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Abstract

Multi-hop Question Answering (MHQA) adds
layers of complexity to question answering,
making it more challenging. When Language
Models (LMs) are prompted with multiple
search results, they are tasked not only with
retrieving relevant information but also employ-
ing multi-hop reasoning across the information
sources. Although LMs perform well on tra-
ditional question-answering tasks, the causal
mask can hinder their capacity to reason across
complex contexts. In this paper, we explore
how LMs respond to multi-hop questions by
permuting search results (retrieved documents)
under various configurations. Our study reveals
interesting findings as follows: 1) Encoder-
decoder models, such as the ones in the Flan-T5
family, generally outperform causal decoder-
only LMs in MHQA tasks, despite being sig-
nificantly smaller in size; 2) altering the order
of gold documents reveals distinct trends in
both Flan T5 models and fine-tuned decoder-
only models, with optimal performance ob-
served when the document order aligns with
the reasoning chain order; 3) enhancing causal
decoder-only models with bi-directional atten-
tion by modifying the causal mask can effec-
tively boost their end performance. In addition
to the above, we conduct a thorough investiga-
tion of the distribution of LM attention weights
in the context of MHQA. Our experiments
reveal that attention weights tend to peak at
higher values when the resulting answer is cor-
rect. We leverage this finding to heuristically
improve LMs’ performance on this task. Our
code is publicly available at https://github.
com/hwy9855/MultiHopQA-Reasoning.

1 Introduction

Language Models (LMs) based on Transformer
architectures (Vaswani et al., 2017) have become
essential tools for a wide variety of tasks, includ-
ing question answering and conversational search
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(a) Qwen 2.5, head 3

Ins
t

Do
c_

0
Do

c_
1

Do
c_

2
Do

c_
3

Do
c_

4
Do

c_
5

Do
c_

6
Do

c_
7

Do
c_

8
Do

c_
9

Do
c_

10
Do

c_
11

Do
c_

12
Do

c_
13

Do
c_

14
Do

c_
15

Do
c_

16
Do

c_
17

Do
c_

18
Do

c_
19

Qu
es

tio
n

Attended Tokens/Groups

Inst

Doc_0

Doc_1

Doc_2

Doc_3

Doc_4

Doc_5

Doc_6

Doc_7

Doc_8

Doc_9

Doc_10

Doc_11

Doc_12

Doc_13

Doc_14

Doc_15

Doc_16

Doc_17

Doc_18

Doc_19

Question

St
ep

s

(b) FlanT5, head 1

Figure 1: Context attention distribution of Qwen 2.5
1.5B and FlanT5 large for the same question, both cap-
tured from the last layer (last encoder layer for FlanT5).
The gold documents are Doc_5 and Doc_10, where
the reasoning direction is Doc_10 → Doc_5. With bi-
directional attention, FlanT5 allows Doc_5 to assign
attention and “see” Doc_10 (red dashed box), whereas
Qwen 2.5 with causal mask cannot.

(Zhuang et al., 2023; He et al., 2023; Yi et al.,
2024; Mo et al., 2024; Wu et al., 2024; Huang et al.,
2025b; Wang et al., 2025). Among the different
architectures, causal decoder-only configurations
have become a popular choice for many of the most
widely known LM families (Llama Team, 2024;
Qwen, 2025).

LMs exhibit a strong ability to reason within
their input context, allowing for adaptability and ef-
fective generalisation across a wide range of tasks
(OpenAI, 2024). Albeit these capabilities, previous
studies have highlighted significant challenges re-
garding the extent to which LMs can reason across
different input contexts (Zhang et al., 2023; Kad-
dour et al., 2023). An exemplary case is the “lost
in the middle” problem (Liu et al., 2024), where
crucial information positioned in the middle of the
context may be overlooked by LMs. As LMs are in-
creasingly utilised in complex scenarios, their abil-
ity to reason across different contexts becomes crit-
ically important. The general Retrieval-augmented
Generation (RAG) framework (Lewis et al., 2020;
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Li et al., 2024; Shen et al., 2024) has recently be-
come the cornerstone of many search-based con-
versational agents, such as Copilot and Doubao.
In this setting, LMs frequently need to synthesise
information from multiple retrieved search results
to provide coherent answers.

This study conducts an in-depth analysis of
how LMs reason across various contexts, specifi-
cally focusing on multi-hop question answering
(MHQA). Within the RAG framework, MHQA
necessitates synthesising knowledge from multi-
ple documents, presenting a more complex level
of information integration than other more trivial
question-answering tasks. To successfully perform
MHQA, LMs must not only identify the most rel-
evant documents within a given context but also
reason with the information from these documents
to determine the correct answer.

A critical research question arises from the
architecture of modern causal decoder-only
Transformer-based LMs, which use a causal mask
during both training and inference. This con-
straint hinders these models from performing bi-
directional encoding (Raffel et al., 2020), as op-
posed to traditional encoder-decoder architectures
that can capture interactions between documents
more effectively (cf. Figure 1). This leads us to
examine whether these widely used causal decoder-
only LMs are limited by this constraint. Further,
what might be the impact if we replace the causal
mask with a bi-directional (i.e. prefix) mask?

To address these inquiries, we conduct a com-
prehensive investigation about how LMs model the
MHQA task. Initially, we evaluate the MHQA per-
formance of three widely adopted open-source LM
families: the Flan-T5 (Chung et al., 2024) family,
representing the traditional encoder-decoder archi-
tecture, and the Qwen2.5 (Qwen, 2025) and Llama
3.x (Llama Team, 2024) families, exemplifying two
popular causal decoder-only LMs. We design three
types of document permutations to investigate the
LMs’ behaviour in terms of: 1) the order of gold
documents1, 2) the distance between them, and 3)
their completeness. Our observations include:

1. The encoder-decoder model (Flan T5) is a
superior MHQA solver when no fine-tuning
takes place.

2. Fine-tuned LMs tend to favour forward-placed
1In the context of MHQA, they usually refer to the docu-

ments needed to answer the single-hop questions into which
the original multi-hop question is decomposed.

documents (Chen et al., 2024) (i.e., when the
order of gold documents in the context mirrors
the order of the reasoning chain, cf. Figure 2),
a trend also observed in the Flan T5 models.

3. Bi-directional attention with prefix mask can
benefit LMs in MHQA tasks and offers better
robustness when the order of gold documents
is altered.

4. The distance between gold documents signifi-
cantly affects performance.

5. While the removal of the first hop document
reduces MHQA performance, a relatively high
level of correctness is still maintained.

Building on the above observations, we delve
deeper to analyse how LMs perform MHQA by
examining the attention distribution across lay-
ers. Our findings reveal that LMs typically assign
higher attention score weights to at least one docu-
ment when they correctly answer a multi-hop ques-
tion. By sampling answers with different input
document permutations, and retaining the answers
for the inputs for which the LM assigned the largest
peak attention score, we increased the accuracy of
Qwen 7B from 28.6% to 33.7%.

2 Related Works

2.1 RAG and MHQA
The RAG framework has been widely used to in-
ject external knowledge (Pan et al., 2023) into LMs
(Gao et al., 2024), and mitigate their hallucination
tendencies (Huang et al., 2025a). In this frame-
work, LMs generate a response by conditioning
it on the top search results, which are provided
as input context. This setup has shown promis-
ing performance in a variety of tasks, including
knowledge graph question answering (Luo et al.,
2024; Huang et al., 2024), open-domain dialogue
generation (Wang et al., 2024), and multi-hop ques-
tion answering (Trivedi et al., 2022). Some stud-
ies have focused on investigating how LMs use
the input context, identifying discrepancies in how
different parts of the input are processed. For in-
stance, Mallen et al. (2023) find that retrieval may
sometimes harm model predictions and Liu et al.
(2024) report that LMs suffer from a “lost in the
middle” predicament. However, these works fo-
cus on simpler, one-hop question-answering tasks
that do not require reasoning across distant contex-
tual hops. Going a step further, Chen et al. (2024)
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demonstrate that the order of the premise matters
when logical reasoning is expected by LMs. Shen
et al. (2024) present GeAR, which advances RAG
performance for multi-hop QA through graph ex-
pansion and an agent framework that incorporates
graph expansion, achieving the state-of-the-art per-
formance of established benchmarks for multi-hop
QA. Around the same time as our work, Baker et al.
(2024) also identify the “lost in between” issue of
long context LLMs. In this work, we systemat-
ically explore how language models reason over
their input context to address multi-hop questions.

2.2 Drawbacks of Causal Language Model

A causal language model is equipped with a causal
mask that prevents tokens in the context to see
future context (Raffel et al., 2020). This design
harms the performance on complex tasks that re-
quire rich contextualized representations (Li et al.,
2023; Qorib et al., 2024). A common way to miti-
gate this issue is to prompt the model by repeating
the context in the input. Xu et al. (2024) show
that repeating the context improves the LMs abil-
ity in reasoning. Springer et al. (2024) prove that
repeating the context can also improve embedding
quality. To sidestep the unnecessary cost associated
with repeating the input context, researchers have
started to introduce bi-directional attention into
decoder-only models. BehnamGhader et al. (2024)
and Muennighoff et al. (2024) successfully apply
bidirectional attention in decoder-only models to
generate text embeddings, and observe better qual-
ity in a variety of tasks. In this work, we explore
how bi-directional attention can enhance language
models’ performance in the MHQA task, uncover-
ing valuable heuristics that could improve model
outcomes.

3 Preliminary

3.1 Multihop Question Answering

We formally define the MHQA task T . The input
of T has two parts, a question q, and n documents
D = {d1, . . . , dn}, some of which are relevant to q
and some are not. For answering q, the information
from m documents, s.t. m < n, is mandatory. We
accomplish T by prompting LMs with the concate-
nation of q and D in the input context.

3.2 Grouped Attention Weight

For better investigating which documents are more
heavily attended by LMs, we compute grouped

attention weights between token blocks. There
are several blocks, including the instruction block,
document blocks, question block, and prediction
blocks. Please note that for prediction blocks,
we directly use the prediction tokens that are not
grouped, since the prediction blocks may contain
other tokens besides the answer tokens. For atten-
tion between block X and block Y , the grouped
attention weight is computed as:

GAl,h(X,Y ) =

1

|X|
∑

tX∈X

∑

tY ∈Y
Attentionl,h(tX , tY )

(1)

where l, h denote the decoder layer and the atten-
tion head, |X| is used to normalize grouped atten-
tion values, tX and tY are tokens of block X and
Y . By grouping attention with (1), we make sure:

∑

Y

GAl,h(X,Y ) = 1 (2)

Using Eq. (1), we can understand which context
part contributes more to the next token prediction.

3.3 Information Contribution Score
To investigate how much information from each
document is captured during the MHQA task, we
introduce the Information Contribution (IC) score
based on the grouped attention scores.

For layer l, document token group d, the Infor-
mation Contribution (IC) score is by defined:

ICl(d) =
1

|A||H|
∑

h∈H

∑

a∈A
GAl,h(a, d) (3)

where H is the set of attention heads and A is the
set of answer tokens in the prediction.

4 Experimental Setup

We conduct experiments using both encoder-
decoder LMs (from the Flan-T5 family) and causal
decoder-only LMs (Qwen 2.5 family and Llama
3.x family). For the Qwen 2.5 family, we select
to use five LMs with sizes that range from 0.5B
to 14B. For the Llama 3.x family, we use 1B and
3B from Llama 3.2 and 8B from Llama 3.1. The
specifications of these models are included in Ta-
ble 4. We use the instruction-tuned variants of all
the models included in this study. We investigate 4
setups for inference:

Answer Only The model is forced to directly
generate the answer in the following format:
\box{⟨answer⟩}.
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CoT Zero-shot Chain of Thought prompting is
used to ask the model to first generate reasoning
steps and then provide the final answer in the same
format: \box{⟨answer⟩}.

Finetuned We use the MuSiQue training set to
train the models.

Finetuned + Bi We replace the original causal
mask of the model with bi-directional attention
facilitated by a 2D mask, as follows:

Mi,j =





0 if i ≥ j

0 if i ≤ c, j ≤ c

1 otherwise

(4)

where c is the context length. With the new mask,
the model is then converted to a prefix LM (Raffel
et al., 2020) The model is trained with the same
data as in the Finetuned setup.

For all finetuning experiments, we use LoRA
with r = 8 and α = 16 and train for 5 epochs with
a learning rate 2e− 5 and a batch size 1.

4.1 Dataset
We instantiate the MHQA task with the MuSiQue
(Trivedi et al., 2022) dataset, which contains multi-
hop questions from 2-hop to 4-hop. In the original
dataset, for each question, 2 − 4 gold documents
are provided, each containing evidence for each
decomposed question (hop). Additionally, distrac-
tor documents are included to add noise, forming
a context with up to 20 documents in total, pre-
sented in no specific order. We use the answerable
set in all the experiments, and keep the data split
unchanged in terms of the training and develop-
ment set. For the finetuning experiments, we use
the original training set with 19,938 queries. For
all the experiments, we report performance on the
development set which consists of 2,417 queries.

4.2 Metrics
We use the accuracy metric (Acc) to measure
MHQA performance. For the Answer Only setup,
we treat the answer inside \boxed{⟨answer⟩} as
the prediction. For CoT setup, we treat the last
\boxed{⟨answer⟩} as the prediction. Please note
that some models do not follow the CoT instruction
well2. In such cases, we compute Acc by finding
if the reference answer is included in the last line

2Small Qwen models (0.5B and 1.5B) generally do not
apply CoT reasoning. Llama models do not always follow the
instruction to place the final answer in \boxed{⟨answer⟩}.

Original

… …

Remove First

… …

Forward

… …

Forward_i

… … …

Backward

… …

…

 i*noise 
documents

 i*noise 
documents

:1st/2nd/3rd-hop gold document :noise document

{ {

Figure 2: Context permutation design. Take 3-hop ques-
tion for example. Forward setup follows the reasoning
chain while Backward setup is the reverse of Forward
setup. Forward_i control the distance between gold doc-
uments, and Remove First removing the document that
support first hop question.

of the prediction. For finetuning-based models and
encoder-decoder models, we compute the exact
match as the accuracy of the prediction.

5 Does Permutation Change LM’s Mind?

We designed three distinct context permutation set-
tings to assess LMs’ abilities to comprehend differ-
ent aspects of the context, as shown in Figure 2.

Order of gold documents In an idealised sce-
nario, we would expect the gold documents to be
provided in the same order as the reasoning hops.
Our hypothesis is that the effect of the causal mask
will be minimised by providing the gold documents
with the reasoning chain order. We refer to this set-
ting as Forward. In contrast to this setting, we
test a setting in which the documents are placed
in the reverse order of Forward, hypothesising that
the counter-intuitive reasoning consistency should
make the task more challenging for the involved
LMs. The reversed setting is called Backward.
Finally, we have a setting where we keep the order
of the gold documents as in the original dataset, to
which we refer as Original.

Distance of gold documents Besides the order,
the distance between the input gold documents is
not guaranteed in real-world MHQA tasks. To in-
vestigate how the distance between gold documents
affects the LM, we design a series of Forward_i
settings, where we fix the order of documents to be
Forward, and, subsequently, ensure that the final
hop document is placed at the end of the context.
After that, between each gold document, we inject
i noise documents (i.e. the set of noisy documents
remain the same as in the previous settings). We
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select i = {0, 1, 2, 3, 4, 5}, where i = 0 stands for
no noise between gold documents.

Completeness of gold documents To better un-
derstand how LMs answer multi-hop questions, we
want to know if they are really doing multi-hop
reasoning, or just guess an answer. To evaluate
this, we design a setting in which the knowledge in
the input context is incomplete in terms of answer-
ing the original question: Remove First, which
removes the first hop document.3

5.1 Order of Documents Matters
Table 1 shows performance across different setups.

Non-finetuned Generally, the Answer Only
(AO) results in the worst performance. In this
setup, changing the order of the supporting doc-
uments leads to unstable performance differences,
where forward-placed gold documents do not of-
fer overall performance improvement consistently.
With CoT prompting, most models get performance
improvements. We note that Qwen2.5 0.5B, 1.5B
and Llama3.2 1B do not follow the CoT instruc-
tion well, as the inclusion of the CoT instruction
does not often lead to changes in the models’ out-
put. Overall, decoder-only models with zero-shot
CoT perform similarly to when they are directly
prompted, and the order of documents appears to
be invariant to their MHQA performance.

Finetuned (FT) By finetuning the models on the
MuSiQue training set, the performance of all mod-
els improves. Interestingly, finetuned variants seem
to benefit from the forward gold document setting,
even though the training data are provided in the
original order of the training split. To ensure that
the order of the documents in the training set is
not sequentially correlated with the forward (and
backward) setting, we compute the average Spear-
man’s rank correlation and Kendall’s τ coefficients:
0.0013 (−0.0013) and 0.0016 (−0.0016) respec-
tively, indicating that the benefits of the forward
setup are emergent through finetuning.

Finetuned + Bi (FT+Bi) When finetuning the
models modified with bi-directional attention, we
observe further performance improvements. More-
over, the models are more robust to document per-
mutations, showing less variation in performance
across the three inference setups.

3Please note that, in a formal definition, removing an el-
ement does not qualify as context permutation. We use the
term “permutation” here for convenience in this context.

0 1 2 3 4 5
Distance between Gold Documents

0.30

0.35

0.40
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Answer Only
CoT
Finetuned
Finetuned + Bi
FlanT5-xl

Figure 3: Acc of Qwen2.5 7B across different gold doc-
ument settings. Each dashed line refers the Forward
result of the setup with the same colour. The perfor-
mance of non-finetuned models generally drops as the
distance increases, while finetuned models show better
robustness to the increase of distance.

Encoder-Decoder Table 2 shows the results from
the non-finetuned encoder-decoder models. Gener-
ally, the Flan T5 family performs much better than
non-finetuned decoder-only models for approxi-
mately similar parameter numbers. Flan T5 xl with
3B parameters already outperforms all decoder-
only models under 8B with Answer Only or CoT,
and achieves competitive performance compared to
Qwen 2.5 14B. Interestingly, we can observe a very
clear trend that the forward setting performs the
best while the backward one performs the worst.
The trend is clearer than in the Finetuned + Bi set-
ting of the decoder-only models. When we tested
other encoder-decoder models, the same trend was
not observed, while the involved models continue
to outperform equally-sized decoder-only models
(see Table 5 in Appendix). We believe that this
emerging ability of the Flan T5 models can be
attributed to the selection of data used for their
training (Longpre et al., 2023).

5.2 Distance between Documents Matters

We explore how the distance between gold docu-
ments affects the LMs’ performance on MHQA
using Qwen2.5 7B and FlanT5 xl. The results are
shown in Figure 3. Generally, the models’ perfor-
mance drops as the distance of the gold document
increases. Notably, placing forward-ordered doc-
uments on the last positions of the input context
brings significant performance improvement. This
is because LMs generally favour documents close
to border regions of the input prompt instead of
the middle regions (Liu et al., 2024). Notably, fine-
tuned models (Finetuned and Finetuned + Bi) re-
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Model Answer Only CoT Finetuned Finetuned + Bi
∆B Acc ∆F ∆B Acc ∆F ∆B Acc ∆F ∆B Acc ∆F

Qwen2.5 0.5B 0.21 8.94 -0.58 -0.21 12.91 -0.79 -4.34 27.14 3.72 -0.91 30.30 0.41
Qwen2.5 1.5B -1.08 20.36 -0.70 0.0 22.76 -1.03 -2.61 44.06 1.86 0.04 44.78 1.20
Qwen2.5 3B -0.87 19.78 0.74 -2.03 24.82 -0.46 -1.37 50.23 2.98 -1.74 52.15 1.70
Qwen2.5 7B -1.78 28.59 0.74 -2.03 36.24 2.03 -2.36 58.05 1.41 -1.45 62.96 0.33
Qwen2.5 14B 0.12 37.07 -0.29 1.08 39.22 0.62 -1.65 64.34 1.03 0.29 64.88 0.08

Llama3.2 1B 0.83 11.21 -0.83 -0.04 11.96 -0.21 -1.99 33.06 1.74 -0.41 40.85 0.62
Llama3.2 3B -1.61 25.73 0.79 -0.62 31.65 1.12 -1.99 54.57 1.70 -0.91 59.60 0.58
Llama3.1 8B 0.54 36.37 -0.95 -0.62 44.60 -0.25 -2.11 63.51 1.24 -1.20 65.48 1.41

Table 1: Overall MHQA performance on the MuSiQue development set. ∆B and ∆F are performance differences
between original documents and re-ordered backward and forward documents respectively. Green cells indicate
performance improvement while red cells indicate performance drop.

Model ∆B Acc ∆F Qwen2.5 Acc

FT5 small/80M -1.94 20.11 1.86 8.94 (0.5B)
FT5 base/250M -1.65 28.09 1.90 20.36 (1.5B)
FT5 large/0.8B 0.25 40.01 0.37 19.78 (3B)
FT5 xl/3B -2.44 47.33 2.19 28.59 (7B)
FT5 xxl/11B -2.03 56.43 1.65 37.07 (14B)

Table 2: MHQA performance on the MuSiQue devel-
opment set using Flan T5 models. Qwen2.5 Acc is the
Acc score from the Qwen2.5 family for reference.

main more robust since their performance is less
affected by both (i) the increase of distance be-
tween gold documents and (ii) the placement of
forward-ordered documents at the last positions.

Our findings indicate that in a multi-iterative
RAG setting ordering documents based on rele-
vance rather than the order of their associated de-
composed question (assuming that more than a sin-
gle document is maintained for each decomposed
question), can reduce the distance between relevant
documents and effectively increase the end-to-end
QA performance. As such, we emphasize the im-
portance of incorporating ranking-based metrics
to measure retrieval quality, which currently de-
viates from the standard practices in RAG-based
MHQA, where the focus is primarily on recall
(R@n) (Trivedi et al., 2023; Gutierrez et al., 2024).

In Appendix H, we include additional experi-
ments on the 2WikiMultihopQA Compositional
subset. The findings are in line with the major ob-
servations above in terms of the distance and order
of the gold documents.

5.3 Do LMs guess the answer?

To identify if LMs can answer questions even when
they do not have enough information, we manually
remove the first hop document from the context.
Since LMs may have the relevant parametric knowl-

Setup Accuracy
2-Hop 3-Hop 4-Hop

w/o first hop information in parametric knowledge

AO 26.0→20.8 28.6→29.1 29.7→28.8
CoT 40.3→14.8 38.5→27.1 24.3→24.3
FT 63.9→36.2 57.7→54.4 56.2→57.2
FT+Bi 70.9→37.7 57.0→55.7 64.9→61.7
FT5 xl 53.8→39.1 41.3→39.7 40.1→40.1

w/ first hop information in parametric knowledge

AO 33.6→33.3 30.8→29.0 22.8→22.8
CoT 40.2→30.0 30.8→39.7 20.7→23.9
FT 57.5→52.2 40.7→41.6 54.3→54.3
FT+Bi 62.1→52.2 39.7→38.3 75.0→78.3
FT5 xl 51.1→46.8 36.6→53.7 39.3→42.9

Table 3: Evaluation results of completeness permuta-
tion of Qwen2.5 7B (AO, CoT, FT and FT+Bi) and
FlanT5 xl model (FT5 xl). Results are shown as Origi-
nal→Remove First.

edge already, we further design a simple atomic by
asking them the first hop question, without any
other context. We determine whether they have the
required parametric knowledge by evaluating their
answer. Table 3 shows the relevant results.

Without first-hop information in parametric
knowledge For 2-hop questions, since the first
hop document is more important, generally all mod-
els across all settings drop in accuracy when the
information is not stored in their parameters. For
3-hop and 4-hop questions, we see a similar per-
formance drop on non-finetuned models, but the
drop is less significant. This means for complex
questions, LMs still lack the ability to know what
they don’t know, and they are expected to refuse
to answer the question since the reasoning path of
existing evidence is not complete. For finetuned
models, the issue is more severe, where the accu-
racy even increases (4-Hop, FT) as key information
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(b) Finetuned
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(c) Finetuned + Bi

Figure 4: IC distribution across different layers of Qwen2.5 7B with different setups for 2-hop, 3-hop and 4-hop
questions, all in original order. LMs generally assign higher peak IC scores (in particular for the final hop) when
answering the multi-hop questions correctly.

is not provided.

With first-hop information in parametric knowl-
edge Similarly, for 2-hop questions, accuracy
drops in most settings, but it is not as significant
as when the removed information is known by the
model. While for more complex questions, perfor-
mance generally increased, especially for the CoT
and Flan T5 models. Even when we ask models to
only use the given context, they still default to para-
metric knowledge for MHQA. This also suggests
that complex MHQA is still a big challenge to LMs,
where failure to locate all required information in
the context may lead to hallucinations. This also
indicates that retrieval may sometimes harm mod-
els’ performance, even if the external knowledge
does not conflict with parametric knowledge.

6 Are LMs Aware of Context
Permutations?

To investigate how LMs make use of the given con-
text to answer multi-hop questions, we compute
the information contribution (IC) score with Equa-
tion (3) on the MuSiQue development set. Our
hypothesis is that by investigating how models pay
attention to particular documents in the context,
we can better explain their behaviour in answering
multi-hop questions. In this part, we only consider
three settings: Answer Only, Finetuned and Fine-
tuned + Bi. Figure 4 shows the IC distribution of

the different setups across different layers of the
Qwen 7B model.

6.1 LMs Assign Higher Peak Attention when
Correct

For the samples that are answered correctly, the
model consistently assigns the largest attention
score to the last hop document. This is intuitive
since the answer is included in the last hop doc-
ument. In the case of samples that are answered
incorrectly, we observe a smaller gap between the
last hop and previous hop documents. Notably,
while correct samples always assigned higher at-
tention scores to the gold documents, the IC score
of the Answer Only setup with direct prompting
is generally lower than the two settings based on
finetuning. This is even clearer for the incorrect
samples, where, for the non-finetuned variants, the
highest IC score of the noise documents (labelled
as noise (max)) is almost the same as that of the
gold documents. Interestingly, the “retrieval” lay-
ers to which most of the fluctuations in the attention
weight are attributed remain consistent throughout
fine-tuning, even with bi-directional attention.

We find that all models assign much higher at-
tention to the last hop when generating the cor-
rect answer, but are less confident and assign more
evenly distributed attention scores when generat-
ing incorrect answers. More generally, all models
assign higher peak attention (i.e., largest attention
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Figure 5: Qwen 2.5 7B performance (Answer Only)
peak IC ranking from higher peak IC to lower peak IC.
A clear trend can be observed that higher peak IC among
the 20 random shuffles brings higher accuracy.
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Figure 6: Position of last hop document when the or-
der achieves highest peak IC score in Qwen 7B model
(Answer Only). LMs generally assign highest peak IC
when the last hop document is close to the end.

to one document in the context) when they predict
the answer correctly. To better understand the re-
lation between model predictions and the largest
IC score, we randomly shuffle the document order
in the context 20 times per question, then perform
inference with Qwen2.5 7B in the Answer Only
setup. We observe that the median peak IC scores
are 2.22 and 1.72 for correct and incorrect samples
(cf. Figure 7). IC scores are in general higher for
correct than incorrect samples.

In addition, we compute the prediction accuracy
with different context shuffles based on the ranked
peak IC scores (Figure 5). Our results show that a
higher peak IC score among the 20 random shuffles
provides higher MHQA performance, showcasing
that the peak IC score is a key signal from the LM
to identify the optimal context order. This finding
underscores the importance of context order for the
MHQA task, where the best context order almost
doubles performance over the worst order.

6.2 LMs Generally Favour the Last Document
Amongst all noise documents, we capture the most
favoured position where the IC score is the high-
est. We find that the last document receives the
most attention in most cases. In Figure 4, the pur-
ple dashed line shows the attention assigned to the
noise that confuses the model most. Interestingly,
we find this is mostly the last document, which

seems to have a high probability of being captured
in the lower layer of the non-finetuned model. In
Figure 4, there is always a local peak of noise doc-
ument at early layers.

In addition, in all the best samples (with the
largest IC score among 20 randomly shuffled con-
texts) from Section 6.1, we also observe a par-
ticular preference for the last document (cf. Fig-
ure 6). A similar phenomenon is observed in other
causal decoder-only models, even for models like
Qwen2.5 0.5B which performs worst on forward
order, the trend exists whilst less significant.

7 Discussion

7.1 Optimizing LMs’ Use of Context

State-of-the-art RAG methods (Trivedi et al., 2023;
Gutierrez et al., 2024) for solving multi-hop ques-
tion generally split the n-hop complex question q
into several decomposed questions qi and retrieve
top-k documents Di = {di,1, di,2, ..., di,k} accord-
ingly. Simply concatenating the documents with
the order of decomposed questions ensures that
the document order is forward, but the distance
between relevant documents is large. According
to our observations in Section 5.1 and 5.2, non-
finetuned causal language models are not sensitive
to the relevant documents’ order, but the distance
between relevant documents matters. Thus if the
selected reader is an off-the-shelf causal language
model, gathering additional documents, ensuring
that their in-between distance is minimum, is essen-
tial. On the contrary, if finetuning is an option, then
keeping the forward order is more important for
getting the best performance. For both situations, it
is strongly recommended to place documents with
higher relevance close to the end of the context.

7.2 Use Reader with Bidirectional Attention

Causal decoder-only LMs are widely used in the
RAG framework as readers. In our experiments, we
show that these models are not the ideal choice as
MHQA solvers, as they are limited by their causal
mask. Our experiments show that by altering the
causal mask with a prefix mask, and simply using
LoRA finetuning to obtain a non-causal decoder-
only model, we can outperform the original causal
setup while being more robust against the order of
gold documents. Notably, the FlanT5 family shows
marvellous off-the-shelf MHQA ability and can
serve as a competitive reader alternative to causal
decoder-only models within the RAG framework.
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7.3 Attribution Is Important

From Section 5.3, we observe that removing the
first hop document causes a performance drop to
all language models, but still maintain a relative
high accuracy, especially for 3-hop and 4-hop ques-
tions. In addition, we find that the attention weight
assigned to the last hop document does not change
when removing the first hop document (Figure 10).
These findings further underscore the importance
of attribution in RAG, to ensure that the predicted
answer is supported by evidence from the context.
In knowledge intensive tasks, the ignorance of ev-
idence completeness could be a critical issue that
produces hallucinations.

8 Conclusion

In this study, we explore the MHQA capabilities
of LMs with different architectures. We find that
non-finetuned, causal decoder-only LMs are in-
variant to the order of gold documents but are af-
fected by their in-between distance in the input
context. Incorporating bi-directional attention en-
hances performance—both in the case of encoder-
decoder models, which outperform their decoder-
only counterparts and when applied to decoder-
only models. Additionally, finetuning instils in the
models the bias of forward order and makes them
more robust against the distance between gold doc-
uments. Our analysis of attention distribution in-
dicates that increased peak attention in the context
aligns with accurate predictions. These insights
advance our understanding of LMs in MHQA and
suggest avenues for future improvements.
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Limitations

In this work, with the limitation of computing re-
sources, we consider MuSiQue dataset with its orig-
inal setup, with at most 20 documents per question.
To the best of our knowledge, MuSiQue is one
of the most challenging datasets for MHQA, and,
therefore, ideal for the experiment we want to con-
duct in this study. In Appendix H, we include
additional results on relevant subsets of 2WikiMul-
tihopQA, demonstrating that our original findings
on MuSiQue hold.

Most of our prompts are around or below 4k to-
kens, which is relatively a short setting with respect
to the current long-context language models. We
believe that this does not diminish the contribution
of this work. For example, we have already noticed
a significant effect of distance between gold doc-
uments with only 5 noise documents in between,
indicating that when considering longer contexts,
the context order is even more important for com-
plex reasoning tasks, such as MHQA, which is a
crucial issue that needs to be considered in future
works.
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Model Params Layers Dim Heads

Qwen2.5 0.5B 0.49 24 896 14/2
Qwen2.5 1.5B 1.5 28 1,536 12/2
Qwen2.5 3B 3.1 36 2,048 16/2
Qwen2.5 7B 7.6 28 3,584 28/4
Qwen2.5 14B 14.7 48 5,120 40/8

Llama3.2 1B 1.23 16 2,048 32/8
Llama3.2 3B 3.21 28 3,072 24/8
Llama3.1 8B 8.03 32 4,096 32/8

Flan T5 small 0.08 8+8 512 6
Flan T5 base 0.25 12+12 768 12
Flan T5 large 0.8 24+24 1,024 16
Flan T5 xl 3 24+24 2,048 32
Flan T5 xxl 11 24+24 4,096 64

Table 4: Specification of LMs experimented in this
paper.

sure that our experiments are replicable, we utilize
greedy decoding for all the inference experiments
and set the seed to 42 for all finetuning experiments.
We use Huggingface Transformers library (Wolf
et al., 2020) to accomplish all the experiments in
this study, and utilize PEFT (Mangrulkar et al.,
2022) for LoRA finetuning.

B Model Specification

Table 4 shows the specifications of LMs investi-
gated in this study.

C Prompt Details

The prompt used in this work is adapted from Liu
et al. (2024) as:

Answer the question using only the pro-
vided search results (some of which might
be irrelevant).

⟨Documents⟩

Question: ⟨Question⟩

Specially, for Answer Only setup, we explicitly
add \boxed{ to the end of the prompt to force
model following the answer only instruction.

D Detailed statistics of peak IC score

As discussed in Section 6.1, we observe that LMs
assign higher peak IC scores when they get the
correct answer. Figure 7 shows the box plot of
peak IC score when correct and incorrect answers
are predicted, with 20 random shuffles for each
question.

Correct Incorrect
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Figure 7: Statistics of peak IC score of correct and
incorrect samples.

E Extra analysis of IC plots

E.1 Model behave differently with Backward
and Forward

In this section, we illustrate other findings observed
in the IC plots. From Figure 8, we can find that in
the Forward setup, the model tends to focus more
on the first hop document. For instance, in the IC
distribution on 4-hop questions of Figure 8a and
8b, the blue plot of attention focusing on a 1-hop
document in Forward setup is the highest except the
last hop, while in Backward setup the differences
between these hops are minor. This behaviour also
generalizes to finetuned models. Moreover, this
behaviour is mainly observed in 3-hop and 4-hop
questions, where the distance between the first-hop
document and last-hop document is longer. Though
last hop document is able to encoding part of the
information of first hop document, longer distance
will reduce this encoding and requires model to
focus more on it to prevent “forgetting”.

E.2 How does distance change the LM’s
mind?

Figure 9 shows the IC distribution across layers,
considering different setups and distances (i.e., i
in Forward_i settings) between gold documents.
Specifically, when i = 5, the model behaves sim-
ilarly as discussed in Section E.1: the first hop
document gets the most attention except the last
hop, but when i = 0, the attention intensity starts
to follow the order of the reasoning hops, which
decreases from the last hop to the first hop. This
finding supports our hypothesis in Section E.1, sug-
gesting that a longer distance compels the model to
allocate more attention to the first-hop document to
ensure essential information is retained when gold
documents are forward-placed.
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Model ∆B Acc ∆F

T0 0.29 38.06 -0.87
T0pp -0.63 43.07 -0.29

Table 5: Performance of other encoder-decoder models
on the MuSiQue development set.

E.3 How does removing the first hop change
the LM’s mind?

From Figure 10, we can find that while 2-hop sam-
ples are most affected, removing the first hop doc-
ument does not affect much the attention weight
assigned to the last-hop documents. For 3-hop
and 4-hop questions, the IC distribution of the rest
documents is nearly the same as when not remov-
ing the first hop document. These findings again
enhance the importance of attribution of retrieval-
augmented generation, to ensure that the predicted
answer is supported by the evidence from the con-
text. In knowledge-intensive tasks, the ignorance
of evidence completeness could be a critical issue
that produces hallucinations.

F Experiment on other encoder-decoder
models

This section shows more experiment results of
instruction-based encoder-decoder model. T0pp
is a 11B model instruction finetuned from T5 11B
with P3 datasets (Sanh et al., 2022), where T0 is a
weaker version that trained with P3 subset. Noted
that the favour of forward order disappeared. Given
that P3 is a subset of Flan dataset (Longpre et al.,
2023), we then consider that the ability is not ob-
tained from model architecture, but from training
data. Future works about which dataset from Flan
triggered the favour could be established for a bet-
ter understanding of the behaviour.

G Closed-book Result

MHQA task is much more challenging than tra-
ditional QA tasks, where LMs can not well ac-
complish it without external knowledge. Here we
accomplish a closed-book experiment setup with
no context information provided to the LMs dis-
cussed in this work. Table 6 shows the evaluation
results.

H Experiment Result on Other MHQA
dataset

To evaluate if our findings generalize to other
MHQA datasets, we run extra experiments on
2WikiMultihopQA dataset (Ho et al., 2020). We
use 5,234 questions from the compositional sub-
set and 1,549 questions from the inference subset,
in which all the questions are 2-hop, and the con-
text contains 10 short documents, of which 2 gold
documents are provided. To investigate if finetun-
ing generalizes to other datasets, we use the same
models finetuned on MuSiQue. In this part, we
evaluate LMs including Flan T5 xl, Flan T5 xxl,
Qwen 2.5 7B, Llama 3.1 8B, as well as their fine-
tuned and finetuned with bi-directional attention
variants if applicable.

Table 7 and 8 shows the evaluation results on
2WikiMultihopQA dataset. It is clear that the
favour of forward document still exists in the two
sets, and the use of bidirectional attention boosts
performance significantly while being more robust
with the order of gold documents. In addition, even
though not finetuned on 2WikiMultihopQA, the
two finetuned setup still obtain competitive perfor-
mance. Moreover, compared to the finetuned setup
with causal attention mask, the bi-directional atten-
tion get a better performance, and more robust to
the order of gold documents.

Figure 11 shows the affect from distance on Flan
T5 models and Qwen 2.5 7B variants. It is clear that
our observation still holds that finetuned models
are more robust to the distance of gold document,
even not finetuned on the same dataset. While the
performance of non-finetuned models decreases as
the distance increases, even when the context is
much shorter (with shorter documents and only 10
in the context).

Similar to Section 6.1, on the two subset of
2WikiMultihopQA dataset, we also conduct ex-
periment on Qwen 2.5 7B with Answer Only setup
with randomly shuffled the document order of each
question 10 times and computed the peak IC score
for each shuffle. For the compositional subset,
the average accuracy across these 10 shuffles was
42.14, while the sample with the highest peak IC
score achieved an accuracy of 49.29. While for
the inference subset, the average accuracy across
these 10 shuffles was 14.96, while the sample with
the highest peak IC score achieved an accuracy of
19.43.
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(a) AO, Backward
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(b) AO, Forward
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(c) FT, Backward
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(d) FT, Forward
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(e) Bi, Backward
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Figure 8: IC distribution across different layers of Qwen2.5 7B with different order of gold document.

0.00

0.05

0.10

0.15

0.20

0.25

0.30

IC
 S

co
re

s

1-hop doc
2-hop doc
noise (max)
noise (mean)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

IC
 S

co
re

s

1-hop doc
2-hop doc
3-hop doc
noise (max)
noise (mean)

0 5 10 15 20 25
Layers

0.00

0.05

0.10

0.15

0.20

0.25

0.30

IC
 S

co
re

s

1-hop doc
2-hop doc
3-hop doc
4-hop doc
noise (max)
noise (mean)

(a) AO, i=0
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(b) AO, i=5
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(c) FT, i=0
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(d) FT, i=5
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(e) FT+Bi, i=0
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(f) FT+Bi, i=5

Figure 9: IC distribution across different layers of Qwen2.5 7B with different distances i between gold documents.
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(a) AO, w/ 1 hop
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(b) AO, w/o 1 hop
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(c) FT, w/ 1 hop
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(d) FT, w/o 1 hop
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Figure 10: IC distribution across different layers of Qwen2.5 7B with and without first hop document.
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Model Flan T5 Qwen 2.5 Llama 3.x
small base large xl xxl 0.5B 1.5B 3B 7B 14B 1B 3B 8B

Acc 0.54 1.08 2.19 3.10 3.97 2.65 2.48 5.46 8.32 10.18 2.77 5.59 10.88

Table 6: Closed-book evaluation results on MuSiQue development set.

Model Answer Only Finetuned Finetuned + Bi
∆B Acc ∆F ∆B Acc ∆F ∆B Acc ∆F

Qwen 2.5 7B -0.44 42.19 0.99 -1.78 54.78 1.55 -0.25 61.04 0.71
Llama 3.1 8B 3.40 51.60 -3.19 -0.99 58.98 0.42 -0.02 62.84 -0.06
Flan T5 xl -1.38 63.76 1.60 - - - - - -

Table 7: MHQA performance on the 2WikiMultihopQA Compositional development subset. ∆B and ∆F are
performance differences between original documents and reordered (backward and forward) documents. Green
cells indicate performance improvement while red cells indicate performance drop.

Model Answer Only CoT Finetuned Finetuned + Bi
∆B Acc ∆F ∆B Acc ∆F ∆B Acc ∆F

Qwen 2.5 7B -1.42 13.82 2.39 -1.16 49.52 0.19 -6.00 33.25 5.94 -1.87 40.99 2.97
Llama 3.1 8B -1.03 24.47 -0.39 0.52 59.85 -0.77 -2.13 46.35 3.74 -1.36 56.10 0.32
Flan T5 xl -0.13 13.69 -0.58 - - - - - - - - -
Flan T5 xxl -3.16 21.11 2.52 - - - - - - - - -

Table 8: MHQA performance on the 2WikiMultihopQA Inference development subset. ∆B and ∆F are perfor-
mance differences between original documents and reordered (backward and forward) documents. Green cells
indicate performance improvement while red cells indicate performance drop.
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Figure 11: Distance results on 2WikiMultihopQA development set.
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