
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 17257–17277
July 27 - August 1, 2025 ©2025 Association for Computational Linguistics

Enhancing Open-Domain Task-Solving Capability of LLMs
via Autonomous Tool Integration from GitHub

Bohan Lyu1*, Xin Cong1*†, Heyang Yu1, Pan Yang1, Cheng Qian1,3, Zihe Wang1,
Yujia Qin1, Yining Ye1, Yaxi Lu1, Chen Qian1,4, Zhong Zhang1, Yukun Yan1,

Yankai Lin2, Zhiyuan Liu1†, Maosong Sun1

1 Department of Computer Science and Technology, Tsinghua University
2 Gaoling School of Artificial Intelligence, Renmin University of China

3 University of Illinois Urbana-Champaign
4 School of Artificial Intelligence, Shanghai Jiao Tong University

lvbh22@mails.tsinghua.edu.cn,congxin1995@tsinghua.edu.cn

Abstract

Large Language Models (LLMs) excel in tra-
ditional natural language processing tasks but
struggle with problems that require complex
domain-specific calculations or simulations.
While equipping LLMs with external tools to
build LLM-based agents can enhance their ca-
pabilities, existing approaches lack the flexibil-
ity to address diverse and ever-evolving user
queries in open domains. Currently, there is
also no existing dataset that evaluates LLMs
on open-domain knowledge that requires tools
to solve. To this end, we introduce Open-
Act benchmark to evaluate the open-domain
task-solving capability, which is built on hu-
man expert consultation and repositories in
GitHub. It comprises 339 questions span-
ning 7 diverse domains that need to be solved
with domain-specific methods. In our experi-
ments, even state-of-the-art LLMs and LLM-
based agents demonstrate unsatisfactory suc-
cess rates, underscoring the need for a novel
approach. Furthermore, we present OpenA-
gent, a novel LLM-based agent system that
can tackle evolving queries in open domains
through autonomously integrating specialized
tools from GitHub. OpenAgent employs 1) a hi-
erarchical framework where specialized agents
handle specific tasks and can assign tasks to in-
ferior agents, 2) a bi-level experience learning
mechanism to learn from both humans’ and its
own experiences to tackle tool flaws. Exper-
iments demonstrate its superior effectiveness
and efficiency, which significantly outperforms
baselines. Our data and code are open-source
at https://github.com/OpenBMB/OpenAct.

1 Introduction

Large Language Models (LLMs) have demon-
strated exceptional capabilities through diverse
traditional natural language processing (NLP)

* Equal contribution.
† Corresponding author.

GTSM8K (Cobbe et
al. 2021): John
writes 20 pages a
day. How long will it
take him to write 3
books that are 400
pages each?

AgentBench (Liu et
al. 2023): Looking
for a queen size
bedspread set in
the color redwood,
and price lower
than 70.

Ability limited by the
predefined toolset to
in-domain tasks.

Domain
Knowledge

Benchmarks

Agent
Benchmarks

A Fixed Toolset An Open Toolset

Previous Works Our Work

OpenAct

Case1: Calculate the
UCCSD energy of a
linear H6 molecule
with alternating bond
distances of 0.9 and
1.1 angstroms.

Case2: Help me to
detect the structural
variations in given
gene sequences and
save the structural
variations in
`output_result.vcf`.

Autonomous expand
its toolset and
capacity to tackle
open-domain tasks.

Figure 1: The comparison between our work and previ-
ous studies from both dataset and model perspectives.

indicates that a model is capable of solving tasks
within a benchmark, whereas indicates the opposite.

tasks (OpenAI, 2022, 2023; Team et al., 2023; An-
thropic, 2024). However, LLMs still struggle with
specialized tasks that require calculation, simula-
tion, data augmentation, etc (Qin et al., 2024). To
tackle it, researchers equip LLMs with external
tools (e.g., search engines (Nakano et al., 2021; Qin
et al., 2023a), code executors (Qian et al., 2023b;
Cai et al., 2023b), scientific simulators (Liu et al.,
2022; Bran et al., 2023b)) to function as agents that
are capable of solving complex tasks and extend the
capability boundary of LLMs beyond traditional
NLP tasks. Existing LLM-based agents (AutoGPT,
2023; XAgent, 2023; Schick et al., 2023; Parisi
et al., 2022; Patil et al., 2023; Hong et al., 2024; Lyu
et al., 2024) have access to a pre-defined toolset
and can combine their cognitive abilities with the
specialized functionalities of these tools.

However, the effectiveness of current LLM
agents is constrained by the pre-defined toolset.
This paradigm restricts them to addressing in-
domain problems while lacking the generalization
capability to handle diverse open-domain questions,
which is a critical limitation given that real-world

17257

https://github.com/OpenBMB/OpenAct

user queries often require domain-specialized tools.
This contradiction raises our core research problem:
Are LLM agents able to autonomously search
for and adapt new tools for open-domain tasks?

Addressing this challenge requires rethinking ex-
isting evaluation paradigms. Current benchmarks
are constructed based on pre-defined toolsets rather
than real-world demands, creating an artificial per-
formance ceiling that fails to assess models’ ability
to handle tasks requiring external specialized tools.
Real-world tasks often necessitate specialized tools
and domain-specific knowledge that extend beyond
the inherent capabilities of pre-trained language
models and a fixed toolset. Such tasks, like gene
mutation detection, quantum chemistry analysis,
and financial modeling, are typically executed by
domain experts utilizing sophisticated professional
tools and software.

In this context, GitHub emerges as it is the
largest platform that contains implementations of
algorithms and methodologies in open domains that
are employed by experts in their respective fields. If
LLM-based agents could effectively search for, de-
ploy, and utilize relevant repositories from GitHub,
they could autonomously extend their tool set. This
capability would enable LLM agents to dynami-
cally adapt and grow their abilities, significantly
enhancing their versatility and effectiveness in ad-
dressing real-world open-domain tasks.

To this end, we introduce a novel benchmark
OpenAct. Its construction began by identifying
key issues and methodologies across multiple do-
mains. We then collected relevant tools on GitHub
and carefully designed a series of tasks that reflect
domain needs. It comprises 339 queries across 7 di-
verse domains, including finance, chemistry, bioin-
formatics, computer vision, etc. Compared with ex-
isting benchmarks, OpenAct is the first dataset de-
signed to evaluate LLMs on fulfilling open-domain
tasks (see Figure 1). Experimental results show
that both vanilla LLMs and general-purpose LLM
agents perform poorly on OpenAct (see Figure 2).
The key challenges are: (1) Lack of Quality As-
surance: GitHub repositories often contain flaws,
bugs, or incomplete/misleading documentation, (2)
Alignment Gap: GitHub tools require adjustments
to fit user needs, (3) Workflow Complexity: The
process involves many diverse tasks, making it hard
for LLMs to stay effective.

To solve these challenges, we introduce Ope-
nAgent, a novel LLM-based agent system that
autonomously extends tools from GitHub. It pos-

Figure 2: Illustration of GPT-4-based OpenAgent per-
forms against baselines on 21 repositories of 7 domains
in OpenAct.

sesses two key features: (1) a hierarchical structure
that dynamically decomposes the whole process
into distinct subtasks (e.g., setting up environments,
reading Issues/PRs), and (2) a bi-level experience
learning mechanism to accumulate both in-task
and cross-task experiences. Generally, OpenAgent
starts with searching suitable repositories, then set-
ting up the necessary environment, and utilizing
the repository to fulfill user queries.

We conduct extensive experiments on Open-
Act to demonstrate the effectiveness of OpenA-
gent compared to state-of-the-art LLMs and LLM
agents. Ablation studies prove the necessity of both
of the above two key features.

In summary, our contributions are threefold:

• We introduce OpenAct, a comprehensive
dataset comprising 339 queries across 7 di-
verse domains, which is specifically designed
to evaluate the capabilities of open-domain
task-solving capability of LLMs.

• We propose OpenAgent, a novel LLM agent
system that autonomously extends its tool set
by integrating repositories from GitHub. It
employs a hierarchical structure and possesses
a bi-level experience learning mechanism.

• Experiments demonstrate the effectiveness
of OpenAgent against baselines on OpenAct,
and extensive experiments also validate our
proposed two key features in OpenAgent.

17258

Benchmark Domain Num. Task Source Task Types Code Use Tool Use Open End Repository-Level
Minedojo (Fan et al., 2022) - Internet Action ✓ ✓ ✓ ✗

OSWorld (Xie et al., 2024) - Internet Action ✗ ✓ ✓ ✗

ToolBench (Qin et al., 2023b) - Tool QA ✗ ✓ ✗ ✗

MetaTool (Huang et al., 2024b) - Tool QA ✗ ✓ ✗ ✗

AgentBench (Liu et al., 2023) - Tool QA ✓ ✓ ✗ ✗

GTSM8K (Cobbe et al., 2021) 1 Domain QA ✗ ✓ ✗ ✗

ScienceQA (Lu et al., 2022) 3 Domain QA ✓ ✗ ✗ ✗

SciEval (Sun et al., 2023) 3 Domain QA ✗ ✗ ✗ ✗

SciBench (Wang et al., 2024b) 3 Domain QA ✓ ✗ ✗ ✗

SWE-Bench (Jimenez et al., 2024) 1 GitHub Coding ✓ ✓ ✗ ✓(12)
ML-Bench (Tang et al., 2024) 1 GitHub Coding ✗ ✓ ✗ ✓(14)
SUPER (Bogin et al., 2024) - GitHub QA ✓ ✓ ✗ ✓(45)

OpenAct (Ours) 7 Domain and Github QA and Coding ✓ ✓ ✓ ✓(21)

Table 1: Comparison of benchmarks for evaluating LLMs on domain knowledge and tool utilization. The “Domain
Num.” column indicates the number of domains evaluated by each benchmark, with “-” denoting benchmarks that
do not assess domain knowledge. “Open End” denotes the presence of an open-ended environment for exploration
within the benchmark. “Repository-Level” specifies whether the tasks in the benchmark are scoped at the repository
level, with the number in the bracket denoting the number of repositories relevant to the benchmark.

2 Related Work

LLM-based Agents. Large Language Mod-
els (LLMs) (OpenAI, 2022, 2023; Touvron et al.,
2023a,b) have demonstrated remarkable profi-
ciency across traditional natural language process-
ing (NLP) tasks. LLM-based agents (AutoGPT,
2023; Wu et al., 2023; Li et al., 2023; XAgent,
2023; Wang et al., 2024a; Sumers et al., 2023) are
LLMs equipped with external tools that can ac-
complish tasks requiring complex calculations or
real-time actions (Yao et al., 2022a; Cheng et al.,
2024; Park et al., 2023; Ye et al., 2023; Ma et al.,
2024; Cai et al., 2023a; Wang et al.; Bogin et al.,
2024; Kumar et al., 2023; Liu et al.; Bran et al.,
2023a; Huang et al., 2024a; Qi et al., 2024; Kraus
et al., 2023; Koldunov and Jung, 2024; Thulke
et al., 2024; Vaghefi et al., 2023). However, ex-
isting research typically supports a limited set of
tools, which cannot meet the diverse demands of
humans. Recently, there has been a focus on tool
creation (Cai et al., 2023b; Qian et al., 2023b; Wang
et al., 2023; Qian et al., 2023a) for agents to dy-
namically create tools, which are typically file-level
code scripts. The functionalities of these created
tools remain simple and limited, insufficient to
meet real-world open-domain user queries.

Benchmarking LLMs on Domain Knowledge,
Tool Use and Open-Domain Tasks. Different
benchmarks evaluate LLMs across diverse do-
mains and capabilities. Domain knowledge bench-
marks initially focused on mathematics (Cobbe
et al., 2021; Hendrycks et al., 2021). Subsequent
works(Lu et al., 2022; Sun et al., 2023) broadened
the scope to encompass three domains: mathemat-

ics, physics, and chemistry. (Wang et al., 2024b)
further advanced this approach by incorporating
code interpreter functionality while continuing to
focus on these three domains. These benchmarks
are typically derived from established knowledge
sources such as textbooks and curated problem
repositories, which do not fully capture real-world
complexities or cutting-edge questions in rapidly
evolving fields.

In parallel, tool use datasets (Qin et al., 2023b;
Huang et al., 2024b; Liu et al., 2023) are designed
based on the functionalities of pre-defined tools and
APIs. Recent works have begun to bridge the gap
between domain knowledge and practical applica-
tion by focusing on coding tasks derived from real-
world GitHub repositories. However, their scope
remains limited to specific domains (Jimenez et al.,
2024; Tang et al., 2024; Bogin et al., 2024).

Lastly, while open-domain exploration is crucial
for real-world tasks, existing research has primar-
ily studied it in action-oriented environments (Fan
et al., 2022; Wang et al., 2023; Xie et al., 2024).

In conclusion, existing benchmarks remain lim-
ited in their scope, domains, tool use, or coding
tasks in isolation. They cannot be utilized to eval-
uate the open-domain task-solving capability of
LLMs. Table 1 lists the main differences between
our benchmark and previous works.

3 OpenAct

3.1 Dataset Construction
We present OpenAct, a high-quality benchmark
spanning 7 professional domains that bridge open-
domain knowledge with executable implementa-
tion resources. As is shown in Figure 3, the dataset

17259

Specialist
Consultation

Candidate
Repositories

Target
Repositories

Extensive
Search

Human
Filtering

Candidate
Problems

LLM
Proposing

Human
Testing/

Filtering/
Enhancement

Question
-Answer
Pairs

Figure 3: The construction pipeline of OpenAct.

construction process involves the following stages:
Domain-Specific Problem Curation. We col-

laborated with domain experts to identify frontier
challenges within their respective fields that are
amenable to computational solutions. This pro-
cess yielded 7-10 candidate problems per domain
through iterative refinement with expert feedback.

Repository Selection and Filtering. We con-
ducted systematic searches on GitHub to identify
repositories implementing solutions for the curated
problems. From an initial pool of 10 repositories
per domain, we applied rigorous filtering criteria:
(1) Removal of repositories with duplicate function-
ality or implementation approaches; (2) Verifica-
tion of active maintenance status within the past 6
months; (3) Assessment of documentation quality.
This yielded 21 repositories across seven domains.

Query Generation and Validation. For each
repository, we employed GPT-4 to generate 30
candidate queries of varying complexity levels.
Through manual validation, we retained 5-10 exe-
cutable queries per repository, ensuring: (1) Solv-
ability using the target repository; (2) Coverage
of different functionality aspects; (3) Absence of
ambiguous phrasing. This process resulted in 113
validated base queries.

Query Augmentation. To investigate the capa-
bility of LLMs to search for the proper reposito-
ries, we designed three prompt conditions for each
base query: (1) Explicit Hint: Direct repository
specification with GitHub URL; (2) Implicit Hint:
Domain/keyword-based hints about the repository
without specific identification; (3) No Hint: Base
query without any supplemental information about
the repository.

This query augmentation approach yields 339
instruction-answer pairs with expert-validated
ground truth solutions. Table 2 summarizes the
dataset statistics across domains. Appendix A con-
tains more detailed statistics of OpenAct.

3.2 Data Categorization
We categorized the collected repositories based on
the difficulty of the Setup and Apply phases.

For the Setup difficulty, we divided the col-
lected repositories into 3 classes: (1)Setup-Easy:

The README provides a detailed and correct
setup tutorial, with which the environment can be
set up fluently. (2)Setup-Medium: The README
misses some details or contains slight flaws, which
require the agent to solve based on error reports.
(3)Setup-Hard: The README provides an incor-
rect tutorial because of human error or insufficient
maintenance, which needs agents to find relevant
Issues/PRs to solve.

For the Apply difficulty, we also divided the
repositories into 3 classes: (1)Apply-Easy: Sim-
ply requires running some commands given by the
README. (2)Apply-Medium: Requires writing
configuration files or downloading extra resources,
like data and trained models. (3)Apply-Hard: Re-
quires modifying the source code of the repositories
or referring to relevant Issues/PRs for help.

3.3 Operation Environment
To ensure experiment reproducibility and minimize
dependency on local environments, we designed
a comprehensive interface that allows LLMs to
interact seamlessly with a Docker container. In our
work, all interactions with the LLMs are executed
within a controlled Docker environment.

3.4 Evaluation Metrics
We designed 2 evaluation metrics for tasks in Ope-
nAct: Completeness and Pass Rate.

Pass Rate The Pass Rate is defined as the pro-
portion of queries that successfully meet the prede-
fined criteria relative to the total number of queries.
This evaluation is conducted exclusively based on
the comparison of the final answer with the expert-
generated "golden answers" by GPT-4. A query is

Domain Num. of Repo. Num. of Query
Finance 2 45
Chemistry 4 66
Bioinformatics 2 30
Computer Vision 6 90
Network Analysis 2 30
Security Analysis 2 30
Visualization 3 48
Total 21 339

Table 2: Statistics of our constructed OpenAct.

17260

deemed to pass if there is a concordance between
these two answers.

Completeness To precisely evaluate the perfor-
mance of OpenAgent and its baselines, we fur-
ther designed a metric to evaluate the whole execu-
tion process with a GPT-4-based evaluation agent,
scoring from 0 to 10. The evaluation covers three
phases: Search, Setup, and Apply. GPT-4 assigns
scores of [0, 3] for Search, Setup, and Apply, and
[0, 1] for the final answer. These scores are subse-
quently aggregated and normalized to a 10-point
scale to derive the overall completeness score.

We sampled 120 queries and results for both
GPT-4 evaluation and human annotation, achiev-
ing an 87.5% absolute match, indicating the high
reliability of our metrics. The details of this check
are depicted in Appendix B.

4 OpenAgent

Our preliminary experimental results show that
both vanilla LLMs and general-purpose LLM
agents perform poorly on OpenAct. Even when we
provide the LLM with relevant GitHub interfaces
and a well-constructed environment to create a cus-
tom LLM agent, the model’s performance remains
inferior. We attribute it to several challenges in
employing GitHub repositories to fulfill a task: (1)
Lack of Quality Assurance: GitHub repositories
often lack standardization and may contain flaws
or bugs, and their documentation may also be in-
complete, misleading, or contain errors. (2) Align-
ment Gap between Tools and Queries: Tools
on GitHub are not specifically designed for given
queries, so they need adjustments to suit the users’
needs. (3) Workflow Complexity: The whole
workflow involves dozens of different tasks. The
significant differences between these tasks can eas-
ily distract the LLMs from completing the whole
process effectively.

To address this, we propose OpenAgent, a LLM
agent for open-domain task-solving with 2 novel
features: (1) Hierarchical Agent System, where
models delegate subtasks to reduce workflow bur-
den (Section 4.1), (2) Bi-Level Experience Learn-
ing (Section 4.2), which learns from Issues/PRs for
in-task knowledge and accumulates cross-task ex-
perience. The first layer of the Hierarchical Agent
System consists of three main components, and we
introduce them in Section 4.3.

/ /

Agent Call Action Call

Action EnvironmentAgent

𝑄!"#

𝐴$
! 𝑂$

! 𝐴%!𝑄!

𝐴&!'# 𝐴&!'#𝑂&!'#

Agent Human Agent Human

𝐴(!"#

… …

…

… …
Query Submit

Figure 4: Illustration of the Hierarchical Agent System,
where blocks mean memory list and the same back-
ground color denotes the same information.

4.1 Hierarchical Agent System

A Hierarchical Agent System breaks down com-
plex tasks into smaller sub-tasks, where each agent
receives a query from a higher-level entity and re-
sponds by either taking actions to interact with
the environment or delegating tasks to sub-agents.
In other words, the actions of agents in a hierar-
chical agent system fall into two categories: (1)
Action Calls: Direct interactions with the environ-
ment, such as executing commands, checking files,
or submitting results. (2) Agent Calls: Assigning
sub-tasks to specialized agents, such as setting up
environments or modifying files.

Each agent processes its query based on previous
actions and observations. If it delegates to a sub-
agent, the sub-agent continues the process with a
refined query. If the agent acts, it either completes
the task (reporting the result back) or interacts with
the environment and records feedback.

This recursive process continues until all tasks
are broken down into simple, executable actions.
By structuring tasks hierarchically, the system effi-
ciently manages complexity, allowing each agent to
focus on its specific role while collectively achiev-
ing intelligent behavior.

Formally, we use Agentnk to denote the k-th
agent at level n of the hierarchy, An

i denotes the
i-th action, which can be tool-using or designat-
ing inferior agents, by Agentn. When Agentnk re-
ceives query Qn from its superior agent or human,
the problem solving process can be formulated as
An

i = Agentnk(Q
n, An

j , O
n
j , . . . , A

n
1 , O

n
1), where

On
j and An

j are respectively the observations and
preceding actions that lead up to An

i . If An
i is call-

ing a sub-agent, the query Qn+1 for Agentn+1
k is

17261

check_file_or_directory
(Path:/qlib/examples/benchmarks/LightGBM/workflow_config_lightgbm_Alpha158_csi500.yaml)
Content of this file: ……
modify_file_content
(Path:/qlib/examples/benchmarks/LightGBM/workflow_config_lightgbm_Alpha158_csi500.yaml,
Modify Query: Change the start_time to '2008-01-01', the end_time to '2019-12-31', the
fit_start_time to '2008-01-01', and the fit_end_time to '2018-12-31'.)

Before executing the command, I
need to check the content of the

yaml configuration file to ensure it
is set up correctly for the given

task.

According to the readme file, the
yaml configuration file needs to be

modified to match the task's
requirements. The start_time,
end_time, fit_start_time, and

fit_end_time need to be adjusted
to reflect the time range from
2008 to 2018 for training and

2018 to 2019 for testing.

I am a fintech researcher aiming to utilize data from the A market (csi500) spanning from
2008 to 2018 to train an LightGBM model, with the goal of forecasting market conditions
from 2018 to 2019, and get its backtest result. You should not only give me the back test
result, but also the transaction details in csv format of how to get such result.

The content of the current file contains
the fields that need to be modified

according to the request. The
'start_time', 'end_time', 'fit_start_time',
and 'fit_end_time' are all present and

can be changed to satisfy the
requirement.

modify_entire_file
(Query: Change the 'start_time' value to '2008-01-01', the
'end_time' value to '2019-12-31', the 'fit_start_time' value to
'2008-01-01', and the 'fit_end_time' value to '2018-12-31'.)
-+ end_time: 2020-08-01 2019-12-31
-+ fit_end_time: 2014-12-31 2018-12-31

I need to find out how to get the
transaction details in csv format, so
I should check the issues to see if
anyone has solved this problem or

mentioned it before.

Read_Issues_to-Solve_problem
(Query: How can I get transaction details in csv format from the analysis results?)

According to the issue conversation, you
can extract the transaction details by

modifying the record field of your
configuration yaml file. Add the

following configuration: …

……
A: Hi all, I am just curious that if there exists a function
already that could yield something like two lists which include
current trading decisions for stocks.
B: I add … to … and it works.

modify_file_content
(Query: In … section, add the following executor configuration: …)

As per the issue conversation, to get
transaction details, I need to add
the executor configuration to the

'port_analysis_config' section of the
yaml file. The new executor

configuration will enable Qlib to
generate and log detailed

transaction records.
modify_entire_file (Query: In … section, append …)
port_analysis_config: &port_analysis_config
+ executor:
+ class: SimulatorExecutor
+ module_path: qlib.backtest.executor
……

>> cd qlib/examples && qrun
benchmarks/LightGBM/workflow_config_lightgbm_Alpha158.yaml
'The following are analysis results of benchmark return(1day).’

risk
mean 0.000477
std 0.012295
annualized_return 0.113561

Now that the configuration file has
been updated to meet the query's

requirements, I'll execute the 'qrun'
command with the configuration file
to train the LightGBM model and

get the backtest result.

>> cd qlib/examples && qrun
benchmarks/LightGBM/workflow_config_lightgbm_Alpha158.yaml
[2018-01-02 00:00:00]: sell SH601375, price 1.11, amount 2317104.654033043, deal_amount 2317104.654033043,
factor 0.17716467380523682, value 2569786.93, cash 6101362.80.
[2018-01-02 00:00:00]: sell SH601155, price 1.32, amount 2128948.000840169, deal_amount 2128948.000840169,
factor 0.0456189289689064, value 2818432.00, cash 8915567.15. ……

Now that the executor
configuration has been added to get
transaction details, I'll re-run the
'qrun' command with the updated
configuration to get the backtest

result and transaction details.

long_text_handle

The output is saved in
`/output.txt`, you should …

The LightGBM model was trained
using the A market data from 2008

to 2018 to forecast market
conditions for 2018 to 2019. The
program has generated a series of
transaction details, such as buy and

sell records for different stocks
with their prices, amounts, and deal

amounts indicated.

transaction_details = process_output_lines(output)
if transaction_details:
df = pd.DataFrame(......)

df.to_csv(......)

>> python /data_handler.pyThe handled data is saced in
`/result/transaction.csv`.

download_directory_from_container
(container path: `/result/transaction.csv`, local path : `.`)
`/result/transaction.csv` has been successfully downloaded to local at `.`.

Now that the executor
configuration has been added to get
transaction details, I'll re-run the
'qrun' command with the updated
configuration to get the backtest

result and transaction details.

Back test report Transaction Deatails

According to the issue conversation, you
can extract the transaction details by

modifying the record field of your
configuration yaml file. Add the

following configuration: …

Figure 5: An example of the tool application of Qlib, where the agent called 4 sub-agents to fulfill the given task.

derived from An
i . When Agentn+1

k finishes its task,
it will report the result An+1

q to Agentnk . Figure 4
demonstrated this hierarchical recursive process.

4.2 Bi-Level Experience Learning

We developed and implemented an experience
learning feature for OpenAgent, encompassing
both in-task and cross-task learning paradigms.

Due to the non-standardization of GitHub reposi-
tories, some lack perfect READMEs and necessary
setup information. Additionally, flaws in the source
code pose challenges. In such cases, learning from
human experiences becomes an efficient approach.

Building upon the hierarchical framework, we

introduce a specialized agent, the Issue/PR Agent
to handle the experience learning process. This
agent is called when a higher-level agent encoun-
ters a problem that might benefit from past expe-
riences or community solutions. It is responsible
for searching, evaluating, and returning relevant
information from GitHub Issues and Pull Requests.

Apart from in-task knowledge learned from com-
munity experiences and solutions, OpenAgent can
also learn from its own past experiences to improve
decision-making over time. It updates its knowl-
edge by summarizing past actions and outcomes,
refining its approach for future tasks.

After completing a task, the agent stores its exe-

17262

Methods Finance Chemistry Bioinformatics Computer Vision Network Analysis Security Analysis Visualization Avg.

GPT-3.5-Turbo Based

Vanilla 0.0 36.4 0.0 0.0 0.0 0.0 31.3 11.5
ReAct 2.2 3.0 3.3 6.7 0.0 0.0 0.0 2.4

ReAct + Sum. 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
OpenAgent (Ours) 8.9 24.2 23.3 8.9 10.0 33.3 20.1 17.1

GPT-4 Based

Vanilla 0.0 68.2 0.0 0.0 0.0 0.0 43.8 19.5
XAgent 0.0 40.9 0.0 0.0 40.0 0.0 81.3 23.0
ReAct 51.1 19.7 17.8 22.2 10.4 30.0 23.3 24.6

ReAct + Sum. 31.1 19.7 26.7 22.9 14.8 33.3 26.7 24.4
OpenAgent (Ours) 68.9 34.9 86.7 45.6 16.7 43.3 35.4 47.3

Table 3: Pass Rates (%) of different methods across various domains in the OpenAct dataset. Results are shown for
both GPT-3.5-Turbo and GPT-4-based implementations. “Avg.” represents the average pass rate across all domains.

cution environment in a Docker image, allowing for
easy reuse when similar queries arise. To enhance
retrieval, it abstracts the repository’s functionality
and summarizes key experiences, ensuring efficient
adaptation to new challenges.

4.3 Main Phases

Repository Search. In the search phase, the
agent identifies suitable repositories to fulfill the
user’s query. It first checks previously stored repos-
itories to determine if any match the query. If a suit-
able repository is found, its environment is loaded
directly, bypassing the setup phase. If no stored
repository is available, the agent searches GitHub
for relevant options. If the user specifies a repos-
itory, the agent retrieves it by name; otherwise, it
searches by topic to find relevant repositories. Once
candidate repositories are gathered, the agent eval-
uates their suitability by analyzing their README
files and determining whether they can effectively
address the user’s request.

Environment Setup. Once a suitable repository
is identified, the agent sets up its execution en-
vironment. This begins with cloning the reposi-
tory and installing dependencies as outlined in its
README file. However, since many repositories
lack standardized documentation or contain flaws,
the agent may need to search GitHub Issues and
Pull Requests to resolve problems. If necessary, it
modifies the repository’s source files to fix bugs.
To ensure security and isolation, all operations are
conducted within a Docker environment.

Tool Application. After configuring the environ-
ment, the agent proceeds to apply the repository
to solve the user query. If the repository is well-
structured and provides a clear entry point, such as
a command-line interface, the agent can use it di-

rectly. For non-standardized repositories with lim-
ited documentation, the agent relies on human ex-
periences extracted from Issues and PRs. If the exe-
cution produces extensive output, the agent writes a
Python script to extract key information efficiently.
Figure 5 shows an example of OpenAgent fulfill-
ing a task by interacting with the environment and
assigning tasks to lower agents.

An elaborated introduction to these phases is in
Appendix D. Note that although this process fol-
lows a hierarchical structure, the agent dynamically
decides which phase, subtask, or action to execute
based on the specific query. This flexibility ensures
adaptability to diverse and complex tasks.

5 Experiment

5.1 Experiment Settings
Baselines. To validate the effectiveness of our
OpenAgent, we design the following baselines: (1)
LLM: Vanilla LLMs without external tools (2) Re-
Act (Yao et al., 2022b): ReAct is a widely-used
LLM-based agent task-solving technique (Auto-
GPT, 2023; Wu et al., 2023). In our settings, Re-
Act is equipped with the same actions as our Ope-
nAgent to extend tools from GitHub for fair com-
parison. (3) ReAct+Summary: Due to the com-
plexity of the tool extension, the whole process
tends to involve lengthy context, surpassing the
context window of LLMs. Hence, we design this
ReAct variant which will summarize the context
when the length of the context reaches the threshold.
(4) XAgent (XAgent, 2023): XAgent is a power-
ful general-purpose LLM-based agent, which is
equipped with numerous external tools and can
reason, plan, code, and reflect.

Implementation Details. We implement Ope-
nAgent and baseline methods except XA-

17263

Method Pass Rate

OpenAgent w/ PRs&Issues 47.3
OpenAgent w/o PRs&Issues 40.3

Table 4: Results of ablating in-task experience learning.

gent based on the gpt-4-0125-preview and
gpt-3.5-turbo-16k respectively with a 0.7 tem-
perature, under a 0-shot setting. There is no GPT-
3.5-based XAgent because its reasoning and plan-
ning ability can’t support XAgent’s complex work-
flows. Specially, the following main experiments
reflect the success rate on the first encounter with
the problem, incorporating PR/Issue but without
using experience summary (cross-task experience
learning) to enhance the strategy.

5.2 Overall Results

Table 3 reports the Pass Rates of each method. We
get several observations: (1) While Vanilla LLMs
and XAgent demonstrate good performance in fa-
miliar domains like Chemistry and Visualization,
it is hard for them to answer questions in unac-
quainted domains like Bioinformatics, Finance, etc.
(2) ReAct achieves a lower Pass Rate than the
agency structure in both settings, which demon-
strates that simply adapting the ReAct framework
cannot achieve good results. (3) ReAct+Summary
achieves lower performance than ReAct because
the summarization will lose critical information.
Thus, it is infeasible to avoid the over-length prob-
lem by simply summarizing the long context. (4)
All GPT-4-based methods outperform their GPT-
3.5 counterparts significantly, showing that Ope-
nAct is a challenging dataset that requires power-
ful LLMs to achieve. (5) OpenAgent significantly
outperforms all baselines in both settings, demon-
strating the effectiveness of the hierarchical agent
system.

5.3 Abalation Study

To evaluate the effectiveness of the bi-level experi-
ence learning mechanism, we conduct an ablation
study. For in-task experience learning, we re-
move the PRs/Issues actions to re-run the main
experiments. Experimental results are shown in Ta-
ble 4, and we observe that without PRs/Issues, the
pass rate decreases to 40.3%. It not only verifies
the non-standardization problem of GitHub reposi-
tories but also proves that learning from PRs/Issues
can overcome this challenge.

Method w/o SelfExp w/ SelfExp

GPT-3.5 17.6 58.8
GPT-4 47.0 82.3

Table 5: Experimental results of employing cross-task
experience learning.

For cross-task experience learning, we select
2 repositories: Qlib and AiZynthFinder, which
both belong to the Hard Apply category. We run
their 51 queries and utilize the GPT-4-based Ope-
nAgent to store the repositories with summarized
practice experience. We then re-run these queries
but OpenAgent would retrieve the stored repos-
itories and utilize the summarized experience to
accomplish the queries. As shown in Table 5, lever-
aging the experience summarized by GPT-4-based
OpenAgent, GPT-3.5-based OpenAgent can even
achieve a higher pass rate than GPT-4-based Ope-
nAgent without summarized experience. Simul-
taneously, GPT-4-based OpenAgent can achieve
a higher Pass Rate even though it leverages the
summarized experience by itself.

The above studies prove the effectiveness of bi-
level experience learning.

5.4 Impact of Different Phases
We delve deeper into each phase from a thorough
understanding of OpenAct and OpenAgent.

Search. As introduced in Section 3.1, we design
three types of prompts to denote the target repos-
itories. We calculate the Seach Success Rate of
each type of prompt. If OpenAgent can get the
correct repositories of a query, it is denoted as
search success. Then, we calculate the proportion
of the search success queries over all queries of
each type of prompt. The experimental results are
listed in Table 6. We can observe that the Explicit
Repo Prompt achieves the highest Search Success
Rate (nearly 100%) as the prompt has specified
repositories. Implicit Repo Prompt achieves 66.0%
Search Success Rate, showing that OpenAgent can
infer the relevant GitHub Topics based on the do-
mains or careers. Finally, if no repository prompt is
provided, the search success rate decreases signifi-
cantly. It demonstrates that OpenAgent falls short
of inferring GitHub Topics based on the query only.
It needs further research in the future to improve
the performance in this situation.

Setup & Apply. Table 7 shows the Pass Rates
for the repositories categorized based on Setup and

17264

Prompt Search Success Rate

Explicit Repo Prompt 96.0
Implicit Repo Prompt 66.0
No Repo Prompt 32.0

Table 6: Analysis for the search difficulty.

Apply difficulties, as described in Section 3.2.
For Setup difficulty, both Medium and Hard

repositories achieve similar Pass Rates. It shows
that OpenAgent’s human experience learning capa-
bility helps overcome imperfect READMEs.

For Apply difficulty, the Pass Rate for Hard
decreases by over 12% compared to Easy and
Medium. This demonstrates that while OpenA-
gent can effectively handle repositories with easy
and medium Apply difficulty, it requires further
study to conquer those with hard Apply difficulty.

5.5 Error Analysis
Although our method can autonomously extend
tools from GitHub, we still observe some failures.

Repository Select Failure. A key challenge for
OpenAgent is selecting the appropriate repository
from GitHub to address user queries. We noticed
instances where OpenAgent selected repositories
that were not capable of resolving the given queries.
This issue was particularly prevalent when the user
query did not specify a particular repository. Then
the agent’s decision-making process relies heavily
on the README files of repositories. However,
these files sometimes lack clear and explicit de-
scriptions of the repository’s functionality, or even
overclaim it, and lead to misjudgments by the agent.
For example, in the Finance scenario, OpenAgent
erroneously selected the vnpy repository, which is
suited for quantitative trading but not for research
applications like exploring specific models.

Environment Configuration Failure. In cases
like Bringing-Old-Photos-Back-to-Life, we
observed failures in the environment setup. While
an official Dockerfile was present, it was outdated
and non-functional without enough maintenance.
The correct Dockerfile was located within a Pull
Request, which the agent should ideally access to
find the accurate setup instructions. However, Ope-
nAgent sometimes opted to modify the existing,
incorrect Dockerfile rather than seeking the cor-
rect version in PRs. Due to unresolved bugs in the
Dockerfile, the agent was unable to correctly set up
the environment, leading to failure.

Setup/Apply Difficulty Easy Medium Hard Total

Easy 72.3 69.0 56.2 64.4
Medium 60.7 70.0 41.5 57.7
Hard 50.0 67.0 51.5 57.4

Total 64.1 68.7 51.4 60.7

Table 7: Analysis for the setup & apply difficulty.

Execution Configuration Failure. The reposi-
tory Qlib presented unique challenges, as it re-
quires writing a specific configuration file for exe-
cution. This file encompasses a range of parame-
ters, including dataset settings, model hyperparam-
eters, and backtesting parameters. Incorrect set-
tings in any of these parameters can lead to results
that do not meet the user queries’ requirements. In
practice, we observed that OpenAgent may incor-
rectly set the time range for data or specify erro-
neous file paths, resulting in execution failure.

General Failure Cases of Agents. In some do-
mains like visualization, vanilla models outper-
formed agentic LLMs, including XAgent and Ope-
nAgent. Case studies revealed that forcing tool
use for questions that LLMs can already answer
correctly may lead to inferior performance due
to incorrect interactions. Recent studies have
widely observed similar failure cases in LLM
Agent Systems (Yu et al., 2024; Cemri et al., 2025).
In domains unfamiliar to LLMs (e.g., quantita-
tive finance), OpenAgent significantly outperforms
vanilla LLMs and general-purpose LLM Agents.
It indicates our methods possess great potential in
open-domain problem-solving.

We also conduct a Case Study in Appendix E to
further show the detailed process of OpenAgent.

6 Conclusion

In this paper, we introduced OpenAct, a compre-
hensive benchmark designed to evaluate the open-
domain task-solving capabilities of LLMs. Our
experiments highlighted the limitations of existing
LLM-based agents and demonstrated the effective-
ness of our proposed OpenAgent system. OpenA-
gent’s hierarchical framework and bi-level experi-
ence learning mechanism significantly enhance its
capabilities, allowing them to tackle complex tasks
across diverse domains. Our work paves the way
for more robust and flexible LLM-based agents,
capable of evolving alongside rapidly changing
technological landscapes.

17265

7 Limitation

Our study has explored the tool extension capabil-
ity of LLM-based agents, yet there exist certain
limitations and risks. Firstly, our method relies
on the utilization of Pull Requests (PRs) and Is-
sues from GitHub as primary sources of human
experience. However, it is important to recognize
that similar functionalities may not be universally
available across other repository hosting platforms.
Consequently, the generalizability of our findings
is confined to the GitHub ecosystem, posing a limi-
tation to the applicability of our approach beyond
this specific context. Secondly, the dynamic nature
of GitHub repositories, characterized by frequent
updates, bug fixes, and the evolution of repository
functionalities, introduces a layer of volatility. This
fluidity can significantly impact the reproducibility
of our experimental results over time, as the state of
the repositories at the time of study may not reflect
their future states. Thirdly, our method necessitates
the use of Docker for the execution of repository
content. This dependency on Docker implies sub-
stantial consumption of server resources, includ-
ing CPU, memory, and storage. Such resource-
intensive requirements may pose practical limita-
tions on the scalability and feasibility of deploying
OpenAgent, particularly in environments with con-
strained computational resources.

Acknowledgements

This work was supported in part by the National
Natural Science Foundation of China (Grant No.
62376273), the Postdoctoral Fellowship Program
of CPSF (Grant No. GZB20230343 and Grant
No. GZC20240831) and the China Postdoctoral
Science Foundation (Grant No. 2023M741945).

We thank all collaborators who made their
contributions to this project, including Bohan
Lyu (lvbh22@mails.tsinghua.edu.cn), Xin
Cong (xin.cong@outlook.com), Heyang
Yu (hy-yu22@mails.tsinghua.edu.cn),
Pan Yang (im.panyang@gmail.com), Cheng
Qian (chengq9@illinois.edu), Zihe Wang
(wangzihe18@mails.ucas.ac.cn), Yujia
Qin (yujiaqin16@gmail.com), Yining Ye
(yeyn23@mails.tsinghua.edu.cn), Chen
Qian (qianc@sjtu.edu.cn), Zhong Zhang
(zhongzhang@tsinghua.edu.cn), Yukun
Yan (yanyk.thu@gmail.com), Yankai Lin
(yankailin@ruc.edu.cn), Zhiyuan Liu
(liuzy@tsinghua.edu.cn), and Maosong

Sun (sms@tsinghua.edu.cn). For further in-
formation or collaboration, feel free to contact
them.

References
Anthropic. 2024. The claude 3 model family: Opus,

sonnet, haiku. https://www-cdn.anthropic.com/
de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/
Model_Card_Claude_3.pdf. Accessed: 2025-01-
30.

AutoGPT. 2023. Autogpt.

Ben Bogin, Kejuan Yang, Shashank Gupta, Kyle
Richardson, Erin Bransom, Peter Clark, Ashish Sab-
harwal, and Tushar Khot. 2024. Super: Evaluating
agents on setting up and executing tasks from re-
search repositories.

A. M. Bran, S. Cox, O. Schilter, C. Baldassari, A. D.
White, and P. Schwaller. 2023a. Chemcrow: Aug-
menting large-language models with chemistry tools.
arXiv preprint arXiv:2304.05376.

Andres M Bran, Sam Cox, Oliver Schilter, Carlo Baldas-
sari, Andrew D White, and Philippe Schwaller. 2023b.
Chemcrow: Augmenting large-language models with
chemistry tools.

T. Cai, X. Wang, T. Ma, X. Chen, and D. Zhou.
2023a. Large language models as tool makers. arXiv
preprint arXiv:2305.17126.

Tianle Cai, Xuezhi Wang, Tengyu Ma, Xinyun Chen,
and Denny Zhou. 2023b. Large language models as
tool makers. arXiv preprint arXiv:2305.17126.

Mert Cemri, Melissa Z Pan, Shuyi Yang, Lakshya A
Agrawal, Bhavya Chopra, Rishabh Tiwari, Kurt
Keutzer, Aditya Parameswaran, Dan Klein, Kannan
Ramchandran, et al. 2025. Why do multi-agent llm
systems fail? arXiv preprint arXiv:2503.13657.

K. Cheng, Q. Sun, Y. Chu, F. Xu, L. YanTao, J. Zhang,
and Z. Wu. 2024. SeeClick: Harnessing GUI ground-
ing for advanced visual GUI agents. In Proceedings
of the 62nd Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 9313–9332, Bangkok, Thailand. Association
for Computational Linguistics.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, Christopher Hesse, and John Schulman.
2021. Training verifiers to solve math word prob-
lems.

Linxi Fan, Guanzhi Wang, Yunfan Jiang, Ajay Man-
dlekar, Yuncong Yang, Haoyi Zhu, Andrew Tang,
De-An Huang, Yuke Zhu, and Anima Anandkumar.
2022. Minedojo: Building open-ended embodied
agents with internet-scale knowledge.

17266

mailto:lvbh22@mails.tsinghua.edu.cn
mailto:xin.cong@outlook.com
mailto:hy-yu22@mails.tsinghua.edu.cn
mailto:im.panyang@gmail.com
mailto:chengq9@illinois.edu
mailto:wangzihe18@mails.ucas.ac.cn
mailto:yujiaqin16@gmail.com
mailto:yeyn23@mails.tsinghua.edu.cn
mailto:qianc@sjtu.edu.cn
mailto:zhongzhang@tsinghua.edu.cn
mailto:yanyk.thu@gmail.com
mailto:yankailin@ruc.edu.cn
mailto:liuzy@tsinghua.edu.cn
mailto:sms@tsinghua.edu.cn
https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf
https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf
https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf
https://github.com/Significant-Gravitas/AutoGPT
http://arxiv.org/abs/2409.07440
http://arxiv.org/abs/2409.07440
http://arxiv.org/abs/2409.07440
http://arxiv.org/abs/2304.05376
http://arxiv.org/abs/2304.05376
https://aclanthology.org/2024.acl-long.505
https://aclanthology.org/2024.acl-long.505
http://arxiv.org/abs/2110.14168
http://arxiv.org/abs/2110.14168
http://arxiv.org/abs/2206.08853
http://arxiv.org/abs/2206.08853

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul
Arora, Steven Basart, Eric Tang, Dawn Song, and
Jacob Steinhardt. 2021. Measuring mathematical
problem solving with the math dataset.

Sirui Hong, Mingchen Zhuge, Jiaqi Chen, Xiawu Zheng,
Yuheng Cheng, Ceyao Zhang, Jinlin Wang, Zili
Wang, Steven Ka Shing Yau, Zijuan Lin, Liyang
Zhou, Chenyu Ran, Lingfeng Xiao, Chenglin Wu,
and Jürgen Schmidhuber. 2024. Metagpt: Meta pro-
gramming for a multi-agent collaborative framework.

K. Huang, Y. Qu, H. Cousins, W. A. Johnson, D. Yin,
M. Shah, D. Zhou, R. Altman, M. Wang, and L. Cong.
2024a. Crispr-gpt: An llm agent for automated de-
sign of gene-editing experiments. arXiv preprint
arXiv:2404.18021.

Yue Huang, Jiawen Shi, Yuan Li, Chenrui Fan, Siyuan
Wu, Qihui Zhang, Yixin Liu, Pan Zhou, Yao Wan,
Neil Zhenqiang Gong, and Lichao Sun. 2024b. Meta-
tool benchmark for large language models: Deciding
whether to use tools and which to use.

Carlos E Jimenez, John Yang, Alexander Wettig,
Shunyu Yao, Kexin Pei, Ofir Press, and Karthik R
Narasimhan. 2024. SWE-bench: Can language mod-
els resolve real-world github issues? In The Twelfth
International Conference on Learning Representa-
tions.

N. Koldunov and T. Jung. 2024. Local climate services
for all, courtesy of large language models. Commu-
nications Earth & Environment, 5(1):13.

M. Kraus, J. Bingler, M. Leippold, T. Schimanski, C. C.
Senni, D. Stammbach, S. Vaghefi, and N. Webersinke.
2023. Enhancing large language models with climate
resources. Technical report, Swiss Finance Institute.

V. V. Kumar, L. Gleyzer, A. Kahana, K. Shukla, and
G. E. Karniadakis. 2023. Mycrunchgpt: A chatgpt
assisted framework for scientific machine learning.
Journal of Machine Learning for Modeling and Com-
puting.

Guohao Li, Hasan Abed Al Kader Hammoud, Hani
Itani, Dmitrii Khizbullin, and Bernard Ghanem. 2023.
Camel: Communicative agents for "mind" explo-
ration of large scale language model society.

R. Liu, J. Wei, S. S. Gu, T. Wu, S. Vosoughi, C. Cui,
D. Zhou, and A. M. Dai. Mind’s eye: Grounded
language model reasoning through simulation. In
The Eleventh International Conference on Learning
Representations.

Ruibo Liu, Jason Wei, Shixiang Shane Gu, Te-Yen Wu,
Soroush Vosoughi, Claire Cui, Denny Zhou, and An-
drew M. Dai. 2022. Mind’s eye: Grounded language
model reasoning through simulation.

Xiao Liu, Hao Yu, Hanchen Zhang, Yifan Xu, Xuanyu
Lei, Hanyu Lai, Yu Gu, Hangliang Ding, Kaiwen
Men, Kejuan Yang, Shudan Zhang, Xiang Deng, Ao-
han Zeng, Zhengxiao Du, Chenhui Zhang, Sheng

Shen, Tianjun Zhang, Yu Su, Huan Sun, Minlie
Huang, Yuxiao Dong, and Jie Tang. 2023. Agent-
bench: Evaluating llms as agents.

Pan Lu, Swaroop Mishra, Tony Xia, Liang Qiu, Kai-
Wei Chang, Song-Chun Zhu, Oyvind Tafjord, Peter
Clark, and Ashwin Kalyan. 2022. Learn to explain:
Multimodal reasoning via thought chains for science
question answering.

Bohan Lyu, Yadi Cao, Duncan Watson-Parris, Leon
Bergen, Taylor Berg-Kirkpatrick, and Rose Yu. 2024.
Adapting while learning: Grounding llms for scien-
tific problems with intelligent tool usage adaptation.
arXiv preprint arXiv:2411.00412.

P. Ma, T. Wang, M. Guo, Z. Sun, J. B. Tenenbaum,
D. Rus, C. Gan, and W. Matusik. 2024. Llm and
simulation as bilevel optimizers: A new paradigm
to advance physical scientific discovery. In Interna-
tional Conference on Machine Learning. PMLR.

Reiichiro Nakano, Jacob Hilton, Suchir Balaji, Jeff Wu,
Long Ouyang, Christina Kim, Christopher Hesse,
Shantanu Jain, Vineet Kosaraju, William Saunders,
et al. 2021. Webgpt: Browser-assisted question-
answering with human feedback. ArXiv preprint,
abs/2112.09332.

OpenAI. 2022. OpenAI: Introducing ChatGPT.

OpenAI. 2023. Gpt-4 technical report.

Aaron Parisi, Yao Zhao, and Noah Fiedel. 2022. Talm:
Tool augmented language models. arXiv preprint
arXiv:2205.12255.

Joon Sung Park, Joseph C O’Brien, Carrie J Cai, Mered-
ith Ringel Morris, Percy Liang, and Michael S
Bernstein. 2023. Generative agents: Interactive
simulacra of human behavior. arXiv preprint
arXiv:2304.03442.

Shishir G Patil, Tianjun Zhang, Xin Wang, and
Joseph E Gonzalez. 2023. Gorilla: Large language
model connected with massive apis. arXiv preprint
arXiv:2305.15334.

J. Qi, Z. Jia, M. Liu, W. Zhan, J. Zhang, X. Wen, J. Gan,
J. Chen, Q. Liu, M. D. Ma, B. Li, H. Wang, A. Kulka-
rni, M. Chen, D. Zhou, L. Li, W. Wang, and L. Huang.
2024. Metascientist: A human-ai synergistic frame-
work for automated mechanical metamaterial design.

Chen Qian, Xin Cong, Cheng Yang, Weize Chen,
Yusheng Su, Juyuan Xu, Zhiyuan Liu, and Maosong
Sun. 2023a. Communicative agents for software de-
velopment. arXiv preprint arXiv:2307.07924.

Cheng Qian, Chi Han, Yi R Fung, Yujia Qin, Zhiyuan
Liu, and Heng Ji. 2023b. Creator: Disentan-
gling abstract and concrete reasonings of large lan-
guage models through tool creation. arXiv preprint
arXiv:2305.14318.

17267

http://arxiv.org/abs/2103.03874
http://arxiv.org/abs/2103.03874
http://arxiv.org/abs/2308.00352
http://arxiv.org/abs/2308.00352
http://arxiv.org/abs/2310.03128
http://arxiv.org/abs/2310.03128
http://arxiv.org/abs/2310.03128
https://openreview.net/forum?id=VTF8yNQM66
https://openreview.net/forum?id=VTF8yNQM66
http://arxiv.org/abs/2303.17760
http://arxiv.org/abs/2303.17760
http://arxiv.org/abs/2210.05359
http://arxiv.org/abs/2210.05359
http://arxiv.org/abs/2308.03688
http://arxiv.org/abs/2308.03688
http://arxiv.org/abs/2209.09513
http://arxiv.org/abs/2209.09513
http://arxiv.org/abs/2209.09513
https://openai.com/blog/chatgpt
http://arxiv.org/abs/2303.08774
http://arxiv.org/abs/2412.16270
http://arxiv.org/abs/2412.16270

Y. Qin, S. Hu, Y. Lin, W. Chen, N. Ding, G. Cui,
Z. Zeng, Y. Huang, C. Xiao, C. Han, Y. R. Fung,
Y. Su, H. Wang, C. Qian, R. Tian, K. Zhu, S. Liang,
X. Shen, B. Xu, Z. Zhang, Y. Ye, B. Li, Z. Tang, J. Yi,
Y. Zhu, Z. Dai, L. Yan, X. Cong, Y. Lu, W. Zhao,
Y. Huang, J. Yan, X. Han, X. Sun, D. Li, J. Phang,
C. Yang, T. Wu, H. Ji, Z. Liu, and M. Sun. 2024.
Tool learning with foundation models.

Yujia Qin, Zihan Cai, Dian Jin, Lan Yan, Shihao
Liang, Kunlun Zhu, Yankai Lin, Xu Han, Ning Ding,
Huadong Wang, et al. 2023a. Webcpm: Interactive
web search for chinese long-form question answering.
arXiv preprint arXiv:2305.06849.

Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan
Yan, Yaxi Lu, Yankai Lin, Xin Cong, Xiangru Tang,
Bill Qian, et al. 2023b. Toolllm: Facilitating large
language models to master 16000+ real-world apis.
arXiv preprint arXiv:2307.16789.

Timo Schick, Jane Dwivedi-Yu, Roberto Dessì, Roberta
Raileanu, Maria Lomeli, Luke Zettlemoyer, Nicola
Cancedda, and Thomas Scialom. 2023. Toolformer:
Language models can teach themselves to use tools.
ArXiv preprint, abs/2302.04761.

Theodore Sumers, Shunyu Yao, Karthik Narasimhan,
and Thomas L Griffiths. 2023. Cognitive ar-
chitectures for language agents. arXiv preprint
arXiv:2309.02427.

Liangtai Sun, Yang Han, Zihan Zhao, Da Ma, Zhennan
Shen, Baocai Chen, Lu Chen, and Kai Yu. 2023. Sci-
eval: A multi-level large language model evaluation
benchmark for scientific research.

Xiangru Tang, Yuliang Liu, Zefan Cai, Yanjun Shao,
Junjie Lu, Yichi Zhang, Zexuan Deng, Helan Hu,
Kaikai An, Ruijun Huang, Shuzheng Si, Sheng Chen,
Haozhe Zhao, Liang Chen, Yan Wang, Tianyu Liu,
Zhiwei Jiang, Baobao Chang, Yin Fang, Yujia Qin,
Wangchunshu Zhou, Yilun Zhao, Arman Cohan, and
Mark Gerstein. 2024. Ml-bench: Evaluating large
language models and agents for machine learning
tasks on repository-level code.

G. Team, R. Anil, S. Borgeaud, Y. Wu, J. Alayrac, J. Yu,
R. Soricut, J. Schalkwyk, A. M. Dai, A. Hauth, et al.
2023. Gemini: a family of highly capable multi-
modal models. arXiv preprint arXiv:2312.11805.

D. Thulke, Y. Gao, P. Pelser, R. Brune, R. Jalota, F. Fok,
M. Ramos, I. Wyk, A. Nasir, H. Goldstein, et al.
2024. Climategpt: Towards ai synthesizing interdis-
ciplinary research on climate change. arXiv preprint
arXiv:2401.09646.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal
Azhar, et al. 2023a. Llama: Open and effi-
cient foundation language models. arXiv preprint
arXiv:2302.13971.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023b. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

S. Vaghefi, Q. Wang, V. Muccione, J. Ni, M. Kraus,
J. Bingler, T. Schimanski, C. C. Senni, N. We-
bersinke, C. Huggel, and M. Leippold. 2023. Chatcli-
mate: Grounding conversational ai in climate science.
Swiss Finance Institute Research Paper No. 23-88.

Guanzhi Wang, Yuqi Xie, Yunfan Jiang, Ajay Man-
dlekar, Chaowei Xiao, Yuke Zhu, Linxi Fan, and
Anima Anandkumar. 2023. Voyager: An open-ended
embodied agent with large language models. arXiv
preprint arXiv:2305.16291.

Renxi Wang, Xudong Han, Lei Ji, Shu Wang, Timo-
thy Baldwin, and Haonan Li. 2024a. Toolgen: Uni-
fied tool retrieval and calling via generation. arXiv
preprint arXiv:2410.03439.

X. Wang, Y. Chen, L. Yuan, Y. Zhang, Y. Li, H. Peng,
and H. Ji. Executable code actions elicit better llm
agents. In Forty-first International Conference on
Machine Learning.

Xiaoxuan Wang, Ziniu Hu, Pan Lu, Yanqiao Zhu, Jieyu
Zhang, Satyen Subramaniam, Arjun R. Loomba,
Shichang Zhang, Yizhou Sun, and Wei Wang.
2024b. Scibench: Evaluating college-level scientific
problem-solving abilities of large language models.

Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu,
Beibin Li, Erkang Zhu, Li Jiang, Xiaoyun Zhang,
Shaokun Zhang, Jiale Liu, et al. 2023. Autogen:
Enabling next-gen llm applications via multi-agent
conversation. arXiv preprint arXiv:2308.08155.

XAgent. 2023. Xagent: An autonomous agent for com-
plex task solving.

Tianbao Xie, Danyang Zhang, Jixuan Chen, Xiaochuan
Li, Siheng Zhao, Ruisheng Cao, Toh Jing Hua, Zhou-
jun Cheng, Dongchan Shin, Fangyu Lei, Yitao Liu,
Yiheng Xu, Shuyan Zhou, Silvio Savarese, Caiming
Xiong, Victor Zhong, and Tao Yu. 2024. Osworld:
Benchmarking multimodal agents for open-ended
tasks in real computer environments.

S. Yao, H. Chen, J. Yang, and K. Narasimhan. 2022a.
Webshop: Towards scalable real-world web interac-
tion with grounded language agents. In Advances in
Neural Information Processing Systems, volume 35,
pages 20744–20757. Curran Associates, Inc.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak
Shafran, Karthik Narasimhan, and Yuan Cao. 2022b.
React: Synergizing reasoning and acting in language
models. ArXiv preprint, abs/2210.03629.

Y. Ye, X. Cong, S. Tian, J. Cao, H. Wang, Y. Qin, Y. Lu,
H. Yu, H. Wang, Y. Lin, Z. Liu, and M. Sun. 2023.
Proagent: From robotic process automation to agen-
tic process automation.

17268

http://arxiv.org/abs/2304.08354
http://arxiv.org/abs/2308.13149
http://arxiv.org/abs/2308.13149
http://arxiv.org/abs/2308.13149
http://arxiv.org/abs/2311.09835
http://arxiv.org/abs/2311.09835
http://arxiv.org/abs/2311.09835
https://doi.org/10.2139/ssrn.4414628
https://doi.org/10.2139/ssrn.4414628
http://arxiv.org/abs/2307.10635
http://arxiv.org/abs/2307.10635
http://arxiv.org/abs/2404.07972
http://arxiv.org/abs/2404.07972
http://arxiv.org/abs/2404.07972
http://arxiv.org/abs/2311.10751
http://arxiv.org/abs/2311.10751

B. Yu, F. N. Baker, Z. Chen, G. Herb, B. Gou, D. Adu-
Ampratwum, X. Ning, and H. Sun. 2024. Tooling
or not tooling? the impact of tools on language
agents for chemistry problem solving. arXiv preprint
arXiv:2411.07228.

Appendix

A Prompt Details

A.1 Main Agent

You are a professional programmer. Given a
query, your task is to search for a github
repository and use it to solve the query.

You should make sure the result of `apply`
function well completed the query. If it is
lack of required elements, you can call `apply`
again if you think the result is close to what
you want and you think this repository can be
used to solve your query. You can also call `
search_by_query` function to find another
repository if you think this repository is not
suitable for your query.

A.2 Search Agent

You are a professional programmer. Given a task
, you want to find a github repository to solve
the task.

You are a professional programmer. Given a task
, you want to find a github repository to solve
the task. Now, your colleagues have explored
some repositories. If you think any of the
repository(s) might can solve your task, call `
use_existing_repository` function to use it.
Otherwise, call `find_a_new_repository`
function to find another repository.

You will be given the query of the task and
name(s) and description(s) of existed
repositories.

Repository's name: {{name of repository 1}}
Description: {{description of repository 1}}

Repository's name: {{name of repository 2}}
Description: {{description of repository 2}}
......

A.3 Setup Agent

You are a professional programmer. Your task is
to set up the environment of the repository
and prepare necessary data.

You will be provided with the readme file of
the repository. You can also use `
check_file_or_directory` function to check the
`/<==repo_name==>` directory whether there is a
existed Dockerfile. If setting up the
environment is complex and there is an existing

dockerfile, you can use `
set_container_with_existed_dockerfile` function
to directly use that dockerfile. If there is

any problem with the dockerfile, you can try to
use `read_pulls_to_solve_problem` function to

see the pulls of this repository to solve the
problem. However, `read_pulls_to_solve_problem`
should not be used for reasons other than

troubleshooting issues with the Dockerfile. If
the existed dockerfile is built successfully,
you can call `submit` function directly with
property "work_directory" marked because the
required docker container has already been
built.

Usually the dockerfile is close to `/<==
repo_name==>`, so if you don't find it in one
or two try, it means there isn't a dockerfile
in this repository. You don't need to try more
times.

If there is no existing dockerfile, you should
analyze the readme file and derive the
necessary commands and execute them to set up
the environment of the repository and prepare
necessary data in a given container, whose base
image is 'continuumio/miniconda3'. If error
happens due to inappropriate base image, you
can use `echo` to create a dockerfile yourself,
with proper base image and necessary packages,
and build it.

While operating, please note the following
points:
- The commands will be run in a docker
container. You don't need to use virtual
environments, use the base environment only.
Use pip or conda to install packages. In
special cases, you can use apt-get to install
necessary packages. If you use apt-get, do not
forget to use apt-get update and --fix-missing.
- Any command requiring execution in a specific
directory should be reformulated as: `/bin/sh
-c "cd <specific directory> && <commands to be
executed in this directory>"`. Every command
must start with '/bin/sh -c " cd ' to locate a
specific directory.
- The repository have been clone to the root
directory at `/<==repo_name==>`.
- Follow the sequence of the commands, install
all necessary packages first.
- Never create or activate any conda
environment even if the readme requires or does
so. You should install the packages in the
base environment.
- If you have problem with the version of
python, please reinstall python of the
appropriate version with `conda install python
=<version>`.
- If a function you called return you with a
file path, you should pass the file path to the
next function you call if need.
- If there are different choices to do the same
task and you failed using one of them, you can
try another alternative.

Your commands should be the parameter of the `
execute_command` function. Each time you should
send one or many commands. The `

17269

execute_command` function will run the commands
and return the output of the commands.

In this step, you should just set up the
environment and prepare the data. You don't
need to run other programs or train the model.

A.4 Apply Agent

You are a professional programmer. Your task is
to utilize a github repository to solve a
given query. You will operate in a docker
container.

Note that it has been ensured that the
repository's environment has been set up and
all the data required by the readme has been
fully prepared, so you mustn't execute any
command to set up the environment or prepare
the data or check relevant files about the
environment or data anymore, unless the user
provide you with a link to download necessary
data. <==data_path==>

Also, all the dependencies have been installed
in the base environment, please don't switch to
any other conda environment. If you find you
lack of any packages or tools while operating,
use pip, conda or apt-get to install it. If you
use apt-get, do not forget to use `apt-get
update` and `--fix-missing`.

Your goal is to study the readme file
especially the command lines in it and call
appropriate functions to utilize the repository
to solve the query. Do not execute any command
to get result that you can't perceive yourself
, like starting a server.

Note that the default configuration of the
final executable file may not meet the demand
of the query. If there is any special demands
in the query, you should check the final
executable file to check whether it meets the
demand of the query. If not, you should make
proper modification(s).

If you run a command and find the result lack
of required element(s), which may because the
repository itself doesn't support relevant
function, you can check the issues to try to
solve the problem.

If you need to deal with files provided by the
user, you should firstly use `
upload_directory_to_container` to upload it
from local to the docker container. By default,
the path claimed in the query is local path,
you need to upload it. If required message can
be retrieved from the output of execution of
the program, summarize it to natural language
and submit it. If any file is generated to
answer the query, you should use `
download_directory_from_container` to download
the file from the docker container to local
before you submit if necessary. You should also
ensure required directories all exist before
running a program.

We only have CPU. If the repository doesn't ask
for configuration of device, ignore it.

Readme:{{readme}}

A.5 Modify Agent

You are a professional programmer. Your task is
to make modification(s) to code files to meet

the given requirement. You will be given the
query of modification, the content of a file
and the path to the file. If you think you can
meet the query through modifying this file, you
can modify this file.

If the query contains path that contains
information for modification, transmit that
path at "query_file_path" in "
modify_entire_file". You don't need to check
the query file yourself, because you may
neglect important message by checking and
summarizing, just pass the query path and let "
modify_entire_file" function to decide.

Code relevant to the query may not always
reside in the currently provided file. In such
cases, you should analyze the `from...import
...` or `<module name>...` sections to suggest
potential target file paths.

If the target path in the current file is
relative path, you should decide the target
file based on the current files path.

If it starts from a module's name, which
suggests the file is a python package, the file
is in `/opt/conda/lib/python3.11/site-packages

/<package name>` directory (python version
should be decided by using `which pip`). Don't
forget the suffix of the file.

You might need to locate the target file by
checking the content of the files recursively.
After the target file is located, you should
use proper functions to modify the code.

A.6 Judge Agent

You are a professional programmer. Your task is
to judge how good a programmer use a github

repository to handle a query. You will be given
query and the actions the programmer took to

handle the query. If the task includes input or
output file, you will be given path to

programmer's output. Path to input is in the
query and path to the ground truth outcome will
be given if there is ground truth. You can

check the content in these paths and use proper
ways to judge the relevance of different files.
If the files are readable you can directly

check them. If not, you can use the provided
functions to check the md5 hash value of the
files or compare the similarities of different
images. Note that you can only check directory
or file saved in local. If no input path,
output path, truth path is given, do not check

17270

file or directory, just score based on the log.

// For ReAct & ReAct + Summary
The rule of scoring is as follows. The initial
score is 0. You will be given the log of user
calling functions to use the repository. For
correctly setting up the environment and
preparing the data, 2 point should be added for
environment and 1 point should be added for
data. If no data is required, point for data
should be added.\nIn the given application
phase, 0~4 scores should be added based on the
performance. You should judge the performance
based on whether it follows the instruction in
the readme. If right actions(including commands
and function calling) are taken and get a
result, you should add 4. If asked
configuration is not applied or wrong actions
are taken, minus 1 point for each fault based
on 4. If ground truth is provided, if the
result of the application is not correct, minus
1 point.\nIn conclusion, the final score is
the sum of the scores of the setup (0~3) and
application phase (0~4).

// For GitAgent
The rule of scoring is as follows. The initial
score is 0. You will be given the log of user
calling functions to use the repository,
without the steps the environment is setup.\nIn
the given application phase, 0~4 scores should
be added based on the performance. You should
judge the performance based on whether it
follows the instruction in the readme. If right
actions(including commands and function
calling) are taken and get a result, you should
add 4. If asked configuration is not applied
or wrong actions are taken, minus 1 point for
each fault based on 4. If ground truth is
provided, if the result of the application is
not correct, minus 1 point.\nGenerally, if
valid output is given, the score should be 4.

Query:{{query}}

Action:{{action_log}}

Input path:{{input_path}}

Output path:{{output_path}}

Ground Truth path:{{truth_path}}

B GPT-4 Evaluation Alignment
Experiment

We randomly selected 120 questions from the Ope-
nAct and conducted both manual scoring and ma-
chine scoring using our designed GPT-based Agent,
then visualized the results in the above figure.
The circular points represent the coordinates corre-
sponding to human scores and GPT-4 scores, with
the size of the circles indicating the number of ques-
tions with that particular score combination. As
shown, there is a high consistency between GPT-4

0 2 4 6 8 10
GPT-4 Judger

0

2

4

6

8

10

Hu
m

an
 Ju

dg
er

Judge Agent Confidence

Figure 6: GPT-4 Evaluation Alignment Experiement

scoring and human assessment.

C Dataset Details

Table 8 provides the overall statistics regarding the
repositories. Table 9 provides the field of each
Github repository. Table 10 provides the difficulty
of each Github repository.

D Details about Main Phases of
OpenAgent

Repository Search During the Search phase, the
agent finds suitable repositories that can be used
to accomplish user queries. The repositories come
from two resources: repositories stored in the past
and repositories hosted in GitHub. Hence, this
phase contains three subtasks: (1) Stored Reposi-
tory Retrieval: The agent retrieves from existing
stored repositories by judging their suitability with
the user query. If a repository is deemed suitable,
its environment is loaded, bypassing the subsequent
Setup phase, and directly enters the Apply phase.
(2) GitHub Repository Search: If the stored repos-
itories cannot be used to accomplish user queries,
the agent will resort to GitHub to search for suitable
ones. There are two ways to search for repositories.
If the user queries specify the particular reposi-
tories, the agent will take action to call GitHub
search by name API directly. If not, OpenAgent
should search for the proper repositories according
to the repository function. As GitHub lacks the
semantic search API, we resort to the topic search

17271

Author Name Address
danielgatis rembg https://github.com/danielgatis/rembg
ocrmypdf OCRmyPDF https://github.com/ocrmypdf/OCRmyPDF
cdfmlr pyflowchart https://github.com/cdfmlr/pyflowchart
HarisIqbal88 PlotNeuralNet https://github.com/HarisIqbal88/

PlotNeuralNet
lukas-blecher LaTeX-OCR https://github.com/lukas-blecher/

LaTeX-OCR
s0md3v Photon https://github.com/s0md3v/Photon
s0md3v Bolt https://github.com/s0md3v/Bolt
s0md3v Smap https://github.com/s0md3v/Smap
MultiQC MultiQC https://github.com/MultiQC/MultiQC
xinyu1205 recognize-anything https://github.com/xinyu1205/

recognize-anything
bukosabino ta https://github.com/bukosabino/ta
molshape ChemFormula https://github.com/molshape/

ChemFormula
tencent-quantum-lab TenCirChem https://github.com/

tencent-quantum-lab/TenCirChem
harirakul chemlib https://github.com/harirakul/chemlib
ultralytics yolov5 https://github.com/ultralytics/yolov5
mermaid-js mermaid-cli https://github.com/mermaid-js/

mermaid-cli
microsoft qlib https://github.com/microsoft/qlib
fritzsedlazeck Sniffles https://github.com/fritzsedlazeck/

Sniffles
MolecularAI aizynthfinder https://github.com/MolecularAI/

aizynthfinder
microsoft Bringing-Old-Photos-

Back-to-Life
https://github.com/microsoft/
Bringing-Old-Photos-Back-to-Life

PyCQA bandit https://github.com/PyCQA/bandit

Table 8: GitHub Repositories

API. The agent would extract a list of potential
GitHub topics from the query and subsequently
call GitHub search by topic API to search reposi-
tories. (3) Repository Function Judgment: Upon
obtaining repository candidates, the agent judges
each repository’s suitability in resolving the user
query. The agent will read the README of each
repository to understand its function and then de-
liver a judgment on the repository’s suitability.

Environment Setup Upon identifying the suit-
able repositories, the agent would initiate the Setup
phase aimed at configuring their execution environ-
ment. The agent commences by cloning reposito-
ries from GitHub and executing commands (includ-
ing the installation of dependencies and download
of requisite data) according to the README. Due

to the non-standardization problem, there may ex-
ist flaws or bugs in the repositories so the agent
will initiate a Pull Requests Exploration or Issues
Exploration subtask to leverage human practice ex-
perience to resolve the problems. If necessary, the
agent will initiate a File Modification subtask to
modify the source files to fix the bugs.

Tool Application Given the configured environ-
ment, the agent proceeds to apply the repository to
address the user query. This application process
varies based on the complexity and design of in-
dividual repositories. Well-developed repositories
provide clear entry for allowing straightforward
applications (e.g., Command-Line Interface). Nev-
ertheless, for those non-standardized repositories
that do not provide clear entry, especially lacking

17272

https://github.com/danielgatis/rembg
https://github.com/ocrmypdf/OCRmyPDF
https://github.com/cdfmlr/pyflowchart
https://github.com/HarisIqbal88/PlotNeuralNet
https://github.com/HarisIqbal88/PlotNeuralNet
https://github.com/lukas-blecher/LaTeX-OCR
https://github.com/lukas-blecher/LaTeX-OCR
https://github.com/s0md3v/Photon
https://github.com/s0md3v/Bolt
https://github.com/s0md3v/Smap
https://github.com/MultiQC/MultiQC
https://github.com/xinyu1205/recognize-anything
https://github.com/xinyu1205/recognize-anything
https://github.com/bukosabino/ta
https://github.com/molshape/ChemFormula
https://github.com/molshape/ChemFormula
https://github.com/tencent-quantum-lab/TenCirChem
https://github.com/tencent-quantum-lab/TenCirChem
https://github.com/harirakul/chemlib
https://github.com/ultralytics/yolov5
https://github.com/mermaid-js/mermaid-cli
https://github.com/mermaid-js/mermaid-cli
https://github.com/microsoft/qlib
https://github.com/fritzsedlazeck/Sniffles
https://github.com/fritzsedlazeck/Sniffles
https://github.com/MolecularAI/aizynthfinder
https://github.com/MolecularAI/aizynthfinder
https://github.com/microsoft/Bringing-Old-Photos-Back-to-Life
https://github.com/microsoft/Bringing-Old-Photos-Back-to-Life
https://github.com/PyCQA/bandit

Domain Repository

Finance
microsoft/qlib
bukosabino/ta

Chemistry

molshape/ChemFormula
tencent-quantum-lab/TenCirChem
harirakul/chemlib
MolecularAI/aizynthfinder

Bioinformatics
MultiQC/MultiQC
fritzsedlazeck/Sniffles

CV

danielgatis/rembg
lukas-blecher/LaTeX-OCR
ultralytics/yolov5
microsoft/Bringing-Old-Photos-Back-to-Life
mermaid-js/mermaid-cli
xinyu1205/recognize-anything

Network Analysis
s0md3v/Photon
s0md3v/Smap

Security Analysis
PyCQA/bandit
s0md3v/Bolt

Chart Paint
cdfmlr/pyflowchart
ocrmypdf/OCRmyPDF
HarisIqbal88/PlotNeuralNet

Table 9: GitHub repositories categorized by 7 fields.

detailed documentation, the agent needs to resort to
human experience again (see in Section 4.2). If ex-
tensive output (e.g., lengthy execution logs) ensues,
the agent needs to go to the Long Context Process
subtask which writes a Python program (e.g., regu-
lar expressions) to extract critical information from
the lengthy file. Thus, the File Modification subtask
is also involved.

Note that although we design this hierarchical
strategy, which phase, subtask, or action to be
achieved is decided by OpenAgent itself dynami-
cally. We do not limit the agent’s behavior strictly.

E Case Study

To detail how OpenAgent works during the whole
tool extension process, we conduct the case study
to demonstrate the behavior of OpenAgent.

Adaptive Repository Search Strategies. Ope-
nAgent demonstrates a remarkable ability to au-
tonomously select and implement varied search
strategies for repository retrieval (see in Figure 7).
This adaptability is evident from its high search
success rate across different repositories. OpenA-
gent tailors its search approach based on the speci-
ficity of the user query. For instance, in the case
of Sniffles, where the repository name is pro-
vided (Figure 8), OpenAgent directly searches for
the repository using the given name. In contrast,
for queries of Qlib, where no specific repository is
mentioned (Figure 9), the agent summarizes rele-

Application
Easy

Application
Medium

Application
Hard

Environment
Easy

Pyflowchart
Bolt

yolov5

OCRmyPDF
Rembg

TenCirChem
ChemFormula

Chemlib

Environment
Medium

MultiQC
Photon
Smap

Bandit
recognize-everything

Aizynthfinder
mermaid-cli

Environment
Hard Latex-OCR

Bring-Old-Photos-
Back-to-Life

qlib
PlotNeuralNet

Table 10: GitHub repositories classified by 9 types of
difficulties.

vant GitHub repository topics from the query and
sequentially searches these topics to identify the
most suitable repository.

Dynamic Handling of Setup Challenges. The
agent is proficient in managing setup processes,
even in the presence of bugs or incomplete informa-
tion in the official repository documentation. For
repositories like AiZynthFinder, with comprehen-
sive setup instructions in the README (Figure 10),
OpenAgent efficiently follows the guidelines to set
up the environment. Conversely, for repositories
such as Bringing-Old-Photos-Back-to-Life,
although it provides an official dockerfile to build
the execution environment, there exist some bugs
in it. In this situation, OpenAgent proactively seeks
solutions by reviewing pull requests (PRs) and mod-
ifies the dockerfile accordingly to rectify the bugs
(Figure 11).

Efficient Execution of Complex User Queries.
OpenAgent capably handles the execution phase,
addressing various challenges that arise with com-
plex user queries. An example includes a scenario
where the agent needed to install additional tools
(e.g., “curl”) mid-process to fulfill a data down-
load request (Figure 12). In another instance, for
a query requiring transaction details in Qlib (Fig-
ure 5), OpenAgent resolved a missing directory
issue by consulting GitHub Issues and adapting the
configuration file to generate the required output.
For example, a query asks OpenAgent to download
specific data for analysis (see in Figure 12). During
the apply process, the agent found that the “curl”
had not been installed and then it used “apt-get”
to install “curl” before going on. For another ex-
ample, a user query asks OpenAgent to give the
transaction details (see in Figure 5). OpenAgent
first ran the repo but when it tried to get the trans-
action details in the “record” directory, it found
that there exists no “record” directory in the reposi-
tory. Next, OpenAgent resorted to the Issue from

17273

I am a fintech researcher
aiming to utilize data from the
A market (csi300) to train a
LightGBM model. You should
give me the back test result.

fintech
market-forecasting
machine-learning
financial-modeling

…

vnpy/vnpy
microsoft/qlib
waditu/tushare

……/FinGPT
……

User Query Search by topic

User Query Search by Name

Use a Github repository named
Sniffles to help me to detect
the structural variations in
given gene sequences and save
the structural variations in
output result.vcf.

Sniffles fritzsedlazeck/
Sniffles.git

Repos

Repo
…… However, the
repository seems to not
support the LightGBM
model directly, which is
a requirement of the
query.
The repository contains
an AI-oriented
quantitative investment
platform, which can
support the functionality
mentioned in the query…

Figure 7: Comparison of two different repository search methods.

find_a_new_repository(Repo_name: Sniffles)
{"repo_name": "Sniffles",
"repo_url": "https://github.com/fritzsedlazeck/Sniffles.git"}

Use a Github repository named Sniffles to help me to
detect the structural variations in given gene sequences
and save the structural variations in `output_result.vcf`.

Repository

Since no repository has been
cached and the query

specifically mentions the name
of the repository 'Sniffles', I

need to find this new
repository.

Figure 8: An example about the repository search of Sniffles.

find_a_new_repository
(Topics: [Fintech, csi500, LightGBM, backtesting, machine-learning,
data-science, financial-data, stock-market-analysis])
…
{" repo_name": ”Qlib",
"repo_url": "https://github.com/microsoft/Qlib.git"}

Since no repository has been
cached, I have to find a new
one. I need a repository that

provides data from the A
market (csi500) and supports
training a LightGBM model.

I am a fintech researcher aiming to utilize data from the
A market (csi300) to train a LightGBM model. You
should give me the back test result.

The repository provides a
way to load and prepare

data, train a LightGBM model,
and perform back-testing,
which aligns with the query

requirements...

Repository

Figure 9: An example about the repository search of Qlib.

GitHub and found an issue that can solve the record
output problem. Then, it modified the configura-
tion file according to the issue content and re-run
the command.

All the above phenomena demonstrate the robust-
ness and flexibility of our method which can han-
dle various non-standardized GitHub repositories
to extend them as tools to accomplish user queries.
The agent effectively navigates and utilizes non-
standardized GitHub repositories, extending their
functionalities to meet diverse user queries. This
success can be attributed to our designed human
experience learning, which enables OpenAgent to
focus on resolving subtasks by referring to human
practice experience.

17274

Report:
1. Environment has beed set and data has

been prepared.
2. The required data has been downloaded

to the '/data' directory.

check_file_or_directory (Path:/aizynthfinder)
This directory is too large to be shown. Please choose a smaller
subdirectory. And the subdirectories of this directory are: …
check_file_or_directory (Path:/aizynthfinder/aizynthfinder)
Content of this directory:…
>> cd /aizynthfinder && conda install python=3.9 && python
-m pip install aizynthfinder
......
Executed successfully. The output of the execution is omitted.
>> cd / && download_public_data /data
0%| |

Traceback (most recent call last):
......
FileNotFoundError: [Errno 2] No such file or directory:
'/data/uspto_model.hdf5’

>> cd / && mkdir data && download_public_data /data
100%|██████████|
Executed successfully. The output of the execution is omitted.

First, I will check if there is
an existing Dockerfile in the

repository.

There is no Dockerfile in the
root directory. Let's check the
subdirectories for a Dockerfile.

There is no Dockerfile in the
repository. I will now install
the necessary packages. The
readme file states that the

project requires python
version 3.9 - 3.11. I will

install python 3.9 and then
install the aizynthfinder

package.

Now, I will download the
necessary data using the
'download_public_data'

command. I will download the
data to '/data' directory.

It seems the '/data'
directory does not exist. I

will create it and then try to
download the data again.

Docker Image

Figure 10: An example about the repository setup of AiZynthFinder.

17275

Report:

Environment has beed set and data has been
prepared.

check_file_or_directory (Path:/Bringing-Old-Photos-Back-to-Life)
This directory is too large to be shown. Please choose a smaller
subdirectory. And the subdirectories of this directory are: …

set_container_with_existed_dockerfile
(Path:/Bringing-Old-Photos-Back-to-Life/Dockerfile)
Error: manifest for nvidia/cuda:11.1-base-ubuntu20.04 not found:
manifest unknown: manifest unknown
read_pulls_to_solve_problem
(Query:"Dockerfile manifest for nvidia/cuda:11.1-base-ubuntu20.04 not found”)

I need to check whether
there is an existing

Dockerfile in the repository.
If there is, I can use it to
set up the environment.

There is a Dockerfile in the
repository. I will use it to
set up the environment.

I have modified the
Dockerfile according to the
pull request. Now I will try
to set up the environment
again using the modified

Dockerfile.

set_container_with_existed_dockerfile
(Path:/Bringing-Old-Photos-Back-to-Life/Dockerfile)
Docker container built successfully. You can choose to finish directly.

The Dockerfile has a problem,
it can't find the manifest for

nvidia/cuda:11.1-base-
ubuntu20.04. I will read the
pulls to see if anyone has

solved this problem.
The PR mentions that it addresses

the issue of the original base
image no longer being available,

which is the problem described. It
also states that it has updated
the base image to a current and
available one, which should solve
the Dockerfile manifest issue.

This Pull Request addresses two primary issues:
- The original base image was no longer available.
I've updated it to use a current and available image.
…

modify_file_content
(Query: Refer to the file at `/pr_diff.txt` and make corresponding
modifications to the Dockerfile.)

I need to modify the
Dockerfile according to the

difference in the pull request
to solve the problem。

The PR mentions that it addresses
the issue of the original base

image no longer being available,
which is the problem described. It
also states that it has updated
the base image to a current and
available one, which should solve
the Dockerfile manifest issue.

check_file_or_directory (Path:/pr_diff.txt）
diff --git a/Dockerfile b/Dockerfile
index 8764e00..a88e0df 100644
--- a/Dockerfile
+++ b/Dockerfile
modify_entire_file
(Query: 1. Change the first line from ’…’ to ’…’. 2. After the
'RUN apt update...' line, add… 3. Replace all occurrences of …)
FROM nvidia/cuda:11.1-base-ubuntu20.04
FROM nvidia/cuda:12.1.0-base-ubuntu20.0
--- +++

The content of '/pr_diff.txt' shows
the differences between the old

and new versions of the Dockerfile.
I can use this information to

modify the Dockerfile accordingly.

Docker Image

Figure 11: An example of Environment Setup (Bringing-Old-Photos-Back-to-Life).

17276

>> mkdir -p Sniffles/input &&
HTTPDIR=https://storage.googleapis.com/deepvariant/pacbio-case-study-testdata && curl
${HTTPDIR}/HG002.pfda_challenge.grch38.phased.chr20.bam >
Sniffles/input/HG002.pfda_challenge.grch38.phased.chr20.bam &&
curl ${HTTPDIR}/HG002.pfda_challenge.grch38.phased.chr20.bam.bai >
Sniffles/input/HG002.pfda_challenge.grch38.phased.chr20.bam.bai
Error: /bin/sh: 1: curl: not found
>> apt-get update && apt-get install curl -y
Get:1 http://deb.debian.org/debian bullseye InRelease [116 kB]
Get:2 http://deb.debian.org/debian-security bullseye-security InRelease [48.4 kB]
…
>> mkdir -p Sniffles/input &&
HTTPDIR=https://storage.googleapis.com/deepvariant/pacbio-case-study-testdata && curl
${HTTPDIR}/HG002.pfda_challenge.grch38.phased.chr20.bam > …… &&
curl ${HTTPDIR}/HG002.pfda_challenge.grch38.phased.chr20.bam.bai > ……
% Total % Received % Xferd Average Speed Time Time Time Current
100 1551M 100 1551M 0 0 1647k 0 0:16:04 0:16:04 --:--:-- 2568k
>> sniffles –I
Sniffles/input/HG002.pfda_challenge.grch38.phased.chr20.bam -v
Sniffles/output_result.vcf
Running Sniffles2, build 2.2
…
Analyzing 193107 alignments total...
193107/193107 alignments processed (100%, 8657/s); 195/195 tasks done; parallel
0/4; 921 SVs.

The first step is to create a
directory to store input data

and then download the
specified files into that
directory. The original

commands are usable here, I
just need to modify the
directory to place the

downloaded data.

Use a github repository named "Sniffles" to help me to detect the
structural variations in given gene sequences and save the structural
variations in output_result.vcf. Data of the original sequence should
be downloaded using this command: mkdir -p input
HTTPDIR=https://storage.googleapis.com/deepvariant/pacbio-case-
study-testdata Report

It seems 'curl' command is not
found. This could be due to

curl being not installed in this
environment. I'll install 'curl'

using 'apt-get install'.

Now that 'curl' is installed, I'll
retry the command for

downloading the data files into
the 'input' directory.

Now that the data has been
downloaded successfully, the
next step is to run Sniffles
to detect the structural
variations in the gene

sequences. According to the
README file, the command to
call Sniffles is like … I can
modify this command to use
the data that we have just

downloaded and set the
output file as

`output_result.vcf` as
required by the user.

SVs Record

Figure 12: An example about the repository apply of Sniffles.

17277

