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Abstract

Information extraction (IE) from Visually Rich
Documents (VRDs) containing layout features
along with text is a critical and well-studied
task. Specialized non-LLM NLP-based solu-
tions typically involve training models using
both textual and geometric information to la-
bel sequences/tokens as named entities or an-
swers to specific questions. However, these
approaches lack reasoning, are not able to infer
values not explicitly present in documents, and
do not generalize well to new formats. Genera-
tive LLM-based approaches proposed recently
are capable of reasoning, but struggle to com-
prehend clues from document layout especially
in previously unseen document formats, and
do not show competitive performance in het-
erogeneous VRD benchmark datasets. In this
paper, we propose BLOCKIE, a novel LLM-
based approach that organizes VRDs into local-
ized, reusable semantic textual segments called
semantic blocks, which are processed indepen-
dently. Through focused and more generaliz-
able reasoning,our approach outperforms the
state-of-the-art on public VRD benchmarks by
1-3% in F1 scores, is resilient to document for-
mats previously not encountered and shows
abilities to correctly extract information not
explicitly present in documents.

1 Introduction

Visually Rich Document Understanding (VRDU)
is a well researched topic due to its wide industry
applicability. Structured or semi-structured docu-
ments such as invoices, forms, contracts, receipts
etc are handled by most organizations, and for large
organizations the volume of such documents can be
massive. Processing these documents, especially
those of a financial or legal nature, is vital. Figure
1 shows a typical application of VRDU. As can be
seen, an ideal information extraction or processing
solution, should have the following desiderata -

• High-quality extraction - High precision and

recall of desired entities (such as company
name or address) to be extracted.

• Handling heterogeneity of formats and lan-
guages - Handling documents from various
sources with different templates (legal fax
from US and supplies store invoice from In-
donesia in Figure 1). Public datasets such
as Lewis et al., 2006 illustrate the degree of
heterogeneity found in real life applications.

• Handling new document formats - Solution
should be able to handle documents with for-
mats not seen during its training to avoid fail-
ure in production environment.

• Ability to perform value-absent inference -
Entities to be extracted (such as number of line
items in Figure 1) may not always be present
explicitly, and may need to be inferred.

A typical approach to document information ex-
traction begins with Optical Character Recognition
(OCR) using tools like Amazon Textract or Tesser-
act (Hegghammer, 2022). However, OCR alone
fails to address several key challenges. Documents
exhibit diverse formats and structures, requiring
spatial reasoning to correctly associate text with
their semantic roles. Systems must understand con-
textual relationships - for instance, recognizing that
’CGST’, ’VAT’, and ’SR’ all represent tax types,
or identifying a vendor name without explicit la-
bels. Additionally, solutions must generalize across
heterogeneous document layouts and languages.

Recent approaches have attempted to address
these challenges through layout-aware NLP mod-
els (Xu et al., 2020; Huang et al., 2022; Peng et al.,
2022; Luo et al., 2023) enhance text processing
with spatial information through mechanisms using
cross-attention between text and bounding box em-
beddings. While effective for template-matching,
we show that these models struggle with generaliz-
ing to new document formats, making inferences
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Figure 1: The Information Extraction Task, illustrated using sample images from (Jaume et al., 2019) and (Huang
et al., 2019)

about implicit or absent values, and understanding
semantic relationships beyond training examples.

Large Language Models have demonstrated
strong reasoning capabilities through chain-of-
thought demonstrations (Wei et al., 2023) and few-
shot examples attached to the prompt (Brown et al.,
2020). However, LLMs face their own limitations:
they struggle with processing documents dissimilar
to few-shot examples, handling complex layouts
efficiently, and scaling prompts for multiple entity
extraction. Even approaches using dynamic exam-
ple selection based on document similarity (Perot
et al., 2024) require at least one document with
matching format in the labeled sample.

In this work, we propose BLOCKIE, a novel
information extraction algorithm that leverages se-
mantic block-level parsing. Our approach first iden-
tifies self-contained groups of text tokens (semantic
blocks) and processes them using LLM-driven rea-
soning informed by similar blocks from labeled
samples (see Figure 8 for an example on how doc-
uments with different templates can have similar
blocks). Since semi-structured documents naturally
organize information in human-readable blocks
(Figure 6), this localized reasoning generalizes
well across different document formats. BLOCKIE
mimics human document processing by first under-
standing local regions (Block Level Organization)

and then leveraging Contextual Knowledge from
other blocks to stitch information together for IE.

We show that our approach outperforms the state-
of-the-art on public benchmark datasets and satis-
fies all the desiderata for an IE solution. To sum-
marize, we make the following contributions:

• We introduce BLOCKIE: Block-Level Orga-
nization and Contextual Knowledge-based In-
formation Extraction, a novel algorithm for
VRDU that organizes documents into self-
contained segments of text tokens called se-
mantic blocks, which are processed using rea-
soning that generalizes across document for-
mats.

• We apply BLOCKIE to public benchmark
datasets CORD, FUNSD and SROIE, and
show that our method concurrently outper-
forms the current state-of-the-art on all these
three datasets by 1-3% in F1 score.

• We show that block-level reasoning makes
BLOCKIE robust to heterogeneous document
databases and new document formats, pre-
vents degradation of performance with smaller
LLMs, and allows LLMs to perform value-
absent inference.
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2 Related Work

Prior work in VRD understanding can be broadly
categorized into three approaches: traditional meth-
ods, layout-aware models, and large language mod-
els. We discuss each in turn, highlighting their
capabilities and limitations.

Traditional Methods initially relied on
rule-based systems and handcrafted features
(O’Gorman, 1993; Ha et al., 1995; Simon et al.,
1997; Marinai et al., 2005; Mausam et al., 2012;
Chiticariu et al., 2013). While these approaches
worked for known templates, they failed to
generalize to new document formats. Later deep
learning approaches leveraged RNNs (Aggarwal
et al., 2020; Palm et al., 2017), CNNs (Hao et al.,
2016; Denk and Reisswig, 2019; Katti et al., 2018),
and transformers (Wang et al., 2023c; Majumder
et al., 2020) to extract structural information from
documents. However, these methods required
extensive component-level labeling, limiting their
practical applicability.

Layout-aware NLP Models enhanced tradi-
tional approaches by incorporating document lay-
out information. Several architectural innovations
were proposed: Powalski et al. (2021) introduced
the usage of generative transformers for document
understanding. This was followed by works such
as Appalaraju et al. (2021); Hwang et al. (2021);
Bai et al. (2022); Dhouib et al. (2023). Other pro-
posed approaches include layout-aware language
models combining BERT-style architectures (De-
vlin et al., 2019; Liu et al., 2019; Bao et al., 2020)
with spatial information through learnable modules,
2D position embeddings (Xu et al., 2020), and at-
tention mechanisms (Xu et al., 2022; Huang et al.,
2022; Peng et al., 2022). Further advances intro-
duced geometric pre-training (Luo et al., 2023),
graph contrastive learning (Lee et al., 2023), and
unified frameworks for simultaneous text detec-
tion and classification (Yang et al., 2023). Recent
work has improved these models through reading-
order prediction (Zhang et al., 2024). While
these approaches achieve strong performance when
fine-tuned on benchmark datasets like DocVQA
(Mathew et al., 2021) and FUNSD (Jaume et al.,
2019) after pre-training on large document corpora
like IIT-CDIP (Lewis et al., 2006), they remain
limited by their token-classification approach, re-
quiring explicit answer presence and struggling
with new document formats.

Large Language Models represent the newest

approach to VRD understanding. Commercial
models like Claude (Anthropic, 2024c) and Chat-
GPT (OpenAI, 2023) demonstrate zero-shot rea-
soning capabilities, with Claude 3 achieving state-
of-the-art performance on DocVQA (Anthropic,
2024b). Open-source models like LLaVa (Liu et al.,
2023) and CogVLM (Wang et al., 2024) show
promise on visual question answering tasks but
struggle with zero-shot and multi-entity extraction
(Bhattacharyya and Tripathi, 2024).

Recent work has explored specialized LLM ap-
plications for information extraction, particularly in
Named Entity Recognition (Keraghel et al., 2024;
Laskar et al., 2023; Ashok and Lipton, 2023; Wang
et al., 2023b). For VRD-specific challenges, re-
searchers have developed layout-aware pre-training
(Luo et al., 2024), disentangled spatial attention
(Wang et al., 2023a), and normalized line-level
bounding box representations (Perot et al., 2024).
However, these approaches have yet to surpass
layout-aware NLP methods, and attempts to con-
vert generative models to token-labeling systems
often sacrifice their inference capabilities.

3 Semantic Blocks in VRDs

Figure 2: Sample image with document schema and
value

In this section, we define the concept of semantic
blocks theoretically, and we show how these are
created practically in section 4.

Let us consider a set of documents D with a
common set of hierarchical entities of interest E,
which we refer to as the document schema. Let
V denote the set of all possible instantiations of
E. Given a document D ∈ D, let VE(D) ∈ V
denote the actual values of the entities E for D (for
reference, consider sample document, schema and
value in Figure 2).

For a document D ∈ D, let BD denote the set of

17243



all possible segments (i.e. localized visual regions)
of D. For any segment B ∈ BD, let VE(B) repre-
sent the document values with only entities present
in B populated, other entities being blank. Note
that D ∈ BD is a special segment comprising of
the entire document.

The annotation operation can be thought of as
an attempt to map a segment of a document to the
document schema. As input, it takes in the target
document segment, and parses it in the context of
a larger segment with respect to the schema. The
context segment could be any superset of the target,
including (typically) the target segment itself or the
entire document. Figure 3 illustrates the annotation
operation with a target and context segment.

Figure 3: Sample image with document schema and
value

Formally, for a given document schema E, the
annotation operation can be defined as a mapping
v : BD × BD 7→ V . If the annotation is correct, we
have,

v(B,D) = VE(B),∀B ∈ BD, ∀D ∈ D (1)

Now, consider any segment B ∈ BD for a D ∈
D. We define B as a semantic block if and only if:

v(B,B) = v(B,D) = VE(B) (2)

In other words, a semantic block must be inter-
pretable independently without any additional con-
text - the values extracted from B in isolation must
match those extracted with full document context.

To illustrate, consider Figure 2. In this example,
B1: (SUB TOTAL 28.000) is a semantic block
with:

v(B1, D) = subtotal : {subtotal_price : [28.000]}
and B2: (TOTAL SALE 28.0000) is a semantic
block with:

v(B2, D) = total : {total_price : [28.000]}

On the other hand, (COCONUT JELLY ( L ),
4.000) cannot be a semantic block, as without the
context of (1 JASMINE MT (L) 24.000), it is not
possible to determine whether it is a sub-item and,
if so, which line item it is a sub-item of.

Now, to create semantic blocks in practice, we
introduce the concept of semantic atoms - the fun-
damental units for information extraction from
VRDs. A semantic atom is an indivisible visual
region containing text that forms a complete se-
mantic unit while maintaining spatial coherence
through proximity as well as horizontal or vertical
alignment. The key characteristic of a semantic
atom is that it cannot be decomposed further with-
out losing its intended meaning. For example, in
Figure 2, “TOTAL ITEMS” forms a semantic atom
because splitting it into “TOTAL” and “ITEMS”
individually would lose the specific meaning of
‘number of items’ - “TOTAL” alone could refer
to price or quantity, while “ITEMS” alone loses
specificity. Moreover, these words maintain spatial
coherence through horizontal proximity in the doc-
ument. Conversely, “TOTAL ITEMS 1”, although
coherent semantically and linked as an attribute
value pair, is not spatially proximate, and hence
is not an atom, but makes up two linked semantic
atoms.

Note that there could be two different types
of linkages between semantic atoms in a VRD -
linkages of the form attribute:value, or linkages
of hierarchy. By hierarchically linked semantic
atoms we refer to semantic atoms that belong
to hierarchical entities in the document schema.
In practice, semantic blocks are collections
of semantic atoms, such that all linkages for
each atom in the collection is present inside the
collection itself. This is a sufficient condition for
equation 2, as given a schema, all context needed to
parse any group of atoms is present in a collection
of atoms linked to it as hierarchically or as
attribute-value. To continue the example, (TOTAL
SALE 28.0000) and (SUB TOTAL 28.000) are
linked semantic atoms, and (1 JASMINE MT (L)
24.000 COCONUT JELLY ( L ), 4.000) are linked
semantic atoms.

This theoretical foundation guides our develop-
ment of practical algorithms for document process-
ing, as we will demonstrate in subsequent sections.
By decomposing documents into smaller, more gen-
eralizable semantic blocks, we can better handle
the complexities of varying layouts while maintain-
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ing the semantic relationships crucial for accurate
information extraction. In the following section,
we show how BLOCKIE identifies and parses se-
mantic blocks.

4 Proposed Methodology

Given a group of documents and a required set of
entities that need to be extracted in the form of doc-
ument schema, we first divide the document into a
collection of semantic blocks of related text using
LLMs. In practice, LLMs are used to identify se-
mantic blocks. They are asked to break all of the
text present in a document into blocks, where all
related text should be present in the same block.
Related text is defined in the prompt itself as text
belonging to linked entities or hierarchical entities
from the document schema, which is a sufficient
condition for equation 2. The exact block creation
template is provided in appendix A.

These blocks are then processed, which allows
LLMs to develop generalizable abstract rules for
IE. These partial block parses are then combined to
return the set of entities required. However, prior
to these steps, it is necessary to convert the train
dataset labels to appropriate format, i.e. to inde-
pendent blocks and their annotations, so that these
can be used as few-shot examples during inference.
Further details on each of these steps are provided
below.

Train Dataset Labelling The train dataset is
used as a labelled sample. VRD benchmarks such
as Park et al., 2019 generally contain ground truth
labels in a key-value format, with appropriate hier-
archy and linkages. These are passed to an LLM
along with document schema to return three things
- (1) step-by-step reasoning for choosing a segment
as a block (i.e. self-contained segments of linked
atoms, as defined in section 3), (2) the words in the
block, and (3) the partial annotation of the block,
using the ground truth labels. All of these three out-
puts are used downstream. Appendix A contains
the prompt used to extract these elements.

4.1 Block Creation

Given a document from the test dataset, we prompt
the LLM to create blocks using the document
schema, OCR text and bounding boxes, and dy-
namic few-shot examples from the labelled train
dataset using cosine similarity of OCR text1.The

1Perot et al., 2024 show that using similar documents in
in-context learning examples improves performance in VRDs.

LLM leverages the step by step reasoning from
the train dataset blocks on the few-shot samples
to understand when a text segment can be con-
sidered a block. Note that while we used OCR
text and bounding boxes, for multimodal LLMs
one can pass the image directly. The creation of
self-contained blocks is crucial; in section 5, we
evaluate the impact of block creation on overall
accuracy.

4.2 Block Parsing

Once blocks have been created, these are anno-
tated by block parsers. As shown in figure 6, simi-
lar semantically meaningful blocks are found even
in documents with different formats. Since these
blocks are self-contained, they can be parsed inde-
pendently.

The document schema is passed to the LLM with
few-shot examples of the most similar blocks. The
step-by-step reasoning of train dataset block parser
triggers similar reasoning in the block parser, and
the document schema guides it to return structured
output in required format.

Figure 7 shows how the same example with sim-
ilar blocks would be annotated by the block parser.

4.3 Combining Blocks

Finally, the document schema, blocks and their
parses are provided to LLMs to return the entire
filled out schema. The LLM acts as a judge as-
sessing the block-parsing reason from the previ-
ous steps to stitch together the filled out document
schema. Each semantic block benefits from being
compared with similar blocks in other documents
(which may be heterogenous), and the document
schema guides the llm to return structured output.

Figure 4 illustrates these three steps using a sam-
ple document and schema.

Prompting Strategy We designed prompts for
block creation, block parsing and block combining
with Claude 3.5 Sonnet. We did not separately tune
prompts for other LLMs as we wanted to test both
BLOCKIE’s generalizability as well as the lift that
is obtained purely due to the design of BLOCKIE,
rather than prompt tuning. Detailed prompts for all
the stages are provided in the appendix.

5 Experimental Setup and Results

We designed our experimental evaluation to rigor-
ously assess BLOCKIE’s effectiveness in address-
ing these challenges. Our analysis examines the
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Figure 4: Illustrative flow with a simulated receipt and schema resembling CORD output requirement. The schema
is passed along with the output of the block creator along with parses of similar blocks to block parser. Parsed
blocks with target schema are then passed to get final output. Reasons are output at each stage.

method stands up against the desiderata for an ideal
information extraction solution for a large heteroge-
nous document database.

5.1 Experimental Setup

We evaluate BLOCKIE on three established in-
formation extraction benchmarks: CORD (Park
et al., 2019), which focuses on restaurant receipts
with hierarchical field structures; FUNSD (Jaume
et al., 2019), a subset of Harley et al.; and SROIE
(Huang et al., 2019), a receipt information extrac-
tion dataset. For FUNSD, we focus on entity link-
ing as the original semantic entity classifications
(question, answer, header, others) are not meaning-
ful and do not align with real-world information
extraction requirements.

To assess the generality of our approach, we con-
duct experiments for BLOCKIE with multiple lan-
guage models of varying parameter counts: Claude
3.5 Sonnet (Anthropic, 2024a) and four variants of
Qwen 2.5 (Qwen et al., 2025) with 7B, 14B, 32B,
and 72B parameters respectively. We used 5 few
shot-examples in the prompts for both block creator
and parser. Following standard practice in docu-
ment information extraction, we use the F1 score
as our primary evaluation metric. For performance
comparison, we consider state-of-the-art methods
discussed in section 2, and we also conduct ad-

ditional experiments with LayoutLMV3 (Huang
et al., 2022) to show the limitations of layout-aware
NLP methods. Additional details about the datasets
and implementations are present in Appendix B.

5.2 Results
5.2.1 Performance Analysis
Table 1 presents BLOCKIE’s performance com-
pared to existing approaches across all three
datasets. Using Sonnet as the base LLM,
BLOCKIE achieves state-of-the-art performance,
surpassing both traditional layout-aware ap-
proaches and recent LLM-based methods. Notably,
BLOCKIE achieves 98.83% F1-score on CORD,
92.15% on FUNSD, and 98.52% on SROIE, estab-
lishing new benchmarks across all datasets. To ver-
ify that these improvements stem from our block-
based methodology rather than just LLM capabil-
ities, we compare against zero-shot and few-shot
variants of Sonnet. The performance gap between
BLOCKIE and these baseline approaches (shown
in Table 1) demonstrates that the improvements
arise from our semantic block methodology rather
than raw LLM capabilities.

5.2.2 BLOCKIE helps smaller LLMs
outperform large LLMs

We examine BLOCKIE’s robustness to LLMs by
evaluating performance across LLMs of varying
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Approach Method FUNSD CORD SROIE

EL SER SER

DocTr(Feng et al., 2022)153M 73.9 98.2 -
LayoutLMv3(Huang et al., 2022)368M 79.37 96.98 96.12
DocFormer(Appalaraju et al., 2021) 502M - 96.99 -

Layout-Aware NLP FormNetLee et al. (2023) large - 97.28 -
ERNIE-Layout(Peng et al., 2022)large - 97.21 97.55
GeoLayoutLM(Luo et al., 2023)399M 88.06 98.11 96.62
ESP(Yang et al., 2023)50M 88.88 95.65 -
RORE-GeoLayoutLM (Zhang et al., 2024) 399M+24 88.46 98.52 96.97

DocLLM(Wang et al., 2023a) - 67.4 91.9
LMDX-Gemini Pro(Perot et al., 2024) - 95.57

LLM LayoutLLM(Luo et al., 2024) - 63.1 72.72
Sonnet - Zero shot - 88.92 91.37
Sonnet - Few shot - 95.72 96.72

Ours BLOCKIE - Sonnet 92.15 98.83 98.52

Table 1: Performance Comparison. BLOCKIE-Sonnet outperforms the state-of-the-art across all three datasets

Figure 5: Motivating example for the conceptualization
of VRD IE as the parsing of related semantic entities
organized in blocks. The entities within a block are
related which allows a human to understand that the
address in the company details block belongs to the
invoicing company instead of say the customer.

sizes. As shown in Table 2, BLOCKIE main-
tains strong performance even with smaller mod-
els - BLOCKIE with Qwen 2.5 32B (96.14% F1)
outperforms LMDX-Gemini Pro ( 200B parame-
ters, 95.57% F1) and Sonnet Zero-Shot as well as
Few-shot (91.37% and 95.72% respectively), while
BLOCKIE with Qwen 2.5 7B (87.72% F1) signif-
icantly surpasses other approaches using similar-
sized models like DocLLM (67.4% F1) and Layout-
LLM (63.1% F1). Note that the finetuned version
of the Qwen 32B model falls short of Sonnet Few
shot significantly (91.08% vs 95.72%), showing
that the improvement in performance is caused by

Figure 6: Two documents with different formats (a fax
from a legal firm and a supplies store invoice) sharing a
similar semantic block corresponding to contact infor-
mation

BLOCKIE and not purely the abilities of the LLM.

5.2.3 BLOCKIE is resistant to heterogeneity
and to unseen document formats.

To assess format resilience, we conduct two experi-
ments. In the first experiment, we evaluate perfor-
mance when training on only 100 samples selected
for maximum format diversity (based on maximis-
ing text embedding distances with the test sample).
Table 3 shows that while LayoutLMV3’s perfor-
mance drops significantly from 96.98% to 78.79%
with diverse samples, BLOCKIE maintains robust
performance (94.47% F1), demonstrating better
generalization to format variations. This is even
better that 91.48% achieved by Perot et al., 2024
by training on 100 random samples.

In our second experiment, we evaluate cross-
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Figure 7: Block Parser on Figure 6, where the legal firm
fax is used as a labelled train dataset example, and the
supplies store invoice is treated as a test sample

CORD - SER
APPROACH

DOCLLM - 7B 67.4
LAYOUTLLM - 7B 63.1
LMDX - GEMINI PRO 95.57

QWEN 2.5 7B FINETUNED 84.03
QWEN 2.5 14B FINETUNED 89.36
QWEN 2.5 32B FINETUNED 91.08
SONNET - ZERO SHOT 91.37
SONNET - FEW SHOT 95.72
BLOCKIE - QWEN 2.5 7B 87.72
BLOCKIE - QWEN 2.5 14B 89.98
BLOCKIE - QWEN 2.5 32B 96.14
BLOCKIE - QWEN 2.5 72B 96.01
BLOCKIE - SONNET 3.5 98.83

Table 2: BLOCKIE with smaller LLMs outperforms
massive state-of-the-art models Sonnet and Gemini Pro

dataset generalization by testing a CORD-trained
model on SROIE documents (using the enity total
amount, which is common in both datasets). As
shown in Table 3, BLOCKIE maintains strong per-
formance (97.06% F1) while LayoutLMV3’s per-
formance deteriorates substantially (33.43% F1),
further validating our approach’s resilience to for-
mat changes.

5.2.4 Block creation is crucial for BLOCKIE
performance

The effectiveness of BLOCKIE relies critically on
accurate semantic block creation. Our analysis re-
veals that block creation quality strongly correlates
with final extraction performance (Table 4). The
performance gap between different model sizes
can be largely attributed to their block creation
capabilities - Qwen 32B and 72B achieve state-of-

the-art performance due to superior block creation
(85.03% and 81.69% block-level F12 respectively),
while smaller models show lower block creation
accuracy.

To isolate the impact of block creation, we eval-
uate smaller models (7B, 14B) using ground truth
blocks and blocks created by the 32B model. As
shown in Table 5, with perfect blocks, even 7B
and 14B models achieve performance comparable
to larger models (94.38% and 94.98% F1 respec-
tively), closing 80% of the performance gap, indi-
cating that block creation quality is the primary
performance bottleneck.

Interestingly, table 4 shows that the 32B model
outperforms the 72B model in both block creation
accuracy and overall F1 score. We also com-
pared the capability of these two models to per-
form block parsing and combining. We conducted
an experiment using the CORD dataset. We pro-
vided ground truth blocks (generated using Son-
net 3.5 with ground truth labels) and evaluated the
performance of both the 32B and 72B models in
parsing and combining these blocks. The results
revealed that the 32B model achieved an F1 score
of 98.13%, while the 72B model scored 97.54%.
This suggests that, in our specific setup, the 32B
model outperforms the 72B model in both block
creation and subsequent parsing and combining
tasks. However, overall, the block creation step re-
mains the most crucial in determining performance.

5.2.5 BLOCKIE is able to perform
value-absent inference

Finally, we demonstrate BLOCKIE’s reasoning ca-
pabilities through value-absent inference. We eval-
uate on CORD receipts where line item counts
are not explicitly stated but can be inferred through
counting. On a sample of 20 such cases, BLOCKIE
successfully infers the correct count in 18 instances
(90% accuracy), handling complex scenarios in-
cluding implicit quantities and hierarchical items.
Figure 5.2.5 illustrates several challenging cases
where BLOCKIE successfully performs multi-step
reasoning to arrive at correct inferences. This ca-
pability distinguishes BLOCKIE from existing ap-
proaches that are limited to extracting explicitly
present information.

2Block level F1 is derived by comparison with ground
truth blocks created using labelled data
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TEST ON CORD - SER SROIE -TOTAL AMOUNT

TRAINED ON [100 TRAIN SAMPLES [TRAIN SAMPLES FROM CORD]
LEAST SIMILAR TO TEST]

LAYOUTLMV3 78.79 33.43
SONNET 3.5 FEW SHOT 92.11 95.39
BLOCKIE - QWEN 2.5 32B 86.51 91.01
BLOCKIE - SONNET 3.5 94.47 97.06

Table 3: Resilience to heterogeneity and new formats. Sonnet is more resilient than LayoutLMV3, and BLOCKIE
further enhances this resilience, outperforming layout-aware NLP methods designed to recognize templates.

CORD - SER
APPROACH BLOCK F1 ENTITY F1

BLOCKIE - QWEN 2.5 7B 74.91 87.72
BLOCKIE - QWEN 2.5 14B 73.25 89.98
BLOCKIE - QWEN 2.5 32B 85.03 96.14
BLOCKIE - QWEN 2.5 72B 81.69 96.01
BLOCKIE - SONNET 3.5 86.73 98.83

Table 4: Correlation between block creation accuracy and performance.

BLOCKIE END QWEN 32B GROUND TRUTH
QWEN SIZE TO END BLOCKS BLOCKS

7B 87.72 90.91 94.38
14B 89.98 92.23 94.98

Table 5: Semantic Block F1-scores. After correcting
semantic blocks of test samples, smaller models are able
to recover 80% of the 10 percent performance gap with
larger models

6 Conclusion

In this work, we introduced the concept of seman-
tic blocks and proposed a novel LLM-based ap-
proach for information extraction from documents
leveraging them. The segmentation of documents
into generalizable, smaller, self-contained semantic
blocks allowed LLMs to generate focused step-by-
step reasoning guiding their annotation, and we
demonstrated that this was effective by showing
state-of-the-art performance across diverse public
datasets.

The framework is designed to be generalizable
across various large language models (LLMs) and
resilient to unseen document layouts and formats,
and we demonstrated robust performance across
multiple LLMs, heterogeneity and new, unseen doc-
ument formats. Additionally, we also showcased
the ability of BLOCKIE to perform value-absent
inference.

The combination of semantic reasoning, robust

Figure 8: Some challenging inferences made by
BLOCKIE. In test_30, the single line item does not
have a quantity mentioned. In test_29, the LLM has to
reason to leave out sub-items from the count. In test_20,
it has to perform a multi-step addition.

generalization, and resilience to variation positions
this methodology as a promising direction for fu-
ture research in document information extraction.
Future work could focus on incorporating image-
based features such as font size, qualities such as
bold/italics, etc, into semantic block creation even
in text-only LLMs.

Limitations

We acknowledge the limitations of BLOCKIE with
a view to motivating further research in this field.
The computational architecture currently requires
sequential LLM calls for block creation, processing
and combining which increases latency. While our
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block creation methodology showed robust perfor-
mance across all three datasets and experiments,
it could be refined further. Specifically, the cur-
rent block creation methodology does not leverage
image-based contextual clues such as font, ital-
ics/bold, visual markers for linkages such as arrows,
etc. Additionally, while robust performance was
observed across 5 different LLMs of varying sizes,
BLOCKIE’s performance is inherently tied to the
reasoning capability of the LLM being used. As
was shown in section 5.2.4, it is vital to ensure that
the LLM is able to reason and create proper blocks
with linked semantic atoms, as missed linkages can
be hard to recover. Future research should focus
on robust block creation using the definition of se-
mantic blocks and linked semantic atoms. Most
of the testing focused on single page invoice-like
documents. While it was shown that it is possible
to bridge the performance gap between LLMs and
specialized methods such as LayoutLMV3 on these
documents (and even outperform these), more test-
ing needs to be done on multi-page documents,
complex elements like tables, figures etc within
documents, and general VQA benchmarks to assess
BLOCKIE’s applicability to broader VQA tasks.
Finally, using proprietary LLMs like Sonnet can
make BLOCKIE less transparent even with step-
by-step reasoning output, and caution needs to be
exercised to ensure outputs are as expected.
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Table 6: Train Dataset Labeling Prompt Template

PROMPT INSTRUCTIONS
TAKE THE FOLLOWING TEXT - <text>
THIS GETS PARSED INTO <annotation>
BREAK THE PROVIDED TEXT INTO SEMANTIC BLOCKS
LIKE block1, block2 ... WITH RELATED TEXT
IN SAME BLOCK. HERE ARE SOME RULES:
1/ THE OUTPUT SHOULD BE A DICTIONARY WITH
KEYS - block_1, block_2 ETC.
2/ EACH BLOCK SHOULD BE A DICTIONARY ITSELF,
WITH THE KEYS - REASON, TEXT AND PARSED:

• IN REASON, THINK STEP-BY-STEP WHY
THE TEXT UNDER CONSIDERATION IS A
SINGLE BLOCK

• THE TEXT KEY SHOULD CONTAIN THE
TEXT PRESENT IN THE BLOCK

• THE PARSED SECTION SHOULD CONTAIN
THE PART OF THE PARSED OUTPUT
THE TEXT MAPS TO

3/ RELATED TEXT REFERS TO TEXT BELONGING TO
THE SAME <LINKED OR HIERARCHICAL ENTITY FROM
SCHEMA, OR OTHERS>
4/ DO NOT LEAVE OUT ANY TEXT
5/ DO NOT WRITE A SINGLE EXTRA WORD
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Table 7: Block Creator Prompt Template

PARSER INSTRUCTIONS
YOU ARE A SEASONED TEXT PARSER. GIVEN AN
OCR TEXT, YOU ARE ABLE TO PARSE IT INTO
BLOCKS OF RELATED TEXT ALONG WITH
STEP-BY-STEP REASONS.

<Linked and Hierarchical entity
identification rules>:
<Few Shot Examples> -
HERE ARE SOME RULES:
1/ THE OUTPUT SHOULD BE A DICTIONARY WITH
KEYS - BLOCK_1, BLOCK_2 ETC.
2/ EACH BLOCK SHOULD BE A DICTIONARY ITSELF,
WITH THE KEYS - REASON, AND TEXT.

A. IN REASON, THINK STEP-BY-STEP WHY
THE TEXT UNDER CONSIDERATION IS A
SINGLE BLOCK. SHOW STEP BY STEP
REASONING USING RULES AND EXAMPLES
LAID OUT.

B. THE TEXT KEY SHOULD CONTAIN THE
TEXT PRESENT IN THE BLOCK.

3/ RELATED TEXT REFERS TO TEXT BELONGING
TO THE SAME <LINKED OR HIERARCHICAL ENTITY
FROM SCHEMA, OR OTHERS>
4/ DO NOT LEAVE OUT ANY TEXT.
5/ DO NOT WRITE A SINGLE EXTRA WORD.

<Verification Process>
COMPLETE THE ANSWER FOR THE FOLLOWING TEXT.
DO NOT WRITE ANYTHING EXTRA.
<OCR words> <bounding boxes>
ANSWER:

Table 8: Block Parser Prompt Template

SYSTEM INSTRUCTIONS
YOU ARE AN EXPERT SYSTEM FOR PARSING RECEIPT
TEXT BLOCKS INTO STRUCTURED DATA. YOUR ROLE
IS TO ANALYZE RECEIPT TEXT AND CONVERT IT
INTO A STRUCTURED DICTIONARY FORMAT.

<SCHEMA AND FIELD DESCRIPTIONS>
<Formatting rules>

SIMILAR EXAMPLES FOR REFERENCE:
<few shot examples>
NOTE: THESE EXAMPLES ARE FOR REFERENCE BUT
MAY CONTAIN SOME INCONSISTENCIES. FOLLOW
THE RULES ABOVE STRICTLY.

CURRENT TASK:
THIS IS A BLOCK CREATED PREVIOUSLY WHERE
THE BLOCK-CREATOR HAD THIS REASON
"{query_reason}"

YOUR TASK IS TO CREATE A COMPLETE, VALID
JSON DICTIONARY FOLLOWING THE PROVIDED
SCHEMA THAT REPRESENTS ALL THE INFORMATION
IN THIS RECEIPT DOCUMENT.

<OUTPUT SPECIFICATION>
<Verification Process>

PARSE THIS RECEIPT BLOCK INTO THE SCHEMA
FORMAT:
<query_block>
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Table 9: Block Combiner Prompt Template

SYSTEM INSTRUCTIONS
YOU ARE AN EXPERT SYSTEM FOR PARSING RECEIPT
DOCUMENTS INTO STRUCTURED DATA. YOUR TASK IS
TO ANALYZE A COMPLETE RECEIPT DOCUMENT AND
CREATE A COMPREHENSIVE DICTIONARY USING
PARTIAL INFORMATION FROM INDIVIDUAL BLOCKS.

CONTEXT:
YOU WILL BE PROVIDED WITH:
1. ALL THE WORDS IN THE DOCUMENT
2. BOUNDING BOXES
3. INDIVIDUAL BLOCKS OF TEXT AND THEIR

PARTIAL PARSES
4. THE REQUIRED DICTIONARY SCHEMA

<SCHEMA AND FIELD DESCRIPTIONS>
<Linked and Hierarchical entity
identification rules>

ALL WORDS IN THE DOCUMENT:
{text}

ALL BOUNDING BOXES IN THE DOCUMENT:
{bboxes}

PARSED BLOCKS:
BELOW ARE THE INDIVIDUAL BLOCKS AND THEIR
PARTIAL PARSES ALONG WITH REASON. USE THESE
TO HELP CONSTRUCT THE COMPLETE DICTIONARY:
{blocks_and_parses}

INSTRUCTIONS:
1. USE THE COMPLETE DOCUMENT TEXT TO

UNDERSTAND THE FULL CONTEXT
2. UTILIZE THE PARTIAL PARSES FROM BLOCKS

TO HELP CONSTRUCT THE FINAL DICTIONARY
- REMEMBER - THE PARTIAL PARSES MAY
NOT HAVE FULL CONTEXT

3. ENSURE ALL INFORMATION IS CORRECTLY
CATEGORIZED ACCORDING TO THE SCHEMA

4. MAINTAIN CONSISTENCY WITH NUMERICAL
FORMATS FROM THE ORIGINAL TEXT

<Verification Process>

YOUR FINAL DICTIONARY SHOULD CONTAIN TWO
KEYS:
1. REASON - JUSTIFY STEP BY STEP WHY YOU

CHOSE PARTICULAR VALUES. USE THE
REASON FROM PARTIAL PARSES, CHECK IF
IT MENTIONS EXACT MATCH.

2. INVOICE - SHARE THE INVOICE DICTIONARY

RETURN ONLY THE FINAL JSON DICTIONARY
WITHOUT ANY ADDITIONAL EXPLANATION WITH
PROPER FORMAT.
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B Datasets and Benchmarks

B.1 Datasets

CORD Dataset CORD (Park et al., 2019) con-
tains 1000 Indonesian receipts, divided into train,
validation and test samples of size 800,100 and
100. Along with the images, CORD also contains
crowdsourced labels, and OCR output with bound-
ing boxes. 30 hierarchical entities are annotated
manually under top-level entities menu, subtotal
and total. The associated task is to assign the words
in the OCR output to these entities. Performance is
assessed using micro-F1 on entity prediction.

SROIE Dataset SROIE (Huang et al., 2019)
dataset consists of scanned receipts from a variety
of domains, such as retail, food, and services, split
into 626 train and 347 test receipts. The dataset
contains images, OCR output and annotations with
labeled entities for Company Name, Date, Total
Amount, and Address. We evaluate our approach
on the information extraction task proposed in the
paper. Performance is assessed using micro-F1 on
entity prediction.

FUNSD Dataset The FUNSD Datatet (Jaume
et al., 2019) contains 199 fully annotated images
of forms sampled from the form type document of
the RVL-CDIP dataset (Harley et al.). The dataset
is split into 149 images in the training set and 50 in
the testing set. The annotations consist of text with
four keys - question, answer, header, and others,
which is simplistic and do not represent meaningful
entities. However, the annotations also contain link-
ages, forming meaningful question-answer pairs
and groupings of these pairs under headers. We fo-
cus on the entity-linking task to evaluate the ability
of our approach to extract meaningful relations.

B.2 LLMs and Benchmark approaches

We tested out BLOCKIE across 5 different LLMs
from two different families. The LLMs chosen
are widely used and vary in sizes from massive
proprietary models to open-source models with 7B
parameters.

Claude 3.5 Sonnet Claude 3.5 Sonnet is the first
model released by Anthropic from the Claude 3.5
family (Anthropic, 2024a). In the benchmark eval-
uations released by Anthropic, it showed at-par or
superior performance compared to Claude 3 Opus,
the previous best-performing Anthropic model,
while being 2x faster. It established new state-of-
the-art on reasoning and question-answering tasks
at the time of its release.

For few-shot Sonnet results, we conducted ex-
periments using the CORD validation dataset and
found best results when 5 examples were used that
were the closest (with respect to text embedding
similarity) to the target sample.

Qwen 2.5 Qwen 2.5 is a family of open-source
LLMs released by Alibaba Cloud (Qwen et al.,
2025). The family contains both base language
models, instruction-tuned models as well as spe-
cialized models for coding, math, etc. The family
consists of models in sizes varying from 0.5B pa-
rameters to 32B parameters. We used the 72B, 32B,
14B and 7B versions for our experimentation.

For finetuning, we used LORA (Hu et al., 2021)
with rank 64 for 6 epochs with learning rate
0.00002. These numbers were based on results
obtained on the validation dataset of CORD.

LayoutLMV3 LayoutLMV3 (Huang et al.,
2022) is a state-of-the-art information extraction
benchmark. It incorporates layout information us-
ing cross-attention between bounding boxes and
text, and through masked image modeling. It shows
competitive performance on all three benchmark
datasets. Note that while (Luo et al., 2023) outper-
forms LayoutLMV3, the authors have not officially
released their pre-processing code or fine-tuned
weights for CORD. We use layoutlmv3 in our ex-
periments to demonstrate the limitations of SER-
based approaches.

When we finetuned LayoutLMV3 for our experi-
ments on heterogeneity and value-absent inference,
we used the parameters listed in the official paper
for CORD.

We reviewed the licenses for all these datasets
and models, and ensured that we stick to the in-
tended usage of these for research purposes.

17256


