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Abstract
Natural language explanations play a funda-
mental role in Natural Language Inference
(NLI) by revealing how premises logically
entail hypotheses. Recent work has shown
that the interaction of large language models
(LLMs) with theorem provers (TPs) can help
verify and improve the validity of NLI explana-
tions. However, TPs require translating natural
language into machine-verifiable formal repre-
sentations, a process that introduces the risk of
semantic information loss and unfaithful inter-
pretation, an issue compounded by LLMs’ chal-
lenges in capturing critical logical structures
with sufficient precision. Moreover, LLMs are
still limited in their capacity for rigorous and
robust proof construction within formal verifi-
cation frameworks. To mitigate issues related
to faithfulness and robustness, this paper in-
vestigates strategies to (1) alleviate semantic
loss during autoformalisation, (2) efficiently
identify and correct syntactic errors in logical
representations, (3) explicitly use logical ex-
pressions to guide LLMs in generating struc-
tured proof sketches, and (4) increase LLMs’
capacity of interpreting TP’s feedback for it-
erative refinement. Our empirical results on
e-SNLI, QASC and WorldTree using different
LLMs demonstrate that the proposed strategies
yield significant improvements in autoformali-
sation (+18.46%, +34.2%, +39.77%) and expla-
nation refinement (+29.5%, +51.5%, +41.25%)
over the state-of-the-art model. Moreover, we
show that specific interventions on the hybrid
LLM-TP architecture can substantially improve
efficiency, drastically reducing the number of
iterations required for successful verification.1

1 Introduction

Recent studies in Natural Language Inference
(NLI) have developed models to leverage natu-
ral language explanations as a mechanism for rea-
soning in support of a hypothesis (Wiegreffe and

1Code and data are available at: https://github.com/neuro-
symbolic ai/faithful_and_robust_nli_refinement

Marasović, 2021; Chen et al., 2021; Thayaparan
et al., 2020; Valentino et al., 2022). Providing
sound and logically valid natural language expla-
nations lies at the core of NLI, as such transparent
justifications enhance both interpretability and reli-
ability for downstream tasks (Camburu et al., 2018;
Valentino et al., 2022; He et al., 2024). Recent
methods, in particular, have leveraged the infer-
ential and linguistic capabilities of large language
models (LLMs) by integrating them with external
theorem provers (TPs) to automatically verify the
logical validity of explanations for NLI (Pan et al.,
2023; Olausson et al., 2023; Quan et al., 2024b;
Dalal et al., 2024).

However, these integrated neuro-symbolic ap-
proaches still face notable challenges. First, auto-
mated theorem provers (ATP) require a machine-
verifiable formal language, yet LLMs often fail to
produce precise autoformalisations, underscoring
their limited capacity to faithfully convert complex
natural language inputs into rigorous formal rep-
resentations (Wu et al., 2022; Jiang et al., 2024;
Quan et al., 2024b). Second, syntactic errors are
frequently introduced during the autoformalisation
process, leading to reduced theorem-proving suc-
cess rates when dealing with more complex mate-
rial inferences (Pan et al., 2023; Olausson et al.,
2023; Zhang et al., 2024). Third, when provided
with external feedback on complex explanations,
LLMs often struggle to combine axioms (expla-
nations) into cohesive proofs and effectively self-
correct, limiting their effectiveness in more com-
plex NLI settings (Quan et al., 2024a,b).

In this paper, we build upon the state-of-the-
art LLM-based theorem proving framework for
NLI, Explanation-Refiner (Quan et al., 2024b). In
particular, we explore methodologies to improve
the faithfulness of autoformalisation and deliver
a more robust way to effectively and efficiently
provide logically valid explanations. We further
examine how varying degrees of dataset complex-
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Premise: 
There is one person lying in a
large, green field.

Hypothesis: 
There is a person alone in a field
outdoors.

Initial Explanation: 
One person is a person alone.

(i) Autoformalisation

Subject: One person
Verb Phrase: is a person alone
Main Verb: is
Subject Complement: a person
Adverbial Modifier (Manner): alone

∃x. OnePerson(x) ⟷ (Person(x) ∧ Alone(x))

Equivalent(A, B)
Equivalent(one person, a
person alone)

proof -
  (* From the premise, we have known information about one person,
lying, agent, field, large, green, and in. *)
  from asm have "OnePerson x ∧ Field y ∧ In x y" by simp
  (* There is a logical equivalence between one person and a person
alone from explanation sentence 1. *)
  (* Using the equivalence, we can infer that if OnePerson x, then Person
x and Alone x. *)
  then have "Person x ∧ Alone x" using explanation_1 by blast
  (* We already have Field y from the premise. *)
  (* Since the field is large and green, it can be considered outdoors. *)
  (* Therefore, we can infer Outdoors y. *)
  then have "Field y ∧ Outdoors y" sledgehammer
  (* Combining all the inferred information, we have Person x, Alone x,
Field y, Outdoors y, and In x y. *)
  then show ?thesis <ATP>
 qed
end

∀x. OnePerson(x) ⟷ (Person(x) ∧ Alone(x))

(ii) Autoformalisation
Check and Refinement

Proof Found

No Proof Found

(iii) Theorem Proving

A: one person (from
Explanatory Sentence 1)
B: a person alone (from
Explanatory Sentence 1)

Implies(B, A)
Implies(a person alone, one
person)
Implies(A, B)
Implies(one person, a
person alone)

(4) Propositions Extraction

(5) Relations Extraction

(6) Derive Implications

Verified
Explanation

(* We already have Field y from the premise. *)
  (* Since the field is large and green, it can be
considered outdoors. *)
  (* Therefore, we can infer Outdoors y. *)
  then have "Field y ∧ Outdoors y" sledgehammer

New Explanation: 
One person is a person alone.
A field can be outdoors, and if a person is in
a field, they can be considered outdoors

(1) Syntactic
Parsing

(6) Extract Failed Proof Step

(2) Quantifier Check 
  and Refinement

(iv) Explanation Refinement

(3) Consistency Check 
   and Refinement

shows "∃x y. Person x ∧ Alone x ∧ Field y ∧
Outdoors y ∧ In x y"

shows False

Figure 1: An illustration of our proposed interventions for improving LLM-driven theorem proving for NLI. The
interventions employ different techniques including syntactic parsing, quantifier refinement, logical consistency
refinement, and logical expression extraction to guide LLMs in generating more faithful and robust proof sketches
for NLI and effectively refine natural language explanations. This approach provides more structured and explicit
feedback by pinpointing the exact logical errors identified in the explanations.

ity in multi-hop reasoning affect the reliability of
proof step generation in LLM-Driven theorem prov-
ing. In general, we implement a neuro-symbolic
framework to address the following research ques-
tions: RQ1: "To what extent can we deliver faithful
autoformalisation that preserves semantic infor-
mation?" RQ2: "What types of syntactic errors
commonly appear in formal representations, and
how effectively can state-of-the-art LLMs refine
these errors?" RQ3: "Can state-of-the-art LLMs
generate structured proof steps that can effectively
provide feedback to refine explanations with com-
plex sentences and logical relations?"

To answer these questions, we investigate how
to systematically leverage syntactic parsing during
autoformalisation to guide LLMs generate logical
representation of explanations. In addition, we de-
fine the general autoformalisation error types and
use LLMs to refine these errors explicitly from the
output message of a TP. Furthermore, we propose
a method to extract the logical propositions, rela-
tions and implications to guide LLMs to generate
proof sketches for automated theorem proving and
explanation refinement.

Our empirical evaluation on e-SNLI (Camburu
et al., 2018), QASC (Khot et al., 2019), and
WorldTree (Jansen et al., 2018) shows that the pro-

posed framework improves the faithfulness of aut-
oformalisation by 18.46%, 34.2%, 39.77%, respec-
tively, compared to Explanation-Refiner. Addition-
ally, the number of refined explanations produced
by our framework exceeds that of Explanation-
Refiner across all LLMs: raising refinement rates
from 41% to 95%, 17% to 90%, and 7% to 73%
across all three datasets. To summarise, the main
contributions of this paper are:

1. We introduce Faithful-Refiner, a novel neuro-
symbolic framework that provides more ro-
bust and faithful verification and refinement
of explanations in NLI, surpassing existing
LLM-driven theorem-proving approaches.

2. We conduct a quantitative evaluation of ex-
planation refinement and autoformalisation
across different LLMs, achieving an average
improvement of 29.5%, 51.5%, and 41.25%
more refined explanations, as well as 5.06%,
6.86%, and 32.16% on syntactic errors reduc-
tion compared to the state-of-the-art.

3. We adopt a range of automatic metrics to mea-
sure the quality of explanations and autofor-
malisation, showing that the proposed frame-
work significantly improve the faithfulness of
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the autoformalisation process.

4. We also perform a manual evaluation to assess
the perceived quality of the formalised logical
forms and conduct an extensive ablation study,
elucidating the role of each proposed compo-
nent and identifying key factors influencing
automated theorem proving for NLI.

2 Automated Theorem Proving for
Explanation-Based NLI

In this paper, we define an explanation Ei as a
set of facts {f1, f2, . . . , fn} that establish a logi-
cally valid entailment between premises pi and a
hypothesis hi, such that pi ∪ Ei |= hi holds.

In this work, we leverage an external theorem
prover TP to systematically verify these entail-
ments in an automated manner. Specifically, given
the set of input sentences S = pi ∪ {hi} ∪ Ei, we
aim to build a set of logical forms ϕ = {Φ(s) |
s ∈ S}, where Φ is the autoformalisation process
that converts natural language sentences into sym-
bolic representations. From these logical forms,
we construct a theory Θ = (A, τ), where A =
{a1, a2, . . . , an} is the set of axioms derived from
formalising Ei, and τ is the theorem to be proven,
composed of pi and hi. If an automated theorem
prover (ATP ) can derive a valid proof for Θ, we
conclude that Ei is sound and logically valid. Oth-
erwise, we refine Ei by using the failed proof steps
as feedback, iteratively generating a refined expla-
nation E′

i that ultimately leads to a valid justifica-
tion.

3 Methodology

To effectively enhance the joint inference capabili-
ties and robustness between LLMs and theorem
provers for explanation-based NLI, we propose
a novel framework to enhance three key compo-
nents: autoformalisation, logical and syntactic error
checking and refinement, and LLM-guided proof
construction. As illustrated in Figure 1, the pipeline
begins with the automated formalisation of natural
language into logical representations.

Unlike the previous state-of-the-art approach
(i.e., Explanation-Refiner), we begin with a syn-
tactic parsing step that guides LLMs in translating
natural language elements into a formal specifica-
tion compatible with theorem provers. The LLM is
prompted to automatically formalise the explana-
tory sentences into axioms and construct a theorem
composed of assumption clauses (drawn from the

premise) and a proof goal (derived from the hypoth-
esis). After formalising the input sentences, we
apply a quantifier and a logical consistency check
along with a refinement process.

Similar to Jiang et al. (2022b) and Quan et al.
(2024b), we adopt Isabelle/HOL (Nipkow et al.,
2002) to formally verify the constructed the-
ory. Specifically, we invoke the Sledgehammer
tool (Paulson and Blanchette, 2012) within Is-
abelle/HOL to call upon multiple automated the-
orem provers (e.g., CVC42, Vampire3), which
attempt to prove the theorem derived from the
translated NLI tasks. If any prover succeeds, we
conclude that the explanation is logically sound,
thereby confirming that the premise entails the hy-
pothesis.

If no proof is found, we use an LLM to ex-
tract logical propositions and relations from the
natural language explanations. We then employ
an intermediate propositional representation to de-
rive further implications among these propositions,
prompting the LLM to generate a step-by-step
proof sketch—rather than having the LLM serve di-
rectly as a proof planner as in Explanation-Refiner.

Finally, we iteratively attempt to prove each sub-
proof step, gathering information about failed steps,
using it as feedback to prompt the LLM to generate
an updated explanation to refine the logical errors
identified in the previous proof sketch and start a
new iteration.

3.1 Isabelle/HOL Theory Generation

Autoformalisation plays a critical role in integrat-
ing theorem provers with LLMs, especially for
complex sentence structures. Similar to Quan et al.
(2024b), we apply Neo-Davidsonian event-based
semantics (Parsons, 1990) to formalising the nat-
ural language sentences within each aspect of an
event with distinct predicates. This approach pro-
vides a robust foundation for formalising explana-
tory sentences while maximising content preserva-
tion (Maienborn et al., 2011).

However, simply using few-shot prompting for
autoformalisation does not guarantee a faithful pro-
cess, which may lead to inconsistencies between
the natural and formal languages expressions. To
alleviate this, we begin by performing syntactic
parsing via the LLMs on all provided sentences to
extract their grammatical structure, identifying the

2https://cvc4.github.io/
3https://vprover.github.io/projects.html
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(* Explanation 1: A man and woman are at the park. *)
axiomatization where

explanation_1: "∃x y z. Man x ∧ Woman y ∧ Park z ∧ At x z ∧ At y z"
theorem hypothesis:

(* Premise: A man and woman sit on a park bench with a set of newlyweds behind *)
assumes asm: "Man x ∧ Woman y ∧ ParkBench z ∧ Newlyweds w ∧ Sit e ∧ Agent e x ∧ Agent e y ∧ Patient e z

∧ Behind w z"
(* Hypothesis: People outside *)
shows "∃x. People x ∧ Outside x"

proof -
(* From the premise, we have information about a man and a woman sitting on a park bench. *)
from asm have "Man x ∧ Woman y" by blast
(* Explanation 1 states that a man and a woman are at the park. *)
(* This implies that they are outside, as parks are typically outdoor locations. *)
from explanation_1 have "∃x y z. Man x ∧ Woman y ∧ Park z ∧ At x z ∧ At y z" by blast
(* Since a man and a woman are at the park, they are outside. *)
then have "People x ∧ Outside x" <ATP>
then show ?thesis <ATP>

qed

Figure 2: An example of a proof sketch constructed by the model to verify an explanation from the e-SNLI dataset.
In this example, while ATPs find proofs for the first two steps using proof tactics, they fail to derive People x∧
Outside x due to missing premises. The feedback provided by Isabelle is then adopted in the next iteration to refine
the explanation and the proof sketch.

main predicate-argument structure. These elements
are subsequently mapped onto the agent, event ac-
tion, and patient roles within a Neo-Davidsonian
event semantics framework. For example, consider
the sentence "The father and son kicked the ball".
We can parse it as:

S

NP-SBJ

The father and son

VP

V

kicked

NP-OBJ

the ball
indicating that "The father and son" is the subject
while "the ball" is the object. Thus we could build
the Neo-Davidsonian event semantics to formalise
it as:
∃xyze. (Father(x) ∧ Son(y) ∧ Ball(z) ∧ Kicked(e) ∧

Agent(e, x) ∧ Agent(e, y) ∧ Patient(e, z))

By leveraging such a process, we construct a clear
representation indicating that the father and the son
are the agents performing the event (kick), while
the ball is the patient receiving the action, thus
capturing all relevant semantic information in the
transition from natural language to formal language.
We then construct the Isabelle/HOL theory with
axioms (explanatory sentences) and the theorem
(premise and hypothesis sentences).

3.2 Autoformalisation Critiques
Recent studies have identified errors and inconsis-
tencies in LLM-generated outputs as a challenge in
autoformalisation and have proposed several meth-

ods (Pan et al., 2023; Zhang et al., 2024; Gandarela
et al., 2025) to address them. In our work, we
categorise the errors in this phase into three main
dimensions: quantifier scoping error, syntax errors,
and logical inconsistencies.

Quantifier Scoping Error The quantifiers indi-
cate the scope of logical deductions. In syntheti-
cally generated datasets quantifiers are constrained
to predefined settings. In contrast, in naturally oc-
curring NL settings, incorrect quantifiers in axioms
may still prove a theorem within a formal system,
but when those logical forms are restated in natu-
ral language, their soundness may fail to hold in
the real world. For example, one cannot declare
“all animals are mammals." Thus, we introduce a
quantifier check and refinement soft-critique stage
to prompt the LLM to compare the quantifiers in
the logical forms against real-world knowledge,
thereby avoiding any over-scoped quantifiers.

Syntax Errors Internal syntax errors, primarily
those caused by missing brackets or type unifica-
tion conflicts of logical variables, can often be iden-
tified through the theorem prover’s output. Once
identified through a hard critique via the TP, these
errors can be systematically refined or corrected
by adjusting the syntax or revising type declara-
tions. We then employ an LLM for refinement to
support the systematic correction of these output
errors (constrained within up to five iterations).

Logical Inconsistencies In a formal system, if
contradictory or meaningless axioms are intro-
duced, the system becomes inconsistent. By the
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principle of explosion (ex falso [sequitur] quodli-
bet), any proposition can then be derived from such
an inconsistency. To test such errors within the
autoformalised axioms, we construct a modified
theorem τFalse by replacing the conclusion of τ
with "False". We then attempt to prove this modi-
fied theorem, if the TP finds a proof, it indicates a
contradiction within the axioms. In this case, we
use an LLM to refine the axioms and attempt to
solve the contradictions.

3.3 Proof, Verification and Refinement

After autoformalisation checking and refinement,
we employ the theorem prover TP to verify the log-
ical validity of the axioms and determine whether
A |= τ holds. We first use the Sledgehammer tool
in Isabelle/HOL for ATPs to automatically find a
proof of the theorem. If a proof is found, we extract
all possible proofs from Sledgehammer’s results
and state that the explanation is logically valid. If
Sledgehammer fails to find a proof, we construct a
proof sketch to attempt a step-by-step proving us-
ing ATPs based on a set of logical interpretations.

Logical Propositions, Relations and Implica-
tions Liu et al. (2025) employ logical expressions
to guide LLMs and mitigate information loss in
intermediate reasoning processes. Similarly, we
begin with a logical proposition extraction step. In
this step, we use an LLM to extract logical propo-
sitions and relations from the explanation Ei. Con-
sider the following extracted logical relations as an
example: A: it is raining; B: the grass is wet; C:
kids can play outside; D: kids are happy as well
as the following logical relations: A → B (if it is
raining, the grass is wet) and B → ¬C (if the grass
is wet, kids cannot play outside). Next, we leverage
the extracted logical relations using a SymPy-based
propositional-level representation (Meurer et al.,
2017) 4 to derive additional implications based on
formal logical laws. For instance, from the example
above, SymPy can deduce A → ¬C (if it is raining,
kids cannot play outside). Algorithm 1 shows the
implementation of SymPy to find derived logical
implications.

Proof Sketch By combining the logical propo-
sitions, relations, and these derived implications,
the LLM can construct a step-by-step guided proof
sketch that establishes a logical reasoning chain
to prove the goal. As shown in Figure 2, the com-

4https://www.sympy.org/en/index.html

ments partially indicates how the logical expression
guides LLMs to build the step-wise proof steps,
while we replace the proof tactics with <ATP>,
which uses Sledgehammer (Isabelle’s automated
theorem proving tool) to search for proofs. In Is-
abelle/HOL, proof tactics are commands that sys-
tematically decompose complex proofs into sim-
pler sub-goals, automating routine steps such as
simplification. Typically, one is asked to prove a
statement X given assumptions Y by using proof
tactics Z, where Z includes commands like simp
(for simplification), auto (for automatic reasoning),
and blast (for first-order reasoning). These tac-
tics instruct Isabelle’s proof engine on how to pro-
cess a proof step by applying appropriate rules,
simplifications, or other reasoning methods. Once
Sledgehammer finds a proof, only the explanatory
sentences (axioms) used in that proof are retained
as the final refined explanation. For example, if
the proof is written as “assms explanation_1 ex-
planation_2 by blast”, then only explanation 1 and
explanation 2 constitute the minimal set of explana-
tory sentences required to entail the hypothesis.

Explanation Refinement If the automated the-
orem prover fails or finds no proofs in a previous
proof step, we extract that proof step along with
the proof strategy from the comments part as feed-
back to prompt the LLM to refine the logical error
(i.e., missing premises) of the related explanatory
sentences and process into next iteration to itera-
tively verify and refine the explanation. After the
explanation refinement, we drop any explanatory
sentences that are not included in the proof, as they
are deemed unnecessary to deriving the hypothesis
from the premise and then proceed to the next iter-
ation cycle. We followed the same prompts used in
Explanation-Refiner (Quan et al., 2024b) for auto-
formalisation. Prompts used for syntactic parsing,
quantifier refinement, logical consistency and proof
steps generation are reported in Appendix E.

4 Empirical Evaluation

4.1 Datasets and Models
We conducted experiments with four state-of-the-
art LLMs within the proposed framework: GPT-
4o (OpenAI, 2023), GPT-4o-mini (OpenAI, 2023),
Llama3.1-70b (Grattafiori et al., 2024), Deepseek-
V3 (DeepSeek-AI, 2024). Following Quan et al.
(2024b), we applied three sampled NLI datasets
of e-SNLI (Camburu et al., 2018), QASC (Khot
et al., 2019), and WorldTree (Jansen et al., 2018)
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e-SNLI QASC WorldTree

Init. Final #Iter #Calls Init. Final #Iter #Calls Init. Final #Iter #Calls

Explanation-Refiner

Llama3.1-70b 23% 51% 4.08 34.56 4% 18% 4.07 37.49 2% 15% 5.23 51.61
GPT-4o-mini 13% 30% 3.65 32.55 3% 20% 5.12 44.84 0% 4% 5.00 46.12
GPT-4o 31% 71% 3.62 32.34 4% 26% 4.35 38.45 2% 13% 4.18 39.26
Deepseek-V3 25% 69% 2.82 27.74 4% 38% 3.71 35.97 3% 31% 4.52 42.64

Our Approach

Llama3.1-70b 36% 78% 2.38 16.28 11% 68% 2.90 25.40 6% 52% 4.62 35.72
GPT-4o-mini 32% 77% 2.27 16.62 12% 71% 3.35 27.10 5% 47% 4.75 36.50
GPT-4o 39% 89% 1.54 10.24 10% 79% 3.22 22.32 9% 56% 3.86 26.16
Deepseek-V3 41% 95% 1.50 9.52 17% 90% 2.53 20.18 7% 73% 3.55 25.30

Table 1: Comparison of our approach with Explanation-Refiner on different LLMs across three datasets. Init.
represents the number of explanations that are initially verified as logically valid. Final indicates the number of
explanations that are refined within a maximum of 10 iterations, while #Iter indicates the average iteration required
to refine an explanation. #Calls shows the average number of LLM calls needed to fully refine an explanation.

each comprising 100 instances. We compare our
approach with Explanation-Refiner (Quan et al.,
2024b), a state-of-the-art LLM-driven theorem
prover for NLI that adopts a similar pipeline but
without incorporating the specific strategies for
guiding autoformalisation via syntactic parsing,
performing consistency and quantification checks,
and guide refinement via proof sketches and ex-
plicit implication derivation.

4.2 Results

The proposed architectural interventions effec-
tively improve the verification and refinement
of natural language explanations. Table 1 and
Figure 3 compares our proposed framework with
Explanation-Refiner on the tasks of verifying and
refining natural language explanations across mul-
tiple LLMs. The results show that our approach
more effectively and efficiently refines explana-
tory sentences for explanation-based NLI. In con-
trast, Explanation-Refiner achieves substantially
lower refinement rates, for example, 51% versus
78% in e-SNLI for Llama3.1, 69% versus 95% for
Deepseek-V3, 30% versus 77% for GPT-4o-mini,
and 71% versus 89% for GPT-4o. Furthermore,
Explanation-Refiner generally requires more iter-
ations to refine each explanation, indicating that
although it may identify specific logical errors, it
is less efficient. For instance, Explanation-Refiner
requires an average of 4.31 iterations in the QASC
dataset, compared to 3.0 for our approach. Its per-
formance is particularly limited on the WorldTree
dataset, which contains complex, real-world sci-

entific explanations requiring multi-hop reasoning.
By contrast, our framework refines a significantly
larger number of explanations in WorldTree, un-
derscoring its capacity to handle more challenging
inference scenarios. Furthermore, the current ap-
proach requires fewer LLM calls on average to
fully refine an explanation, resulting in reduced in-
ference time and cost compared to the Explanation-
Refiner (See Table 1). The average number of
LLM calls was reduced by 58.60%, 39.39%, and
31.15% on e-SNLI, QASC, and WorldTree, respec-
tively, across all LLMs. Applying our approach
with Deepseek-V3 on the e-SNLI dataset yields the
most significant reduction, at 65.68%.

The refinement process effectively corrects aut-
oformalisation errors. Figure 3d, 3e, and 3f
present the number of theories in the last itera-
tion containing syntactic and inconsistency errors
over five syntax error refinement iterations, com-
paring our proposed framework with Explanation-
Refiner. Overall, our framework yields fewer syn-
tactic errors. By incorporating syntactic parsing
into autoformalisation, it guides LLMs to capture
fine-grained logical properties of natural language
sentences, thereby reducing type unification errors
in constructed theories. Empirically, most syntactic
errors diminish considerably within the first three
iterations, after which the rate of improvement sta-
bilises. The evaluation results of the number of
theories that contain logical consistency errors are
shown in Figure 5.
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Figure 3: Top – Number of logically valid explanations at each refinement iteration. Bottom – Number of theories
that contain internal syntactic errors at each syntax error refinement stage.
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Figure 4: Top – The average faithfulness of the autoformalisation process across different LLMs. Bottom – The
utility of explanation at different refinement iterations. A higher utility indicating the newly refined explanation are
more likely be used in the proof of next iteration.

Syntactic parsing improves faithfulness in aut-
oformalisation. We convert the autoformalised
logical forms back into natural language sentences
using a rule-based algorithm that reconstructs each
sentence from its action/verb predicates and corre-
sponding argument information. We then calculate
the cosine similarity between these reconstructed
(informalised) sentences between the original sen-
tences as the faithfulness of autoformalisation, as
shown in Figure 4. Our approach shows a gener-
ally higher faithfulness compared to Explanation-

Refiner, with an average of 0.7938, 0.7804, and
0.5975, compared to 0.6706, 0.5714, and 0.4220
across all three datasets. Our findings indicate that
certain models exhibit comparatively lower similar-
ity scores than others. Further investigation reveals
that models such as Llama3.1-70b tend to gener-
ate non-existent predicates during formalisation in
Explanation-Refiner, resulting in over-generation
that undermines faithfulness and introduces extra-
neous information into the theory. More details
about the rule-based algorithm are included in the
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e-SNLI QASC WorldTree

Init. Final #Iter Init. Final #Iter Init. Final #Iter

Ablations on our approach

GPT-4o (- logical relations) 34% 74%(−15%) 2.24 12% 58%(−21%) 3.46 6% 38%(−18%) 4.36

GPT-4o (- detailed feedback) 35% 83%(−6%) 2.86 13% 56%(−23%) 4.45 5% 17%(−39%) 6.46

GPT-4o (- refine quantifiers) 34% 87%(−2%) 1.63 14% 83%(+4%) 2.89 7% 49%(−7%) 3.65

GPT-4o (- refine syntax errors) 21% 74%(−15%) 2.34 5% 58%(−21%) 4.11 2% 24%(−32%) 6.48

Deepseek-V3 (- logical relations) 39% 89%(−6%) 1.68 16% 77%(−13%) 2.64 10% 58%(−15%) 4.01

Deepseek-V3 (- detailed feedback) 31% 86%(−9%) 3.22 22% 69%(−21%) 4.12 6% 41%(−32%) 6.13

Deepseek-V3 (- refine quantifiers) 34% 96%(+1%) 1.64 14% 93%(+3%) 1.89 6% 70%(−3%) 3.23

Deepseek-V3 (- refine syntax errors) 28% 77%(−18%) 2.69 12% 68%(−22%) 2.84 4% 46%(−27%) 5.32

e-SNLI QASC WorldTree

V. I. Q. V. I. Q. V. I. Q.

Explanation-Refiner

GPT-4o 9% 3% 6% 18% 9% 18% 33% 8% 16%

Deepseek-V3 27% 3% 10% 34% 9% 25% 44% 23% 31%

Ablations

GPT-4o (- refine quantifiers) 9% 2% 10%(+4%) 13% 2% 23%(+5%) 38% 6% 19%(+6%)

GPT-4o (- refine syntax errors) 16%(+7%) 1% 3% 38%(+20%) 3% 7% 56%(+23%) 3% 16%

Deepseek-V3 (- refine quantifiers) 25% 5% 16%(+6%) 31% 14% 35%(+10%) 32% 11% 38%(+7%)

Deepseek-V3 (- refine syntax errors) 38%(+11%) 4% 11% 51%(+17%) 9% 15% 67%(+23%) 21% 27%

Table 2: Top – Ablation study on the impacts of removing components from the overall architecture. Bottom –
Comparison of manually evaluated variable, implication, and quantifier errors in the autoformalisation process from
a randomly sampled set of 100 Isabelle/HOL theories across all iterations for each LLM.

Appendix B.

Logically guided proof sketches provide effec-
tive feedback for explanation refinement. By
constructing proof steps from logical propositions,
relations, and derived implications, our method
more precisely pinpoints logical errors, enabling
the LLM to iteratively refine explanatory sentences
in subsequent attempts to prove the theorem. As
shown in Figure 4, the average utility defined as the
proportion of newly introduced explanations that
are applied in the next iteration’s proof remains
consistently higher for our approach compared to
Explanation-Refiner, even as the number of itera-
tions increases. In contrast, Explanation-Refiner’s
utility markedly decreases over successive itera-
tions.

4.3 Ablation Study

We conducted several ablation studies to evaluate
the impact of the proposed components. Table 2
shows the results on GPT-4o and Deepseek-V3,
while Table 3 in Appendix A shows the full abla-
tions.

Detailed feedback and syntax error refinement
have the highest impact. The most significant
drop in performance is observed from remov-
ing detailed feedback and syntax error refinement
steps. Providing detailed, step-level feedback to
the LLM proves significantly more effective than
using only a binary signal (i.e., provable or unprov-
able). When replacing detailed with binary feed-
back, the number of refined explanations dropped
substantially; for instance, GPT-4o showed a 39%
decrease in refined explanations in the WorldTree
dataset. Excluding the syntactic error refinement
stage frequently yielded theories that failed under
theorem prover scrutiny, thereby producing little to
no useful feedback for subsequent refinement.

Logical expression aids LLMs in proof sketches
generation, reducing hallucinations that could
lead to incorrect or failed proof construction for
explanation refinement. Eliminating the logical
expression-guided proof step generation compo-
nent led to an increase in required iterations for
explanation refinement and a reduction in the total
number of successfully refined explanations. These
findings highlight the importance of logical expres-
sions in constructing coherent proofs and mitigat-
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ing hallucinations that otherwise result in incorrect
or failed proofs.

Variable and quantifier errors significantly im-
pact the faithfulness of autoformalisation. We
further conducted a human evaluation on three
types of errors: variable errors (identifiable by the
theorem prover), implication errors, and quantifier
errors (not identifiable by the theorem prover) as
shown in Table 2. Our findings suggest that us-
ing LLMs for autoformalisation still leaves notable
gaps, particularly in accurately handling variables
and quantifiers. As shown in Table 2, removing the
quantifier refinement did not substantially alter the
number of refined explanations. However, human
evaluation indicates that the number of quantifier-
related errors increased when this refinement was
omitted. Explanation-Refiner does not apply a syn-
tactic parsing and quantifier refinement, resulting
in more errors being introduced for variable, im-
plication and quantifier errors as shown in Table 2.
Thus, we introduced both syntax error refinement
and quantifier error refinement processes. Our re-
sults show a significant reduction in the overall
error rate following the corresponding soft-critique
model refinements.

5 Related Work

LLM-Symbolic Integration Recent approaches
have attempted to integrate LLMs with external
symbolic models through autoformalisation – i.e.,
the translation of informal statements into formal
representations. Recent work explores this task in
both mathematical (Wu et al., 2022; Jiang et al.,
2022b; Agrawal et al., 2022; Zhang et al., 2024;
Xin et al., 2024a; Lu et al., 2024a,b; Leang et al.,
2025) and logical (Olausson et al., 2023; Quan
et al., 2024a; Kirtania et al., 2024; Lee et al., 2025;
Raza and Milic-Frayling, 2025) domains using
the support of automated theorem provers. Sev-
eral studies (Pan et al., 2023; Jiang et al., 2024;
Quan et al., 2024b) transform natural language sen-
tences into logical forms based on LLMs. Qi et al.
(2025) integrate symbolic provers into the genera-
tion process of logical reasoning problems and pro-
pose a multi-hop first-order logic (FOL) reasoning
dataset. In contrast, our work tackles real-world oc-
currences of material inferences rather than purely
synthetic data, thereby requiring more robust se-
mantic representations and autoformalisation pro-
cess to capture the complexity of multi-step reason-
ing over material inferences.

Theorem-Proving with LLMs Proof generation
refers to the task of generating intermediate proof
steps as tactic predictions in automated theorem
proving (Li et al., 2024). Recent work harness
LLMs to produce formal proof scripts (Polu and
Sutskever, 2020; Jiang et al., 2022a; Zhao et al.,
2023; Xin et al., 2024b; First et al., 2023; Frieder
et al., 2024; Welleck and Saha, 2023a,b; Thakur
et al., 2024; Poulsen et al., 2024), often by trans-
lating high-level reasoning into low-level tactics.
Quan et al. (2024b), for example, prompts the LLM
to first produce a rough, informal inference strat-
egy in natural language, and then automatically for-
malise this strategy into Isabelle/HOL proof steps.
Jiang et al. (2024) utilises a tactic generator and a
proof search module to select tactics during proof
construction to build a proof tree from the root
goal. Liu et al. (2025) use propositional logic, in-
troduce Logic-of-Thought prompting, a technique
that appends logically enriched descriptions to the
original context, thereby improving informational
completeness and bolstering the LLMs logical rea-
soning ability. In contrast, our approach synthe-
sises logical reasoning guidance in close iterative
dialogue with automated provers to provide more
robust and interpretable proofs in contrast to LLM-
driven single-pass methods.

6 Conclusion

In this paper, we proposed formally-guided meth-
ods to address the challenges involved in using
external theorem provers to verify and refine nat-
ural language explanations in the domain of natu-
ral language inference. By incorporating syntactic
parsing, targeted syntactic error checking, logical-
relation guidance, and detailed feedback at each
proof step, our approach significantly outperforms
prior work in both faithfulness of autoformalisation
and robustness of iterative explanation refinement.
Ablation studies underscore the importance of each
component in reducing syntactic issues, maintain-
ing consistency, and promoting more efficient log-
ical verification and refinement. This framework
opens avenues for more transparent, reliable, and
scalable NLI systems. Moving forward, we plan to
explore more advanced theorem-proving strategies
with LLMs and domain-specific expansions, ulti-
mately advancing toward increasingly interpretable
and robust end-to-end NLI pipelines.
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Limitations

Although our framework substantially improves
both the consistency of autoformalisation and the
robustness of explanation verification, certain limi-
tations remain. First, LLMs can still introduce vari-
able inconsistencies, erroneous implications, and
incorrect quantifiers that are not fully resolved by
automated checking. Second, some explanations
require nuanced real-world knowledge or domain-
specific axioms that exceed current formal reason-
ing capabilities, requiring expert oversight. Finally,
the reliability of our iterative refinement pipeline
hinges on high-quality LLM output and proof-step
feedback; degraded model performance or noisy
system responses can hinder successful verification.
Future work may explore more advanced semantic
checks, stronger model calibration, and selective
human intervention to further enhance faithfulness
and correctness.

Ethical statement

While this work focuses on the introduction of
mechanisms for improving the control and logical
consistency properties of LLM-based NLI, having
an overall positive impact, further investigations
are needed to understand the specific conditions in
which these methods can perform. The application
of these methods on real-world or critical settings
need to be complemented by human supervision or
extensive quantitative and qualitative assessment.
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A Ablation study

Table 3 shows the overall results on the ablation
study for all LLMs.

B Informalisation

We perform an autoformalisation process that
transforms natural language sentences into Neo-
Davidsonian event-based semantics by leveraging
their underlying structure. One way to measure
the faithfulness of this autoformalisation is to trans-
late the constructed logical forms back into natural
language and then compare the generated (infor-
malised) sentences with the original ones using
cosine similarity.

We employ a rule-based method to transform
Neo-Davidsonian logical forms back into coherent
natural language. First, we parse a logical form
that may contain multiple conjuncts, typically con-
nected by the logical “and” operator (∧). Each con-
junct is treated as an atomic predicate with the gen-
eral structure Predicate(arg1, arg2, . . . ). Once the
form is separated into atomic predicates, we distin-
guish between role predicates (e.g., Agent(e1, x),
Patient(e1, y)) and entity-attribute predicates
(e.g., Child(x), Blonde(x)). The role predicates
specify how each entity participates in the event
(agent, patient, theme, location, etc.), while the at-
tribute predicates detail intrinsic properties of those
entities (for instance, “child,” “blonde,” “small,” or
“plastic”).

After identifying these predicates, we group to-
gether all attributes describing the same entity vari-
able. In particular, we parse the attributes from
right to left, treating the rightmost attribute as
the head noun and the preceding ones as adjec-
tives. For example, if a single entity x is associ-
ated with Child(x) and Blonde(x), we combine
those attributes to form a concise descriptor such
as “blonde child.” Likewise, if another entity y has
attributes Plastic(y) and Small(y), we might call
it “small plastic”.

Next, we convert these role–entity pairings into
simple event-level sentences. For each event ei,
we identify which entity is the Agent and which is
the Patient (or any other role labels), then build
a straightforward sentence. For instance, if x is
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Figure 5: Number of theories that contain logical consistency error at each syntax error refinement stage.

Original Sentence: The boy is inside of the building.
Logical Form 1: ∃x y e. Boy(x) ∧ Building(y) ∧ Inside(e) ∧ Agent(e, x) ∧ Patient(e, y)
Informalised Sentence 1: Boy in side building.
Sentence Similarity: 0.9344

Logical Form 2: ∃x y e. Boy(x) ∧ Building(y) ∧ Inside(e) ∧ Agent(e, x)
Informalised Sentence 2: Boy in side.
Sentence Similarity: 0.8127

Figure 6: An example of the faithfulness between two informalised logical forms

“blonde child” and y is “small plastic item,” the cor-
responding natural language description might by
constructed from the event verb “Puts” as “blonde
child puts small plastic item” The specific event
verb (“puts,” “picks,” “hands over,” etc.) would
depend on how the event predicate itself is repre-
sented in the logical form.

In cases where the logical form contains implica-
tion, we divide the logical forms into sub-formulas.
Complex operators and connectives (i.e. ∨) will
be mapped carefully to their closest equivalents in
English.

As shown in Figure 6, different formalised log-
ical forms can affect the faithfulness of the auto-
formalisation. For instance, Logical Form 2 omits
the Patient argument, causing the rule-based sys-
tem to skip translating the predicate information
for the building back into natural language, and
thus producing an unfaithful representation.

C Datasets, LLMs and Theorem Prover

The datasets used in our experiments are sourced
from open academic works and include samples
from e-SNLI (Camburu et al., 2018), QASC (Khot
et al., 2019), and WorldTree (Jansen et al., 2018).
We employed Isabelle/HOL (Nipkow et al., 2002)
as the theorem prover, which is distributed under
the revised BSD license, and used Explanation-
Refiner (Quan et al., 2024b) as our baseline work,
which is under the MIT license. Additionally, we

utilised API calls for GPT-4o (gpt-4o-2024-08-06)
(OpenAI, 2023), GPT-4o-mini (gpt-4o-mini-2024-
07-18) (OpenAI, 2023), Deepseek-V3 (Deepseek-
V3-671b) (DeepSeek-AI, 2024), and Llama3.1-70b
(LLama3.1-70b-Instruct) (Grattafiori et al., 2024).
All temperature is set to 0.

D Runtime Examples

Tables 4, 5, and 6, together with Figures 7, 8, 9, 10,
and 11, show the runtime examples for the e-SNLI,
QASC, and WorldTree datasets, respectively.

E Prompts

Tables 7, 9, 8, and 10 show the prompts we
used for syntactic parsing, logical proposition
extraction, logical relation extraction, and proof
construction. Complete prompts details can
be found at https://github.com/neuro-symbolic-
ai/faithful_and_robust_nli_refinement.

17746

https://github.com/neuro-symbolic-ai/faithful_and_robust_nli_refinement
https://github.com/neuro-symbolic-ai/faithful_and_robust_nli_refinement


Algorithm 1: Deriving logical implications with SymPy
Input : logical_information: string with propositions and relations
Output :result: string with processed relations and implications

1 logical_props, logical_exprs← ParseInput(logical_information)

2 if logical_exprs = ∅ then
3 result← format_propositions(logical_props)
4 return result
5 else
6 Initialise symbols_dict, symbol_meanings← {}
7 foreach (key, value) ∈ logical_props do
8 sanitized_key← sanitize(key)
9 symbol← create_symbol(sanitized_key)

10 Update symbols_dict and symbol_meanings
11 end foreach
12 // Define SymPy logical operators dictionary
13 logical_operators← {
14 symbols_dict, Not: SymPy negation,
15 And: SymPy conjunction,
16 Or: SymPy disjunction,
17 Implies: SymPy implication,
18 Equivalent: SymPy equivalence
19 }
20 propositions← []
21 initial_implications← ∅
22 foreach expr ∈ logical_exprs do
23 expr← replace_symbols(expr)
24 // Evaluate using SymPy’s logical operators
25 prop← evaluate_with_sympy(expr, logical_operators)
26 // Apply SymPy’s simplification rules
27 simplified_prop← sympy.simplify(prop)
28 propositions.append(prop)
29 initial_implications.add(simplified_prop)
30 end foreach
31 derived_implications← ∅
32 logical_atoms← get_atoms(propositions)
33 literals← logical_atoms ∪ {¬atom | atom ∈ logical_atoms}
34 // Use SymPy’s satisfiability checker
35 foreach (antecedent, consequent) ∈ literals × literals do
36 if antecedent ̸= consequent then
37 implication← antecedent =⇒ consequent
38 // Check using SymPy’s logical rules
39 is_new←¬equivalent_to_any(implication, initial_implications)
40 is_valid← check_entailment(propositions, implication)
41 if is_new and is_valid then
42 derived_implications.add(implication)
43 end if
44 end if
45 end foreach
46 result← format_output(logical_props, logical_exprs, derived_implications)
47 return result
48 end if
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e-SNLI QASC WorldTree

Init. Final #Iter Init. Final #Iter Init. Final #Iter

Ablations on our approach

Llama3.1-70b (- logical relations) 34% 74%(−4%) 2.43 9% 58%(−10%) 2.94 7% 44%(−8%) 5.42
Llama3.1-70b (- detailed feedback) 32% 66%(−12%) 3.42 10% 34%(−34%) 3.64 5% 24%(−28%) 8.12
Llama3.1-70b (- refine quantifiers) 28% 77%(−1%) 2.18 9% 68%(−0%) 2.88 3% 50%(−2%) 4.52
Llama3.1-70b (- refine syntax errors) 18% 57%(−21%) 4.58 5% 53%(−15%) 4.47 3% 30%(−20%) 6.12
GPT-4o-mini (- logical relations) 27% 65%(−12%) 2.31 11% 57%(−14%) 4.12 6% 27%(−20%) 5.19
GPT-4o-mini (- detailed feedback) 30% 62%(−15%) 4.56 9% 46%(−25%) 3.87 3% 19%(−28%) 6.21
GPT-4o-mini (- refine quantifiers) 26% 78%(+4%) 2.10 5% 73%(+2%) 2.92 4% 46%(−1%) 5.13
GPT-4o-mini (- refine syntax errors) 15% 43%(−34%) 2.86 3% 34%(−37%) 3.65 3% 10%(−37%) 5.21
GPT-4o (- logical relations) 34% 74%(−15%) 2.24 12% 58%(−21%) 3.46 6% 38%(−18%) 4.36
GPT-4o (- detailed feedback) 35% 83%(−6%) 2.86 13% 56%(−23%) 4.45 5% 17%(−39%) 6.46
GPT-4o (- refine quantifiers) 34% 87%(−2%) 1.63 14% 83%(+4%) 2.89 7% 49%(−7%) 3.65
GPT-4o (- refine syntax errors) 21% 74%(−15%) 2.34 5% 58%(−21%) 4.11 2% 24%(−32%) 6.48
Deepseek-V3 (- logical relations) 39% 89%(−6%) 1.68 16% 77%(−13%) 2.64 10% 58%(−15%) 4.01
Deepseek-V3 (- detailed feedback) 31% 86%(−9%) 3.22 22% 69%(−21%) 4.12 6% 41%(−32%) 6.13
Deepseek-V3 (- refine quantifiers) 34% 96%(+1%) 1.64 14% 93%(+3%) 1.89 6% 70%(−3%) 3.23
Deepseek-V3 (- refine syntax errors) 28% 77%(−18%) 2.69 12% 68%(−22%) 2.84 4% 46%(−27%) 5.32

e-SNLI QASC WorldTree

V. I. Q. V. I. Q. V. I. Q.

Explanation-Refiner

Llama3.1-70b 24% 10% 10% 43% 12% 34% 45% 15% 27%
GPT-4o-mini 18% 8% 7% 41% 8% 32% 39% 9% 29%
GPT-4o 9% 3% 6% 18% 9% 18% 33% 8% 16%
Deepseek-V3 27% 3% 10% 34% 9% 25% 44% 23% 31%

Ablations

Llama3.1-70b (- refine quantifiers) 23% 8% 13%(+3%) 39% 11% 43%(+9%) 43% 13% 36%(+9%)
Llama3.1-70b (- refine syntax errors) 41%(+17%) 10% 9% 53%(+10%) 8% 34% 65%(+20%) 11% 23%
GPT-4o-mini (- refine quantifiers) 14% 5% 11%(+4%) 35% 10% 47%(+15%) 41% 10% 34%(+5%)
GPT-4o-mini (- refine syntax errors) 39%(+21%) 4% 9% 63%(+21%) 7% 12% 55%(+16%) 7% 23%
GPT-4o (- refine quantifiers) 9% 2% 10%(+4%) 13% 2% 23%(+5%) 38% 6% 19%(+3%)
GPT-4o (- refine syntax errors) 16%(+7%) 1% 3% 38%(+20%) 3% 7% 56%(+23%) 3% 16%
Deepseek-V3 (- refine quantifiers) 25% 5% 16%(+6%) 31% 14% 35%(+10%) 32% 11% 38%(+7%)
Deepseek-V3 (- refine syntax errors) 38%(+11%) 4% 11% 51%(+17%) 9% 15% 67%(+23%) 21% 27%

Table 3: Top – Ablation study on the impacts of removing components on the analysis of number of explanation
refined across three datasets. Bottom – Comparison of manually evaluated variable, implication, and quantifier errors
in the autoformalisation process from a randomly sampled set of 100 Isabelle/HOL theories across all iterations for
each LLM.

Dataset Problem Explanation Logic Info Iteration Validity

e-SNLI Premise: A smiling woman
is playing the violin in front
of a turquoise background.
Hypothesis: A woman is
playing an instrument.

A violin is an instru-
ment.

Logical Propositions:
A: a violin (from Explanatory
Sentence 1)
B: an instrument (from Explana-
tory Sentence 1)
Logical Relations:
Implies(A, B)
Implies(a violin, an instrument)
Derived Implications: none

0 Valid

Table 4: An example of a verified logically valid explanation in the e-SNLI dataset without refinement.
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theory esnli_3_0
imports Main
…
consts
Violin :: "entity ⇒ bool"
Instrument :: "entity ⇒ bool"
Woman :: "entity ⇒ bool"
…
Patient :: "event ⇒ entity ⇒ bool"
InFrontOf :: "entity ⇒ entity ⇒ bool"

(* Explanation 1: A violin is an instrument. *)
axiomatization where
    explanation_1: "∀x. Violin x ⟶ Instrument x"

theorem hypothesis:
    (* Premise: A smiling woman is playing the violin in front of a turquoise background. *)
    assumes asm: "Woman x ∧ Violin y ∧ Background z ∧ Turquoise z ∧ Smiling x ∧ Playing e ∧ Agent e x ∧ Patient e y ∧      
InFrontOf x z"
    (* Hypothesis: A woman is playing an instrument. *)
    shows "∃x y e. Woman x ∧ Instrument y ∧ Playing e ∧ Agent e x ∧ Patient e y"
    using assms explanation_1 by blast

end

Figure 7: An example of an autoformalised Isabelle/HOL theory in the e-SNLI dataset.

Dataset Problem Explanation Logic Info Iteration Validity

QASC Hypothesis: Some viruses
have a coating of phospho-
lipids.

Some viruses have an
envelope of phospho-
lipids and proteins.
Proteins are sometimes
coats of a virus.

Logical Propositions:
A: some viruses have an enve-
lope of phospholipids and pro-
teins (from Explanatory Sen-
tence 1)
B: proteins are coats of a virus
(from Explanatory Sentence 2)
Logical Relations:
none
Derived Implications: none

0 Invalid

QASC Hypothesis: Some viruses
have a coating of phospho-
lipids.

Some viruses have an
envelope of phospho-
lipids and proteins.
Proteins are sometimes
coats of a virus.
An envelope can be
considered a type of
coating.
Phospholipids are a
component of the enve-
lope of some viruses.

Logical Propositions:
A: viruses have an envelope
of phospholipids and proteins
(from Explanatory Sentence 1)
B: proteins are coats of a virus
(from Explanatory Sentence 2)
C: an envelope is a type of coat-
ing (from Explanatory Sentence
3)
D: phospholipids are a compo-
nent of the envelope (from Ex-
planatory Sentence 4)
Logical Relations:
Implies(A, D)
Implies(viruses have an enve-
lope of phospholipids and pro-
teins, phospholipids are a com-
ponent of the envelope)
Derived Implications: none

1 Valid

Table 5: An example of how an explanation in the QASC dataset can be refined in one iteration..
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theory qasc_16_0
imports Main
…
consts
Virus :: "entity ⇒ bool"
…
Coat :: "entity ⇒ bool"
Coating :: "entity ⇒ bool"

(* Explanation 1: Some viruses have an envelope of phospholipids and proteins. *)
axiomatization where
    explanation_1: "∃x y z w e. Virus x ∧ Envelope y ∧ Phospholipids z ∧ Proteins w ∧ Have e ∧ Agent e x ∧ Patient e y ∧ Of y z ∧ Of y w"

(* Explanation 2: Proteins are sometimes coats of a virus. *)
axiomatization where
    explanation_2: "∃x y. Protein x ∧ Virus y ∧ Coat x ∧ Of x y"

theorem hypothesis:
    assumes asm: "Virus x ∧ Phospholipids z"
    (* Hypothesis: Some viruses have a coating of phospholipids. *)
    shows "∃x y z e. Virus x ∧ Coating y ∧ Phospholipids z ∧ Have e ∧ Agent e x ∧ Patient e y ∧ Of y z”
proof –
    (* From Explanation 1, we know that some viruses have an envelope of phospholipids and proteins. *)
    from explanation_1 obtain x y z w e where "Virus x ∧ Envelope y ∧ Phospholipids z ∧ Proteins w ∧ Have e ∧ Agent e x ∧ Patient e y ∧ Of y z ∧ Of y w" by blast
    (* We need to show that some viruses have a coating of phospholipids. *)
    (* Since an envelope can be considered a type of coating, we can infer that y is a coating. *)
    then have "Virus x ∧ Coating y ∧ Phospholipids z ∧ Have e ∧ Agent e x ∧ Patient e y ∧ Of y z" sledgehammer
    then show ?thesis <ATP>
qed

end

Figure 8: An example of an autoformalised Isabelle/HOL theory in the QASC dataset.

theory qasc_16_1
imports Main
…
consts
Virus :: "entity ⇒ bool"
…
PartOf :: "entity ⇒ entity ⇒ bool"

(* Explanation 1: Some viruses have an envelope of phospholipids and proteins. *)
axiomatization where
    explanation_1: "∃x y z w e. Virus x ∧ Envelope y ∧ Phospholipids z ∧ Proteins w ∧ Have e ∧ Agent e x ∧ Patient e y ∧ Component y z ∧ Component y w"

(* Explanation 2: Proteins are sometimes coats of a virus. *)
axiomatization where
    explanation_2: "∃x y. Protein x ∧ Virus y ∧ Coat x y"

(* Explanation 3: An envelope can be considered a type of coating. *)
axiomatization where
    explanation_3: "∀x. Envelope x ⟶ Coating x"

(* Explanation 4: Phospholipids are a component of the envelope of some viruses. *)
axiomatization where
    explanation_4: "∃x y z. Phospholipids x ∧ Envelope y ∧ Virus z ∧ Component y x ∧ PartOf y z"

theorem hypothesis:
    assumes asm: "Virus x ∧ Phospholipids z"
    (* Hypothesis: Some viruses have a coating of phospholipids. *)
    shows "∃x y z e. Virus x ∧ Coating y ∧ Phospholipids z ∧ Have e ∧ Agent e x ∧ Patient e y ∧ Component y z"
    using explanation_1 explanation_3 by blast

end

Figure 9: An example of an autoformalised Isabelle/HOL theory in the QASC dataset.

17750



Dataset Problem Explanation Logic Info Iteration Validity

WorldTree Hypothesis: A forest fire
would cause deer to die or
leave a woodland.

wildfire is when a forest
catches fire.
fire causes harm to
trees; to forests; to
living things.
a deer is a kind of
animal.
an animal is a kind of
living thing.
killing means harming
something causing
death.
a deer lives in a forest.
woodland means forest.
natural disasters can
cause animals to leave
an environment.
a wildfire is a kind of
natural disaster.
a forest is a kind of
environment.

Logical Propositions:
A: wildfire (from Explanatory
Sentence 1)
B: forest catches fire (from Ex-
planatory Sentence 1)
C: fire causes harm to trees
(from Explanatory Sentence 2)
D: fire causes harm to forests
(from Explanatory Sentence 2)
E: fire causes harm to living
things (from Explanatory Sen-
tence 2)
F: deer (from Explanatory Sen-
tence 3)
...
Q: forest is a kind of environ-
ment (from Explanatory Sen-
tence 10)
Logical Relations:
Equivalent(A, B)
Implies(C, D)
...
Implies(M, Q)
Derived Implications: Im-
plies(Not(O), Not(A))
Implies(B, A)
...
Implies(L, Q)

0 Invalid

WorldTree Hypothesis: A forest fire
would cause deer to die or
leave a woodland.

Woodland means forest.
A wildfire is a kind of
natural disaster.
A deer is a kind of ani-
mal.
An animal is a kind of
living thing.
A forest is a kind of en-
vironment.
Natural disasters can
cause animals to leave
an environment.
Fire causes harm to
trees; to forests; to liv-
ing things.
A forest fire is a kind of
wildfire.
A deer lives in a forest.

Logical Propositions:
A: woodland (from Explanatory
Sentence 1)
B: forest (from Explanatory Sen-
tence 1) ...
L: lives in a forest (from Ex-
planatory Sentence 9)
Logical Relations:
Equivalent(A, B)
Implies(C, D)
...
Implies(I, Implies(B, Not(G)))
Derived Implications: Im-
plies(E, Not(D))
Implies(E, Not(K))
...
Implies(Not(G), Not(E))

1 Valid

Table 6: An example of how an explanation in the WorldTree dataset can be refined in one iteration.
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theory worldtree_19_0
imports Main
…
Die :: "event ⇒ bool"

(* Explanation 1: Wildfire is when a forest catches fire. *)
axiomatization where
     explanation_1: "∀x. Wildfire x ⟷ (∃y e z. Forest y ∧ Catch e ∧ Agent e y ∧ Patient e z ∧ Fire z)"

(* Explanation 2: Fire causes harm to trees; to forests; to living things. *)
axiomatization where
    explanation_2: "∀x y e. Fire x ∧ Harm e ∧ Agent e x ⟶ (Patient e y ∧ (Tree y ∨ Forest y ∨ LivingThing y))"

(* Explanation 3: A deer is a kind of animal. *)
axiomatization where
    explanation_3: "∀x. Deer x ⟶ Animal x"

(* Explanation 4: An animal is a kind of living thing. *)
axiomatization where
    explanation_4: "∀x. Animal x ⟶ LivingThing x"

(* Explanation 5: Killing means harming something causing death. *)
axiomatization where
    explanation_5: "∀e1 e2 x y. Killing e1 ⟷ (Harming e2 ∧ Agent e2 x ∧ Cause e2 ∧ Patient e2 y ∧ Death y)"

(* Explanation 6: A deer lives in a forest. *)
axiomatization where
    explanation_6: "∃x y e. Deer x ∧ Forest y ∧ Live e ∧ Agent e x ∧ In x y"

(* Explanation 7: Woodland means forest. *)
axiomatization where
    explanation_7: "∀x. Woodland x ⟷ Forest x"

(* Explanation 8: Natural disasters can cause animals to leave an environment. *)
axiomatization where
    explanation_8: "∀x y z. NaturalDisaster x ∧ Animal y ∧ Environment z ⟶ (∃e1 e2. Cause e1 ∧ Agent e1 x ∧ Leave e2 ∧ Agent e2 y ∧ Patient e2 z)"

(* Explanation 9: A wildfire is a kind of natural disaster. *)
axiomatization where
    explanation_9: "∀x. Wildfire x ⟶ NaturalDisaster x"

(* Explanation 10: A forest is a kind of environment. *)
axiomatization where
    explanation_10: "∀x. Forest x ⟶ Environment x"

theorem hypothesis:
    assumes asm: "ForestFire x ∧ Deer y ∧ Woodland z”
    (* Hypothesis: A forest fire would cause deer to die or leave a woodland. *)
    shows "∃e1 e2. (Die e1 ∧ Agent e1 y) ∨ (Leave e2 ∧ Agent e2 y ∧ Patient e2 z)"
proof -
    (* From the premise, we have known information about ForestFire, Deer, and Woodland. *)
    from asm have "ForestFire x" and "Deer y" and "Woodland z" apply simp
    (* Explanation 7: Woodland means forest. *)
    (* Using the equivalence between Woodland and Forest, we can infer Forest z. *)
    from `Woodland z` have "Forest z" apply (simp add: assms)
    (* Explanation 9: A wildfire is a kind of natural disaster. *)
    (* Since ForestFire is a type of Wildfire, we can infer that it is a NaturalDisaster. *)
    from `ForestFire x` have "Wildfire x" by (simp add: assms)
    then have "NaturalDisaster x" sledgehammer
    (* Explanation 3 and 4: A deer is a kind of animal, and an animal is a kind of living thing. *)
    (* We can infer that Deer y is an Animal and a LivingThing. *)
    from `Deer y` have "Animal y" <ATP>
    then have "LivingThing y" <ATP>
    (* Explanation 10: A forest is a kind of environment. *)
    (* Since we have Forest z, we can infer that it is an Environment. *)
    from `Forest z` have "Environment z" <ATP>
    (* Explanation 8: Natural disasters can cause animals to leave an environment. *)
    (* Since we have a NaturalDisaster x, Animal y, and Environment z, we can infer that the animal may leave the environment. *)
    from `NaturalDisaster x` and `Animal y` and `Environment z` have "∃e2. Leave e2 ∧ Agent e2 y ∧ Patient e2 z" <ATP>
    (* We have shown that a forest fire would cause deer to leave a woodland. *)
    then show ?thesis <ATP>
qed
end

Figure 10: An example of an autoformalised Isabelle/HOL theory in the WorldTree dataset.

Table 7: Prompts used for syntactic parsing.

SYSTEM: You are an expert in linguistics. You will be provided with some sentences, please do a syntactic parse for each
word in that sentence. Some instructions:
1. You must give me the answer for all provided sentences. 2. Do not add any notes. 3. If no premise sentence provided,
include it in the answer as none. 4. Retain the answer words in their original form within the provided sentence.
USER: Here are some examples:
Hypothesis Sentence:
1. A woman is playing an instrument.
Subject: A woman
Verb Phrase: is playing an instrument
- Main Verb: playing
- Auxiliary Verb: is
Direct Object: an instrument
...
<<<<<<<<<<<<<
Provided sentences:

Answer:
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theory worldtree_19_1
imports Main
…
Die :: "event ⇒ bool"

(* Explanation 1: Woodland means forest. *)
axiomatization where
    explanation_1: "∀x. Woodland x ⟷ Forest x"

(* Explanation 2: A wildfire is a kind of natural disaster. *)
axiomatization where
    explanation_2: "∀x. Wildfire x ⟶ NaturalDisaster x"

(* Explanation 3: A deer is a kind of animal. *)
axiomatization where
    explanation_3: "∀x. Deer x ⟶ Animal x"

(* Explanation 4: An animal is a kind of living thing. *)
axiomatization where
    explanation_4: "∀x. Animal x ⟶ LivingThing x"

(* Explanation 5: A forest is a kind of environment. *)
axiomatization where
    explanation_5: "∀x. Forest x ⟶ Environment x"

(* Explanation 6: Natural disasters can cause animals to leave an environment. *)
axiomatization where
    explanation_6: "∀x y z. NaturalDisaster x ∧ Animal y ∧ Environment z ⟶ (∃e. Leave e ∧ Agent e y ∧ Patient e z)"

(* Explanation 7: Fire causes harm to trees; to forests; to living things. *)
axiomatization where
    explanation_7: "∀x y z w. Fire x ∧ (∃e. Harm e ∧ (Tree y ∨ Forest z ∨ LivingThing w) ⟶ (Patient e y ∨ Patient e z ∨ Patient e w))"

(* Explanation 8: A forest fire is a kind of wildfire. *)
axiomatization where
    explanation_8: "∀x. ForestFire x ⟶ Wildfire x"

(* Explanation 9: A deer lives in a forest. *)
axiomatization where
    explanation_9: "∃x y e. Deer x ∧ Forest y ∧ Lives e ∧ Agent e x ∧ In x y"

theorem hypothesis:
    assumes asm: "ForestFire x ∧ Deer y ∧ Woodland z"
    (* Hypothesis: A forest fire would cause deer to die or leave a woodland. *)
    shows "∃e1 e2. (Die e1 ∧ Agent e1 y) ∨ (Leave e2 ∧ Agent e2 y ∧ Patient e2 z)"
    by (meson assms explanation_1 explanation_2 explanation_3 explanation_5 explanation_6 explanation_8)

end

Figure 11: An example of an autoformalised Isabelle/HOL theory in the WorldTree dataset.
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Table 8: Prompts used for extracting logical propositions and relations

SYSTEM: You are an expert in symbolic reasoning. You will be provided with an explanation. You need to extract the
logical propositions and the corresponding logical relations from the explanation.
USER: Here are some examples:
Provided Explanatory Sentences:
Explanatory Sentence 1: If it is raining, the grass will be wet.
Explanatory Sentence 2: Having a picnic is equivalent to having a meal on the grass.

Answer:
Logical Propositions:
A: it is raining (from Explanatory Sentence 1)
B: the grass will be wet (from Explanatory Sentence 1)
C: having a picnic (from Explanatory Sentence 2)
D: having a meal on the grass (from Explanatory Sentence 2)

Logical Relations:
Implies(A, B): A→ B
Equivalent(C, D): C ↔ D

<<<<<<<<<<<<<
Provided Explanatory Sentences:

Answer:

Logical Propositions:

Logical Relations:

Table 9: Prompts used for refining quantifiers.

SYSTEM: You are an expert in semantics, formal language and neo-davidsonian event semantics. You will be provided with
some sentences. These sentences have been transferred into Isabelle/HOL symbolic language. However, the quantifiers in
the logical form may not be defined correctly.There might be missing variables after the quantifiers for arguments inside
the parentheses of the predicate-argument forms of an axiom or a theorem. The quantifier may not reflect to real-world
knowledge. Refine the logical forms if there are any quantifiers that are not defined correctly.

Here are some examples:
Provided Iabelle code:
(* Explanation 1: Many consumers feed at more than one trophic level. *)
axiomatization where
explanation_1: "∀x e. Consumer x −→ (Feed e ∧ Agent e x ∧ At e y ∧MoreThanOneTrophicLevel y)"

Answer:
Explanation 1 states "Many consumers" and in real-world knowledge, some consumers are omnivores or generalists that
feed across multiple trophic levels, but it use the universal quantifier ’∀’ in explanation_1. We should use the existential
quantifier ’∃’ instead.
For the quantifier variables in explanation_1, the variable ’y’ is missing.
...
<<<<<<<<<<<<<
Strictly follow my instructions.

Provided Isabelle code:

Answer:
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Table 10: Prompts used for building proofs.

SYSTEM: You are an expert in Isabelle theorem prover, first-order logic and Davidsonian event semantics. You will be
provided with premises, explanations and hypothesis sentences. You will be provided with an Isabelle code which consists
of some axioms, a theorem hypothesis that needs to be proven. The logical form of axioms indicates some explanation
sentences, the logical form after "assume asm:" indicates a premise sentence and the logical form after "shows" indicates
a hypothesis sentence. The natural language form is stated as the comments. You will be provided with some logical
propositions, logical relations and derived logical rules from the explanation sentences to help you construct the proof. You
need to construct a proof about how to prove the theorem hypothesis in "proof -" and "qed" sections using the premise
(logical form after "assume asm:") and explanations (axioms). The proof should be derived from the premise and explanation
sentences. You don’t need to state the automated theorem prover you will need to use. You just need to write a proof sketch.
Some instructions:
1. ’sorry’ and ‘fix’ command is not allowed.
...
5. leave the automated theorem prover and proof tactic as <ATP>
...
<<<<<<<<<<<<<
Strictly follow my instructions.

Premise Sentence:

Explanation Sentences:

Hypothesis Sentence:

Provided Isabelle Code:

Logical Information:

Known Information:

Try to prove:

Answer:
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