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Abstract

Self-critique mechanisms significantly improve
the performance of language models in com-
plex reasoning tasks by giving them the ability
to correct errors, conduct induction and deduc-
tion, and switch thinking insights. However,
synthetic data methods often require human-
introduced errors or sampling of the model’s
reasoning results from the previous moment,
and the current output distribution of the model
cannot be obtained, makes the data for cri-
tique and reasoning face the problem of dis-
tribution shifts. In this work, we propose an
on-policy reinforcement learning framework
to synchronize the reasoning and critique ca-
pabilities of language models. To alleviate re-
ward hacking caused by outcome-based super-
vision, we design a deliberate reward frame-
work for different purposes. The reward frame-
work not only supervises the model reason-
ing process based on the results, but also
uses Monte Carlo sampling to give appropri-
ate rewards to the critique content according
to the success rate of the model’s correction
after critique. In addition, we introduce a
rule-based reward function to impose penal-
ties on the model when it generates hallucina-
tory critiques. When our approach is applied
to the DeepSeek-Math-7B-Base and Qwen2.5-
7B-Base models, model performance improves
5.40 and 3.66 points, respectively, compared
to the best baseline approach. This validates
the significant advantages of our method in
improving model’s reasoning and self-critique
capability. Code will be made available at
https://github.com/rbao2018/SCOP.

1 Introduction

Large language models, which are growing in
model scale, show impressive performance in a
wide range of linguistic tasks (OpenAI, 2023; Tou-
vron et al., 2023; Anthropic, 2023), but their per-
formance on complex reasoning tasks is still signif-
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icantly lower than the human level (Bubeck et al.,
2023; Gulati et al., 2024). Formally distinct from
the de facto reasoning process of language models,
human reasoning processes incorporate behaviors
such as reflection, critique, induction and deduction
(Hegel et al., 1991; Kahneman, 2011), rather than
relying solely on a monotonous chain-of-thought
generation (Wei et al., 2022). Inspired by this, a
growing body of research has attempted to enhance
the self-critique capabilities of language models
(Shinn et al., 2023; Jaech et al., 2024), enabling
them to evaluate previously generated thought pro-
cesses and thereby improve performance in com-
plex reasoning tasks.

To enhance the the self-critique ability of the
model, the common approaches currently are to
use iterative synthesis of critical data (Zheng et al.,
2024b) and reinforcement learning methods based
on result supervision (Trung et al., 2024). However,
these two approaches face the challenges of dis-
tributional shift and reward hacking, respectively.
The data synthesis method allows for the manual in-
sertion of error points or the direct sampling of the
model’s incorrect outputs, and it relies on a more
powerful annotator model to synthesize critical data
(Xi et al., 2024b; Tang et al., 2025). However, nei-
ther manually introducing errors nor sampling the
reasoning results in the previous round is the real
current output distribution of the model. Distri-
bution shifts between critique and reasoning data
hinder the model’s ability to effectively critique its
own current reasoning outputs (Kumar et al., 2024).
While reinforcement learning methods with out-
come supervision have been proven to be effective,
outcome supervision only focuses on the correct-
ness of the final result (Xi et al., 2024a). Due to the
model hallucinations, it may still output incorrect
answers even after generating correct critiques, and
vice versa. Consequently, outcome-only supervi-
sion will lead to reward hacking by encouraging
model hallucinations (Zheng et al., 2024a).
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Figure 1: A schematic illustration of the Self-Critique via On-Policy (SCOP) training framework for enhancing a
large language model’s self-critique and reasoning abilities. The model relies on self-play to generate an reasoning-
critique-correction sequence, and uses a multi-objective reward function to calculate the reward values for each
component. Finally the reinforcement learning algorithm uses the reward values for policy model optimization.

In this work, we propose SCOP (Self-Critique
via On-Policy training) to achieve the simultane-
ous optimization of the model’s reasoning and cri-
tiquing abilities. This framework addresses the
distribution shift issue by generating reasoning and
critiquing data via the model’s self-play, and uses
a deliberate reward function for different purposes
to mitigate reward hacking. Specifically, after the
model generates the reasoning process for a prob-
lem, it will generate a critique based on this context
and then generate multiple corrections according
to the critique. The multi-objective reward func-
tion consists of two parts: Firstly, an automatic
verifier is used to verify whether the reasoning
and the final correction match the gold answer,
and rewards are given to them respectively. Sec-
ondly, Monte Carlo sampling is employed to gen-
erate multiple corrections after the critique, and
the accuracy of the model’s corrections serves as
a reward for the previous critique. In addition,
based on the hand-designed rules, we penalize the
model by reducing its reward score when it is de-
tected that the model generates hallucinatory cri-
tiques. This framework enables the model to con-
tinuously generate reasoning-critique-correction se-
quences and perform reinforcement learning based
on multi-objective rewards, enhancing the model’s
self-critique while strengthening the its reasoning

ability.
Comprehensive experiments conducted on

DeepSeek-Math-7B-Base and Qwen2.5-7B-Base
show that SCOP has significant performance advan-
tages on the benchmark datasets, with the average
scores being 4.61 points and 3.25 points higher
than the best benchmark method, respectively.

We summarize our contributions as follows:

• We propose SCOP, a reinforcement learning
framework that relies solely on the model’s
self-play to simultaneously improve its self-
critique and reasoning abilities.

• We design a multi-objective reward function
to supervise the model’s reasoning and cri-
tique abilities respectively, which alleviates
reward hacking issues in outcome supervision.

• We conduct extensive experiments across mul-
tiple base models and datasets, demonstrating
our method’s significant outperformance over
baselines. Additionally, we perform ablation
studies and analyses to elucidate the training
mechanisms that develop self-criticism and
correction abilities in our framework.

2 Related Work

LLM Self-Critique The self-critique mechanism
(Leike et al., 2018; Saunders et al., 2022) enables
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the model to utilize additional computational re-
sources at the time of inference to make appropriate
modifications to its own output, thereby improv-
ing the quality of the response. This technique
has demonstrated significant improvements in as-
pects such as the generalization of reward models
(Ye et al., 2024; Yu et al., 2024), code generation
(McAleese et al., 2024), and moral reasoning (Gan-
guli et al., 2023). In terms of improving the rea-
soning ability of language models, many studies
have attempted to enhance the model’s reasoning
ability through self-critique capabilities without the
aid of external demonstration (Wang et al., 2025;
Huang et al., 2024), but are shown to be of little or
even negative effect when the generalized ability
of the model is limited. In contrast, enhancing the
self-critique ability of the model with the help of
external information is usually more effective (Xi
et al., 2024b). Nevertheless, they are still subject
to the failure of the method due to limited model
capacity (Ke et al., 2024), data distribution shifts
(Zheng et al., 2024b), and lack of high quality ex-
ternal demonstration (Tang et al., 2025).

Reinforcement Learning for LLMs Reasoning
It has been proven that using reinforcement learn-
ing to enhance the reasoning ability of models is
highly effective (DeepSeek-AI et al., 2025; Guan
et al., 2024; Xiang et al., 2025). After training,
models can exhibit behaviors similar to human re-
flection and exploration. Outcome based rewards
may increase the risk of model hallucination (Trung
et al., 2024; Kumar et al., 2024), and sparse re-
wards may also lead to the collapse of the policy
model (Xi et al., 2024a). Although process reward
models allow for fine-grained supervision of pro-
cesses, training process reward models requires
large amounts of high-quality human labeled data,
which is economically expensive and requires con-
tinuous iteration to effectively supervise the pol-
icy model (Lightman et al., 2023; Zheng et al.,
2024a). Our proposed approach avoids training re-
ward models through multi-objective reward mod-
eling, which reduces the cost and circumvents the
risk of reward hacking.

3 Preliminary Analysis

Iterative synthesis of critique data often requires
either artificially inserting error points into correct
reasoning paths or sampling the incorrect reason-
ing process of the previous round of models to
synthesize critique data. However, these data do

Round 1 Round 2 Round 3

Ro
un

d 
1

Ro
un

d 
2

Ro
un

d 
3

22.2 21.1 18.5

26.9 25.4 19.2

27.2 27.8 20.1
20

22

24

26

Crituque Accuracy (m
aj@

8)

(a) Deepseek-Math-7B-Base

Round 1 Round 2 Round 3

Ro
un

d 
1

Ro
un

d 
2

Ro
un

d 
3

25.1 24.8 19.6

31.5 26.2 19.3

30.6 32.5 24.8 20

22

24

26

28

30

32

Crituque Accuracy (m
aj@

8)

(b) Qwen2.5-7B-Base

Figure 2: The Distribution Shift problem in iterative
critique data synthesis. In our experiments, the model
from each round is used to critique the reasoning of all
rounds. It is observed that the model is more effective
in critiquing the reasoning of the previous round rather
than the current round.

not match the real output distribution of the model
when it is fine-tuned using the critique data, and
the resulting problem of distributional shift in turn
leads to the failure of the model’s self-critique train-
ing. Following previous work (Zheng et al., 2024b),
we conduct an experiment on iterative synthesis of
self-critique data, and the results are shown in Fig-
ure 2. We separate the models for each round in
the iteration and used the model obtained in each
round to criticize the others’ reasoning output.

As can be seen in Fig.2, the model under the cur-
rent training round usually performs best in terms
of its ability to critically evaluate the model gen-
erated in the previous round. In contrast, when
the model evaluated the reasoning process gener-
ated in other rounds, its effectiveness decreased
significantly. This experimental result provides mo-
tivation to propose an on-policy approach to self-
critique training, and more details of the analysis
and implementation can be found in Appendix B.1.

4 Methodology

Method Overview Our training framework en-
ables the model to continuously learn during the
self-play reasoning, critiquing, and correcting pro-
cesses, which achieves simultaneous optimization
of multiple rewards while avoiding distributional
shift, thus improving the model’s generalization
ability in reasoning tasks. As shown in Fig.1, we
divide the model’s reasoning, critiquing, and cor-
recting processes into three generation stages, each
of which relies on the previous context for gener-
ation. After obtaining the rewards of each part, a
reinforcement learning algorithm is used to maxi-
mize the overall reward value.

In terms of the training process, we elaborate in
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§4.1 the initial self-critique data synthesis session
with the initialization of the policy model, which
is the starting point for the model to be able to rea-
son, criticize and correct. After that, we design the
reward functions corresponding to different genera-
tion stages. We supervise the reasoning and correc-
tion of the model based on their final results, and
reward the model’s critique using the accuracy rate
of subsequent corrections and hand-crafted rules
(§4.2). Finally, §4.3 introduces the policy gradient
reinforcement learning algorithm to simultaneously
maximize the rewards of multiple objectives.

4.1 Data Synthesis and Policy Initialization

Let the initial policy model be denoted as πθ, where
θ represents the pre-trained weights. Let the dataset
be D = {x, r, y}, where x and r represent the ques-
tion and the corresponding golden reasoning pro-
cess respectively, and y represents the final answer
to the question. First, we use the given training
dataset to fine-tune a policy model so that it can
provide the corresponding reasoning process r̂ for
the question x, and the final answer ŷ in the reason-
ing can be regularly matched. For this model, we
will sample multiple reasoning processes for each
question in the training set, and then mark these
reasoning processes as r+ and r− respectively ac-
cording to the final answers of the reasoning.

We use an additional annotator model gϕ to gen-
erate corresponding critiques c and corrections s
for all reasoning processes (r+ and r−) while re-
ferring to the golden solution process. In addi-
tion, to improve the quality of the critique data
generated by the annotator model, we adopt a post-
validation algorithm to filter the data (see more in
Appendix B.2). The resulting dataset is then di-
vided into two parts D+ = {x, r+, cr+, sr+} and
D− = {x, r−, cr−, sr−}. Then we use multi-task
supervised learning to get πSFT

θ , such that this
model can generate successive reasoning-critique-
correction. The loss function is shown below:

L+(θ) = −
∑

(p,r+,cr+,sr+)∈D+

log πθ(r
+, cr+, sr+|x)

L−(θ) = −
∑

(p,r−,cr−,sr−)∈D+

log πθ(c
r−, sr−|r−, x)

L(θ) = L+(θ) + λ · L−(θ)
(1)

where λ is a weight hyperparameter, and in Ap-
pendix A.2 we will further analyze the effect that

the value of λ has on the model’s initial reasoning
ability and self-critique ability.

4.2 Reward Design

In order to ensure that the model is effectively
monitored and optimized during the reasoning, cri-
tiquing and correction processes, we designed sep-
arate reward functions for each stage. The main
core ideas include the following points:

• Use a verifier to evaluate the correctness of
the reasoning results generated by the model,
and then provide an appropriate reward signal.

• The value of the self-critique reward for the
model depends on the proportion of correct
answers in the subsequent correction process.
We also apply hand-crafted to detect model
hallucinations in critiques and impose appro-
priate penalties.

• In the final correction phase, we also use the
correctness of the answers as the basis for
rewards. And if the final correction is correct,
we will give an additional reward bonus.

We define the following reward function, where
end_of_x denotes the last token of reasoning, crit-
icizing, and correcting, respectively.

r(st, at) =





1, if at = end_of_r and ŷr = y
m
n + h(c), if at = end_of_c
1 + α, if at = end_of_s and ŷs = y

0, otherwise

In the above formula, n denotes the number of
corrections s sampled by Monte Carlo after the
critique c, m is the number of correct answers ob-
tained in these corrections, α is the bonus value for
correct corrections, and h(c) is the hallucination
penalty function. When hallucinations in critique
c are detected, h(c) = −1. If there is no hallu-
cination, h(c) = 0. For more information on the
effect of varying these hyperparameters on the per-
formance of the policy model, you can refer to the
supplementary experiments in the Appendix A.1.

4.3 Policy Optimization

In policy optimization, we integrate the reward
functions of all stages to achieve a joint improve-
ment in the model’s reasoning, critiquing, and cor-
recting abilities. At the same time, to prevent the
policy model after reinforcement learning from de-
viating too much from the initial point, we use the
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Table 1: Model performance on test datasets with self-critique mechanism, with the performance obtained by our
method marked in blue . The "critique maj@8" indicates the final corrected performance that we obtain after
filtering the critiques using self-consistency. Compared to both other reinforcement learning algorithms (REFT,
SCoRe) and iterative critique data synthesis methods (Critic-CoT), our approach has significant advantages and
further improves the model inference performance when filtering critical comments using self-consistency.

METHOD
Datasets (Accuracy) Datasets (BoN@16) AVERAGE

GSM8K SVAMP MATH-OAI Olympiad GSM8K SVAMP MATH-OAI Olympiad

Open-Sourced Instruct Models
LLaMA3.1-8B 76.68 80.34 47.20 15.36 88.00 89.76 74.20 44.82 54.90/74.20

Deepseek-Math-7B 88.29 87.69 52.40 19.04 92.66 97.60 78.40 48.02 61.86/79.17

Qwen2.5-7B 91.21 93.09 74.00 36.38 96.38 97.88 86.60 56.06 73.67/84.23

Math-Specialized Base Model: Deepseek-Math-7B
Pair-SFT 85.69 85.52 51.20 18.42 90.55 94.47 75.40 44.59 60.21/76.50

REFT 86.69 86.73 53.40 21.58 94.72 95.24 76.00 45.61 62.35/78.14

SCoRe 88.29 87.25 53.60 22.77 94.25 95.92 76.20 46.39 62.98/78.19

+ critique maj@8 88.49 87.43 56.60 24.14 94.91 97.57 76.80 47.03 64.17/79.08

Critic-CoT (Iter@3) 87.99 87.36 54.80 23.37 94.06 97.24 76.60 47.75 63.38/78.91

+ critique maj@8 88.79 88.90 55.20 24.85 94.86 98.23 77.40 49.69 64.44/80.05

Ours 92.74 93.95 60.40 28.04 98.34 99.06 81.60 56.89 68.78/83.97

+ critique maj@8 93.21 93.68 60.60 29.88 97.32 99.53 82.80 57.12 69.34 / 84.19

General Base Model: Qwen2.5-7B-Base
Pair-SFT 90.76 92.41 72.60 33.54 94.35 96.21 84.60 55.77 72.33/83.73

REFT 91.14 93.39 74.40 35.37 95.85 97.38 86.00 56.15 73.58/83.84

SCoRe 91.40 94.44 74.80 35.04 95.62 97.68 86.20 56.30 73.92/83.96

+ critique maj@8 92.76 93.21 75.80 35.97 95.21 97.73 87.20 57.12 74.44/84.31

Critic-CoT (Iter@3) 92.26 94.45 74.60 37.71 95.50 97.06 87.60 57.24 74.75/84.35

+ critique maj@8 93.38 94.72 75.40 38.41 95.67 97.60 88.80 58.74 75.48/85.19

Ours 95.49 97.06 78.60 42.48 97.07 98.76 90.40 62.39 78.41/87.16

+ critique maj@8 96.53 97.15 79.10 43.45 97.36 98.32 91.40 63.23 79.06 / 87.58

KL divergence penalty term to penalize the overall
reward and use the PPO (Schulman et al., 2017) to
maximize this objective. The final objective to be
optimized is as follows:

max
θ

Eτ∼πθ(·|x)

[
T∑

t=0

r(st, at)

− βDKL(πθ(·|x)||πSFT
θ (·|x))

] (2)

where β represents the sparsity of the KL penalty,
πSFT
θ represents the initial policy model with

frozen parameters, and τ = [r, c, s] is the response
generated by the policy model for question x.

5 Experiments

5.1 Experimental Setup
The experiment is based on the Deepseek-Math-
7B-Base (Shao et al., 2024) and Qwen2.5-7B-
Base (Yang et al., 2024) models. Among them,
the deepseek-math-7B-base model is a special-
ized model for the mathematics domain, while the
qwen2.5-7B-Base model has more comprehensive

capabilities. The Qwen2.5-72B-Instruct model was
used as the annotator model for synthesizing cri-
tique data. For more details about the experimental
settings, please refer to Appendix B.

Datasets We use the stronger annotator model gϕ
to regenerate the corresponding reasoning content
r for each question x in the training sets of GSM8K
(Cobbe et al., 2021) and MATH (Hendrycks et al.,
2021) datasets. We use these data to construct the
Pair-SFT dataset as described in §4.1 for training
the initial policy model πSFT

θ . In the subsequent
reinforcement learning process, we use the cleaned
Numina-CoT (Jia LI and Polu, 2024) dataset to
obtain the question-answer dataset. The cleaning
operation mainly eliminates proof questions with-
out standard numerical answers.

Baseline Methods The baseline methods com-
pared in this study are primarily the critique data
synthesis and outcome-based reinforcement learn-
ing methods. In terms of critique data synthe-
sis, the methods we compare include Pair-SFT as
well as Critic-CoT (Zheng et al., 2024b), which
mainly employs iterative critique data synthesis
techniques to train the self-critique ability of the
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Figure 3: We plotted the performance scaling trends of
the models under exponentially growing majority voting
mechanisms using the two models separately. All of
the methods compared in the figure train the models to
generate text that conforms to the reasoning-critique-
correction format, and model performance is calculated
using the correctness of the final correction answer.

model through supervised learning. In addition, we
also conducted a comparative analysis of some re-
inforcement learning algorithms, including REFT
(Trung et al., 2024) and SCoRe (Kumar et al., 2024)
algorithms. These algorithms all utilize result su-
pervision to implement reward allocation for the
reasoning content of the model.

Evaluation We mainly use Accuracy, BoN@N
and Maj@N to evaluate the performance of the pol-
icy model. The Accuracy metric is the performance
of the model when decoding once using greedy de-
coding. BoN@N indicates whether the model is
able to get the correct answer at least once in N
times of generation, and Maj@N is the highest-
frequency answer accuracy chosen by the model
using self-consistency in N times of generation.
The default decoding temperature T is set to 0.6.
The evaluation dataset for this experiment contains
test sets of GSM8K, MATH-OAI (Lightman et al.,
2023), SVAMP (Patel et al., 2021), Olympiad (He
et al., 2024) datasets, and an out-of-domain (OOD)
dataset, OCW (Lewkowycz et al., 2022). These
datasets cover problems of varying reasoning dif-
ficulty and enable a comprehensive assessment of
the model’s reasoning capabilities.

5.2 Main Results

Benchmark Performance As shown in Table
1, our method demonstrates better average perfor-
mance on both models and all test datasets. We
summarize some important results as follows: 1)
In the greedy decoding setting, compared with the
strongest baseline method (the Critic-CoT method
with three rounds of iteration and without using

self-consistency to filter critiques during inference),
our method improves by 5.40% and 3.65% respec-
tively (for the two base models). Moreover, our
method exhibits more significant advantage com-
pared with other baseline approaches. 2) While
the performance gap between our method and base-
line methods is considerable under greedy decod-
ing, this difference narrows when examining the
BoN@16 metric. This observation suggests that al-
though expanding the search breadth during testing
benefits our approach, it provides an even greater
advantage to other methods. Our method shows fur-
ther potential for performance enhancement when
employing self-consistency to filter critiques. In
contrast, methods based on iterative synthesis of
critique data or other reinforcement learning ap-
proaches demonstrate minimal improvement in
critique selection when utilizing self-consistency.
This disparity highlights our method’s superior abil-
ity to enhance the model’s capacity for effective
corrections based on critique opinions.

Scaling Trend We plot the performance curves
of various methods on the MATH-OAI dataset in
accordance with the test time scaling law. As
illustrated in Fig.3, our method demonstrates a
more pronounced advantage over other baseline ap-
proaches in terms of inference time scaling across
different base models. However, as the computa-
tion increases during the inference phase, we ob-
serve that while our advantage gradually dimin-
ishes on the Deepseek-Math-7B-Base model, it re-
mains substantial on the Qwen2.5-7B-Base model.
One possible explanation is that the Qwen model
pays more attention to the diversity of data during
pre-training, which results in the pre-trained model
itself having a stronger self-critique ability.

The Quantitative Benefits of Self-Critique As
demonstrated in Table 2, our quantitative analy-
sis reveals significant performance gains attributed
to the self-critique mechanism. Using Deepseek-
Math-7B as the base model, our method achieves
an Acc@S metric of 57.4, markedly surpassing
other approaches, and a ∆F→T metric of 7.2. Simi-
larly, with Qwen2.5-7B-Base, we attain an Acc@S
of 76.6 and a notably high ∆F→T of 11.7, under-
scoring our model’s efficacy in self-critique and
correction. However, it is noteworthy that several
benchmark methods surpass our approach in terms
of the Acc@R metric. This observation aligns with
the core emphasis of our method: we do not solely
prioritize immediate responses. Instead, our ap-
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Figure 4: The reward curve and performance changes under the setting of the on/off policy training. The two
sub-figures a and b are the reward curves of Deepseek-Math-7B-Base and Qwen2.5-7B-Base during training,
respectively. Figure “c“ and “d“ show the model performance on the test datasets at different training steps.

Table 2: Model performance of different methods ob-
tained using greedy decoding with self-critique mecha-
nism. Our methods are shown using blue rows, while
the optimal indicator for each column is bolded. The
metric ∆(R,S) indicates the accuracy gap between the
reasoning and correction answers, with ∆F→T indicat-
ing the correct correction from the incorrect reasoning
after critiques and ∆T→F vice versa.

Method Acc@R Acc@S ∆(R,S) ↑ ∆F→T ↑ ∆T→F ↓
Math-Specialized Base Model: Deepseek-Math-7B

Pair-SFT 51.9 51.2 −0.7 4.8 5.3

REFT 51.9 53.4 1.5 7.1 5.6

SCoRe 52.3 53.6 1.3 6.4 5.1

Critic-CoT 53.8 54.8 1.0 4.9 3.9

Ours 53.2 57.4 4.2 7.2 3.0

General Base Model: Qwen2.5-7B-Base
Pair-SFT 73.9 72.6 −1.3 4.4 5.7

REFT 71.9 74.4 2.5 8.3 5.8

SCoRe 72.1 74.8 2.7 7.9 5.2

Critic-CoT 72.7 74.6 1.9 7.0 5.1
Ours 71.3 76.6 5.3 11.7 6.4

proach focuses on iteratively refining the reason-
ing process through subsequent self-critiques, ulti-
mately yielding superior overall performance.

6 Analysis and Discussion

6.1 Offline Policy Training to Simulate
Iterative Critique Synthesis

We fix the inference output of the model as the ex-
perimental setup for the off-policy scenario, while
in the on-policy scenario, the model needs to re-
spond according to the user question x and then
generate the subsequent content r, c, s. This setup
simulates the sampling inference process of the
models obtained in previous training rounds in the
critique data synthesis method. As shown in Fig.4,
due to the limitations of the Deepseek model’s own
capabilities, even when optimization reaches its
peak, the difference in maximum reward values
obtainable by on-policy and off-policy strategies is

Table 3: The impact of varying the number of sampled
critiques and corrections in reinforcement learning on
the model’s ultimate performance. It is important to
emphasize that the reported model performance was
achieved under the condition of sampling critiques and
corrections only once during the inference process.

Models
Number of

Critique
Number of
Correction

Accuracy BoN@16

Deepseek

4 4 68.34 82.19

4 16 69.73 82.98

16 4 70.44 84.45

16 16 70.71 84.93

Qwen2.5

4 4 78.01 86.51

4 16 78.28 86.82

16 4 81.07 89.10

16 16 82.69 89.73

not significant. In the context of the test datasets,
a notable contrast emerges between the off-policy
and on-policy training methods. The model trained
via the off-policy approach exhibits an initial in-
crease in performance followed by a subsequent
decline. Conversely, the on-policy trained model
demonstrates consistent improvement until con-
vergence. This divergence can be attributed to
two key factors in off-policy training: firstly, the
model’s critiquing capabilities fail to evolve in tan-
dem with its reasoning abilities; secondly, the rigid
reasoning process inherent to the model restricts its
exploratory capacity, ultimately leading to perfor-
mance degradation.

6.2 Critique and Correction Exploration

We investigate the impact of varying the number
of critique and correction samples in the policy
model’s reinforcement learning process on its final
performance. Table 3 presents the model’s average
performance across four mathematical test datasets.
Our experiments reveal that increasing the sam-
pling numbers for both critique and correction pos-
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Table 4: We utilize the OCW dataset to evaluate the
model’s OOD performance. Notably, we employ a re-
peated problem solving process to obtain the Maj@N
and BoN@N performance metrics. This approach in-
volves reiterating the problem solving procedure based
on the self-consistency of critique or correction.

Methods Maj@4 Maj@16 BoN@16

Correction Maj@8
Pair-SFT 43.01 50.00 58.46
SCoRe 44.12 53.68 62.87
Critic-CoT 44.49 54.41 63.24
Ours 50.00 59.93 69.85

Critique Maj@8
Pair-SFT 45.96 53.68 63.24
SCoRe 49.26 55.51 66.54
Critic-CoT 50.74 57.35 68.01
Ours 53.31 62.50 72.79

itively influences performance. For instance, the
Deepseek model’s accuracy improved from 68.34%
to 70.71%, and its BoN@16 score rose from 82.19
to 84.93 when the critique-correction numbers are
increased from 4-4 to 16-16. The Qwen2.5 model
exhibited a similar trend with even better perfor-
mance. Notably, for both models, increasing the
number of critiques led to a more substantial im-
provement in accuracy compared to increasing cor-
rections under similar conditions. This suggests
that a higher sampling number of critiques encour-
ages more comprehensive exploration by the model,
resulting in greater performance gains.

6.3 Out-of-Domain Performance

We conduct comprehensive experiments on the
OCW dataset utilizing the Qwen2.5 base model.
As illustrated in Table 4, our proposed method
demonstrates remarkable efficacy in enhancing the
model’s self-critique capabilities. Across all ex-
perimental configurations, our approach consis-
tently outperforms Pair-SFT, SCoRe, and Critic-
CoT across every metric. This consistent superi-
ority underscores the effectiveness of our method
in optimizing the model’s self-critique and correc-
tion abilities, resulting in enhanced generalization
on out-of-distribution data. Furthermore, the ap-
plication of self-consistency for filtering critiques
yields more substantial improvements compared to
screening model-generated corrections. Notably,
the Maj@16 metric increases from 59.93 to 62.50,

Table 5: Accuracy performance of DeepSeek-Math-
7B-Base and Qwen2.5-7B-Base models under a single
greedy decoding strategy, with varying KL divergence
regularization coefficients β. The optimal performance
values in each dataset column are bolded.

KL Coefficient β GSM8K SVAMP MATH-OAI Olympaid

Math-Specialized Base Model: Deepseek-Math-7B
0.001 89.3 91.3 57.5 25.6
0.01 91.8 92.5 59.8 27.3
0.05 92.7 94.0 60.4 28.0
0.1 91.1 92.8 57.3 24.8
0.5 84.5 85.6 53.4 20.2

General Base Model: Qwen2.5-7B-Base
0.001 93.9 95.3 74.6 40.4
0.01 94.2 96.8 77.1 41.5
0.05 95.5 97.0 78.6 42.5
0.1 93.6 95.2 76.5 40.1
0.5 90.5 93.4 72.9 39.6

while the BoN@16 metric exhibits a significant rise
from 69.85 to 72.79. These results suggest that the
model’s self-critique ability constitutes a critical
bottleneck for further performance enhancement.

6.4 KL Divergence Regularization

We evaluate the influence of the KL divergence
regularization parameter β in policy optimization
summarized in Table 5. The results indicate that
performance across all datasets peaks at β = 0.05
for both DeepSeek-Math-7B-Base and Qwen2.5-
7B-Base models. While reducing β to 0.001 causes
minimal degradation, increasing β beyond 0.1
leads to significant declines in accuracy. These
findings validate the paper’s selection of β = 0.05
as an optimal balance between policy stability and
adaptive learning. The observed performance trade-
offs underscore the critical role of KL divergence
regularization in reinforcement learning-based lan-
guage model optimization.

6.5 Sampling Efficiency and Training Costs

In the training of strong inference models, increas-
ing the number of samples is crucial for improv-
ing model performance; otherwise, the model is
prone to policy collapse due to overly sparse re-
wards. To validate this conclusion, we conduct
experiments on the Qwen2.5-7B-Base model by
reducing the number of samples in reinforcement
learning on all methods from 32 to 1. The results in
Table 6 show that the performance of REFT on the
MATH-OAI dataset decreased by 19.3%, SCoRe
by 16.1%, while our proposed method only de-
creased by 10.1%. These data indicate that increas-
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Table 6: The comparative results of model performance
degradation and training costs under different sampling
numbers, where critique@4 means that the sampling
includes 4 critique steps, and correction@8 indicates
that 8 different corrections will be generated after each
critique step. We not only show the accuracy changes
of the model on the test dataset, but also calculate the
number of generated tokens corresponding to different
algorithms and sampling numbers.

Number of
Sampling

Method GSM8K MATH-OAI
Training Tokens

per Step

critique@4
correction@8

REFT 91.4 53.4 1, 794, 348

SCoRe 91.1 53.6 1, 885, 475

Ours 93.1 60.4 1, 924, 239

critique@2
correction@4

REFT 84.2−7.2 44.5−8.9 403, 952

SCoRe 85.7−5.4 45.2−8.4 421, 047

Ours 90.1−3.0 54.8−5.6 444, 481

critique@1
correction@1

REFT 78.3−13.1 34.1−19.3 52, 528

SCoRe 82.7−8.4 37.5−16.1 55, 282

Ours 87.8−5.3 50.3−10.1 58, 318

ing samples helps the model find correct inference
paths, and our method can more efficiently train the
model’s self-critique ability, effectively mitigating
performance degradation.

Additionally, we ensure that the experiments are
conducted with the same sampling budget. For
REFT, we directly set the number of samples to 32,
and for SCoRe, we use 4 samples in the first round
and 8 samples in the second round. To quantify
the cost differences between algorithms, we statis-
tically analyze the number of training tokens in a
single optimization step and find that our method
has similar numbers of training tokens to REFT and
SCoRe but demonstrates a significant performance
advantage. This demonstrates that our method
achieves superior performance with controllable
training costs. In the revised version of the paper,
we further explore the relationship between com-
putational cost and model performance.

6.6 Key Components Ablation Study

We conduct ablation experiments to evaluate the
training processes of two fundamental models. The
results, presented in Table 7, reveal several key
insights. Notably, reducing the sampling quan-
tity for critique and correction has the least impact
on model performance, suggesting that while en-
couraging model exploration is important, it is not
the most essential factor in enhancing self-critique
capabilities. Conversely, replacing reinforcement
learning with rejection sampling fine-tuning or
eliminating process rewards leads to more signif-

Table 7: Experiments on ablation of key components
in training policy models. The components we study
include the supervision of reward shaping (critique re-
ward), the number of samples for critique and correction
in reinforcement learning, and the use of rejection sam-
pling fine-tuning instead of reinforcement learning.

Models Methods Accuracy Maj@16 BoN@16

Deepseek
Ours 68.78 74.11 83.97

w reject finetune 63.48 70.83 80.89
w/o reward shaping 64.22 71.41 81.41
w/o multi sampling 65.83 72.98 81.83

Qwen2.5
Ours 78.41 81.23 87.16

w reject finetune 72.45 76.92 83.86
w/o reward shaping 73.23 77.43 84.46
w/o multi sampling 74.49 78.97 85.83

icant performance declines, underscoring the cru-
cial role of process supervision in cultivating the
model’s self-critique abilities.

7 Conclusion

This study introduces Self-Critique via On-Policy
(SCOP) training, an innovative reinforcement learn-
ing framework designed to concurrently enhance
language models’ reasoning and self-critique ca-
pabilities. Our framework addresses distribution
shifts and reward hacking challenges through self-
play and a multi-objective reward function, effec-
tively optimizing both reasoning and self-critique
abilities without relying on synthetic data or sim-
plistic outcome-based supervision. Experimental
results on DeepSeek-Math-7B-Base and Qwen2.5-
7B-Base demonstrate significant performance im-
provements over baseline methods, validating the
efficacy of our training framework.

Limitations

Our work has several limitations. Firstly, computa-
tional resource constraints precluded experiments
on larger-scale models. Secondly, while effective,
the Monte Carlo sampling method used for reward
scoring of critiques is computationally intensive
compared to traditional discriminative reward mod-
eling approaches, potentially impacting the practi-
cality of the proposed method. Lastly, for problems
lacking labeled solution processes, the model’s in-
herent limitations may result in persistent incorrect
answers, risking policy collapse and optimization
failure.
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A Supplementary Experiments

A.1 Critique Reward Design

Models α h(c) Accuracy Maj@16

Deepseek

0.2 {−1, 0} 67.11 82.27
0.2 {0, 1} 67.88 82.83
0.2 {−1, 1} 68.53 83.68
1.0 {−1, 0} 67.18 82.49
1.0 {0, 1} 67.85 82.82
1.0 {−1, 1} 68.57 83.80

Qwen2.5

0.2 {−1, 0} 75.37 85.09
0.2 {0, 1} 76.12 85.56
0.2 {−1, 1} 77.40 86.83
1.0 {−1, 0} 76.13 85.71
1.0 {0, 1} 77.51 86.84
1.0 {−1, 1} 78.45 87.86

Table 8: We investigated the impact of key hyperparam-
eters in the reward function on the final policy model’s
performance. Our primary focus was on examining
how the final correction bonus α and the hallucination
penalty h(c) for critiqus affect the model’s ultimate per-
formance. Across all experiments, we set the number of
corrections n generated following each critique to 8.

In instances where the initial reasoning r yields
a correct answer, yet the subsequent critique erro-
neously identifies flaws in the reasoning process,
we categorize such critique as hallucination, irre-
spective of the final correction’s accuracy. Con-
versely, when the reasoning r is flawed but the
model’s critique fails to detect these errors, we sim-
ilarly classify this as a hallucination. For scenarios
where r produces an incorrect answer and the cri-
tique attempts to identify errors, but its accuracy is
ambiguous, we employ Monte Carlo sampling to
estimate the reward of the critiques.

The design of a multi objective reward function
requires balancing the model’s reasoning and self-
critique abilities. Thus, the additional bonus for
final corrected results and the hallucination penalty
for critique are important hyperparameters. As
shown in Table 8, we experiment with these two
hyperparameters using two base models. The re-
sults show that incrementing the final corrected
reward value α produces only marginal improve-
ments in model performance, a pattern that is con-
sistent across both base models. With respect to the
critical hallucination penalty h(c), optimal perfor-
mance is achieved when both reward and penalty
values are set to {−1, 1} for both models. This find-
ing suggests that moderately expanding the range
of critical illusion penalties is more conducive to

the overall improvement of the models.

A.2 Initialize Model Self-Critique Capability
When initializing the self-critique ability of the
model using Pair-SFT dataset, the key lies in find-
ing a balance between the dataset D+ constructed
from the correct reasoning paths and the dataset
D− constructed from the incorrect reasoning paths.
To achieve this goal, we search for the optimal
balance point by adjusting the weight λ in Eq.1.

As can be seen from Fig.5, when the value of
λ is too small, the model will tend to only learn
the correct reasoning paths, which will lead to poor
final accuracy. As λ gradually increases, the model
can obtain the best self-critique performance in the
vicinity of the range of 0.9 to 1.1. However, when
λ is further increased, due to the model’s excessive
focus on learning the self-critique ability, the pro-
portion of the model learning the dataset of correct
reasoning paths in the initial stage is relatively low.
If the model cannot solve the problem correctly
in the initial stage, it will ultimately lead to a de-
cline in the model’s performance. Therefore, in the
main experiment, we set the value of λ to 1.0 as
the baseline method.
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Figure 5: The influence of changing the λ parameter in
Eq.1 on the initial self-critique ability of the model. We
set the range of λ to be from 0.1 to 1.5 with an interval
of 0.1. To evaluate model performance, we utilized the
accuracy of the final corrections generated by the model
as our primary metric.

A.3 Critique Benefit Across Difficulty Levels
As shown in the Fig.6, we have conducted an in-
depth exploration of the beneficial effects brought
about by the self-critique mechanism for problems
of different difficulty levels. From an overall per-
spective, for the two models involved, the self-
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critique mechanism has achieved performance im-
provement when dealing with problems of vari-
ous difficulty levels. Specifically, compared with
Qwen2.5-7B-Base, the Deepseek-Math-7B-Base
has obtained more significant gains.

A common phenomenon is that the relative ben-
efits of self-critique are less pronounced for both
simple and highly complex problems, reaching op-
timal efficacy for moderately difficult tasks. This
observation strongly suggests that the effectiveness
of the self-critique mechanism is constrained by
the model’s inherent capabilities. For straightfor-
ward questions, where the model already achieves
high accuracy, the additional value of self-critique
is limited. Conversely, for extremely challenging
problems, the mechanism’s implementation does
not significantly improve the model’s ability to de-
rive correct solutions.
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Figure 6: The benefits of the self-critique on problems
of varying difficulty in the MATH-OAI dataset.

B Implementation Details

In this section, we present some details of the exper-
imental methodology, including the data synthesis
method, the hyperparameters in the training frame-
work and the experiment environment.

B.1 Iterative Synthetic Critique Data
Iterative data synthesis requires a powerful annota-
tor model to correct the wrong reasoning paths of
the policy model. In our experiment, the Qwen2.5-
72B-Instruct model was used as the annotator
(§5.1). We referred to previous work (Xi et al.,
2024b; Zheng et al., 2024b) and designed the fol-
lowing data synthesis process:

• Assuming that the current model already has
the ability of self-critique, we sample the cur-
rent policy model and identify the content that
finally corrects the wrong answers.

• Use a more powerful annotator model gϕ to
generate corresponding critiques in the con-
text of the question x, the incorrect inference
path r̂ and the reference answer rref .

• After screening the correctness of the col-
lected critiques, merge them with the training
sets of the previous rounds, and use supervised
learning to fine-tune the policy model.

• Iterate the above process multiple times.

During the experiment, we saved the weights
of the model in each iteration. For the model ob-
tained in each iteration, sampling operations were
carried out during its reasoning process. After the
sampling was completed, based on the obtained
context information, different models were asked
to generate corresponding critiques. In order to
ensure the quality and reliability of the critiques,
the method of self-consistency was adopted to filter
these comments. Finally, the context containing
the reasoning content and critiques was input into
the model again, so as to generate the final correc-
tion process. The prompt template used in the data
synthesis process can be obtained in §C.

B.2 Critique Data Synthesis
We rewrite the question-response data using the an-
notator model gϕ. This format includes the "Step"
notation, which is convenient for subsequent train-
ing. In the data synthesis after obtaining the initial
policy model, we use such response-question data
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as the standard reference answer rref to help the
annotator model generate critiques. We add a fil-
tering operation for the critique data. Specifically,
after combining the incorrect reasoning path of the
question and the critique, we input them again as
the context into the annotator. If at this time the
annotator can generate the correct correction with a
certain threshold (in our setting, it is that there are
at least 6 correct results out of 8 samplings), then
we retain this reasoning-critique-correction data
point. After such a process, we obtain 60K self-
critique data on the GSM8K and MATH datasets.
After dividing these data into D+ and D−, we fine-
tune the policy model using Eq.1.

B.3 Training Hyper-Parameters

Pair-SFT Training We set the coefficient λ for
multi-task learning to 1.0 and the training batch
size to 256. The learning rates for Deepseek
and Qwen2.5 models are 5e-5 and 1e-5, respec-
tively. We apply cosine learning rate decay and
use AdamW (Loshchilov and Hutter, 2019) as the
optimizer for parameter optimization. More details
of the hyperparameters can be found in Table 9.

Table 9: Key hyperparameters for Pair-SFT Training

Hyper-parameter Value
Training Batch size 256
Optimizer type AdamW
Learning rate 5e-5/1e-5
lr scheduler type cosine
Warmup ratio 0.03
Epochs 5
Weight decay 0.0

Policy Optimization In the policy optimization
stage, we conduct data filtering for the input
prompts of Numina-CoT. We use the annotator
model and the initial policy model to generate mul-
tiple responses (n = 8) for the prompt dataset, and
remove the prompts that meet the following con-
ditions: 1) The initial policy model generates the
correct answer in all responses. 2) The annotator
model does not generate a correct solution process
even once. We use the prompt dataset cleaned in
this way to perform reinforcement learning on the
policy model. In the training process, the GAE
(Schulman et al., 2016) parameter λ is set to 0.95,
the reward discount coefficient γ is set to 1, and the
value model is initialized with the weights of the

policy model. More details of the hyperparameters
can be found in Table 10.

Table 10: Key hyper-parameters in Policy Optimization

Hyperparameter Value
Training Batch size 1024
Optimizer type AdamW
Policy model learning rate 2e-6
Value model learning rate 5e-6
Learning rate scheduler cosine
Critique Sampling 4
Correction Sampling 8
Maximum training steps 1500
Correction bonus α 1.0
Critique penalty h(c) {−1, 1}
KL penalty 0.05
Sampling temperature 0.6
Sampling top-p 0.9
Maximum output tokens 2048

B.4 Experiment Environments

All the experiments we conduct are carried out on
Linux system machines equipped with 8 NVIDIA
A100 GPUs. The code is mainly written in Python1,
and the deep learning framework we adopt is Py-
Torch 2, with a version of 2.4.0. During the train-
ing process, we highly rely on verl (Sheng et al.,
2024) as the training framework. This training
framework integrates projects such as FSDP (Zhao
et al., 2023), Flash-attention-2 (Dao, 2024), and
vLLM (Kwon et al., 2023) to accelerate the rein-
forcement learning process for large language mod-
els. A complete reinforcement learning training of
the policy model takes about 960 GPU hours. In
addition, all the pre-trained model weights we use
are derived from HuggingFace 3.

C Prompts

We show the prompt words and templates needed
in data synthesis, including the template for rewrit-
ing question- responses, the template for critique
data synthesis, and the prompt for instructing the
annotator model to synthesize critique data.

1https://www.python.org/
2https://pytorch.org/
3https://huggingface.co/
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C.1 Rewrite Reasoning Process

Rewrite Reasoning Prompt

You are a math expert. Please reason step
by step, use "Step X:" to mark the process
of each step of your solution. At the end of
your solution, give your final answer in the
form like "Final Answer:’boxed{}’"

C.2 Critique System Prompt

Critique System Prompt

<role>
You are an expert mathematician specializ-
ing in grading math problems.
</role>
<task>
The user will provide a mathematical prob-
lem along with “‘Correct“‘ and “‘Current“‘
responses. Carefully analyze both solutions,
comparing them step by step. Identify the
exact point where the solution deviates from
the correct path.
Your output should follow this template:
<critic>
Let’s check the current solution step by step
...
<conclution>
So, the current solution becomes incorrect
at “‘Step X“‘.
</conclution>
</critic>
</task>

C.3 Critique Data Synthesis

Input Format for Critique Data Synthesis

System Prompt: [Prompt]
Question: [x]
Current Solution: [rref ]
Incorrect Solution: [r̂]
{Annotator Response}

D Case Study

We present two typical examples of successful cor-
rections achieved after self-critique, while showing
a case where self-critique failed to succeed.
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Success Critique Example 1

Problem. Two different points, C and D, lie on the same side of line AB so that △ABC and △BAD are congruent
with AB = 9, BC = AD = 10, and CA = DB = 17. The intersection of these two triangular regions has area m

n
,

where m and n are relatively prime positive integers. Find m+ n.

The reasoning process (correct).

The task is to find the intersection area of two congruent triangles. To solve this, we can extend AB to form a right
triangle with legs 6 and 8 such that AD is the hypotenuse and connect the points CD so that we have a rectangle.
Step 1: Determine the length of base CD of the rectangle
Since we know that △ADE is a 6 − 8 − 10 triangle, and △DEB is an 8 − 15 − 17 triangle, we can calculate the
length of base CD of the rectangle by adding the lengths of AB, BE, and ED. Then we have

CD = AB +BE + ED = 9 + 6 + 6 = 21

Step 2: Set up a proportion to find the height from E to DC
Since △ABE and △DCE are similar with ratio 21

9
= 7

3
, we can set up a proportion, knowing that the two heights

add up to 8. Let y be the height from E to DC, and x be the height of △ABE. Then we have

7

3
=

y

x

7

3
=

8− x

x

Solving for x, we get
7x = 24− 3x

10x = 24

x =
12

5

Step 3: Calculate the intersection area of the two triangles
Given the base AB and the height x of △ABE, we can calculate the intersection area of the two triangles by using the
formula for the area of a triangle. Then we have

A =
1

2
(9)

(
12

5

)
=

54

5

Final Answer: 59

Success Critique Example 1

The critique process (correct).

<critic>
Step 1: Length of CD = 21 - Given that we have a 6−8−10 triangle (△ADE) and an 8−15−17 triangle (△DEB)
- CD = AB +BE + ED = 9 + 6 + 6 = 21
Step 2: Finding the height - Using similar triangles △ABE and △DCE with ratio 21

9
= 7

3
- Let x be the height of

triangle △ABE and (8− x) be the height of triangle △DCE - Setting up the proportion: 7
3
= 8−x

x
- Solving:

7x = 24− 3x, 10x = 24, x =
12

5

Step 3: Calculating intersection area - Using the formula: A = 1
2
(base)(height) - A = 1

2
(9)

(
12
5

)
- A = 54

5

Final answer: - A = 54
5

where m = 54 and n = 5 - m+ n = 54 + 5 = 59 ✓ This step is correct
<conclution>
The entire solution is logically sound and mathematically accurate. The answer 59 is correct.
</conclution>
</critic>
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Success Critique Example 2

Problem. Suppose f(x) = 3
2−x

. If g(x) = 1
f−1(x)

+ 9, find g(3).

The reasoning process (incorrect). To solve the problem, we need to find g(x) and then evaluate it at x = 3. Step 1:

Find the inverse function f−1(x) We start with the function f(x) = 3
2−x

. To find the inverse function, we first solve
for x in terms of y:

y =
3

2− x

Multiply both sides by 2− x:
y(2− x) = 3

Distribute y on the left-hand side:
2y − xy = 3

Rearrange the equation to isolate x:

x = 2− 3

y

Thus, the inverse function is:

f−1(x) = 2− 3

x

Step 2: Substitute f−1(x) into g(x) We are given:

g(x) =
1

f−1(x)
+ 9

Substitute f−1(x) = 2− 3
x

:

g(x) =
1

2− 3
x

+ 9

Step 3: Simplify the expression First, simplify the denominator:

2− 3

x
=

2x− 3

x

Now, substitute back into g(x):

g(x) =
1

2x−3
x

+ 9

Simplify the fraction inside the fraction:

1
2x−3

x

= x÷ 2x− 3

x
= x · x

2x− 3
=

x2

2x− 3

Thus,

g(x) =
x2

2x− 3
+ 9

Step 4: Evaluate g(3) Substitute x = 3 into the simplified g(x):

g(3) =
32

2(3)− 3
+ 9

g(3) =
9

6− 3
+ 9

g(3) =
9

3
+ 9

g(3) = 3 + 9

g(3) = 12

Final Answer
12
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Success Critique Example 2

The critique process (correct). <critic>

Step 1. Finding the inverse function f−1(x): This step is correct in both solutions.
Step 2. Substituting f−1(x) into g(x): This step is also correct in both solutions.
Step 3. Simplifying the expression: Here’s where the deviation begins. In the current solution, the simplification of the
fraction is incorrect:
Current solution:

1
2x−3

x

= x÷ 2x− 3

x
= x · x

2x− 3
=

x2

2x− 3

This is incorrect. The correct simplification should be:

1
2x−3

x

= x · 1

2x− 3
=

x

2x− 3

The error is in multiplying by x twice instead of once.
Step 4. Evaluating g(3): Due to the error in step 3, the evaluation of g(3) is also incorrect.
<conclution>
So, the current solution becomes incorrect at Step 3, during the simplification of the expression for g(x). This error
leads to an incorrect final answer of 12 instead of the correct answer of 10.
</conclution> </critic>

Failed Critique Example 1

Problem. Three of the edges of a cube are AB,BC, and CD, and AD is an interior diagonal. Points P,Q, and R
are on AB,BC, and CD, respectively, so that AP = 5, PB = 15, BQ = 15, and CR = 10. What is the area of the
polygon that is the intersection of plane PQR and the cube?

The reasoning process (correct).

The task is to find the area of the polygon that is the intersection of plane PQR and the cube. We can first analyze the
intersection of the plane with the cube, and then calculate the area of the polygon.
1. Analyze the intersection of the plane with the cube: The polygon that is the intersection of plane PQR and the cube
is a hexagon. The hexagon can be divided into two quadrilaterals and a rectangle.
2. Calculate the area of the rectangle: The area of the rectangle is 10× 15 = 150.
3. Calculate the area of the quadrilateral on the front: The quadrilateral on the front can be divided into two triangles.
The area of the quadrilateral is 2× 1

2
× 15× 15 = 225.

4. Calculate the area of the quadrilateral on the side:
The quadrilateral on the side can be divided into two triangles. The area of the quadrilateral is 2× 1

2
× 10× 15 = 150.

5. Calculate the total area of the hexagon: The total area of the hexagon is 150 + 225 + 150 = 525.
Conclusion: We have calculated the area of the polygon that is the intersection of plane PQR and the cube.
Final Answer: 525

17699



Failed Critique Example 1

The critique process (incorrect).

<critic>
The current solution has several issues:
1. The first major issue is assuming the intersection forms a hexagon that can be divided into a rectangle and two
quadrilaterals. This assumption is not justified.
2. The solution doesn’t use the given information about AP = 5 and PB = 15, which are crucial for determining the
position of point P on edge AB.
3. The solution assumes dimensions without proper justification. For example, it uses 10 and 15 as dimensions for the
rectangle without proving why these should be the dimensions.
4. The solution doesn’t consider that:
- A cube has equal edges.
- The diagonal AD creates a specific geometric relationship.
- Points P , Q, R define a plane that intersects the cube at specific angles.
5. The solution skips the crucial step of:
- Establishing the cube’s dimensions.
- Finding the position of diagonal AD.
- Determining how plane PQR intersects other faces of the cube.
<conclution>
The solution becomes incorrect at Step 1 where it makes an unjustified assumption about the shape of the intersection
being a hexagon that can be divided into specific parts. The entire approach lacks proper geometric analysis and relies
on unfounded assumptions about the dimensions and shapes involved.
</conclution>
</critic>
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