy 5 (§4.2).
We use AraBERTv02 (Antoun et al., 2020) for sub-
word tokenization, as it yielded the best results
among our tested models (more details in §5).

Switching from word-level to subword-level ed-
its reduces unique training edits by 44% (16,221
to 9,060) and lowers the Dev set OOV rate from
1% to 0.4%, yielding a 0.3-point Fy 5 gain. Edit
compression further reduces unique edits while pre-
serving OOV % and oracle performance.

Segregating punctuation (Pnx) from non-
punctuation (NoPnx) edits reduces combined train-
ing edits (4,799+160 from 6,170). However,
NoPnx results are not directly comparable, as punc-
tuation is explicitly removed before the evaluation.
Pnx Fys scores are higher as they are evaluated
on a Dev set with non-punctuation errors already
corrected, making the test easier.

To assess the impact of pruning, we apply fre-
quency thresholds of 10, 20, and 30 to remove
low-frequency edits. As expected, pruning reduces
the number of unique training edits and increases
the OOV % in the Dev set, yet Fg 5 remains largely
unaffected. This suggests that the majority of the
6,170 compressed subword edits occur infrequently
and contribute little to the model’s upper-bound per-
formance. A similar trend is observed for both Pnx
and NoPnx edits, reinforcing the idea that many
low-frequency edits can be pruned without degrad-
ing oracle performance.

We present the same analysis on all datasets in
Appendix B Table 9.

Dataset Split Lines Words Err.% Domain
Train 19K 1M 30% Comments
QALB-2014 Dev 1K 54K 31% Comments
Test 968 51K 32% Comments
QALB-2015 Test 920 49K 27% Comments
Train 150 25K 24% Essays
ZAEBUC Dev 33 5K 25% Essays
Test 31 5K 26% Essays
Train 7K 40K 22% Comments
lé/lgll))[z:R Dev 1.5K 9K 20% Comments
Test 1.5K 9K 21% Comments

Table 2: Corpus statistics of MSA (QALB, ZAEBUC)
and DA (MADAR CODA) GEC datasets.

4 Experimental Setup

4.1 Data

MSA GEC We report on three publicly available
MSA GEC datasets. The first is the QALB-2014
shared task dataset (Mohit et al., 2014), followed by
the native (L1) test set from the QALB-2015 shared
task (Rozovskaya et al., 2015). The third dataset is
ZAEBUC (Habash and Palfreyman, 2022). QALB-
2014 and the L1 test set of QALB-2015 contain
comments by native speakers from the Aljazeera
news website, whereas ZAEBUC consists of es-
says written by native university students. We use
the publicly available splits for QALB-2014 and
QALB-2015, while for ZAEBUC, we use the splits
created by Alhafni et al. (2023).

DA GEC We use the MADAR CODA corpus
(Eryani et al., 2020), a set of 10,000 sentences
from five Arabic city dialects (Beirut, Cairo, Doha,
Rabat, and Tunis) written in the CODA standard in
parallel with their original raw form. The sentences
come from the Multi-Arabic Dialect Applications
and Resources (MADAR) Project (Bouamor et al.,
2018) and are in parallel across the cities (2,000
sentences per city). We use the publicly available
splits created by Alhafni et al. (2024).
Table 2 summarizes the dataset statistics.

4.2 Evaluation

We use the MaxMatch (M?) scorer (Dahlmeier and
Ng, 2012), which evaluates GEC systems by com-
paring hypothesis edits with reference edits, calcu-
lating precision (P), recall (R), Fy, and Fy 5 scores.
Fo.5 weighs precision twice as much as recall, to
prioritize the accuracy of edits relative to all edits
made by the system.

17896

QALB-2014 ZAEBUC

P R F Fps | P R F; Fys
A’2023 (Seq2Seq) 832 649 729 78.7 [87.3 70.6 78.1 834
A’2023 (Seq2Seq++) 83.1 67.9 747 79.6 |87.6 73.9 80.2 84.5
GPT-3.5-turbo 68.6 58.6 63.2 663 |71.0 63.5 67.1 69.4
GPT-40 80.7 65.7 724 772 |86.5 76.8 81.3 84.3
Fanar 69.7 63.7 66.6 68.4 |76.3 73.6 749 75.8
Jais-13B-Chat 49.1 369 42.1 46.0 |50.2 19.7 28.3 384
SWEET 81.8 68.8 74.7 78.8 [858 723 784 82.7
SWEET? 81.9 704 75.7 79.3 |85.8 73.3 79.1 83.0
SWEETZ pyx + SWEETp,, 83.7 68.8 75.6 80.37|86.7 73.9 79.8 83.8
3-Ensemble 849 68.8 76.0 81.1 [89.6 72.8 80.3 85.6
4-Ensemble 89.1 61.6 72.8 81.8¢|93.3 68.3 78.9 86.9¢

Table 3: MSA GEC results on the Dev sets of QALB-2014 and ZAEBUC. A’2023 is Alhafni et al. (2023). Best
non-ensemble results are underlined; best overall results are in bold. denotes statistical significance over the best
baseline; I denotes statistical significance over both the best baseline and the best non-ensemble model.

P R F; Fys
A’2024 (Seq2Seq) 86.8 77.4 81.8 84.7
A’2024 (Seq2Seq++) 87.6 79.3 83.3 85.8
GPT-3.5-turbo 35.5 29.7 323 34.1
GPT-40 537 54.4 54.1 53.8
Fanar 24.5 28.8 264 252
Jais-13B-Chat 14.1 150 14.5 143
SWEET 89.1 75.5 81.7 86.0
SWEET? 87.5 73.5 79.9 843
3-Ensemble 91.7 774 839 88.4
4-Ensemble 93.8 72.5 81.8 88.6

Table 4: DA GEC results on the MADAR CODA Dev
set. A’2024 is Alhafni et al. (2024). Best non-ensemble
results are underlined; best overall results are in bold. I
denotes statistical significance over both the best base-
line and the best non-ensemble model.

4.3 Models

LLMs We evaluate four LLMs: two commer-
cial models and two open-source, Arabic-centric
models. The commercial models include OpenAl’s
GPT-3.5-turbo and GPT-40 (OpenAl et al., 2024),
while the Arabic-centric models are Jais-13B-Chat
(Sengupta et al., 2023) and the recently introduced
Fanar LLM (Team et al., 2025). We prompt GPT-
3.5-turbo, GPT-40, and Fanar through the OpenAl
API, while Jais-13B-Chat is prompted using Hug-
ging Face’s Transformers (Wolf et al., 2020). Our
experiments use both English and Arabic prompts,
employing 0-shot and 5-shot prompting strategies.
We design the prompts to elicit minimal edit-style
corrections, ensuring that the LLMs’ outputs re-

main as close as possible to the original input
in phrasing and lexical choices. We present our
prompts in Figures 2 and 3 in Appendix H.

Edit Taggers To investigate the impact of edit
representation design on performance (§3.2), we
build edit taggers with different configurations. For
word-level tagging, we use the representation of the
first subword of each word and pass it through the
subsequent layers. For subword-level tagging, we
use the representation of each subword individually.
Several Arabic pretrained transformer encoders
based on BERT (Devlin et al., 2019) have been de-
veloped (Antoun et al., 2020; Abdul-Mageed et al.,
2021; Inoue et al., 2021; Ghaddar et al., 2022).
We select the three best-performing Arabic BERT
models, as identified by Inoue et al. (2021) across
various sentence and token classification tasks:
AraBERTv02 (Antoun et al., 2020), ARBERTv2
(Abdul-Mageed et al., 2021), and CAMeLBERT-
MSA (Inoue et al., 2021).

For QALB-2014, our edit taggers are trained ex-
clusively on QALB-2014, following the shared task
restrictions. For QALB-2015 (L1), we train only
on QALB-2014 for consistency. For ZAEBUC, we
train on both QALB-2014 and ZAEBUC, upsam-
pling ZAEBUC tenfold to address its smaller size
and domain shift. For DA GEC, we train on the
MADAR CODA training split. The hyperparame-
ters we used are detailed in Appendix A.

4.4 Ensembling

We construct majority vote ensemble models by
aggregating the outputs of multiple GEC systems.

17897

QALB-2014 QALB-2015 ZAEBUC

P R F Fps | P R F Fo5s | P R F; Fys
A’2023 (Seq2Seq) 84.0 64.7 73.1 79.3 [82.0 71.7 76.5 79.7 |86.0 71.6 782 82.7
A'2023 (Seq2Seq++) 84.2 654 73.6 79.6 |82.6 72.1 77.0 80.3 |859 73.4 79.2 83.1
GPT-40 81.5 65.5 72.6 77.7 |81.1 743 77.5 79.6 |84.4 759 79.9 82.5
SWEET? 82.6 69.5 75.5 79.6 |80.0 74.3 77.0 78.8 [85.5 74.4 79.6 83.0
SWEETZ p, + SWEETp,, 84.5 67.7 75.2 80.57|82.2 73.6 77.7 80.3 [85.7 74.1 79.5 83.1
3-Ensemble 85.7 67.4 754 81.3 [83.7 733 78.1 81.3 [89.7 73.7 80.9 85.9
4-Ensemble 89.7 60.2 72.0 81.7¢ |88.3 66.7 76.0 82.9%|93.4 689 79.3 87.2¢

Table 5: MSA GEC results on the Test sets of QALB-2014, QALB-2015 (L1), and ZAEBUC. A’2023 is Alhafni et al.
(2023). Best non-ensemble results are underlined; best overall results are in bold. { denotes statistical significance
over the best baseline; I denotes statistical significance over both the best baseline and the best non-ensemble model.

P R F; Fys
A'2024 (Seq2Seq) 87.3 78.0 82.4 852
A'2024 (Seq2Seq++) 88.4 79.0 83.4 86.3
GPT-40 56.1 54.8 55.5 55.9
SWEET 89.4 76.6 82.5 86.5
3-Ensemble 922 77.7 84.3 88.9°
4-Ensemble 94.0 729 82.1 88.8

Table 6: DA GEC results on the Test set of MADAR
CODA. A’2024 is Alhafni et al. (2024). Best non-
ensemble results are underlined, best overall results are
in bold. 1 denotes statistical significance over both the
best baseline and the best non-ensemble model.

This is enabled by our edit extraction algorithm
(§3.1), which allows us to align and extract edits
from models with different architectures. Using
this algorithm, we first align each model’s output
with the input text, extract the proposed edits, and
then determine the final edit sequence through ma-
jority voting. Following Tarnavskyi et al. (2022),
we retain an edit only if at least £ — 1 models out of
k models predict it; otherwise, we leave the input
unchanged. This strategy prioritizes precision over
recall, which is crucial for GEC systems, as pre-
cision is generally more important than correcting
every possible error (Bryant et al., 2023).

5 Results

Tables 3 and 4 show the Dev results for MSA and
DA GEC, respectively. For each dataset, we com-
pare our models with the best-performing Seq2Seq
and Seq2Seq++ baselines reported by Alhafni et al.
(2023) and Alhafni et al. (2024). The Seq2Seq++
setups incorporate additional signals, such as mor-
phological preprocessing and GED information for

MSA GEC, or dialect identification for DA GEC.
Full results for all Seq2Seq-based baseline variants
across datasets are provided in Appendices E and F.

LLMs We present LLMs results on MSA and DA
GEC using their best setups, optimized for average
Fo.5 across all datasets based on prompt language
and strategy (0-shot vs. 5-shot). Full results are in
Table 11 (Appendix D).

For QALB-2014, GPT-40 and Fanar outperform
GPT-3.5 and Jais-13B-Chat, with GPT-40 achiev-
ing the best performance, though none surpass Al-
hafni et al. (2023). On ZAEBUC, GPT-4o0 leads,
achieving the highest recall (76.8) and F; (81.3).
For DA GEC, GPT-4o is the top LLM, but overall
LLM performance is notably lower than for MSA.

Edit Taggers Table 10 (Appendix C) presents
the full edit tagging results on the Dev sets, explor-
ing edit design choices using CAMeLBERT-MSA,
AraBERTvV02, and ARBERTV2. AraBERTv02 con-
sistently performs best. Subword-level edits, com-
pression, and pruning improve performance, with
optimal pruning thresholds of 10 for QALB-2014
and MADAR CODA, and 30 for ZAEBUC.

The optimal setup for each dataset (subword,
compression, pruning) is presented in Tables 3 and
4. We henceforth refer to this system as SWEET
(Subword Edit Error Tagger). SWEET achieves an
Fo5 of 78.8 on QALB-2014 and 86.0 on MADAR
CODA, outperforming the Seq2Seq baseline on
QALB-2014 and setting a new SOTA on MADAR
CODA (though the improvement is not statistically
signiﬁcant).3 On ZAEBUQC, it scores 82.7 Fy s,
trailing behind the Seq2Seq baseline.

3Statistical significance was done using a two-sided ap-
proximate randomization test.

17898

QALB-2014

ZAEBUC

MADAR CODA

Baseline SWEET Ensemble|Baseline SWEET Ensemble |Baseline SWEET Ensemble
Delete 41.1 44.3 45.2 51.9 63.6 62.5 0.0 0.0 0.0
Merge-B 94.0 93.7 93.8 96.7 96.9 96.6 94.4 86.6 92.7
Merge-1I 93.8 93.5 93.6 96.7 96.9 96.6 93.6 84.8 91.6
M 339 33.6 28.6 48.6 50.0 41.7 82.5 78.0 82.4
M+O 58.0 61.0 60.6 55.6 100.0 0.0 0.0 0.0 0.0
(0] 94.3 94.5 94.4 94.4 94.4 94.1 92.1 90.2 914
O+X 78.1 81.5 83.3 0.0 0.0 0.0 0.0 0.0 0.0
P 75.0 75.6 76.8 62.8 71.9 70.4 65.8 35.7 55.6
S 46.4 57.1 57.4 40.4 47.6 46.9 83.1 82.3 83.0
X 61.2 614 62.4 72.9 74.1 74.1 73.8 76.9 79.5
Split 87.1 83.8 87.6 88.2 90.0 95.2 85.9 83.3 86.8
UNK 59.2 55.0 56.0 63.1 44.6 47.6 93.0 94.6 94.1
C 97.1 96.4 94.7 96.1 96.0 93.9 97.0 96.0 94.7
Macro Avg. 70.7 71.6 71.9 66.7 71.2 63.1 78.3 73.5 77.4

Table 7: Error type performance on the Dev sets of QALB-2014, ZAEBUC, and MADAR CODA for the best
Seq2Seq++ baseline, the best SWEET model (SWEET ppy + SWEETp,, for QALB-2014 and ZAEBUC; SWEET for
MADAR CODA), and the best ensemble (4-Ensemble). Results are reported in terms of Fy 5. Best non-ensemble
results are underlined; best overall results are in bold. UNK refers to unknown error types; C refers to correct words.

Consistent with previous work on text editing
(Omelianchuk et al., 2020; Straka et al., 2021), we
find that iterative correction improves MSA GEC
up to two iterations (SWEET?), achieving 79.3 on
QALB-2014 and 83.0 Fy5 on ZAEBUC, with the
highest recall on QALB-2014 (70.4). However, it-
erative correction degrades DA GEC performance.

Separating non-punctuation edits (SWEETNopnx)
from punctuation edits (SWEETppx) improves MSA
GEC performance. The best setup applies these
systems in sequence: two iterations of non-
punctuation correction followed by one iteration of
punctuation correction (SWEETZ,pyx + SWEETp,,)-
This setup achieves the highest Fy 5 score among
text editing models, setting a new SOTA on QALB-
2014 with 80.3. This improvement is statistically
significant compared to Seq2Seq++ (p < 0.05) and
is driven by a precision of 83.7. Its performance on
ZAEBUC leads other edit tagging techniques but
trails behind GPT-4o.

For our ensemble models (3-Ensemble), we com-
bine the outputs of the top three non-LLM models
per dataset. For QALB-2014 and ZAEBUC, this
includes Seq2Seq++, SWEET?, and the cascaded
setup SWEETZp,, + SWEETp,,. For MADAR
CODA, we ensemble Seq2Seq++, SWEET, and the
second-best SWEET model using CAMeLBERT-
MSA (see Table 10 in Appendix C). The 3-
Ensembles outperform single models, achieving

SOTA results across all datasets, primarily through
increased precision at the cost of recall. Adding
GPT-40’s output to the ensemble further boosts per-
formance (4-Ensemble), reaching an Fg 5 of 81.8
on QALB-2014, 86.9 on ZAEBUC, and 88.6 on
MADAR CODA. These gains are statistically sig-
nificant (p < 0.05) compared to the best baseline
and the best non-ensemble model for each dataset.

Test Results Tables 5 and 6 present the Test re-
sults for MSA and DA GEC, using the best se-
tups identified from the Dev sets. On QALB-
2014, the cascaded setup SWEETZ;,pyx + SWEETp,,
sets a new SOTA with 80.5 Fy 5, outperforming
the Seq2Seq and Seq2Seq++ baselines (statisti-
cally significant at p < 0.05). On QALB-2015,
this setup matches Seq2Seq++ with an Fys of
80.3. Similarly, on ZAEBUC, it achieves 83.1,
on par with Seq2Seq++. On MADAR CODA,
SWEET achieves 86.5, outperforming Seq2Seq++
(though not statistically significant). Our ensem-
ble models further enhance performance across
all datasets, reaching 81.7 on QALB-2014, 82.9
on QALB-2015, 87.2 on ZAEBUC, and 88.9 on
MADAR CODA. Notably, adding GPT-40’s output
to the ensemble (i.e., the 4-Ensemble) yields statis-
tically significant improvements for MSA GEC. On
MADAR CODA, the 3-Ensemble already achieves
statistically significant gains, while the addition of
GPT-40 does not lead to further improvement.

17899

5.1 Error Analysis

Table 7 presents specific error type performance
over the Dev sets of QALB-2014, ZAEBUC, and
MADAR CODA. We conduct automatic error anal-
ysis using ARETA (Belkebir and Habash, 2021), an
automatic MSA error type annotation tool. ARETA
defines error types based on seven classes cover-
ing: orthography (O), morphology (M), syntax (X),
semantics (S), punctuation (P), merges (Merge-
Beginning/Merge-Inside), and splits (Split).

On QALB-2014, the cascaded setup
SWEETZ,p,, + SWEETp, outperforms the
Seq2Seq++ baseline on most error types, achieving
a macro Fy 5 of 71.6. The 4-Ensemble provides a
modest improvement, reaching 71.9. On ZAEBUC,
while the cascaded SWEET setup does not surpass
Seq2Seq++ in overall performance (Table 3), it
achieves higher scores on most individual error
types, with a macro Fyps of 71.2. This stems
from the skewed distribution of error types in the
ZAEBUC Dev set, which is dominated by correct
words (C) and frequent errors like O and Merge,
categories where both models perform similarly.
The error types where the cascaded SWEET model
excels are relatively infrequent (see Table 16 in
Appendix G). Notably, while the 4-Ensemble
yields the best overall GEC results, it falls short
of Seq2Seq++ and the cascaded SWEET model in
error-type performance, likely due to prioritizing
precision over recall (Table 3).

On MADAR CODA, neither SWEET nor the 4-
Ensemble surpasses Seq2Seq++ in error-type per-
formance. While SWEET performs slightly better
in terms of DA GEC, the improvement is not sta-
tistically significant and is driven primarily by pre-
cision; in contrast, Seq2Seq++ claims the highest
recall (Table 4). The 4-Ensemble further increases
precision but at the cost of recall. The high propor-
tion of the unknown (UNK) errors also highlights
ARETA’s limitations in capturing dialect-specific
errors, as it was primarily designed for MSA.

5.2 Runtime Performance

Table 8 compares our text editing models to the
Seq2Seq models from Alhafni et al. (2023) in
terms of model size, initialization time, and in-
ference runtime. Initialization and inference times
were averaged over 10 runs on the QALB-2014
Dev set using a single A100 GPU with a batch
size of 32. The reported values for Seq2Seq++
reflect the combined size, initialization, and in-

Params Time

Init.| Run
A’2023 (Seq2Seq) 139M | 1.7 | 70.7
A’'2023 (Seq2Seq++) 502M | 24.7 | 218.5
SWEET 135M | 1.3 | 11.6
SWEET? 135M| 1.3 | 23.2
SWEETZ py + SWEETp,, 270M | 2.7 | 34.8
3-Ensemble 908M | 28.7 |276.4

Table 8: Number of parameters (Params.), initialization
time (Init.), and runtime for different models on the Dev
set of QALB-2014. Init. and runtime are in seconds and
averaged over 10 runs on a single A100 GPU using a
batch size of 32.

ference times of all its components. Our SWEET
model is 4x smaller than Seq2Seq++, while the cas-
caded system SWEETZ p,, + SWEETp, is about
half the Seq2Seq++ model size. In terms of speed,
SWEET initializes 19x faster than Seq2Seq++,
while the cascaded system achieves a 9x initial-
ization speedup. For inference, SWEET is also
19x faster, SWEET? is 9x faster, and the cascaded
setup is 6x faster. Compared to the vanilla Seq2Seq
model, SWEET runs 6x faster, SWEET? is 3x faster,
and the cascaded system is twice as fast. Although
the 3-Ensemble setup achieves the best perfor-
mance, it is the largest in model size and the slowest
overall.

6 Conclusion and Future Work

We introduced a data-driven text editing approach
that eliminates the need for predefined language-
specific edits. By applying it to Arabic, a diglossic
and morphologically rich language, we studied the
impact of different edit representations on model
performance. Our models set new SOTA results
on two Arabic GEC benchmarks and matched top-
performing systems on two others. Moreover, they
offer a significant efficiency advantage, running
over six times faster than existing Arabic GEC sys-
tems, making them more suitable for practical de-
ployment. We also explored how ensemble models
contribute to further performance improvements.

In future work, we plan to extend this approach
to other languages and dialectal varieties (Jarrar
et al., 2016; Khalifa et al., 2018) and investigate
its potential for generating synthetic data for GEC
(Li et al., 2022; Zhang et al., 2022; Stahlberg and
Kumar, 2024). We also plan to explore other en-
sembling approaches (Qorib and Ng, 2023; Qorib
et al., 2022).

17900

Limitations

While our work demonstrates promising results,
there are several considerations that could impact
its broader applicability. One limitation is the use
of closed-source commercial LLLMs, which intro-
duces a degree of uncertainty, as these models
may undergo undisclosed updates over time. Such
changes could affect the reproducibility of our re-
sults. Additionally, we did not report on L2 Arabic
GEC, which could provide valuable insights into
how our approach generalizes to second-language
learners errors. We also did not explore multilin-
gual transformer encoders, as we hypothesize that
monolingual models would be more effective for
Arabic GEC. However, future work is needed to
verify this assumption. Finally, our analysis fo-
cused on Arabic, which may limit the generaliz-
ability of our findings to languages with different
error correction challenges.

Ethical Considerations

GEC systems can aid in identifying and correct-
ing errors, but they also raise ethical concerns.
Misidentifications or miscorrections may frustrate
learners, and GEC tools should complement, not
replace, human judgment. There is also the risk
of malicious use, such as profiling learners based
on error patterns, which could lead to bias or pri-
vacy issues. It is important to use these systems
responsibly to protect end users.

Acknowledgments

We thank Ted Briscoe for helpful discussions and
constructive feedback. We also acknowledge the
support of the High Performance Computing Cen-
ter at New York University Abu Dhabi.

References

Muhammad Abdul-Mageed, AbdelRahim Elmadany,
and El Moatez Billah Nagoudi. 2021. ARBERT &
MARBERT: Deep bidirectional transformers for Ara-
bic. In Proceedings of the 59th Annual Meeting of the
Association for Computational Linguistics and the
11th International Joint Conference on Natural Lan-
guage Processing (Volume 1: Long Papers), pages
7088-7105, Online. Association for Computational
Linguistics.

Bashar Alhafni, Sarah Al-Towaity, Ziyad Fawzy,
Fatema Nassar, Fadhl Eryani, Houda Bouamor, and
Nizar Habash. 2024. Exploiting dialect identification
in automatic dialectal text normalization. In Pro-
ceedings of The Second Arabic Natural Language

Processing Conference, pages 42-54, Bangkok, Thai-
land. Association for Computational Linguistics.

Bashar Alhafni, Go Inoue, Christian Khairallah, and
Nizar Habash. 2023. Advancements in Arabic gram-
matical error detection and correction: An empirical
investigation. In Proceedings of the 2023 Conference
on Empirical Methods in Natural Language Process-
ing, pages 6430-6448, Singapore. Association for
Computational Linguistics.

Wissam Antoun, Fady Baly, and Hazem Hajj. 2020.
AraBERT: Transformer-based model for Arabic lan-
guage understanding. In Proceedings of the 4th Work-
shop on Open-Source Arabic Corpora and Process-
ing Tools, with a Shared Task on Offensive Language
Detection, pages 9—15, Marseille, France. European
Language Resource Association.

Abhijeet Awasthi, Sunita Sarawagi, Rasna Goyal,
Sabyasachi Ghosh, and Vihari Piratla. 2019. Par-
allel iterative edit models for local sequence trans-
duction. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
4260-4270, Hong Kong, China. Association for Com-
putational Linguistics.

Riadh Belkebir and Nizar Habash. 2021. Automatic
error type annotation for Arabic. In Proceedings of
the 25th Conference on Computational Natural Lan-
guage Learning, pages 596—606, Online. Association
for Computational Linguistics.

Houda Bouamor, Nizar Habash, Mohammad Salameh,
Wajdi Zaghouani, Owen Rambow, Dana Abdul-
rahim, Ossama Obeid, Salam Khalifa, Fadhl Eryani,
Alexander Erdmann, and Kemal Oflazer. 2018. The
MADAR Arabic dialect corpus and lexicon. In Pro-
ceedings of the Eleventh International Conference on
Language Resources and Evaluation (LREC 2018),
Miyazaki, Japan. European Language Resources As-
sociation (ELRA).

Fethi Bougares and Houda Bouamor. 2015.
UMMU @QALB-2015 shared task: Character
and word level SMT pipeline for automatic error
correction of Arabic text. In Proceedings of the
Second Workshop on Arabic Natural Language Pro-
cessing, pages 166—172, Beijing, China. Association
for Computational Linguistics.

Christopher Bryant, Mariano Felice, @Qistein E. Ander-
sen, and Ted Briscoe. 2019. The BEA-2019 shared
task on grammatical error correction. In Proceedings
of the Fourteenth Workshop on Innovative Use of NLP
for Building Educational Applications, pages 52-75,
Florence, Italy. Association for Computational Lin-
guistics.

Christopher Bryant, Zheng Yuan, Muhammad Reza
Qorib, Hannan Cao, Hwee Tou Ng, and Ted Briscoe.
2023. Grammatical error correction: A survey of the
state of the art. Computational Linguistics, pages
643-701.

Steven Coyne, Keisuke Sakaguchi, Diana Galvan-Sosa,
Michael Zock, and Kentaro Inui. 2023. Analyzing

17901

https://doi.org/10.18653/v1/2021.acl-long.551
https://doi.org/10.18653/v1/2021.acl-long.551
https://doi.org/10.18653/v1/2021.acl-long.551
https://doi.org/10.18653/v1/2024.arabicnlp-1.4
https://doi.org/10.18653/v1/2024.arabicnlp-1.4
https://doi.org/10.18653/v1/2023.emnlp-main.396
https://doi.org/10.18653/v1/2023.emnlp-main.396
https://doi.org/10.18653/v1/2023.emnlp-main.396
https://aclanthology.org/2020.osact-1.2/
https://aclanthology.org/2020.osact-1.2/
https://doi.org/10.18653/v1/D19-1435
https://doi.org/10.18653/v1/D19-1435
https://doi.org/10.18653/v1/D19-1435
https://doi.org/10.18653/v1/2021.conll-1.47
https://doi.org/10.18653/v1/2021.conll-1.47
https://aclanthology.org/L18-1535/
https://aclanthology.org/L18-1535/
https://doi.org/10.18653/v1/W15-3221
https://doi.org/10.18653/v1/W15-3221
https://doi.org/10.18653/v1/W15-3221
https://doi.org/10.18653/v1/W19-4406
https://doi.org/10.18653/v1/W19-4406
https://doi.org/10.1162/coli_a_00478
https://doi.org/10.1162/coli_a_00478
https://arxiv.org/abs/2303.14342

the performance of gpt-3.5 and gpt-4 in grammatical
error correction. Preprint, arXiv:2303.14342.

Daniel Dahlmeier and Hwee Tou Ng. 2012. Better
evaluation for grammatical error correction. In Pro-
ceedings of the 2012 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages
568-572, Montréal, Canada. Association for Compu-
tational Linguistics.

Christopher Davis, Andrew Caines, @istein E. Ander-
sen, Shiva Taslimipoor, Helen Yannakoudakis, Zheng
Yuan, Christopher Bryant, Marek Rei, and Paula But-
tery. 2024. Prompting open-source and commercial
language models for grammatical error correction
of English learner text. In Findings of the Associa-
tion for Computational Linguistics: ACL 2024, pages
1195211967, Bangkok, Thailand. Association for
Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171-4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Mona Diab, Mohamed Al-Badrashiny, Maryam
Aminian, Mohammed Attia, Heba Elfardy, Nizar
Habash, Abdelati Hawwari, Wael Salloum, Pradeep
Dasigi, and Ramy Eskander. 2014. Tharwa: A large
scale dialectal Arabic - Standard Arabic - English
lexicon. In Proceedings of the Ninth International
Conference on Language Resources and Evaluation
(LREC‘14), pages 3782-3789, Reykjavik, Iceland.
European Language Resources Association (ELRA).

Fadhl Eryani, Nizar Habash, Houda Bouamor, and
Salam Khalifa. 2020. A spelling correction corpus
for multiple Arabic dialects. In Proceedings of the
Twelfth Language Resources and Evaluation Confer-
ence, pages 4130—4138, Marseille, France. European
Language Resources Association.

Ramy Eskander, Nizar Habash, Owen Rambow, and
Nadi Tomeh. 2013. Processing spontaneous orthog-
raphy. In Proceedings of the 2013 Conference of the
North American Chapter of the Association for Com-
putational Linguistics: Human Language Technolo-
gies, pages 585-595, Atlanta, Georgia. Association
for Computational Linguistics.

Tao Fang, Shu Yang, Kaixin Lan, Derek F. Wong, Jin-
peng Hu, Lidia S. Chao, and Yue Zhang. 2023. Is
chatgpt a highly fluent grammatical error correc-
tion system? a comprehensive evaluation. Preprint,
arXiv:2304.01746.

Noura Farra, Nadi Tomeh, Alla Rozovskaya, and Nizar
Habash. 2014. Generalized character-level spelling
error correction. In Proceedings of the 52nd Annual
Meeting of the Association for Computational Lin-
guistics (Volume 2: Short Papers), pages 161-167,
Baltimore, Maryland. Association for Computational
Linguistics.

Charles F Ferguson. 1959. Diglossia. Word, 15(2):325-
340.

Abbas Ghaddar, Yimeng Wu, Sunyam Bagga, Ahmad
Rashid, Khalil Bibi, Mehdi Rezagholizadeh, Chao
Xing, Yasheng Wang, Xinyu Duan, Zhefeng Wang,
Baoxing Huai, Xin Jiang, Qun Liu, and Phillippe
Langlais. 2022. Revisiting pre-trained language mod-
els and their evaluation for Arabic natural language
processing. In Proceedings of the 2022 Conference
on Empirical Methods in Natural Language Process-
ing, pages 3135-3151, Abu Dhabi, United Arab Emi-
rates. Association for Computational Linguistics.

Roman Grundkiewicz, Marcin Junczys-Dowmunt, and
Kenneth Heafield. 2019. Neural grammatical error
correction systems with unsupervised pre-training
on synthetic data. In Proceedings of the Fourteenth
Workshop on Innovative Use of NLP for Building
Educational Applications, pages 252-263, Florence,
Italy. Association for Computational Linguistics.

Nizar Habash, Mona Diab, and Owen Rambow. 2012a.
Conventional orthography for dialectal Arabic. In
Proceedings of the Eighth International Conference
on Language Resources and Evaluation (LREC12),
pages 711-718, Istanbul, Turkey. European Lan-
guage Resources Association (ELRA).

Nizar Habash, Fadhl Eryani, Salam Khalifa, Owen Ram-
bow, Dana Abdulrahim, Alexander Erdmann, Reem
Faraj, Wajdi Zaghouani, Houda Bouamor, Nasser
Zalmout, Sara Hassan, Faisal Al-Shargi, Sakhar
Alkhereyf, Basma Abdulkareem, Ramy Eskander,
Mohammad Salameh, and Hind Saddiki. 2018. Uni-
fied guidelines and resources for Arabic dialect or-
thography. In Proceedings of the Eleventh Inter-
national Conference on Language Resources and
Evaluation (LREC 2018), Miyazaki, Japan. European
Language Resources Association (ELRA).

Nizar Habash, Ramy Eskander, and Abdelati Hawwari.
2012b. A morphological analyzer for Egyptian Ara-
bic. In Proceedings of the Twelfth Meeting of the
Special Interest Group on Computational Morphol-
ogy and Phonology, pages 1-9, Montréal, Canada.
Association for Computational Linguistics.

Nizar Habash and David Palfreyman. 2022. ZAEBUC:
An annotated Arabic-English bilingual writer corpus.
In Proceedings of the Thirteenth Language Resources
and Evaluation Conference, pages 79-88, Marseille,
France. European Language Resources Association.

Nizar Habash, Abdelhadi Soudi, and Tim Buckwalter.
2007. On Arabic Transliteration. In A. van den
Bosch and A. Soudi, editors, Arabic Computational
Morphology: Knowledge-based and Empirical Meth-
ods, pages 15-22. Springer, Netherlands.

Go Inoue, Bashar Alhafni, Nurpeiis Baimukan, Houda
Bouamor, and Nizar Habash. 2021. The interplay
of variant, size, and task type in Arabic pre-trained
language models. In Proceedings of the Sixth Arabic
Natural Language Processing Workshop, pages 92—
104, Kyiv, Ukraine (Virtual). Association for Compu-
tational Linguistics.

Mustafa Jarrar, Nizar Habash, Faeq Alrimawi, Diyam
Akra, and Nasser Zalmout. 2016. Curras: an anno-

17902

https://arxiv.org/abs/2303.14342
https://arxiv.org/abs/2303.14342
https://aclanthology.org/N12-1067/
https://aclanthology.org/N12-1067/
https://doi.org/10.18653/v1/2024.findings-acl.711
https://doi.org/10.18653/v1/2024.findings-acl.711
https://doi.org/10.18653/v1/2024.findings-acl.711
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://aclanthology.org/L14-1115/
https://aclanthology.org/L14-1115/
https://aclanthology.org/L14-1115/
https://aclanthology.org/2020.lrec-1.508/
https://aclanthology.org/2020.lrec-1.508/
https://aclanthology.org/N13-1066/
https://aclanthology.org/N13-1066/
https://arxiv.org/abs/2304.01746
https://arxiv.org/abs/2304.01746
https://arxiv.org/abs/2304.01746
https://doi.org/10.3115/v1/P14-2027
https://doi.org/10.3115/v1/P14-2027
https://doi.org/10.18653/v1/2022.emnlp-main.205
https://doi.org/10.18653/v1/2022.emnlp-main.205
https://doi.org/10.18653/v1/2022.emnlp-main.205
https://doi.org/10.18653/v1/W19-4427
https://doi.org/10.18653/v1/W19-4427
https://doi.org/10.18653/v1/W19-4427
https://aclanthology.org/L12-1328/
https://aclanthology.org/L18-1574/
https://aclanthology.org/L18-1574/
https://aclanthology.org/L18-1574/
https://aclanthology.org/W12-2301/
https://aclanthology.org/W12-2301/
https://aclanthology.org/2022.lrec-1.9/
https://aclanthology.org/2022.lrec-1.9/
https://aclanthology.org/2021.wanlp-1.10/
https://aclanthology.org/2021.wanlp-1.10/
https://aclanthology.org/2021.wanlp-1.10/

tated corpus for the Palestinian Arabic dialect. Lan-
guage Resources and Evaluation, pages 1-31.

Marcin Junczys-Dowmunt, Roman Grundkiewicz,
Shubha Guha, and Kenneth Heafield. 2018. Ap-
proaching neural grammatical error correction as a
low-resource machine translation task. In Proceed-
ings of the 2018 Conference of the North Ameri-
can Chapter of the Association for Computational
Linguistics: Human Language Technologies, Vol-
ume 1 (Long Papers), pages 595-606, New Orleans,
Louisiana. Association for Computational Linguis-
tics.

Masahiro Kaneko, Masato Mita, Shun Kiyono, Jun
Suzuki, and Kentaro Inui. 2020. Encoder-decoder
models can benefit from pre-trained masked language
models in grammatical error correction. In Proceed-
ings of the 58th Annual Meeting of the Association
for Computational Linguistics, pages 4248-4254, On-
line. Association for Computational Linguistics.

Masahiro Kaneko and Naoaki Okazaki. 2023. Reduc-
ing sequence length by predicting edit spans with
large language models. In Proceedings of the 2023
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 10017-10029, Singapore.
Association for Computational Linguistics.

Masahiro Kaneko and Naoaki Okazaki. 2024. Con-
trolled generation with prompt insertion for natural
language explanations in grammatical error correc-
tion. In Proceedings of the 2024 Joint International
Conference on Computational Linguistics, Language
Resources and Evaluation (LREC-COLING 2024),
pages 3955-3961, Torino, Italia. ELRA and ICCL.

Anisia Katinskaia and Roman Yangarber. 2024. GPT-
3.5 for grammatical error correction. In Proceedings
of the 2024 Joint International Conference on Compu-
tational Linguistics, Language Resources and Eval-
uation (LREC-COLING 2024), pages 7831-7843,
Torino, Italia. ELRA and ICCL.

Satoru Katsumata and Mamoru Komachi. 2020.
Stronger baselines for grammatical error correction
using a pretrained encoder-decoder model. In Pro-
ceedings of the Ist Conference of the Asia-Pacific
Chapter of the Association for Computational Lin-
guistics and the 10th International Joint Conference
on Natural Language Processing, pages 827832,
Suzhou, China. Association for Computational Lin-
guistics.

Salam Khalifa, Nizar Habash, Fadhl Eryani, Ossama
Obeid, Dana Abdulrahim, and Meera Al Kaabi. 2018.
A morphologically annotated corpus of emirati Ara-
bic. In Proceedings of the Eleventh International
Conference on Language Resources and Evaluation
(LREC 2018), Miyazaki, Japan. European Language
Resources Association (ELRA).

Salam Khalifa, Nasser Zalmout, and Nizar Habash.
2020. Morphological analysis and disambiguation
for Gulf Arabic: The interplay between resources
and methods. In Proceedings of the Twelfth Lan-
guage Resources and Evaluation Conference, pages
3895-3904, Marseille, France. European Language
Resources Association.

Sang Kwon, Gagan Bhatia, El Moatez Billah Nagoudi,
and Muhammad Abdul-Mageed. 2023. Beyond En-
glish: Evaluating LLMs for Arabic grammatical er-
ror correction. In Proceedings of ArabicNLP 2023,
pages 101-119, Singapore (Hybrid). Association for
Computational Linguistics.

V. I. Levenshtein. 1966. Binary Codes Capable of Cor-
recting Deletions, Insertions and Reversals. Soviet
Physics Doklady, 10:707.

Zuchao Li, Kevin Parnow, and Hai Zhao. 2022. Incor-
porating rich syntax information in grammatical error
correction. Information Processing & Management,
59(3):102891.

Mengsay Loem, Masahiro Kaneko, Sho Takase, and
Naoaki Okazaki. 2023. Exploring effectiveness of
GPT-3 in grammatical error correction: A study
on performance and controllability in prompt-based
methods. In Proceedings of the 18th Workshop on
Innovative Use of NLP for Building Educational
Applications (BEA 2023), pages 205-219, Toronto,
Canada. Association for Computational Linguistics.

Agnes Luhtaru, Elizaveta Korotkova, and Mark Fishel.
2024. No error left behind: Multilingual grammati-
cal error correction with pre-trained translation mod-
els. In Proceedings of the 18th Conference of the
European Chapter of the Association for Computa-
tional Linguistics (Volume 1: Long Papers), pages
1209-1222, St. Julian’s, Malta. Association for Com-
putational Linguistics.

Mohamed Maamouri, Ann Bies, Seth Kulick, Michael
Ciul, Nizar Habash, and Ramy Eskander. 2014. De-
veloping an egyptian arabic treebank: Impact of di-
alectal morphology on annotation and tool devel-
opment. In Proceedings of the Ninth International
Conference on Language Resources and Evaluation
(LREC-2014). European Language Resources Asso-
ciation (ELRA).

Samar Mohamed Magdy, Fakhraddin Alwajih,
Sang Yun Kwon, Reem Abdel-Salam, and Muham-
mad Abdul-Mageed. 2024. Gazelle: An instruction
dataset for Arabic writing assistance. In Findings
of the Association for Computational Linguistics:
EMNLP 2024, pages 16027-16054, Miami, Florida,
USA. Association for Computational Linguistics.

Jonathan Mallinson, Jakub Adamek, Eric Malmi, and
Aliaksei Severyn. 2022. EdiT5: Semi-autoregressive
text editing with t5 warm-start. In Findings of the
Association for Computational Linguistics: EMNLP
2022, pages 2126-2138, Abu Dhabi, United Arab
Emirates. Association for Computational Linguistics.

Jonathan Mallinson, Aliaksei Severyn, Eric Malmi, and
Guillermo Garrido. 2020. FELIX: Flexible text edit-
ing through tagging and insertion. In Findings of the
Association for Computational Linguistics: EMNLP
2020, pages 1244-1255, Online. Association for
Computational Linguistics.

Eric Malmi, Sebastian Krause, Sascha Rothe, Daniil
Mirylenka, and Aliaksei Severyn. 2019. Encode, tag,
realize: High-precision text editing. In Proceedings
of the 2019 Conference on Empirical Methods in Nat-
ural Language Processing and the 9th International

17903

https://doi.org/10.18653/v1/N18-1055
https://doi.org/10.18653/v1/N18-1055
https://doi.org/10.18653/v1/N18-1055
https://doi.org/10.18653/v1/2020.acl-main.391
https://doi.org/10.18653/v1/2020.acl-main.391
https://doi.org/10.18653/v1/2020.acl-main.391
https://doi.org/10.18653/v1/2023.emnlp-main.619
https://doi.org/10.18653/v1/2023.emnlp-main.619
https://doi.org/10.18653/v1/2023.emnlp-main.619
https://aclanthology.org/2024.lrec-main.350/
https://aclanthology.org/2024.lrec-main.350/
https://aclanthology.org/2024.lrec-main.350/
https://aclanthology.org/2024.lrec-main.350/
https://aclanthology.org/2024.lrec-main.692/
https://aclanthology.org/2024.lrec-main.692/
https://doi.org/10.18653/v1/2020.aacl-main.83
https://doi.org/10.18653/v1/2020.aacl-main.83
https://aclanthology.org/L18-1607/
https://aclanthology.org/L18-1607/
https://aclanthology.org/2020.lrec-1.480/
https://aclanthology.org/2020.lrec-1.480/
https://aclanthology.org/2020.lrec-1.480/
https://doi.org/10.18653/v1/2023.arabicnlp-1.9
https://doi.org/10.18653/v1/2023.arabicnlp-1.9
https://doi.org/10.18653/v1/2023.arabicnlp-1.9
https://doi.org/10.18653/v1/2023.bea-1.18
https://doi.org/10.18653/v1/2023.bea-1.18
https://doi.org/10.18653/v1/2023.bea-1.18
https://doi.org/10.18653/v1/2023.bea-1.18
https://aclanthology.org/2024.eacl-long.73/
https://aclanthology.org/2024.eacl-long.73/
https://aclanthology.org/2024.eacl-long.73/
http://www.lrec-conf.org/proceedings/lrec2014/pdf/1145_Paper.pdf
http://www.lrec-conf.org/proceedings/lrec2014/pdf/1145_Paper.pdf
http://www.lrec-conf.org/proceedings/lrec2014/pdf/1145_Paper.pdf
http://www.lrec-conf.org/proceedings/lrec2014/pdf/1145_Paper.pdf
https://doi.org/10.18653/v1/2024.findings-emnlp.941
https://doi.org/10.18653/v1/2024.findings-emnlp.941
https://doi.org/10.18653/v1/2022.findings-emnlp.156
https://doi.org/10.18653/v1/2022.findings-emnlp.156
https://doi.org/10.18653/v1/2020.findings-emnlp.111
https://doi.org/10.18653/v1/2020.findings-emnlp.111
https://doi.org/10.18653/v1/D19-1510
https://doi.org/10.18653/v1/D19-1510

Joint Conference on Natural Language Processing
(EMNLP-1JCNLP), pages 5054-5065, Hong Kong,
China. Association for Computational Linguistics.

Stuart Mesham, Christopher Bryant, Marek Rei, and
Zheng Yuan. 2023. An extended sequence tagging
vocabulary for grammatical error correction. In Find-

matical error correction: Comprehensive inspection
of contemporary approaches in the era of large lan-
guage models. In Proceedings of the 19th Workshop
on Innovative Use of NLP for Building Educational
Applications (BEA 2024), pages 17-33, Mexico City,
Mexico. Association for Computational Linguistics.

ings of the Association for Computational Linguistics: OpenAl, Josh Achiam, Steven Adler, Sandhini Agarwal,

EACL 2023, pages 1608—1619, Dubrovnik, Croatia.
Association for Computational Linguistics.

Masato Mita, Keisuke Sakaguchi, Masato Hagiwara,
Tomoya Mizumoto, Jun Suzuki, and Kentaro Inui.
2024. Towards automated document revision: Gram-
matical error correction, fluency edits, and beyond.
In Proceedings of the 19th Workshop on Innovative
Use of NLP for Building Educational Applications
(BEA 2024), pages 251-265, Mexico City, Mexico.
Association for Computational Linguistics.

Behrang Mohit, Alla Rozovskaya, Nizar Habash, Wa-
jdi Zaghouani, and Ossama Obeid. 2014. The first
QALB shared task on automatic text correction
for Arabic. In Proceedings of the EMNLP 2014
Workshop on Arabic Natural Language Processing
(ANLP), pages 39—-47, Doha, Qatar. Association for
Computational Linguistics.

Michael Nawar. 2015. CUFE@QALB-2015 shared
task: Arabic error correction system. In Proceedings
of the Second Workshop on Arabic Natural Language
Processing, pages 133-137, Beijing, China. Associa-
tion for Computational Linguistics.

Hwee Tou Ng, Siew Mei Wu, Ted Briscoe, Christian
Hadiwinoto, Raymond Hendy Susanto, and Christo-
pher Bryant. 2014. The CoNLL-2014 shared task
on grammatical error correction. In Proceedings of
the Eighteenth Conference on Computational Natu-
ral Language Learning: Shared Task, pages 1-14,
Baltimore, Maryland. Association for Computational
Linguistics.

Hwee Tou Ng, Siew Mei Wu, Yuanbin Wu, Christian

Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Alt-
man, Shyamal Anadkat, Red Avila, Igor Babuschkin,
Suchir Balaji, Valerie Balcom, Paul Baltescu, Haim-
ing Bao, Mohammad Bavarian, Jeff Belgum, and
262 others. 2024. Gpt-4 technical report. Preprint,
arXiv:2303.08774.

Arfath Pasha, Mohamed Al-Badrashiny, Mona Diab,

Ahmed El Kholy, Ramy Eskander, Nizar Habash,
Manoj Pooleery, Owen Rambow, and Ryan Roth.
2014. MADAMIRA: A fast, comprehensive tool
for morphological analysis and disambiguation of
Arabic. In Proceedings of the Ninth International
Conference on Language Resources and Evaluation
(LREC*14), pages 1094-1101, Reykjavik, Iceland.
European Language Resources Association (ELRA).

Muhammad Reza Qorib, Seung-Hoon Na, and

Hwee Tou Ng. 2022. Frustratingly easy system com-
bination for grammatical error correction. In Pro-
ceedings of the 2022 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages
1964-1974, Seattle, United States. Association for
Computational Linguistics.

Muhammad Reza Qorib and Hwee Tou Ng. 2023. Sys-

tem combination via quality estimation for grammat-
ical error correction. In Proceedings of the 2023
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 12746-12759, Singapore.
Association for Computational Linguistics.

Hadiwinoto, and Joel Tetreault. 2013. The CoNLL- Vipul Raheja, Dimitris Alikaniotis, Vivek Kulkarni,

2013 shared task on grammatical error correction.
In Proceedings of the Seventeenth Conference on
Computational Natural Language Learning: Shared
Task, pages 1-12, Sofia, Bulgaria. Association for
Computational Linguistics.

Ossama Obeid, Go Inoue, and Nizar Habash. 2022.
Camelira: An Arabic multi-dialect morphological
disambiguator. In Proceedings of the 2022 Confer-

Bashar Alhafni, and Dhruv Kumar. 2024. mEdIT:
Multilingual text editing via instruction tuning. In
Proceedings of the 2024 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies
(Volume 1: Long Papers), pages 979-1001, Mexico
City, Mexico. Association for Computational Lin-
guistics.

ence on Empirical Methods in Natural Language Vipul Raheja, Dhruv Kumar, Ryan Koo, and Dongyeop

Processing: System Demonstrations, pages 319-326,
Abu Dhabi, UAE. Association for Computational
Linguistics.

Kostiantyn Omelianchuk, Vitaliy Atrasevych, Artem
Chernodub, and Oleksandr Skurzhanskyi. 2020.
GECToR - grammatical error correction: Tag, not
rewrite. In Proceedings of the Fifteenth Workshop
on Innovative Use of NLP for Building Educational
Applications, pages 163-170, Seattle, WA, USA —
Online. Association for Computational Linguistics.

Kostiantyn Omelianchuk, Andrii Liubonko, Oleksandr
Skurzhanskyi, Artem Chernodub, Oleksandr Korni-
ienko, and Igor Samokhin. 2024. Pillars of gram-

17904

Kang. 2023. CoEdIT: Text editing by task-specific
instruction tuning. In Findings of the Association
for Computational Linguistics: EMNLP 2023, pages
5274-5291, Singapore. Association for Computa-
tional Linguistics.

Sascha Rothe, Jonathan Mallinson, Eric Malmi, Sebas-

tian Krause, and Aliaksei Severyn. 2021. A simple
recipe for multilingual grammatical error correction.
In Proceedings of the 59th Annual Meeting of the As-
sociation for Computational Linguistics and the 11th
International Joint Conference on Natural Language
Processing (Volume 2: Short Papers), pages 702-707,
Online. Association for Computational Linguistics.

https://doi.org/10.18653/v1/2023.findings-eacl.119
https://doi.org/10.18653/v1/2023.findings-eacl.119
https://aclanthology.org/2024.bea-1.21/
https://aclanthology.org/2024.bea-1.21/
https://doi.org/10.3115/v1/W14-3605
https://doi.org/10.3115/v1/W14-3605
https://doi.org/10.3115/v1/W14-3605
https://doi.org/10.18653/v1/W15-3215
https://doi.org/10.18653/v1/W15-3215
https://doi.org/10.3115/v1/W14-1701
https://doi.org/10.3115/v1/W14-1701
https://aclanthology.org/W13-3601/
https://aclanthology.org/W13-3601/
https://doi.org/10.18653/v1/2022.emnlp-demos.32
https://doi.org/10.18653/v1/2022.emnlp-demos.32
https://doi.org/10.18653/v1/2020.bea-1.16
https://doi.org/10.18653/v1/2020.bea-1.16
https://aclanthology.org/2024.bea-1.3/
https://aclanthology.org/2024.bea-1.3/
https://aclanthology.org/2024.bea-1.3/
https://aclanthology.org/2024.bea-1.3/
https://arxiv.org/abs/2303.08774
https://aclanthology.org/L14-1479/
https://aclanthology.org/L14-1479/
https://aclanthology.org/L14-1479/
https://doi.org/10.18653/v1/2022.naacl-main.143
https://doi.org/10.18653/v1/2022.naacl-main.143
https://doi.org/10.18653/v1/2023.emnlp-main.785
https://doi.org/10.18653/v1/2023.emnlp-main.785
https://doi.org/10.18653/v1/2023.emnlp-main.785
https://doi.org/10.18653/v1/2024.naacl-long.56
https://doi.org/10.18653/v1/2024.naacl-long.56
https://doi.org/10.18653/v1/2023.findings-emnlp.350
https://doi.org/10.18653/v1/2023.findings-emnlp.350
https://doi.org/10.18653/v1/2021.acl-short.89
https://doi.org/10.18653/v1/2021.acl-short.89

Alla Rozovskaya, Houda Bouamor, Nizar Habash, Wa-

jdi Zaghouani, Ossama Obeid, and Behrang Mohit.
2015. The second QALB shared task on automatic
text correction for Arabic. In Proceedings of the
Second Workshop on Arabic Natural Language Pro-
cessing, pages 26-35, Beijing, China. Association
for Computational Linguistics.

Alla Rozovskaya, Nizar Habash, Ramy Eskander, Noura
Farra, and Wael Salloum. 2014. The Columbia sys-
tem in the QALB-2014 shared task on Arabic er-
ror correction. In Proceedings of the EMNLP 2014
Workshop on Arabic Natural Language Processing
(ANLP), pages 160—164, Doha, Qatar. Association
for Computational Linguistics.

Neha Sengupta, Sunil Kumar Sahu, Bokang Jia,
Satheesh Katipomu, Haonan Li, Fajri Koto, William
Marshall, Gurpreet Gosal, Cynthia Liu, Zhim-
ing Chen, Osama Mohammed Afzal, Samta Kam-
boj, Onkar Pandit, Rahul Pal, Lalit Pradhan,
Zain Muhammad Mujahid, Massa Baali, Xudong
Han, Sondos Mahmoud Bsharat, and 13 others. 2023.
Jais and jais-chat: Arabic-centric foundation and
instruction-tuned open generative large language
models. Preprint, arXiv:2308.16149.

Aiman Solyman, Zhenyu Wang, Qian Tao, Arafat

Abdulgader Mohammed Elhag, Rui Zhang, and
Zeinab Mahmoud. 2022. Automatic Arabic gram-
matical error correction based on expectation-
maximization routing and target-bidirectional agree-
ment. Knowledge-Based Systems, 241:108180.

Aiman Solyman, Marco Zappatore, Wang Zhenyu,

Zeinab Mahmoud, Ali Alfatemi, Ashraf Osman
Ibrahim, and Lubna Abdelkareim Gabralla. 2023.
Optimizing the impact of data augmentation for low-
resource grammatical error correction. Journal of

King Saud University - Computer and Information
Sciences, 35(6):101572.

Aiman Solyman, Wang Zhenyu, Tao Qian, Arafat Ab-

dulgader Mohammed Elhag, Muhammad Toseef,
and Zeinab Aleibeid. 2021. Synthetic data with
neural machine translation for automatic correction
in Arabic grammar. Egyptian Informatics Journal,
22(3):303-315.

Felix Stahlberg and Shankar Kumar. 2020. Seq2Edits:

Sequence transduction using span-level edit opera-
tions. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing
(EMNLP), pages 5147-5159, Online. Association for
Computational Linguistics.

Felix Stahlberg and Shankar Kumar. 2021. Synthetic

data generation for grammatical error correction with
tagged corruption models. In Proceedings of the
16th Workshop on Innovative Use of NLP for Build-
ing Educational Applications, pages 37-47, Online.
Association for Computational Linguistics.

Felix Stahlberg and Shankar Kumar. 2024. Synthetic

data generation for low-resource grammatical error
correction with tagged corruption models. In Pro-
ceedings of the 19th Workshop on Innovative Use
of NLP for Building Educational Applications (BEA

2024), pages 11-16, Mexico City, Mexico. Associa-
tion for Computational Linguistics.

Milan Straka, Jakub Ndplava, and Jana Strakova. 2021.
Character transformations for non-autoregressive
GEC tagging. In Proceedings of the Seventh Work-
shop on Noisy User-generated Text (W-NUT 2021),
pages 417-422, Online. Association for Computa-
tional Linguistics.

Maksym Tarnavskyi, Artem Chernodub, and Kostiantyn
Omelianchuk. 2022. Ensembling and knowledge dis-
tilling of large sequence taggers for grammatical error
correction. In Proceedings of the 60th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 3842-3852, Dublin,
Ireland. Association for Computational Linguistics.

Fanar Team, Ummar Abbas, Mohammad Shahmeer Ah-
mad, Firoj Alam, Enes Altinisik, Ehsannedin Asgari,
Yazan Boshmaf, Sabri Boughorbel, Sanjay Chawla,
Shammur Chowdhury, Fahim Dalvi, Kareem Dar-
wish, Nadir Durrani, Mohamed Elfeky, Ahmed El-
magarmid, Mohamed Eltabakh, Masoomali Fatehkia,
Anastasios Fragkopoulos, Maram Hasanain, and 23
others. 2025. Fanar: An arabic-centric multimodal
generative ai platform. Preprint, arXiv:2501.13944.

Zhaohong Wan, Xiaojun Wan, and Wenguang Wang.
2020. Improving grammatical error correction with
data augmentation by editing latent representation.
In Proceedings of the 28th International Conference
on Computational Linguistics, pages 2202-2212,
Barcelona, Spain (Online). International Committee
on Computational Linguistics.

Daniel Watson, Nasser Zalmout, and Nizar Habash.
2018. Utilizing character and word embeddings for
text normalization with sequence-to-sequence mod-
els. In Proceedings of the 2018 Conference on Em-
pirical Methods in Natural Language Processing,
pages 837-843, Brussels, Belgium. Association for
Computational Linguistics.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtowicz,
Joe Davison, Sam Shleifer, Patrick von Platen, Clara
Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven
Le Scao, Sylvain Gugger, and 3 others. 2020. Trans-
formers: State-of-the-art natural language processing.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 38—45, Online. Association
for Computational Linguistics.

Haoran Wu, Wenxuan Wang, Yuxuan Wan, Wenxiang
Jiao, and Michael Lyu. 2023. Chatgpt or grammarly?
evaluating chatgpt on grammatical error correction
benchmark. Preprint, arXiv:2303.13648.

Zheng Yuan and Christopher Bryant. 2021. Document-
level grammatical error correction. In Proceedings
of the 16th Workshop on Innovative Use of NLP for
Building Educational Applications, pages 75-84, On-
line. Association for Computational Linguistics.

Zheng Yuan, Felix Stahlberg, Marek Rei, Bill Byrne,
and Helen Yannakoudakis. 2019. Neural and FST-
based approaches to grammatical error correction. In

17905

https://doi.org/10.18653/v1/W15-3204
https://doi.org/10.18653/v1/W15-3204
https://doi.org/10.3115/v1/W14-3622
https://doi.org/10.3115/v1/W14-3622
https://doi.org/10.3115/v1/W14-3622
https://arxiv.org/abs/2308.16149
https://arxiv.org/abs/2308.16149
https://arxiv.org/abs/2308.16149
https://doi.org/10.1016/j.knosys.2022.108180
https://doi.org/10.1016/j.knosys.2022.108180
https://doi.org/10.1016/j.knosys.2022.108180
https://doi.org/10.1016/j.knosys.2022.108180
https://doi.org/10.1016/j.jksuci.2023.101572
https://doi.org/10.1016/j.jksuci.2023.101572
https://doi.org/10.1016/j.eij.2020.12.001
https://doi.org/10.1016/j.eij.2020.12.001
https://doi.org/10.1016/j.eij.2020.12.001
https://doi.org/10.18653/v1/2020.emnlp-main.418
https://doi.org/10.18653/v1/2020.emnlp-main.418
https://doi.org/10.18653/v1/2020.emnlp-main.418
https://aclanthology.org/2021.bea-1.4/
https://aclanthology.org/2021.bea-1.4/
https://aclanthology.org/2021.bea-1.4/
https://aclanthology.org/2024.bea-1.2/
https://aclanthology.org/2024.bea-1.2/
https://aclanthology.org/2024.bea-1.2/
https://doi.org/10.18653/v1/2021.wnut-1.46
https://doi.org/10.18653/v1/2021.wnut-1.46
https://doi.org/10.18653/v1/2022.acl-long.266
https://doi.org/10.18653/v1/2022.acl-long.266
https://doi.org/10.18653/v1/2022.acl-long.266
https://arxiv.org/abs/2501.13944
https://arxiv.org/abs/2501.13944
https://doi.org/10.18653/v1/2020.coling-main.200
https://doi.org/10.18653/v1/2020.coling-main.200
https://doi.org/10.18653/v1/D18-1097
https://doi.org/10.18653/v1/D18-1097
https://doi.org/10.18653/v1/D18-1097
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://arxiv.org/abs/2303.13648
https://arxiv.org/abs/2303.13648
https://arxiv.org/abs/2303.13648
https://aclanthology.org/2021.bea-1.8/
https://aclanthology.org/2021.bea-1.8/
https://doi.org/10.18653/v1/W19-4424
https://doi.org/10.18653/v1/W19-4424

Proceedings of the Fourteenth Workshop on Innova-
tive Use of NLP for Building Educational Applica-
tions, pages 228-239, Florence, Italy. Association for
Computational Linguistics.

Zheng Yuan, Shiva Taslimipoor, Christopher Davis, and
Christopher Bryant. 2021. Multi-class grammatical
error detection for correction: A tale of two systems.
In Proceedings of the 2021 Conference on Empiri-
cal Methods in Natural Language Processing, pages
87228736, Online and Punta Cana, Dominican Re-
public. Association for Computational Linguistics.

Wajdi Zaghouani, Nizar Habash, Houda Bouamor, Alla
Rozovskaya, Behrang Mohit, Abeer Heider, and Ke-
mal Oflazer. 2015. Correction annotation for non-
native Arabic texts: Guidelines and corpus. In Pro-
ceedings of the 9th Linguistic Annotation Workshop,
pages 129-139, Denver, Colorado, USA. Association
for Computational Linguistics.

Wajdi Zaghouani, Behrang Mohit, Nizar Habash, Os-
sama Obeid, Nadi Tomeh, Alla Rozovskaya, Noura
Farra, Sarah Alkuhlani, and Kemal Oflazer. 2014.
Large scale Arabic error annotation: Guidelines and
framework. In Proceedings of the Ninth International
Conference on Language Resources and Evaluation
(LREC‘14), Reykjavik, Iceland. European Language
Resources Association (ELRA).

Nasser Zalmout, Alexander Erdmann, and Nizar Habash.
2018. Noise-robust morphological disambiguation
for dialectal Arabic. In Proceedings of the 2018
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long Papers),
pages 953-964, New Orleans, Louisiana. Association
for Computational Linguistics.

Nasser Zalmout and Nizar Habash. 2020. Joint dia-
critization, lemmatization, normalization, and fine-
grained morphological tagging. In Proceedings of
the 58th Annual Meeting of the Association for Com-
putational Linguistics, pages 8297-8307, Online. As-
sociation for Computational Linguistics.

Yu Zhang, Yue Zhang, Leyang Cui, and Guohong Fu.
2023. Non-autoregressive text editing with copy-
aware latent alignments. In Proceedings of the 2023
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 7075-7085, Singapore. As-
sociation for Computational Linguistics.

Yue Zhang, Bo Zhang, Zhenghua Li, Zuyi Bao, Chen Li,
and Min Zhang. 2022. SynGEC: Syntax-enhanced
grammatical error correction with a tailored GEC-
oriented parser. In Proceedings of the 2022 Con-
ference on Empirical Methods in Natural Language
Processing, pages 25182531, Abu Dhabi, United
Arab Emirates. Association for Computational Lin-
guistics.

Wei Zhao, Liang Wang, Kewei Shen, Ruoyu Jia, and
Jingming Liu. 2019. Improving grammatical error
correction via pre-training a copy-augmented archi-
tecture with unlabeled data. In Proceedings of the
2019 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies, Volume 1 (Long and

17906

Short Papers), pages 156—165, Minneapolis, Min-
nesota. Association for Computational Linguistics.

Houquan Zhou, Yumeng Liu, Zhenghua Li, Min Zhang,

Bo Zhang, Chen Li, Ji Zhang, and Fei Huang. 2023.
Improving Seq2Seq grammatical error correction via
decoding interventions. In Findings of the Associa-
tion for Computational Linguistics: EMNLP 2023,
pages 73937405, Singapore. Association for Com-
putational Linguistics.

https://doi.org/10.18653/v1/2021.emnlp-main.687
https://doi.org/10.18653/v1/2021.emnlp-main.687
https://doi.org/10.3115/v1/W15-1614
https://doi.org/10.3115/v1/W15-1614
https://aclanthology.org/L14-1721/
https://aclanthology.org/L14-1721/
https://doi.org/10.18653/v1/N18-1087
https://doi.org/10.18653/v1/N18-1087
https://doi.org/10.18653/v1/2020.acl-main.736
https://doi.org/10.18653/v1/2020.acl-main.736
https://doi.org/10.18653/v1/2020.acl-main.736
https://doi.org/10.18653/v1/2023.emnlp-main.437
https://doi.org/10.18653/v1/2023.emnlp-main.437
https://doi.org/10.18653/v1/2022.emnlp-main.162
https://doi.org/10.18653/v1/2022.emnlp-main.162
https://doi.org/10.18653/v1/2022.emnlp-main.162
https://doi.org/10.18653/v1/N19-1014
https://doi.org/10.18653/v1/N19-1014
https://doi.org/10.18653/v1/N19-1014
https://doi.org/10.18653/v1/2023.findings-emnlp.495
https://doi.org/10.18653/v1/2023.findings-emnlp.495

A Hyperparameters

We use Hugging Face’s Transformers to build our
edit taggers. Models trained on QALB-2014 or
MADAR CODA are fine-tuned for 10 epochs us-
ing a learning rate of 5e-5, a batch size of 32, a
maximum sequence length of 512, and a seed of
42 on a single A100 GPU. For models trained on
QALB-2014 with the tenfold upsampled ZAEBUC,
we use the same hyperparameters but run training
for 15 epochs. At the end of fine-tuning, we pick
the best checkpoint based on the performance on
the Dev sets by using the M? scorer.

17907

B Edit Coverage

QALB-2014 ZAEBUC MADAR CODA
Input Comp. Subset Prune| Edits OOV% Fs5 |Edits OOV% Fos |Edits OOV% Fys
Word X All - 16,221 1.00% 98.4|1,097 2.94% 96.2|1,228 1.52% 98.0
Subword X All - 9,060 0.36% 98.7| 905 1.85% 96.5| 677 0.55% 98.1
Word v All - 10,410 1.00% 98.4| 687 294% 96.2| 741 1.52% 98.0
Subword v/ All - 6,170 0.36% 98.7| 563 1.85% 96.5| 454 0.55% 98.1
Subword v NoPnx - 4799 027% 98.8| 498 1.74% 96.2 - - -
Subword v/ Pnx - 160 0.01% 994| 23 0.06% 99.9| - - -
Subword v/ All 10 683 0.75% 98.1| 58 3.71% 939| 84 1.33% 96.2
Subword v/ All 20 442 1.02% 97.7| 35 4.67% 926| 52 2.02% 94.1
Subword v/ All 30 329 1.24% 974\ 27 526% 91.8| 45 2.28% 934
Subword v/ NoPnx 10 520 0.56% 982| 52 339% 93.7| - - -
Subword v/ NoPnx 20 335 0.75% 97.8| 30 431% 92.3| - - -
Subword v/ NoPnx 30 250 0.92% 97.5| 22 490% 914| - - -
Subword v/ Pnx 10 48 0.02% 994| 6 0.11% 999, - - -
Subword v/ Pnx 20 35 0.05% 99.4| 6 0.11% 99.9| - - -
Subword v/ Pnx 30 29 0.05% 993| 6 0.11% 999 - - -

Table 9: Edit statistics on QALB-2014, ZAEBUC and MADAR CODA. Input is the input unit (word or subword).
Comp. indicates whether the edit is compressed. Subset specifies whether the edits capture all errors, punctuation-
only errors (Pnx), or non-punctuation errors (NoPnx). Edits represents the total number of unique edits in the
training set of each dataset. OOV % is the percentage of out-of-vocabulary edits (non-unique) in the Dev set of each
dataset.

17908

C Edit Tagging Results

QALB-2014 ZAEBUC MADAR CODA
Model Input Comp. Subset Prune; P R F; Fos| P R Fi Fos| P R F; Fos
AraBERTv02 Word X All - 81.0 64.3 71.7 77.0|84.8 69.5 76.4 81.2|87.9 66.5 75.7 82.6
AraBERTv02 Subword X All - 81.0 67.8 73.8 779|844 71.3 77.3 81.4|87.6 76.8 81.9 85.2
AraBERTv02 Word 4 All - 80.8 66.6 73.0 77.5|83.8 71.4 77.1 81.0|85.6 76.9 81.0 83.7
AraBERTV02 Subword ¢ All - 81.1 69.1 74.6 78.4|84.3 729 78.2 81.7|86.9 79.2 82.9 85.2
ARBERTV2 Word X All - 78.9 57.7 66.7 73.5|82.2 54.8 65.8 74.8|86.4 61.0 71.5 79.8
ARBERTv2 Subword X All - 78.7 60.8 68.6 74.3|79.7 58.1 67.2 74.2|84.5 69.0 76.0 80.8
ARBERTvV2 Word v All - 77.8 61.4 68.6 73.8|80.7 62.8 70.6 76.3|81.8 68.4 74.5 78.7
ARBERTv2 Subword ¢ All - 78.6 60.0 68.0 74.0|82.7 62.1 709 77.5|84.2 70.8 77.0 81.2
CAMeLBERT Word X All - 81.2 61.5 70.0 76.3|84.6 66.4 744 80.2|88.3 66.4 758 82.8
CAMeLBERT Subword X All - 80.4 652 72.0 76.9|83.5 69.3 75.8 80.2|87.1 76.8 81.6 84.8
CAMeLBERT Word v All - 79.9 654 719 76.5|84.2 69.3 76.0 80.7|85.6 76.0 80.6 83.5
CAMeLBERT Subword ¢ All - 80.6 674 734 77.6|84.6 70.8 77.1 81.4|87.0 78.8 82.7 85.2
AraBERTV02 Subword ¢ All 10 |81.8 68.8 74.7 78.884.5 71.9 77.7 81.6|89.1 75.5 81.7 86.0
AraBERTV02 Subword ¢/ All 20 |81.4 68.6 744 78.5(853 72.0 78.1 82.2|87.7 73.1 79.8 84.4
AraBERTvV02 Subword ¢/ All 30 |81.6 68.1 743 78.5|85.8 72.3 78.4 82.7|88.3 72.1 79.4 84.5
CAMeLBERT Subword ¢/ All 10 |81.2 674 73.7 78.0(85.1 71.0 77.4 81.8|88.4 76.3 81.9 85.7
CAMeLBERT Subword ¢/ All 20 |81.3 66.7 73.3 77.9|84.4 70.1 76.6 81.1|88.2 72.6 79.6 84.6
CAMeLBERT Subword ¢ All 30 |81.1 67.5 73.7 77.9|84.7 70.0 76.6 81.3|88.7 71.3 79.1 84.6
AraBERTv02 Subword ¢ NoPnx - 88.3 77.7 82.6 859872 77.0 81.8 85.0| - - - -
AraBERTv02 Subword ¢ NoPnx 10 |8838 78.1 83.1 86.4(87.6 76.1 81.4 85.0| - - - -
AraBERTvV02 Subword ¢ NoPnx 20 |89.0 77.8 83.0 86.5(87.9 75.8 81.4 85.1| - - - -
AraBERTv02 Subword ¢/ NoPnx 30 |89.4 77.5 83.0 86.7|88.1 76.8 82.1 85.6| - - - -
AraBERTvV02 Subword ¢/ Pnx - 90.6 83.0 86.6 89.0/96.8 94.0 954 96.2| - - - -
AraBERTv02 Subword ¢ Pnx 10 [89.5 83.6 86.5 88.3/96.9 93.8 953 96.3| - - - -
AraBERTV02 Subword ¢ Pnx 20 90.7 82.8 86.5 89.0(96.7 93.6 95.1 96.1| - - - -
AraBERTv02 Subword ¢ Pnx 30 [90.1 83.6 86.7 88.7(96.5 94.0 952 96.0| - - - -

Table 10: MSA and DA GEC results on the Dev sets of QALB-2014, ZAEBUC, and MADAR CODA. Input is
the input unit (word or subword). Comp. indicates whether the edit is compressed. Subset specifies whether
the edits capture all errors, punctuation-only errors (Pnx), or non-punctuation errors (NoPnx). NoPnx models
are evaluated after removing punctuation, while Pnx models are evaluated on a version of the Dev set where all
non-punctuation errors are corrected. Pruning experiments were conducted using the top two models (AraBERTv02
and CAMeLBERT), while punctuation segregation experiments used the best model (AraBERTv02). Best All
results are in bold; best NoPnx and Pnx results are underlined.

17909

D LLMs Results

QALB-2014 ZAEBUC MADAR CODA Avg.
Model P-Lang Shots P R Fi Fos P R F1 Fos P R Fy Fos Fos

Jais-13B-Chat EN
Jais-13B-Chat EN
Jais-13B-Chat AR
Jais-13B-Chat AR

49.1 37.0 422 46.1 1533 55 100 195| 86 83 84 85 | 247
489 36.0 415 457|466 47 86 169|149 163 156 152 | 259
482 362 414 452|408 54 9.6 17.7(10.7 106 10.7 10.7 | 245
49.1 369 421 46.0|502 19.7 283 384|141 150 145 143 | 329

GPT-3.5-turbo EN 0 70.6 548 61.7 66.7|708 703 705 70.7 228 17.7 199 215 | 53.0
GPT-3.5-turbo EN 5 68.6 58.6 632 663|71.0 635 67.1 694|355 297 323 341 | 56.6
GPT-3.5-turbo AR 0 70.0 585 6377 673|683 713 69.8 689 242 227 234 239 | 533
GPT-3.5-turbo AR 5 68.1 58.0 62.6 658|714 63.7 673 69.7|27.0 265 267 269 | 54.1
GPT-40 EN 0 82.1 564 66.8 752(80.2 755 77.8 792|288 255 27.0 28.1 | 60.8
GPT-40 EN 5 80.7 65.7 724 772|865 768 813 843|537 544 541 538 | 71.8
GPT-40 AR 0 789 628 699 751|774 717 715 774|364 335 349 358 | 628
GPT-40 AR 5 79.5 668 72.6 76.6|826 757 79.0 81.1|50.1 48.6 494 49.8 | 69.2
Fanar EN 0 574 314 40.6 492|584 18.6 282 409 |13.7 146 141 139 | 347
Fanar EN 5 633 58.8 61.0 624|692 635 662 680|224 268 244 231 | 512
Fanar AR 0 624 573 59.7 613|575 339 426 504|172 19.0 181 17.5 | 43.1
Fanar AR 5 69.7 637 66.6 684|763 73.6 749 758|245 288 264 252 | 56.5

0

5

0

5

Table 11: LLMs results on MSA and DA GEC on the Dev sets of QALB-2014, ZAEBUC, and MADAR CODA.
P-Lang is the prompt language either in English (EN) or Arabic (AR). Best average F 5 results for each LLM are
underlined; best overall results are in bold.

E MSA GEC Results

QALB-2014 ZAEBUC

P R F Fos | P R F; Fys
AraBART 832 64.9 729 78.7 [87.3 70.6 78.1 83.4
AraT5+Morph+GED*? 83.1 67.9 747 79.6 [85.2 71.2 77.6 82.0
AraBART+Morph+GED'? 83.9 65.7 73.7 79.5 |87.6 73.9 802 84.5
GPT-3.5-turbo 68.6 58.6 63.2 663 |71.0 63.5 67.1 69.4
GPT-40 80.7 65.7 724 772 |86.5 76.8 81.3 84.3
Fanar 69.7 63.7 66.6 68.4 |763 73.6 749 75.8
Jais-13B-Chat 49.1 36.9 42.1 46.0 |50.2 19.7 283 384
SWEET 81.8 68.8 74.7 78.8 [85.8 723 784 82.7
SWEET? 81.9 70.4 75.7 79.3 |85.8 73.3 79.1 83.0
SWEETZ p,x + SWEETp,, 83.7 68.8 75.6 80.37|86.7 73.9 79.8 83.8
3-Ensemble 849 68.8 76.0 81.1 [89.6 72.8 80.3 85.6
4-Ensemble 89.1 61.6 72.8 81.8%|93.3 68.3 78.9 86.9

Table 12: MSA GEC results on the Dev sets of QALB-2014 and ZAEBUC. Best non-ensemble results are
underlined; best overall results are in bold. { denotes statistical significance over the best baseline; I denotes
statistical significance over both the best baseline and the best non-ensemble model.

17910

QALB-2014 QALB-2015 ZAEBUC

P R F Fps | P R F Fps | P R F; Fys
AraBART 84.0 64.7 73.1 79.3 |82.0 71.7 76.5 79.7 |86.0 71.6 78.2 82.7
AraBART+GED* 84.2 654 73.6 79.6 |81.2 72.4 765 79.3 |85.4 72.6 78.5 82.5
AraBART+Morph+GED** 83.9 65.7 73.7 79.5 |82.6 72.1 77.0 80.3 |85.4 73.7 79.1 82.7
AraBART+GED!3 84.1 65.0 73.3 79.4 [81.5 72.7 76.8 79.5 |85.9 73.4 79.2 83.1
GPT-40 81.5 65.5 72.6 77.7 |81.1 74.3 715 79.6 |84.4 75.9 79.9 82.5
SWEET? 82.6 69.5 75.5 79.6 [80.0 74.3 77.0 78.8 |85.5 74.4 79.6 83.0
SWEETZ p,x + SWEETp,, 84.5 67.7 75.2 80.5'|82.2 73.6 77.7 80.3 [85.7 74.1 79.5 83.1
3-Ensemble 85.7 67.4 75.4 81.3 |83.7 73.3 78.1 81.3 [89.7 73.7 80.9 85.9
4-Ensemble 89.7 60.2 72.0 81.7%|88.3 66.7 76.0 82.9%|93.4 68.9 79.3 87.2¢

Table 13: MSA GEC results on the Test sets of QALB-2014, QALB-2015 (L1), and ZAEBUC. Best non-ensemble
results are underlined; best overall results are in bold. { denotes statistical significance over the best baseline; I
denotes statistical significance over both the best baseline and the best non-ensemble model.

F DA GEC Results

P R F; Fys
AraT5 86.8 774 81.8 84.7
AraT5+City 87.6 79.3 83.3 85.8
GPT-3.5-turbo 35.5 29.7 32.3 34.1

GPT-40 53.7 544 54.1 53.8
Fanar 245 28.8 264 252
Jais-13B-Chat 14.1 15.0 14.5 143
SWEET 89.1 75.5 81.7 86.0
SWEET? 87.5 73.5 79.9 84.3

3-Ensemble 917 774 83.9 884
4-Ensemble 93.8 72.5 81.8 88.6

Table 14: DA GEC results on the MADAR CODA Deyv set. Best non-ensemble results are underlined; best overall
results are in bold. I denotes statistical significance over both the best baseline and the best non-ensemble model.

P R F; Fys

AraT5 87.3 78.0 824 852
AraT5+DA Phrase 88.4 79.0 83.4 86.3
GPT-40 56.1 54.8 55.5 55.9
SWEET 89.4 76.6 82.5 86.5
3-Ensemble 922 7177 84.3 88.9
4-Ensemble 94.0 729 82.1 88.8%

Table 15: DA GEC results on the Test set of MADAR CODA. Best non-ensemble results are underlined; best overall
results are in bold. I denotes statistical significance over both the best baseline and the best non-ensemble model.

17911

G Error Type Statistics

QALB-2014 ZAEBUC MADAR CODA
Train Dev Test Train Dev Test | Train Dev Test
Delete 6,442 346 540 305 64 66 35 0 1
Merge-B 15,063 797 795 849 180 133 404 102 95
Merge-1 15,296 812 807 851 180 133 429 109 103
M 1,466 69 63 137 32 28 159 42 56
M+O 243 17 15 7 1 8 0 0 0
(0] 141,752 7,380 6,976 | 3,203 695 792 5,604 1,179 1,193
0+X 323 24 18 20 0 4 0 0 0
P 11,379 598 687 237 51 36 18 10 9
S 5,436 247 252 169 36 51 408 77 64
X 13,592 809 743 528 110 113 911 166 151
Split 7,828 432 399 49 10 10 279 58 69
UNK 6,835 331 300 361 78 61 2,235 430 649
C 795,510 41,875 39,690 | 18,411 3,839 3,683 | 29,285 6,627 6,456
1,021,165 53,737 51,285 | 25,127 5,276 5,118 | 39,767 8,800 8,846

Table 16: Distribution of error types in QALB-2014, ZAEBUC, and MADAR CODA. UNK refers to unknown
error types; C refers to correct words.

17912

H Prompts

Task | P-Lang |Prompt

You are an Arabic grammatical error correction tool that can identify and correct grammatical and
spelling errors in written text. Please identify and correct any grammatical and spelling errors in
the following sentence marked with the tag <input> Input Sentence </input>. Make the minimal
changes necessary to correct the sentence. Do not rephrase any parts of the sentence that are
already grammatically correct, and avoid altering the meaning by adding or removing
information. After making the corrections, output the revised sentence directly without providing
MSA any explanations. Remember to format the corrected output with the tag <output> Your Corrected
GEC Version </output>. Please start: <input> Input Sentence </input>
AWy iy) ol VN ety s S o i B G 3L el ;ubmsw alsl el
_adl <input> }]L sadd| (U W&l L; 3&,4\}\ ey slas | LS\ T N R g | d
AR L2 G ;\f.\ (_;\ il s Y C&:‘S)-AJ Loy Sl e SN 6l L {,3 ~<input/> J,.\U
aijwdwl\A}\C\fL 5 PN ubws\ubj\uu\d%w@\wd,
! ¢l I <output/> ?A\ o=l <output> fw}” r\JML er..al\ o2 Geds $H Ol s (_g\ 092
<input/> Jsdll a2l <input>
You are a dialectal Arabic text normalization tool that can normalize dialectal Arabic text into the
Conventional Orthography for Dialectal Arabic (CODA). CODA provides a standardized system
for writing Arabic dialects, which are often written informally or phonetically. By using CODA,
your task is to convert these informal, dialectal texts into a consistent, standardized orthographic
form, making them more uniform while retaining the nuances of the original dialect. Please
standardize the following sentence marked with the tag <input> Input Sentence </input> into the
CODA convention. Avoid altering the meaning by adding or removing information. Make sure the
DA normalized output sentence is in Arabic script. Output the normalized sentence directly without
GEC providing any explanations. Remember to format the CODA standardized output with the tag
<output> Your CODA Version </output>. Please start: <input> Input Sentence </input>
ol Tnlall L) S (] Balall 2 gl s S o ialal) By) (2 gl e 3151]
(\JAWL e ol By e 30l Ul (oK J1 4) Ol 4B s 6 Lellis CODA 55, ((CODA)
AR ijd\dclaui-\ccw) do 40 d)&ﬁ\ﬁ.«&-\ Gl e Lol 2 seadl oMCowL;“decCODA
CODA Ll Wy <input/> Jodll adl <input> cw i 5nell YU 42 5 3 vaudo V) dogll 423!
fhal\ud\wfl.u\w‘_;\ojéoﬂLAMrf\.u‘w,\maj\)\ ”L"\djl’fgs"l\f"”d
<input/> J>dl| 2l <input> ;s\ el J) <output/> ~=all)l <output> £ I pldaly

EN

EN

Figure 2: 0-shot prompts used to evaluate LLMs performance on MSA and DA GEC. P-Lang is the prompt language
either in English (EN) or Arabic (AR).

17913

Task | P-Lang |Prompt

You are an Arabic grammatical error correction tool that can identify and correct grammatical and spelling
errors in written text. We will provide you with example sentences marked with the tag <input> SRC
</input>, which contain grammatical and spelling errors. These sentences are followed by the corrected
versions, marked with <output> TGT </output>, as reviewed and edited by human experts. Please identify
and correct any grammatical and spelling errors in the following sentence marked with the tag <input>
SRC </input>. Make the minimal changes necessary to correct the sentence. Do not rephrase any parts of
the sentence that are already grammatically correct, and avoid altering the meaning by adding or removing
information. After making the corrections, output the revised sentence directly without providing any

EN |explanations. Here are some in-context examples:

(1) <input> Input Sentence </input>: <output> Corrected Sentence </output>

(2) <input> Input Sentence </input>: <output> Corrected Sentence </output>

(3) <input> Input Sentence </input>: <output> Corrected Sentence </output>

(4) <input> Input Sentence </input>: <output> Corrected Sentence </output>

(5) <input> Input Sentence </input>: <output> Corrected Sentence </output>

MSA Please feel free to refer to these examples.

GEC Remember to format the corrected output with the tag <output> Your Corrected Version </output>. Please
start: <input> Input Sentence </input>

oo pall G AVl % el ellas) oy it ASE S o)) I 3 AUV %) ellas V) S.MJ AR
C““ﬂ UL:L\ ods I .<input/> J,,\Cl\ o=l <input> r«)h sods adlely e s de s S Ty 3
BN SN w,) s U8 oo b2y Ll o o2 d\, «<output/> C,mu o=l <output> ‘.%JL soustl M»M.L\

o Ay .&\ \j.b (.: <1nput/> J».\U uaJ\ <1nput>)L e:-\s‘i\ LUU\ A& d 5&.\ ,\ % ;LE;-' ‘:;\
3L 2 AN iany U] s gl s oﬂu ERRTY C\fL ‘,5 ‘uw\ |f\ s

AR <output/> I sadl <output>: <input/> J&ull L2l <input> (1)
<output/> I sl <output>: <input/> J&Al| adl <input> (¥)
<output/> I sl <output>: <input/> |&ul| all <input> (¥)
<output/> I sl <output>: <input/> |&ull adl <input> (¢)
<output/> Cm.al\ o=l <output>: <input/> Jo-\“ ol <input> (o)

WY\ oda d\ t?)\ds{;u Y
<input/> Jsall 2l <input> :ea)l el) <output/> =l 2l <output> fw}” pldsnly oall Ll gl B
You are a dialectal Arabic text normalization tool that can normalize dialectal Arabic text into the
Conventional Orthography for Dialectal Arabic (CODA). CODA provides a standardized system for
writing Arabic dialects, which are often written informally or phonetically. By using CODA, your task is
to convert these informal, dialectal texts into a consistent, standardized orthographic form, making them
more uniform while retaining the nuances of the original dialect. We will provide you with example
sentences marked with the tag <input> Input Sentence </input>, which are written in dialectal Arabic.
These sentences are followed by their CODA versions, marked with <output> Corrected Sentence
</output>, as reviewed and edited by human experts. Please standardize the following sentence marked
with the tag <input> Input Sentence </input> into the CODA convention. Avoid altering the meaning by
EN |adding or removing information. Output the normalized sentence directly without providing any
explanations. Here are some in-context examples:
(1) <input> Input Sentence </input>: <output> Corrected Sentence </output>
(2) <input> Input Sentence </input>: <output> Corrected Sentence </output>
(3) <input> Input Sentence </input>: <output> Corrected Sentence </output>
(4) <input> Input Sentence </input>: <output> Corrected Sentence </output>
(5) <input> Input Sentence </input>: <output> Corrected Sentence </output>
Please feel free to refer to these examples.
Remember to format the corrected output with the tag <output> Your Corrected Version </output>. Please
start: <input> Input Sentence </input>
«(CODA) 2, 1 iolal L1 DY) 3] Talall o UEe S o) g Al o) pemd 3151 il
5 # o «CODA (“.\’L.ML nku);,a}‘ ey 8 %Jb.l%’ngig'i él\ uﬂ\ Ol & lus 50 L CODA s
AX—A\ JS 45 g A_l.a\(\ Toegll 23 Gy 4 Jc LUL] xe ¢ Gulley do 5o L}W‘ K dl w)\jc Teldl 2 gadl ods
(CODA Ll wgllall L J#) o C’” Ay ol de CLJL 24 35 %) <input/> J=dl Sl <input> ol 55
W& c.:»,,a; SR P La,);} ol o 28 Fly «<output/> C;wl\ o=l <output> fn.\é\}
Slagdaa Al 5V Blsl g b e all i 2f WCODA L W5 <input/> J32all y=ill <input>)!rajul\ Yol
AR ou\fwwu@,w O s L;\ 093 of.vL.e A&| f.\
<output/> C;ml\ =l <output>: <input/> J,.\L\ ol <1nput>§ V)
<output/> I sl <output>: <input/> |>Jl L)l <input> (¥)
<output/> Caml\ o=l <output>: <input/> >l Ll <input> (v)
)
)

DA
GEC

<output/> pe.all ol <output>: <input/> |sull adl <input> (¢
<output/> C:ml\ adl <output>: <input/> J».\L\ o=l <input> (o
RIANIRN 4l t?)\d;:}u Y
<input/> sl 2dl <input> :s ! sl)| <output/> m=all [l <output> anl alisinl movall padl i Sk

Figure 3: 5-shot prompts used to evaluate LLMs performance on MSA and DA GEC. P-Lang is the prompt language
either in English (EN) or Arabic (AR).

17914

