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Abstract

Deep neural network predictions are notori-
ously difficult to interpret. Feature attribution
methods aim to explain these predictions by
identifying the contribution of each input fea-
ture. Faithfulness, often evaluated using the
area over the perturbation curve (AOPC), re-
flects feature attributions’ accuracy in describ-
ing the internal mechanisms of deep neural net-
works. However, many studies rely on AOPC
to compare faithfulness across different models,
which we show can lead to false conclusions
about models’ faithfulness. Specifically, we
find that AOPC is sensitive to variations in the
model, resulting in unreliable cross-model com-
parisons. Moreover, AOPC scores are difficult
to interpret in isolation without knowing the
model-specific lower and upper limits. To ad-
dress these issues, we propose a normalization
approach, Normalized AOPC (NAOPC), en-
abling consistent cross-model evaluations and
more meaningful interpretation of individual
scores. Our experiments demonstrate that this
normalization can radically change AOPC re-
sults, questioning the conclusions of earlier
studies and offering a more robust framework
for assessing feature attribution faithfulness.
Our code is available at https://github.
com/JoakimEdin/naopc.

1 Introduction
Deep neural networks are often described as black boxes
due to the difficulty in understanding their inner mech-
anisms (Wei et al., 2022). This lack of interpretability
can hinder their adoption in critical applications where
trust is paramount (Lipton, 2018). For instance, if a
diagnostic model predicts meningitis without an expla-
nation, a physician confident in an influenza diagnosis
might incorrectly dismiss the model’s prediction as an
error.

Feature attribution methods attempt to address this
issue by quantifying each input feature’s contribution to
a model’s output (Danilevsky et al., 2020). In the menin-
gitis example, such a method might identify “fever” and
“stiff neck” as important features, potentially convinc-
ing the physician to reconsider the diagnosis. For these
methods to be reliable, they must faithfully represent

the model’s underlying reasoning process, avoiding mis-
leading interpretations (Jacovi and Goldberg, 2020).

The Area Over the Perturbation Curve (AOPC) has
become a standard metric for approximating faithful-
ness, with two main variants: sufficiency and compre-
hensiveness (DeYoung et al., 2020; Lyu et al., 2024).
However, we uncover a critical weakness: the minimum
and maximum possible AOPC scores vary significantly
across different models and inputs. For the same dataset,
we found one model’s upper limit averaged 0.3 across
examples while another averaged 0.8. These varying
lower and upper limits of AOPC stem from how models
transform inputs into outputs, specifically, how many in-
put features each model uses and how it combines these
features through interactions to produce predictions.

This weakness invalidates AOPC comparisons across
models, affecting several studies in explainable AI. We
found eleven studies in top machine learning venues that
compare AOPC across models. These studies are spread
among the following research directions: learning to
explain (Resck et al., 2024; Liu et al., 2022), develop-
ing self-explanatory model architectures (Sekhon et al.,
2023), making models more interpretable through train-
ing strategies (e.g., adversarial robustness) (Bhalla et al.,
2023; Li et al., 2023; Chen and Ji, 2020; Chrysosto-
mou and Aletras, 2021; Xie et al., 2024), and analyzing
explanation methods in different settings (e.g., out-of-
distribution data) (Chrysostomou and Aletras, 2022;
Hase et al., 2021; Nielsen et al., 2023). Our findings
suggest these studies’ findings may be misguiding.

The varying limits also make AOPC scores difficult to
interpret. For instance, is an AOPC score of 0.25 high?
It is high if the upper limit is 0.3 but not if it is 0.8. Inter-
pretable scores would help researchers identify models
and inputs where explanation methods produce unfaith-
ful explanations, enabling them to analyze these cases
and debug their methods. Without knowing the model
and input-specific limits, this systematic improvement
of explanation methods remains difficult.

To address these issues, we propose Normalized
AOPC (NAOPC), an approach to normalize AOPC
scores to ensure comparable lower and upper limits
across all models and data examples. Our empirical re-
sults show that this normalization can significantly alter
the faithfulness ranking of models, questioning previous
conclusions about improved model faithfulness. Our
key contributions are:
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1. We demonstrate that the minimum and maximum
possible AOPC scores vary significantly across
different models and inputs, which makes cross-
model comparisons and isolated score interpreta-
tions problematic.

2. We propose NAOPC, including an exact ver-
sion (NAOPCexact) and a faster approximation
(NAOPCbeam), to normalize AOPC scores for im-
proved comparability.

3. We show empirically, with five datasets, four model
architectures, and three NLP tasks, how NAOPC
alters faithfulness rankings, highlighting the need
to re-evaluate conclusions in previous studies about
model faithfulness.

To facilitate adoption of these methods, we release
AOPC, NAOPCexact, and NAOPCbeam as a PyPI pack-
age1.

2 Problem formulation
Area Over the Perturbation Curve (AOPC) measures
the change in model output as input features are sequen-
tially perturbed (Samek et al., 2016). The perturbation
can either remove, insert, or replace a feature with some
pre-defined value. The final score is the average out-
put change across all perturbation steps. Formally, the
AOPC is calculated as follows:

AOPC(f,x, r) =
1

N

N∑

i=1

f(x)− f(p(x, r1:i)) (1)

where f is a model, x is an input vector with N number
of features, r ∈ Permutations({1, . . . , N}) is the order
to perturb the input features, and p, is the perturbation
function that removes, inserts or replaces the features in
x that are in r1:i. AOPC is used to calculate sufficiency
and comprehensiveness as follows.

Comprehensiveness estimates the faithfulness of fea-
ture attribution scores by perturbing the input features
in decreasing order, starting from the feature with the
highest score (DeYoung et al., 2020). A high com-
prehensiveness indicates that the features that are the
highest ranked, according to the feature attributions, are
important for the model’s output (i.e., higher is better).
Comprehensiveness is calculated as follows:

Comp(f,x, e) = AOPC(f,x, rank(e)) (2)

where rank(·) returns the ordering of the feature
attribution scores e in decreasing order.

Sufficiency perturbs the input features in increasing or-
der, starting from the feature with the lowest score (DeY-
oung et al., 2020). In other words, sufficiency is com-
prehensiveness when flipping the feature ordering r. A

1Our names are mentioned in the PyPI package. We will
include a link in the camera-ready version.

low sufficiency indicates that the lowest ranked features,
according to the feature attributions, are irrelevant to
the model output (i.e., lower is better). Sufficiency is
calculated as follows:

Suff(f,x, e) = AOPC(f,x, rank(−e)) (3)

Notably, the best possible sufficiency and comprehen-
siveness scores correspond to the empirical lower and
upper limits of AOPC scores, respectively. Sufficiency
seeks the feature ordering that produces the lowest pos-
sible AOPC score, whereas comprehensiveness aims
for the ordering that yields the highest score. The best
(lowest) possible sufficiency score is the worst (lowest)
possible comprehensiveness score, and vice versa.

2.1 Models influence AOPC scores
Ideally, sufficiency and comprehensiveness should
only measure the feature attribution’s faithfulness.
However, in this section, we demonstrate that a model’s
reasoning process heavily influences these AOPC
metrics. Specifically, we show with two toy examples
that 1) the more features a model relies on, the worse
the sufficiency and comprehensiveness scores, and 2) a
model’s features interactions impact the best possible
comprehensiveness and sufficiency scores.

The number of features models rely on impact AOPC
scores. We demonstrate this with two linear models
f1 and f2 that take four binary features as input x =
(x1, x2, x3, x4) and output a real number:

f1(x) = 0.2x1 + 0.3x2 + 0.1x3 + 0.4x4 (4)

f2(x) = 0.0x1 + 0.1x2 + 0.7x3 + 0.2x4 (5)

The two models use the same architecture, but their
parameter values differ. f2 relies heavily on feature
x3, while f1 relies on more features. Different training
strategies, data, or randomness can cause such model
differences (Hase et al., 2021).

Given an input vector x(0) = (1, 1, 1, 1), both mod-
els output 1.0. Since the models are linear, we can calcu-
late the ground truth feature attributions by multiplying
each input feature by its parameter. For x(0), this re-
sults in (0.2, 0.3, 0.1, 0.4) for f1, and (0.0, 0.1, 0.7, 0.2)
for f2. As these attributions represent the ground truths,
one might expect the models to yield equal sufficiency
and comprehensiveness scores. However, this is not
the case. As shown in Table 1, f1 achieves drastically
worse sufficiency and comprehensiveness scores than f2
simply because it relies on more features. While relying
on fewer features could be a desirable model property, it
should be measured using entropy instead of influencing
the faithfulness evaluation (Bhatt et al., 2020).
Feature interactions in the models’ reasoning process
impact the AOPC scores. We demonstrate this with
two nonlinear models, f3 and f4, which use logical oper-
ations between the input features to generate the output
score. f3 uses OR-gates, while f4 uses AND-gates

f3(x) = 0.7(x1 ∨ x2) + 0.3(x3 ∨ x4) (6)
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Table 1: The comprehensiveness and sufficiency scores
calculated given input x(0) and the ground truth feature
attribution scores for f1 and f2. Despite the feature
attribution method being perfectly faithful, the compre-
hensiveness and sufficiency scores are better for model
f2 because it relies on fewer input features than f1.

Model Comprehensiveness ↑ Sufficiency ↓
f1 0.75 0.50
f2 0.90 0.35

f4(x) = 0.7(x1 ∧ x2) + 0.3(x3 ∧ x4) (7)

We cannot calculate the feature attribution scores for
these models by multiplying the input features with
their parameters as they are nonlinear. Instead, we use
an exhaustive search algorithm to find the best com-
prehensiveness and sufficiency scores. This algorithm
evaluates all possible feature orderings r and identifies
the highest and lowest scores.

In Table 2, we show the best sufficiency and com-
prehensiveness scores for f3 and f4 when given the
input x(0). f3 achieves the best sufficiency score, while
f4 achieves the best comprehensiveness score. This
indicates that the type of feature interactions a model
uses impacts the best possible comprehensiveness and
sufficiency scores.

We expect these findings to extend to deep neural net-
works as well. In these more complex models, various
components, such as activation functions and attention
mechanisms, induce feature interactions (Tsang et al.,
2020).

Table 2: The best possible comprehensiveness and suffi-
ciency scores for the two models f3 and f4 when given
input x(0). The models’ feature interaction differences
cause different scores.

Model Comprehensiveness ↑ Sufficiency ↓
f3 0.6 0.325
f4 0.925 0.65

Recall that the best possible sufficiency and compre-
hensiveness scores correspond to the lower and upper
limits of AOPC scores. Because we have shown that the
four models’ best possible sufficiency and comprehen-
siveness scores vary for the same input, we have also
shown that they have different lower and upper limits
of AOPC scores. Consequently, we have demonstrated
that given input x(0), feature attribution methods can
only achieve AOPC scores between 0.5–0.75 for f1,
0.35–0.9 for f2, 0.325–0.6 for f3, and 0.65–0.925 for
f4, which makes the models’ scores uncomparable. In
the next section, we will propose methods for normaliz-
ing AOPC so that all models have the same lower and
upper limits, making them comparable.

3 Normalized AOPC
Our previous analysis revealed that AOPC limits can
vary between models for the same input, even for linear
models. To address this issue, we propose Normalized
AOPC (NAOPC), which ensures comparable AOPC
scores across different models and inputs. NAOPC ap-
plies min-max normalization to the AOPC scores using
their lower and upper limits:

NAOPC(f,x, r) =
AOPC(f,x, r)− AOPC↑(f,x)
AOPC↑(f,x)− AOPC↓(f,x)

(8)
where AOPC↓(f,x) and AOPC↑(f,x) represent the
lower and upper AOPC limits for a specific model f and
input x. We propose two variants of NAOPC, differing
in how they identify these limits:

NAOPCexact uses an exhaustive search to find the ex-
act lower and upper AOPC limits. It calculates the
AOPC score for all N ! possible feature orderings r,
where N is the number of features. While precise, its
O(N !) time complexity makes it prohibitively slow for
high-dimensional inputs.

NAOPCbeam efficiently approximates NAOPCexact us-
ing beam search to find the lower and upper AOPC
limits (See Algorithm 1). Inspired by Zhou and Shah
(2022), it runs twice: once for each limit. In each run,
it maintains a beam of the top B feature orderings, ex-
panding them incrementally until all features are or-
dered. This approach limits the search space, achieving
a time complexity of O(B ·N2), where B is the beam
size and N is the number of features. Consequently,
NAOPCbeam is significantly faster than NAOPCexact for
high-dimensional inputs while still providing a good
approximation of the AOPC limits.

To select an appropriate beam size for NAOPC, we
check if the upper and lower AOPC limits remain stable
as we increase the beam size (Freitag and Al-Onaizan,
2017). We start with a beam size of 1 and double the
beam size until the limits do not change more than a
pre-selected threshold two iterations in a row.

4 Experimental Setup
Our experiments address three key questions: 1) Do
AOPC lower and upper limits vary across deep neural
network models? 2) How does NAOPC affect model
faithfulness rankings? and 3) How accurately does
NAOPCbeam approximate NAOPCexact? This section out-
lines the experimental designs, including the datasets,
models, and feature attribution methods employed to
investigate these questions.

Data Our experiments use five datasets: Yelp, IMDB,
SST2, AG-News, and SNLI. Yelp, IMDB, and SST2
are sentiment classification datasets, which we chose
for their prevalence in cross-model AOPC score com-
parison studies (Hase et al., 2021; Bhalla et al., 2023;
Li et al., 2023). AG-News is a text classification dataset,
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Algorithm 1 NAOPCbeam

Require: Model f , input x, beam size B, ordering r
Ensure: Normalized AOPC score

1: function FINDLIMIT(f , x, B, mode)
2: fullOutput← f(x)
3: beam← {[]}
4: scores← {() : 0}
5: for i = 1 to N do
6: cand← {}
7: for ord ∈ beam do
8: for j ∈ {1, . . . , N} \ ord do
9: new_ord← ord + [j]

10: x̂← MaskTokens(x, new_ord)
11: score← fullOutput− f(x̂)
12: score← score + scores[ord]
13: scores[new_ord]← score
14: cand← cand ∪ {(new_ord, score)}
15: end for
16: end for
17: if mode = “upper” then
18: beam← TopB(cand, B,max)
19: else
20: beam← TopB(cand, B,min)
21: end if
22: end for
23: AOPC← beam[0]

N
24: return AOPC
25: end function
26: upper_limit← FindLimit(f,x, B, “upper”)
27: lower_limit← FindLimit(f,x, B, “lower”)
28: aopc_score← AOPC(f,x, r) ▷ r is the original

feature attribution ordering
29: return aopc_score−lower_limit

upper_limit−lower_limit

and SNLI is a natural language inference dataset (Zhang
et al., 2015; MacCartney and Manning, 2008). We in-
clude these two datasets to evaluate whether our findings
generalize to other tasks than sentiment classification.

To address varying computational requirements
and ensure comprehensive analysis, we create short-
sequence and long-sequence subsets from each dataset’s
test set2. Table 3 summarizes the key statistics of our
subsets. The short subsets, Yelpshort and SST2short, con-
tain examples with up to 12 features, enabling computa-
tionally intensive evaluations such as NAOPCexact.

We create five long-sequence subsets: SST2long,
Yelplong, IMDBlong, AG-Newslong, and SNLIlong. We
randomly sample 1000 examples from each dataset ex-
cept SST2 (SST2 only comprises 400 examples). We
choose this sample size to balance computational feasi-
bility with the need for a statistically significant sample
size. We exclude examples exceeding 512 tokens due
to model constraints.

2For SST2, we use the validation set as our test set, as its
test set is unlabeled.

Table 3: Summary statistics of the dataset subsets used
in this study. The number of words per example is
presented as the median and IQR.

# examples # words per example

Yelpshort 339 5 (4–7)
SST2short 66 8 (7–9)

Yelplong 1000 52 (30–92)
SST2long 400 19 (13–26)
IMDBlong 1000 132 (98–173)

AG-Newslong 1000 37 (31–42)
SNLIlong 1000 20 (16–26)

Models Our experiments use twelve language models,
all publicly available on Huggingface (Morris et al.,
2020). These models differ in two key aspects:

1. Architecture: Each model is based on either
BERT (Devlin et al., 2019), DistilBERT (Sanh
et al., 2020), RoBERTa (Liu et al., 2019), or GPT-
2 (Radford et al., 2019) allowing us to examine how
architectural differences influence AOPC scores
and their interpretation.

2. Training Dataset: Each model was trained
on either Yelp, IMDB, SST2, AG-News, or
SNLI (Zhang et al., 2015; Maas et al., 2011; Socher
et al., 2013), enabling investigation of how dataset-
specific characteristics affect AOPC score limits.
The lowercase suffix in each model’s name (e.g.,
BERTYelp) indicates the dataset on which it was
trained.

We provide an overview of the models in Table 5.

Feature Attribution Methods We implement eight
feature attribution methods: two transformer-specific,
three gradient-based, and three perturbation-based (see
Lyu et al. (2024) for an extensive overview of fea-
ture attribution methods). The transformer-specific
methods, Attention (Jain and Wallace, 2019) and De-
compX (Modarressi et al., 2023) are specifically de-
signed for transformer architectures. Attention calcu-
lates the feature attribution scores only using the atten-
tion weights in the final layer, while DecompX uses all
the components and layers in the transformer architec-
ture. The gradient-based methods, InputXGrad (Sun-
dararajan et al., 2017), Integrated Gradients (Sundarara-
jan et al., 2017), and Deeplift (Shrikumar et al., 2017),
use backpropagation to quantify the influence of input
features on output. The perturbation-based methods,
LIME (Ribeiro et al., 2016), KernelSHAP (Lundberg
and Lee, 2017), and Occlusion@1 (Ribeiro et al., 2016),
assess the impact on output confidence by occluding
input features.

In this paper, we use a perturbation function that
replaces tokens with the mask token to calculate IG,
Deeplift, LIME, KernelSHAP, and Occlusion@1. We
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Figure 1: Distributions of lower and upper AOPC limits across models on the Yelpshort test set computed with
exhaustive search. The substantially different distributions demonstrate that AOPC bounds are model-specific,
making both cross-model comparisons and interpretation of individual scores unreliable without normalization.

also use this perturbation function to calculate the AOPC
scores as recommended by Hase et al. (2021). We used
the end-of-sequence token for GPT-2 because it does
not support mask tokens nor pad tokens.

Experiment 1: Do the upper and lower limits vary
between models? We aim to show that the lower and
upper limits of the AOPC scores vary between the mod-
els and inputs. We do so by calculating each model’s
upper and lower AOPC limits using an exhaustive search
for each example in Yelpshort (same search strategy used
by NAOPCexact). We then compare the models’ lower
and upper limit distributions to demonstrate their differ-
ences.

Experiment 2: How does normalization impact
AOPC scores? In this experiment, we aim to answer
the following two questions:

1. Can NAOPC alter the faithfulness ranking of mod-
els for a given feature attribution method?

2. Can NAOPC alter the faithfulness ranking of fea-
ture attribution methods for a given model?

To answer these questions, we compare the suffi-
ciency and comprehensiveness scores using AOPC
and NAOPC. Specifically, we compare AOPC with
NAOPCbeam for all possible pairs of models and fea-
ture attribution methods on the long-sequence datasets.
For the short-sequence datasets, we compare AOPC
with both NAOPCexact and NAOPCbeam. We analyze the
results to find whether NAOPC changes the ranking of
which models and feature attribution methods are the
most faithful. We use a beam size of 5 when calculating
NAOPCbeam on all datasets except for AG-News, which
required a beam size of 1000.

Experiment 3: Can we approximate NAOPCexact
reliably and efficiently? We aim to demonstrate
that NAOPCbeam is a fast and reliable approxima-
tion of NAOPCexact. With a sufficiently large beam
size, NAOPCbeam is equivalent to NAOPCexact. The

question is if NAOPCbeam can accurately approximate
NAOPCexact with small beam sizes.

First, we demonstrate that the faithfulness rankings
produced with NAOPCbeam and NAOPCexact are similar
on Yelpshort and SST2short with a beam size of 5. We
cannot make this comparison on the five long-sequence
dataset subsets because calculating NAOPCexact on high-
dimensional inputs is prohibitively slow. Instead, we
calculate NAOPCbeam with increasing beam sizes and
analyze the change of the lower and upper AOPC limits.
If the AOPC limits stabilize at small beam sizes, it
indicates that NAOPCbeam can efficiently and reliably
approximate NAOPCexact.

5 Results
5.1 The lower and upper limits vary between

models
Figure 1 shows significant variations in the distributions
of lower and upper AOPC score limits across different
models on the Yelpshort test set. Each model has a dis-
tribution rather than a single value because individual
inputs also influence the AOPC limits for each model.
The clear differences in these distributions across mod-
els highlight that direct comparisons of AOPC scores
between models can be misleading without proper nor-
malization. Moreover, these variations make interpret-
ing AOPC scores in absolute terms challenging. Figure
1 depicts an upper limit of around 0.3 for RoBERTaIMDB
and 0.8 for BERTYelp, therefore an AOPC score of 0.25
might be considered high for RoBERTaIMDB but low for
BERTYelp. These distribution shifts across models em-
phasize the need for NAOPC. Figure 5 depicts a similar
pattern on SST2short.

5.2 NAOPC alters faithfulness rankings
Normalization through NAOPC substantially altered
models’ faithfulness rankings while preserving the rel-
ative performance of feature attribution methods. This
effect is clearly visible in Figure 2, where lines of differ-
ent colors (representing different models) frequently in-
tersect between AOPC and NAOPCbeam rankings across
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Figure 2: Effect of normalization on faithfulness rankings across models and attribution methods. For both
comprehensiveness (higher is better) and sufficiency (lower is better), NAOPCbeam changes cross-model rankings
but preserves within-model rankings.

Yelplong, IMDBlong, and SST2long datasets. In contrast,
lines of the same color (representing feature attribution
methods within a model) rarely cross, indicating stabil-
ity in their relative rankings. We see a similar trend on
AG-Newslong and SNLIlong in Figure 7. The impact of
normalization appears even more pronounced in shorter
text datasets, as shown in Figure 3 for Yelpshort.

These visual observations are quantitatively sup-
ported by the Kendall rank correlation coefficients pre-
sented in Table 4 (Kendall, 1948). Correlations between
AOPC and NAOPCbeam scores are notably lower for the
model comparisons than for the feature attribution com-
parisons. This pattern is consistent across all datasets.

5.3 NAOPCbeam accurately approximates
NAOPCexact

Our analysis demonstrates that NAOPCbeam accurately
approximates NAOPCexact across various dataset di-
mensions. For low-dimensional input examples, Fig-
ure 3 shows nearly identical rankings produced by
NAOPCbeam and NAOPCexact on Yelpshort. Figure 6 de-
picts similar results for SST2short.

For RoBERTaYelp and BERTYelp on Yelplong, Figure 4
shows that a beam size of 5 is sufficient for stable
results. However, the same figure demonstrates that
BERTAG-News requires a substantially larger beam size.

Figures 8 to 10 confirm this pattern across all datasets,
with AG-News being the only dataset requiring a larger
beam size. We explore the reasons for this behavior and
its implications in the next section.

6 Discussion
6.1 Does NAOPC require too much compute to be

practically useful?
NAOPC is computationally more intensive than
AOPC. Computing AOPC requires N forward passes,
NAOPCbeam requires BN2 forward passes, and
NAOPCexact requires N ! forward passes, where N is
the number of input features, and B is the beam size.
While the exponential complexity of NAOPCexact makes
it impractical for most inputs, our experiments demon-
strate that NAOPCbeam is feasible in many scenarios.

The computational cost of NAOPCbeam depends on
beam size, input length, and model inference time.
With a small beam size (B=5), which suffices for many
datasets, computing NAOPCbeam for BERT (110 million
parameters) on a hundred-feature example took around
one minute on an A100 GPU. While requirements grow
quadratically with input length, we found this manage-
able for several hundred tokens: processing 512-token
inputs (BERT’s maximum) took approximately 10 min-
utes per example, averaged over 100 examples. Since
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Figure 3: Faithfulness ranking of model and feature attribution method pairs when evaluated on Yelpshort using
AOPC, NAOPCexact, and NAOPCbeam. The figure shows that normalization changes the cross-model comparisons
and that NAOPCbeam accurately approximates NAOPCexact

Table 4: Kendall rank correlation coefficients between
AOPC and NAOPCbeam rankings across datasets. Coeffi-
cients are calculated separately for model rankings and
feature attribution method (FA) rankings, showing that
normalization impacts the model rankings more than
the feature attribution method rankings.

Dataset Group Comp Suff

Yelplong
Model 0.87 0.47
FA 0.97 0.97

SST-2long
Model 0.89 0.43
FA 0.90 0.92

IMDBlong
Model 0.93 0.72
FA 0.99 0.97

SNLIlong
Model 0.71 1.0
FA 0.81 0.86

AG-Newslong
Model 0.25 0.67
FA 0.90 0.83

NAOPCbeam scales linearly with model size, larger mod-
els remain feasible to evaluate. Importantly, normaliza-
tion factors only need to be computed once per model-
dataset pair and can be reused, significantly reducing
overall cost.

However, some datasets require larger beam sizes for
accurate normalization. For instance, models trained on
AG-News required a beam size of 1,000 to achieve sta-
ble results. This requirement does not appear to relate to
input length, as AG-News comprises shorter sequences
than Yelp and SST2. We speculate this might be due
to feature interactions where multiple features must be
removed together to measure their true impact on the
model’s prediction. In such cases, a larger beam size
is necessary to ensure these feature combinations are
explored during the search. However, further research

is needed to verify this hypothesis and understand what
drives beam size requirements.

To help researchers assess requirements upfront, we
provide tools for estimating necessary beam sizes for
specific model-dataset combinations, allowing evalua-
tion of cross-model comparison feasibility given com-
putational constraints.

6.2 Should one always normalize the AOPC
scores?

Given that computing, NAOPC requires additional com-
putational resources, a natural question arises: when is
this extra computation necessary? Our findings demon-
strate that normalization is essential in two scenarios:
comparing AOPC scores across different models and
interpreting individual scores in relation to a model’s
theoretical limits.

For cross-model comparisons, normalization is neces-
sary even when comparing models with identical archi-
tectures trained on the same dataset but with different
random seeds, as even slight variations in model param-
eters can lead to different AOPC limits. Without normal-
ization, a score of 0.25 could be near-optimal for one
model but mediocre for another, making cross-model
comparisons misleading. Therefore, we recommend
normalizing AOPC scores in all cases except when only
comparing the relative ranking of feature attribution
methods within a single model, where the absolute
values of the scores are not relevant. The fundamen-
tal importance of normalization for valid cross-model
comparisons calls into question previous research find-
ings. Studies that compared unnormalized AOPC scores
across different models may need to be re-evaluated.

6.3 Why are some models more faithful than
others?

By normalizing AOPC scores, we can now meaning-
fully compare explanation faithfulness across models
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and interpret how far they are from optimal performance.
Our analysis reveals substantial differences in faithful-
ness even after normalization. For instance, on Yelplong,
all explanation methods achieved substantially higher
comprehensiveness for BERTIMDB than RoBERTaIMDB.
For DecompX, the best method, the difference was 0.75
and 0.44. Why do the explanation methods produce less
faithful explanations for RoBERTaIMDB?

We hypothesize these variations stem from differ-
ences in how closely models align with the feature
attribution methods’ assumptions. Most feature attri-
bution methods rely on simplified assumptions about
models’ inner mechanisms, such as feature indepen-
dence (Bilodeau et al., 2024). RoBERTaIMDB consis-
tently achieves low comprehensiveness scores across
all tested attribution methods, even after normalization,
suggesting a fundamental mismatch between how this
model processes information and current attribution
methods’ assumptions. However, further research exam-
ining the models’ internal mechanisms would be needed
to verify this hypothesis.

6.4 Why does normalization have a bigger impact
on shorter text datasets?

Figure 2 and Figure 3 show that normalization changes
the AOPC results more on shorter sequences than on
longer. What causes this difference? We hypothesize
that models typically rely on a small subset of features
when processing long inputs. When measuring AOPC
(comprehensiveness and sufficiency), we remove to-
kens based on their importance sequentially. In long
texts, most removals have no effect since they were
irrelevant in the model’s decision. When averaging
across all removal steps, these zero-effect steps dilute
the AOPC scores—bringing sufficiency scores closer
to zero and comprehensiveness scores closer to one—
making the impact of normalization less visible since
both the raw scores and their theoretical limits converge.
If there are fewer unused tokens in shorter texts, then
fewer zero-effect steps are included in the average. This
makes normalization effects more pronounced. If we
could somehow consider only the tokens impacting the
model’s decision, we hypothesize that the normalization
effect would be similar on short and long inputs.

7 Related Work

Researchers have raised several criticisms against AOPC
and other perturbation-based faithfulness metrics, which
fall into three main categories. First, perturbing inputs
can create out-of-distribution examples, potentially con-
flating distribution shifts with feature importance (An-
cona et al., 2017; Hooker et al., 2019; Hase et al., 2021).
Second, perturbations often yield inputs that appear
non-sensical to humans, though this should not affect
faithfulness evaluation (Feng et al., 2018; Bastings and
Filippova, 2020; Jacovi and Goldberg, 2020). Third,
these metrics can be viewed as attribution methods them-
selves, potentially measuring similarity between meth-
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Figure 4: Lower and upper AOPC limits calcu-
lated with NAOPCbeam using different beam sizes.
RoBERTaYelp and BERTYelp (a,b) stabilize at B = 5,
while BERTAG-News (c) requires B = 1000 for stable
results.

ods rather than true faithfulness (Zhou and Shah, 2022;
Ju et al., 2023).

Our work focuses on sufficiency and comprehensive-
ness due to their widespread use in cross-model com-
parisons (Bhalla et al., 2023; Li et al., 2023; Chrysos-
tomou and Aletras, 2022; Liu et al., 2022). However,
researchers have also developed alternative faithfulness
metrics to address the potential limitations of AOPC.
Decision-flip metrics track when model predictions
change as features are removed (Chrysostomou and
Aletras, 2022). Monotonicity and the faitfulness cor-
relation metric (CORR) measure whether higher attri-
bution scores correspond to larger changes in model
output (Arya et al., 2019). Sensitivity-n tests if the sum
of attribution scores equals the total change in model out-
put when removing the features (Ancona et al., 2017).

While these alternatives were designed to provide dif-
ferent perspectives on faithfulness, we suspect that they
share some of AOPC’s fundamental limitations. Like
AOPC, decision-flip metrics may produce misleading
results when comparing models that rely on different
numbers of features because fewer features need to be
removed to significantly change the model’s prediction,
resulting in artificially better scores. Similarly, we ex-
pect metrics like sensitivity-n, monotonicity, and CORR
to struggle with feature interactions because they as-
sume attribution scores can be assigned independently.
This assumption likely breaks down when feature impor-
tance depends on feature interactions rather than inde-
pendent features. For example, consider a model using
OR operations (x1 ∨ x2). Sensitivity-n requires attribu-
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tion scores to sum to the total change when both features
are removed (e1 + e2 = 1) but also requires each score
to equal its individual impact (e1 = e2 = 0), creating an
impossible mathematical constraint. These limitations
suggest a broader need to develop faithfulness metrics
that can account for model-specific characteristics and
complex feature interactions.

8 Conclusion

Our study exposes critical weaknesses in current faith-
fulness evaluation practices for feature attribution meth-
ods. Using simple toy models, we demonstrated
how models’ inner mechanisms significantly influence
AOPC’s lower and upper limits, potentially leading to
misleading cross-model comparisons. Moreover, with-
out knowing these limits, it becomes difficult to interpret
AOPC scores effectively. These findings challenge the
validity of conclusions drawn from cross-model AOPC
score comparisons in many influential studies. To ad-
dress these issues, we introduced NAOPC, a normal-
ized measure that mitigates model-dependent bias while
preserving the ability to compare feature attribution
methods within individual models. NAOPC enables
accurate evaluation of feature attribution faithfulness
across different models, advancing the field towards
more robust explanation assessment. While NAOPC
addresses these fundamental issues, its computational
complexity suggests the need for future research into
faster interpretable faithfulness metrics that maintain
cross-model comparability.

Limitations

Our findings indicate that normalization did not alter
the faithfulness ranking of feature attribution methods
within a model. This suggests that normalization is
unnecessary when comparing AOPC scores produced
using one model and one dataset. Nonetheless, our eval-
uation did not cover a sufficient variety of models, tasks,
and datasets to rule out the necessity of normalization
for certain within-model comparisons. We leave the
evaluation of more models, datasets, and tasks to future
work.

In addition, as discussed in Section 6.1, with its
O(BN2) time complexity, NAOPCbeam will be pro-
hibitively slow for certain datasets, especially for those
requiring large beam sizes. Most of our datasets and
models required small beam sizes (B=5), but AG-
Newslong required a large beam size (B=1000). However,
it is better with a slow evaluation than an inaccurate
one. Moreover, we provide software tools to help re-
searchers determine the necessary beam size for their
specific use case. This allows researchers to assess the
computational requirements beforehand and plan their
experiments accordingly, deciding whether cross-model
comparisons are feasible for their dataset and computa-
tional budget.

Ethical considerations
The ability to explain deep neural network decisions
is crucial for ensuring their responsible deployment,
particularly in high-stakes domains such as healthcare,
legal systems, and financial services. When a diagnos-
tic model suggests treatment or when a neural network
influences a parole decision, stakeholders must be able
to scrutinize and validate the reasoning behind these
recommendations. However, explanations are only valu-
able if they faithfully represent the model’s decision-
making process.

Our work reveals that current methods for evaluating
explanation faithfulness can be misleading, potentially
giving false confidence in explanation methods that do
not accurately reflect model behavior. This is particu-
larly concerning because unreliable explanations might
lead to unwarranted trust in neural networks or mask
potential biases in their decision-making processes. For
instance, Kayser et al. (2024) demonstrated that incor-
rect explanations can persuade phycisians into an incor-
rect diagnosis. By providing a more reliable evaluation
framework through NAOPC, we contribute to the de-
velopment of more trustworthy explanation methods,
ultimately supporting the responsible deployment of
deep neural networks in society.
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A Model Details and Access
In Table 5, we present an overview of the six models
used in our study. For each model, we provide details
on the architecture, training data, and a direct link to
the corresponding pre-trained weights available on Hug-
gingFace.

B Analysis of AOPC Score Limit
Variability Across Models on the SST2
Dataset

Figure 5 shows the distributions of lower and upper
AOPC score limits for different models on the SST2short
test set. The presence of distributions rather than sin-
gle values for each model highlights the influence of
individual inputs on AOPC limits. The notable differ-
ences in these distributions across models underscore
the importance of normalization when comparing com-
prehensiveness and sufficiency scores between models.

C NAOPC Comparison on SST2short

This section presents a detailed comparison of
NAOPCbeam and NAOPCexact on the SST2short dataset.
Figure 6 illustrates the rankings produced by both meth-
ods when evaluating the comprehensiveness and suffi-
ciency of the dataset. The figure shows almost identical
rankings produced by NAOPCbeam and NAOPCexact.

D NAOPCbeam results on AG-Newslong
and SNLIlong

Figure 7 depicts the difference between AOPC and
NAOPCbeam on AG-Newslong and SNLIlong. We see sim-
ilar results as in Figure 2. However, on SNLIlong, LIME
and IG seem to be better than DecompX. Also, GPT-2’s
sufficiency and comprehensiveness scores are similar.
We speculate this is because we perturb by replacing
with the end-of-sequence token (GPT-2 does not support
mask tokens nor pad tokens). End-of-sequence tokens
in the middle of a sentence may quickly make the in-
put out-of-distribution, therefore changing the model’s
output, even when perturbing unimportant features.

E Impact of Beam Size on NAOPCbeam
Across Various Datasets

As illustrated in Figure 8, the relationship between in-
creasing beam size and NAOPCbeam is examined across
various models and datasets. The findings indicate that
while an initial expansion of beam size results in vari-
ability in the upper and lower bounds, further increases
beyond a beam size of 5 lead to a convergence trend.
This pattern is consistently observed across different
models and datasets, particularly evident in the results
for RoBERTaYelp and BERTYelp on the Yelplong dataset.

F Licences
SNLI uses a cc-by-sa-4.0 license. AG-News does not
have a specific license, but the authors state that it should

only be used for non-commercial purposes3. SST-2 and
IMDB are both created by StanfordNLP, who do not
specify a license, but writes that you must cite their pa-
pers if using the dataset45. We used Yelp from Hugging-
face6. The original webpage with the Yelp dataset and
License no longer exists. Considering that thousands of
other papers use this dataset, it is most likely okay to
use, but we cannot guarantee it since we could not find
its license. The language models from Huggingface use
an MIT license.

3http://groups.di.unipi.it/~gulli/AG_
corpus_of_news_articles.html

4https://ai.stanford.edu/~amaas/data/
sentiment/

5https://nlp.stanford.edu/sentiment/
6https://huggingface.co/datasets/

fancyzhx/yelp_polarity
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Table 5: Overview of the public models from Hugging Face used in this paper.

Model Architecture (Param) Training data HuggingFace link

BERTYelp BERT (110M) Yelp textattack/bert-base-uncased-yelp-polarity
RoBERTaYelp RoBERTa (110M) Yelp VictorSanh/roberta-base-finetuned-yelp-polarity
BERTIMDB BERT (110M) IMBD textattack/bert-base-uncased-imdb

RoBERTaIMDB RoBERTa (110M) IMBD textattack/roberta-base-imdb
BERTSST2 BERT (110M) SST2 textattack/bert-base-uncased-SST-2

RoBERTaSST2 RoBERTa(110M) SST2 textattack/roberta-base-SST-2
BERTAG-News BERT (110M) AG-News textattack/bert-base-uncased-ag-news

RoBERTaAG-News RoBERTa (110M) AG-News textattack/roberta-base-ag-news
DistilBERTAG-News DistilBERT (66M) AG-News textattack/distilbert-base-uncased-ag-news

BERTSNLI BERT (110M) SNLI textattack/bert-base-uncased-snli
DistilBERTSNLI DistilBERT (66M) SNLI textattack/distilbert-base-cased-snli

GPT-2SNLI GPT-2 (124M) SNLI varun-v-rao/gpt2-snli-model1

BERTYelp RoBERTaYelp BERTIMDB RoBERTaIMDB BERTSST2 RoBERTaSST2
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Figure 5: Distributions of lower and upper AOPC limits for various models on the SST2short test set. Each
distribution reflects the range of possible AOPC scores for a given model, influenced by individual input examples.
The inter-model variations demonstrate the need for normalization when comparing AOPC scores across different
models.
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Figure 6: The difference in rankings when normalizing on the SST-2 dataset
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Figure 7: Faithfulness ranking of model and feature attribution method pairs when evaluated using AOPC and
NAOPCbeam on AG-News and SNLI.
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Figure 8: Boxplots showing the distribution of NAOPCbeam values across different beam sizes for various models
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Figure 9: Boxplots showing the distribution of NAOPCbeam values across different beam sizes for SNLI.
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Figure 10: Boxplots showing the distribution of NAOPCbeam values across different beam sizes for AG-News.
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