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Abstract

The knowledge within large language models
(LLMs) may become outdated quickly. While
in-context editing (ICE) is currently the most
effective method for knowledge editing (KE),
it is constrained by the black-box modeling
of LLMs and thus lacks interpretability. Our
work aims to elucidate the superior perfor-
mance of ICE in KE by analyzing the impacts
of in-context new knowledge on token-wise
distributions. We observe that despite a signifi-
cant boost in logits of the new knowledge, the
performance of ICE is still hindered by stub-
born knowledge. We propose a novel approach
termed Decoding by Contrasting Knowledge
(DeCK). DeCK derives the distribution of the
next token by contrasting the logits obtained
from the newly edited knowledge guided by
ICE with those from the unedited paramet-
ric knowledge. Our experiments demonstrate
that DeCK enhances the confidence of LLMs
in edited facts. For instance, it improves the
performance of LLAMA3-8B-INSTRUCT on
MQUAKE by up to 219%, demonstrating its
capability to strengthen ICE. DeCK can be eas-
ily integrated into any ICE method as a decod-
ing component to enhance editing capabilities.1

1 Introduction

With the widespread deployment of large language
models (LLMs) (OpenAI, 2022, 2023; Touvron
et al., 2023a,b; Song et al., 2024), there is a rising
demand for accessing accurate information through
LLMs. However, despite the extensive knowl-
edge stored in LLMs, this information can become
outdated due to changes in the real world. This
can potentially result in factual inaccuracies (Chen
and Shu, 2023) or false information (Zhang et al.,
2023b; Huang et al., 2023a). Unlike the high com-
putational resource burden incurred by retraining

*Corresponding author.
1Code is available at https://github.com/byronBBL/

DeCK

from scratch, knowledge editing (KE) (Sinitsin
et al., 2020; De Cao et al., 2021; Zhu et al., 2020;
Mitchell et al., 2022; Yao et al., 2023) has been
proposed as an efficient means to update the knowl-
edge of LLMs. They aim to edit knowledge by
incrementally injecting or modifying facts.

As LLMs demonstrate increasingly power-
ful in-context learning capabilities, recent re-
search (Madaan et al., 2022; Zhong et al., 2023;
Zheng et al., 2023; Cohen et al., 2024; Wang et al.,
2024; Bi et al., 2024b,c) has delved into easier
and efficient methods for in-context editing (ICE),
aiming to directly guide frozen LLMs in generat-
ing text with new knowledge through contextual
prompts. Figure 1 (left) illustrates an example of
successful editing using ICE. These ICE methods
showcasing state-of-the-art performance without
the need to alter internal model parameters, indi-
cate the promising potential of modeling LLMs as
black boxes for ICE guided by external contexts.

However, as illustrated in Figure 1 (middle),
there still exist deeply entrenched pieces of knowl-
edge in LLMs that are difficult for ICE to modify,
which we refer to as stubborn knowledge. We
argue that LLMs, through extensive pre-training,
have developed strong confidence in certain facts,
making them difficult to alter solely through exter-
nal contextual prompts (Bi et al., 2024a). There-
fore, despite the fact that the sophisticated meth-
ods such as enhancing retrieval (Shi et al., 2024),
checking conflict (Zhong et al., 2023), and guiding
reasoning (Wang et al., 2024) can enhance the per-
formance of ICE, relying on these external methods
cannot genuinely improve the foundational capa-
bility for editing individual stubborn knowledge.

In this work, we focus on enhancing the state-
of-the-art KE method, ICE, to reduce the negative
impacts from the stubborn knowledge in LLMs.
First, we observe the impact of the in-context new
knowledge in ICE on LLMs from the perspective of
LLMs’ token-level distributions. We find that incor-
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The CEO of Tesla is Elon 
Musk. Elon Musk is a citizen 
of the United States. So the 
answer is United States.

What is the country of 
citizenship of Tesla's CEO?

The CEO of Tesla is Jack Ma.
Jack Ma is a citizen of China. 
So the answer is China.

What is the country of 
citizenship of Tesla's CEO?
Assume Tesla’s CEO is Jack Ma.

ICE of Easy Knowledge ICE of Stubborn Knowledge

The creator of WWE Velocity is 
Vince McMahon. His spouse, Linda 
McMahon, was born in the United 
States. So the answer is the 
United States.

In which country was the spouse of 
the creator of WWE Velocity born?

The creator of WWE Velocity is 
Vince McMahon, not Hoshino 
Gen. His spouse, Linda McMahon, 
was born in the United States. So 
the answer is the United States.

In which country… was born? 
Assume the creator of WWE is 
Hoshino Gen.

DeCK of Stubborn Knowledge

The creator of WWE Velocity is 
Hoshino Gen. His spouse, Yui
Aragaki, was born in Japan. So 
the answer is Japan.

In which country was the spouse of 
the creator of WWE Velocity born?

In which country… was born? 
Assume the creator of WWE is 
Hoshino Gen.

The creator of WWE Velocity is 
Vince McMahon. His spouse, Linda 
McMahon, was born in the United 
States. So the answer is the 
United States.

Figure 1: Comparison between in-context editing (ICE) and our DeCK. DeCK successfully edits the stubborn
knowledge, whereas ICE handles only simple knowledge and fails with complex cases.

porating this new knowledge significantly increases
the predicted probability of generating edited facts
during the decoding process. A deeper exploration
of the failed cases reveals the reasons why stubborn
knowledge is difficult to edit. Despite the signifi-
cant improvement in the logits of new knowledge
achieved by ICE, there persists a small gap be-
tween new knowledge and parametric knowledge,
where parametric knowledge refers to the original
unedited knowledge in LLMs.

Building upon the insights gained from above
observations, we introduce a new decoding tech-
nique called Decoding by Contrasting Knowledge
(DeCK) to enhance LLMs’ confidence in edited
facts for better editing of stubborn knowledge.
DeCK consists of two components: (1) an edit-
ing enhancement module that improves attention
to new knowledge, thus preventing it from being
filtered out during contrastive decoding, and (2)
a contrastive decoding strategy that compares the
logical distributions after in-context editing with
the original parametric logical distributions.

Overall, our contributions can be summarized by
three points. First, as far as we know, we are the
first to elucidate superior performance of ICE on
the KE from a model interpretability perspective.
Second, we find that stubborn knowledge signif-
icantly impacts the performance of ICE, and we
propose DeCK to boost confidence in editing facts,
enhancing ICE to overcome it. Third, extensive
experiments on MQUAKE indicate that our DeCK
can effectively enhance the performance of ICE
without altering the internal model or modifying
external prompts. DeCK can be easily integrated
into any ICE method as a decoding component to
enhance editing capabilities. Our work paves the
way to develop the both effective and accountable

KE methods for LLMs.

2 Background

Decoding in LLMs. The current objective of
LLMs decoding is to predict the subsequent words
within a given context sequence. Formally, given
a sequence of tokens X = {x1, x2, ..., xt−1}, the
next token probability distribution is computed con-
ditioned on the previous context:

IP(xt|x<t) =
exp(h⊤

t Wxt/τ)∑
j∈V exp(h⊤

t Wj/τ)
(1)

where τ represents a temperature parameter reg-
ulating the precision of the subsequent-token distri-
bution. In text generation, the language model sam-
ples from the conditional distribution IP(xt|x<t) to
generate the next token xt, continuing this process
until an end-of-sequence token is produced.

Knowledge Editing. KE aims to transform the
behavior of the original model fbase into post-
edit model fe. Given an edit descriptor ze =
(xe, re, ye), where (xe, re, ye) represents a triplet
such as (US, President, Joe Biden) meaning Joe
Biden is the president of US. KE ensures that
fe(xe, re) = ye while fbase(xe, re) ̸= ye. A
thorough edit not only modifies the correspond-
ing knowledge but also all the knowledge within
the multi-hop relations that are impacted by this
edit. For example, consider a two-hop question
like "Who is married to the British Prime Minis-
ter?" The original answer would be "Carrie John-
son" and the associated knowledge could be rep-
resented: (UK, Prime Minister, Boris Johnson),
(Boris Johnson, spouse, Carrie Johnson). With an
edit ze = (UK,Prime Minister,Rishi Sunak) and
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existing knowledge (Rishi Sunak, spouse, Akshata
Murthy), fe should produce the updated response:
"Akshata Murthy".

3 In-depth Exploration of ICE

With ϕ(·) replacing the affine layer to predict the
probability of the next token over the vocabulary
set V , we can obtain a simplified representation of
Equation (1). Given a sequence of tokens XE =

{x(E)
1 , x

(E)
2 , ..., x

(E)
m−1}, which includes guidance

from an editing prompt, such as "Assume Tesla’s
CEO is Jack Ma", we compute the probability of
next token x

(E)
m with editing guidance as follows:

IPE(x(E)
m |x(E)

<m) = softmax(ϕ(h(E)
m )) (2)

Where x
(E)
m ∈ V . We can also represent the para-

metric probability distribution IPB(x
(B)
n |x(B)

<n ) by
considering only the token sequence XB containing
the original question prompt without any editing
content. The distribution IPE(x

(E)
m |x(E)

<m) also re-
flects the feedback from the introduction of external
knowledge, while IPB(x

(B)
n |x(B)

<n ) solely represents
the response of LLMs based on their parametric
knowledge to the question.

3.1 How ICE Effectively Edits Knowledge?
Although the ICE methods (Zhong et al., 2023;
Cohen et al., 2024; Wang et al., 2024) have demon-
strated promising performance, they all rely on
the black-box modeling of LLMs for editing, and
the internal mechanisms behind their effectiveness
remain unclear. Therefore, we delve into the in-
trinsic reasons behind the superior performance of
ICE. We design dedicated experiments to capture
the logits output of knowledge that would be influ-
enced by the edit. A striking observation in Figure
2 is that introducing new knowledge through ICE
leads to a significant rightward shift in the proba-
bility distribution of the new knowledge, while the
logits for parametric knowledge remain largely un-
changed or decrease to some extent. This suggests
that ICE significantly enhances the logits of new
knowledge while having minimal impact on para-
metric knowledge. Additionally, the number of top-
ranked positions for new knowledge significantly
increases after ICE, with the majority surpassing
that of parametric knowledge. This indicates that
the in-context new knowledge can improve the con-
fidence of LLMs in editing facts, thereby prompt-
ing responses with the edited answers.

3.2 Challenges of Stubborn Knowledge
While ICE has significantly boosted the confidence
of LLMs in new knowledge, we find that there are
still instances where certain new knowledge ranks
prominently but not as the top-1, as illustrated in
Figure 2. We term this phenomenon "stubborn
knowledge", which refers to cases where editing
fails due to either an excessive confidence in ex-
isting parametric knowledge or insufficient confi-
dence in new knowledge. The edit cases in Figure
3 deeply reveals the failed pattern for ICE in ad-
dressing stubborn knowledge, which happens when
there is still an extremely small gap compared to
the parametric knowledge after editing, despite the
significant increase in new knowledge logits in-
duced by the editing prompt. Taking the last case
as an example, after editing, the new knowledge
"English" lags behind the parametric knowledge
"French" by only 0.516 in terms of logical distribu-
tion, illustrating how a minor gap leads to editing
failure. This indicates the intrinsic reasons for the
failure of black-box ICE methods to edit stubborn
knowledge in LLMs in most cases.

4 DeCK: Enhancing LLMs’ Confidence
on Edited Facts

Inspired by the observations in Section 3, we de-
sign our novel decoding strategy DeCK to enhance
ICE in overcoming stubborn knowledge. Figure 4
illustrates the process of using DeCK to handle the
stubborn knowledge case shown in Figure 1 (right).
DeCK can be formalized as follows. Using IP(xt)
to represent IP(xt|x<t) for notational brevity, we
compute the probability of the next token by,

IPE
Enh(x

(E)
m ) = Enh(IPE(x(E)

m )) (3)

ÎP
E
Enh(x

(E)
m ) = softmax




F
(

IPE
Enh(x

(E)
m ),

IPB(x(B)
n )

)



 (4)

Here, the function Enh(·) in Equation 3 is im-
prove the attention to edit facts, as detailed in Sec-
tion 4.1. The operator F(·, ·) in Equation 4 is used
to contrast between the output distributions from
enhanced new knowledge and parametric knowl-
edge, as explained in Section 4.2.

4.1 Editing Signal Enhancement
To enhance the confidence of LLMs in edited
knowledge, we design an editing enhancement
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Knowledge before ICE Knowledge after ICE

Figure 2: Changes in new knowledge and parametric knowledge before and after editing. We capture the first output
tokens to represent the corresponding knowledge and then record their original logits and ranks within vocabulary.

Succ-
essful
Edit

parametric new

Knowledge Answer Parametric Change

logits rank

Input

question edit

Egnlish ItalianWhat‘s the official language in scr-
een International's home country?

The official language of 
United Kingdom is Italian 20.219 → 19.875 10.461 → 20.179 25 → 11 → 2

United 
States BulgariaMarc Cherry is a citizen of 

Bulgaria 16.641 → 12.211 5.586 → 18.500 186 → 11 → 4

Failed
Edit

Europe AustriliaWhich continent does Blur's origin 
lie in?

London is located in the 
continent of Australia. 27.391 → 22.730 13.734 → 18.094 12 → 31 → 1

French EnglishThe official language of 
France is English 19.266 → 17.578 12.211→ 17.062 4 → 21 → 1

logits rank

New ChangeCase
Type

Which country is the creator of "
Devious Maids" a citizen of?

What is the official language of the 
country of Marcellin Champagnat?

Figure 3: Edit cases with changes in the first token for both parametric and new knowledge. We obtained the
case results by conducting ICE in the LLAMA2-7B-CHAT model. ‘→’ indicates the knowledge change after
incorporating editing prompts. ‘logits’ and ‘rank’ pertain to the first token of knowledge answer, reflecting the
confidence of LLMs in the corresponding knowledge.

function that minimizes the Knowledge Enhance-
ment Divergence (KED) (Defined in Appendix A)
between the enhanced distribution and a target dis-
tribution. Assume that P̃ and Q are discrete proba-
bility distributions over a finite vocabulary V , and
that the weights wi are non-negative and sum to 1.

We introduce a semantic relevance function s :
V ×E → R that measures the relevance of a token
vi ∈ V to the edited knowledge represented by E,
defined as:

s(vi, E) = max
ej∈E

sim(vi, ej) · ϕ(vi)

where sim(·, ·) is a similarity function, such as co-
sine similarity, that measures the semantic similar-
ity between two token embeddings, and ϕ : V → R
is a frequency-based weighting function:

ϕ(vi) = log(freq(vi) + ϵ) · α

Here, freq : V → N denotes the frequency of a
token in the edited descriptor E, ϵ > 0 is a small
constant to avoid taking the logarithm of zero, and
α is a scaling factor. We also define an enhance-
ment function Enh : Rn × Rn → Rn that takes

the original logits ϕ(h(E)
m ) ∈ Rn and the semantic

relevance scores s ∈ Rn as inputs and produces the
enhanced logits ϕ̃(h(E)

m ) ∈ Rn:

Enh(ϕ(h(E)
m ), s) = α · ϕ(h(E)

m ) + β · s

where α, β ∈ R are scaling coefficients that con-
trol the balance between the original logits and the
semantic relevance scores. Hence, the target distri-
bution Q over the vocabulary V is constructed to
assign higher probabilities to the tokens related to
the edited knowledge:

Q(vi) =

{
1
m if vi ∈ E

ϵ otherwise

where ϵ > 0 is a small constant to ensure a valid
probability distribution.

4.2 Decoding by Contrasting Knowledge
The main idea of our DeCK approach is to highlight
the output probability increment of new knowledge
by contrasting it with the parametric knowledge
from the inherent knowledge of the LLMs. Given
the ICE probability distribution IPE

Enh(x
(E)
m ) after
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Which country is the spouse of the 
creator of WWE Velocity was born?

Input Question:

Assume the creator of 
WWE is Hoshino Gen.

Adding New Knowledge:

In-Context 
Editing

Initial ICE distribution 

Parametric knowledge: Linda McMahon
New knowledge: Hoshino Gen

COT

Vin
ce
Ry
ohe
i
GO

Ho
shi
no

Ke
ita

Original distribution 

Vin
ce
Ry
ohe
i
Yu
i

Ho
shi
no

Ke
ita

Enhanced distribution

Vin
ce
Ry
ohe
i
Yu
i

Ho
shi
no

Ke
ita

The creator of WWE is      ._

Enhance
Editing

Contrast

DeCK distribution

Vin
ce
Ry
ohe
i
Yu
i

Ho
shi
no

Ke
ita

The creator of WWE Velocity is Vince 
McMahon. His spouse, Linda
McMahon, was born in United States.

DeCK output:

The creator of WWE Velocity is Hoshino Gen. 
His spouse, Yui Aragaki, was born in Japan.

Original
output

Figure 4: Illustration of DeCK enhancing ICE to edit the stubborn knowledge. During decoding, DeCK contrasts
the enhanced ICE distribution with the original distribution to highlight new knowledge, inducing LLMs to generate
edited facts using chain-of-though (CoT) (Wei et al., 2022) during reasoning to answer input questions.

editing enhancement in Section 4.1 and the origi-
nal parametric probability distribution IPB(x

(B)
n ),

we aim to amplify the outputs of new knowledge
during the generation process while downplaying
the outputs of parametric knowledge.

Following the Contrastive Decoding approach
proposed by Li et al. (2023). We subtract the orig-
inal log probabilities of parametric outputs guided
by knowledge question alone from those of the out-
puts guided by ICE with the in-context new knowl-
edge. Then, we use this resulting distribution as
the next-word prediction for the generation guided
by editing prompts. Therefore, the operator F(·, ·)
in Equation 4 can be expanded as follows:

F
(
PE

Enh(x
(E)
m ),PB(x(B)

n )
)
=




log

PE
Enh(x

(E)
m )

PB(x
(B)
n )

−∞
(5)

This implies that when x
(E)
m ∈ Vhead(x

(E)
m | x(E)

<m),
F is defined as the subtraction: log IPE

Enh(x
(E)
m )−

γ log IPB(x
(B)
n ) , and is set to negative infinity oth-

erwise, where γ is the adjustment coefficient. And
the subset Vhead (x

(E)
m |x(E)

<m) ∈ V is defined as
whether or not the token has high enough prob-
abilities from the editing output,

Vhead(x
(E)
m | x(E)

<m) =
{
x(E)
m ∈ V :

PE
Enh(x

(E)
m ) ≥ λmax

w
PE

Enh(w)
}
.

(6)

As the adaptive plausibility constraint (APC)
strategy proposed in Li et al. (2023), we use
Vhead to filter out low-probability tokens in
IPEEnh(x(E)

m ), considering only high-score tokens.
Without APC, extremely low-probability tokens

might be excessively amplified by the softmax func-
tion after subtraction, generating implausible words
and severely impacting contrastive decoding perfor-
mance. Specifically, the Editing Signal Enhance-
ment module in Section 4.1 cleverly avoids being
filtered out in Equation 6 by amplifying the new
knowledge signal before contrastive processing, en-
suring DeCK functions effectively.

The key to our contrastive decoding approach
is the simultaneous maintenance of two to-
ken sequences’ generation, which enables more
lightweight deployment compared to previous
methods (Li et al., 2023; Chuang et al., 2023). In
iterative decoding, we predict the next token based
on ÎP

E
Enh(x

(E)
m ) in Equation 4. Then, a key step

involves simultaneously concatenating the new to-
ken to two separate token sequences XE and XB ,
which may have different lengths. This ensures
that updates to both sequences are synchronized,
preventing any implausible discrepancies in the log
distribution during iteration.

5 Experiments

5.1 Experimental setup
Datasets We conduct extensive experiments us-
ing the MQUAKE-3K dataset (Zhong et al.,
2023) and its derivatives, MQUAKE-2002 and
MQUAKE-HARD, proposed by Wang et al. (2024).
MQUAKE provides multi-hop knowledge ques-
tions containing extensively edited facts, which are
used to evaluate KE on counterfactual edits. Addi-
tionally, we constructed corresponding STUBBORN

datasets in 5.3 to further evaluate the effectiveness
of editing stubborn knowledge.
Models and Baselines Our experiments exam-
ine three types of LLAMA-CHAT models (2-7b,
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Model Method MQUAKE-3K MQUAKE-2002 MQUAKE-HARD

LLAMA2- ROME (Meng et al., 2022a) 18.2 19.1 15.7

7B-CHAT
IKE (Zheng et al., 2023) 85.4 85.1 88.9
IKE w/ DeCK (ours) 91.3 89.4 98.6

LLAMA2- ROME (Meng et al., 2022a) 39.4 39.7 35.2

13B-CHAT
IKE (Zheng et al., 2023) 63.8 64.1 55.2
IKE w/ DeCK (ours) 84.6 84.4 89.7

LLAMA3- ROME (Meng et al., 2022a) 14.5 15.9 12.7

8B-INSTRUCT
IKE (Zheng et al., 2023) 31.6 32.5 14.3
IKE w/ DeCK (ours) 54.7 55.9 45.7

MISTRAL- ROME (Meng et al., 2022a) 28.1 30.2 26.3

7B-INSTRUCT
IKE (Zheng et al., 2023) 34.1 35.6 15.6
IKE w/ DeCK (ours) 46.7 48.5 19.2

Table 1: Experimental results (accuracy; %) across various models and datasets. We set the batch size of the edit
memory to 1 to evaluate the foundational capability of directly editing knowledge.

2-13b, 3-8b) (Touvron et al., 2023b) and also
MISTRAL-7B-INSTRUCT (Jiang et al., 2023). We
employ the state-of-art in-context editing methods
IKE (Cohen et al., 2024) and MeLLo (Zhong et al.,
2023), alongside advanced model-editing tech-
niques ROME (Meng et al., 2022a) as baseline ap-
proaches on the aforementioned open-source mod-
els. IKE prompts LLMs to edit given knowledge
by providing contextual demonstrations. MeLLo
edits multi-hop knowledge by decomposing sub-
questions, prompting LLMs to generate answers,
and retrieving contradictions from the edit memory.

Implementation Details We implement IKE
with multi-hop question-answering demonstrations
and chain-of-thought (COT) (Wei et al., 2022; Li
et al., 2024) prompting to enhance its in-context
editing performance. Our decoding strategy DeCK
is directly applied to IKE and MeLLo to validate
their enhancements without additional adjustments,
requiring only the relevant factual guiding context
to generate edited answers. The model editing
methods ROME in our baselines are deployed us-
ing EasyEdit (Wang et al., 2023). We set adaptive
plausibility constraint λ to 0.01 and contrasting
coefficient γ to 0.2 for our DeCK.

5.2 Main Results

We evaluate the foundational capability of KE
methods in directly editing explicit new knowl-
edge by considering multi-hop questions contain-
ing 1,000 instances and setting the batch size of the
edit memory to 1. The batch size means the number
of instances providing the edited facts for knowl-
edge retrieval. Table 1 displays the performance
of different baselines and the enhanced in-context

editing through our DeCK across various models
and datasets. As with previous work, ICE methods
exhibit superior performance in multi-hop KE tasks
compared to model-editing methods ROME. Over-
all, IKE enhanced by our DeCK (IKE w/ DeCK)
consistently exhibits the best performance, indicat-
ing that the DeCK can reliably improves the foun-
dational KE capabilities of ICE for LLMs. Specifi-
cally, as the model parameters increase, LLMs tend
to retain more stubborn knowledge, resulting in
a decrease in the accuracy of ICE. For instance,
the average accuracy of LLAMA2-13B-CHAT is
61%, whereas that of LLAMA2-7B-CHAT is 86%.
Additionally, although the parameters of llama3
are not extensive, its more refined pretraining and
instruct tuning also may instill greater confidence
in its acquired knowledge, resulting in poor per-
formance in ICE. However, to our great surprise,
our DeCK has significantly enhanced ICE’s edit-
ing of these stubborn knowledge. Notably, on the
HARD dataset, DeCK has increased ICE’s editing
success rate in LLAMA2-13B-CHAT by an im-
pressive 63% and in LLAMA3-8B-INSTRUCT by
an amazing 219%.

In-context editing methods typically require re-
trieving edit demonstrations from the edit memory
and then editing LLMs with the retrieved knowl-
edge. Therefore, we follow the setup of previ-
ous work (Zheng et al., 2023; Zhong et al., 2023;
Madaan et al., 2022) to conduct experiments for
ICE methods with the full batch size edit memory.
As shown in Table 2, the experimental results illus-
trate that DeCK enhances ICE methods to varying
degrees in full batch experiments. The IKE meth-
ods does not exhibit consistent improvement in this

17203



Model Method MQUAKE-3K MQUAKE-2002 MQUAKE-HARD

IKE (Zheng et al., 2023) 20.7 20.6 2.3
LLAMA2- IKE w/ DeCK (ours) 22.4 20.4 3.8

7B-CHAT MeLLo (Zhong et al., 2023) 32.6 40.8 5.1
MeLLo w/ DeCK (ours) 43.1 45.8 5.8

IKE (Zheng et al., 2023) 19.4 18.8 2.7
LLAMA2- IKE w/ DeCK (ours) 20.6 18.4 3.5

13B-CHAT MeLLo (Zhong et al., 2023) 33.4 35.9 3.9
MeLLo w/ DeCK (ours) 36.8 38.2 6.2

Table 2: Experimental results (accuracy; %) using LLAMA2-CHAT models. We conduct the experiments with the
full batch size edit memory to evaluate the performance of memory based KE.

Original Rank 2 3-5 6-10 11-20 21-50 51-100

LLAMA2-7B-CHAT 1.6(↑ 0.4) 2.7(↑ 0.9) 4.3(↑ 3.6) 4.6(↑ 8.2) 4.8(↑ 24.3) 6.1(↑ 61.3)

LLAMA2-13B-CHAT 1.4(↑ 0.6) 1.9(↑ 1.9) 2.2(↑ 4.9) 2.8(↑ 13.4) 4.1(↑ 34.1) 5.4(↑ 72.7)

Table 3: Improvement of new knowledge ranking by DeCK on MQUAKE-3K. Here, ‘original rank’ refers to
the ranking of new knowledge after the original IKE w/o DeCK. The table presents the average ranking of new
knowledge along with the improvement achieved after integrating DeCK into IKE.

regard, potentially constrained by its inherent edit-
ing accuracy. We ingeniously integrate our DeCK
into MeLLo, aiding MeLLo in generating crucial
edited answers during the reasoning process. We
find that leveraging the foundational editing capa-
bilities provided by DeCK consistently improves
MeLLo’s performance across all experiments. This
indicates that our DeCK holds significant potential
for real-world KE applications.

Model STUBBORN ROME IKE IKE w/ DeCK

LLAMA2- > 33% 17.7 56.4 72.3
7B-CHAT > 67% 19.3 37.8 55.9

LLAMA2- > 33% 42.5 38.9 70.1
13B-CHAT > 67% 40.2 29.4 48.5

Table 4: Performance of LLAMA2-7B-CHAT and
LLAMA2-13B-CHAT on their respective STUBBORN
datasets. ‘STUBBORN > 67%’ indicates instances from
the MQUAKE-3K dataset where IKE failed to edit
knowledge more than 67% of the time. ‘STUBBORN >
33%’ follows the same criterion.

5.3 Metamorphosis of Stubborn Knowledge
To further explore the reasons behind the signifi-
cant improvement brought by DeCK to ICE, we
conduct a statistical analysis of the ranking changes.
Specifically, we sample the new knowledge with
probability rankings between top 2-100 after the
original ICE method, and examine the changes in
their ranks after integrating DeCK. The results in
Table 3 demonstrate that our DeCK effectively im-

proves the ranking of new knowledge that failed to
be edited by ICE, leading to a metamorphosis of
stubborn knowledge.

We constructed corresponding STUBBORN

datasets for different models to specifically eval-
uate ICE’s performance on stubborn knowledge.
The datasets are categorized into different diffi-
culty levels based on the proportion of correct an-
swers when using ICE methods to edit the same
knowledge multiple times with different knowledge
questions. The experimental results on STUBBORN

datasets are presented in Table 4. We found that
IKE’s performance on STUBBORN significantly de-
clined compared to other datasets, as shown in
Table 1, and even fell below that of model edit-
ing method ROME on LLAMA2-13B-CHAT. Our
DeCK consistently brings about a dramatic im-
provement for IKE, with enhancements of up to
80% on LLAMA2-13B-CHAT, ensuring that IKE
w/ DeCK maintains the highest performance. This
suggests that DeCK brings about improvements by
enhancing the ability to edit stubborn knowledge.

Figure 5 reveals the underlying reasons why
DeCK can effectively edit stubborn knowledge.
ICE w/ DeCK has a higher distribution in the high-
probability range, while ICE w/o DeCK is concen-
trated in the low-probability range. This further in-
dicates that DeCK boosts the confidence of LLMs
in low-confidence new knowledge, making them
more likely to accept the edited facts.
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ICE w/ DeCK ICE w/o DeCK

Figure 5: Probability statistics of new knowledge for LLAMA2-7B-CHAT on MQUAKE-STUBBORN dataset. The
probabilities are derived from softmax calculations over the model’s token logits.

Model γ = 0.1 γ = 0.2 γ = 0.5

LLAMA2-7B-CHAT 88.7 91.3 80.2
LLAMA2-13B-CHAT 76.1 84.6 48.5

Table 5: Ablation results of the adjustment coefficient γ
on MQUAKE-3K with LLAMA2-CHAT models.

DeCK MQUAKE-3K MQUAKE-2002 MQUAKE-HARD

w/o Enh 89.1 87.3 94.7

w/ Enh 91.3 89.4 98.6

Table 6: Ablation results of the editing signal enhance-
ment component on the LLAMA2-7B-CHAT model.

5.4 Ablation Study

We conduct ablation experiments on the key com-
ponents of our DeCK. Table 5 shows how the con-
trasting coefficient introduced in Equation 5 af-
fects DeCK’s performance. DeCK is highly sen-
sitive to the contrasting coefficient. If γ is too
large, it can excessively amplify unreasonable to-
ken probabilities, significantly reducing DeCK’s
performance, even below that of the original ICE.
Table 6 demonstrates that the editing signal en-
hancement introduced in Section 4.1 can consis-
tently enhance DeCK’s performance. This is be-
cause it ensures that the enhanced edited knowl-
edge is not filtered out by Equation 6.

6 Related Work

Hallucinations and Misinformation Hallucina-
tion (Kang et al., 2024) is one of the main source of
LLM-generated misinformation. In general, there
are two lines of works on hallucination mitigation.
In training stage, Hu et al. (2023); Pan et al. (2024)
has investigated training data curation or knowl-
edge grounding methods to integrate more knowl-
edge. In the inference stage, recent works have
explored methods including confidence estimation
(Huang et al., 2023b), knowledge retrieval (Feng

et al., 2024; Yang et al., 2024) and knowledge edit-
ing (KE) to improve accurate outputs.

Contrast Decoding The recent contrasting de-
coding methods achieve the desired output by con-
trasting logical distribution during the decoding
phase. CD (Li et al., 2023) compares powerful
expert language models with weaker amateur lan-
guage models to enhance fluency and coherence.
DoLa (Chuang et al., 2023) contrasts mature lay-
ers with premature layers, while ICD (Zhang et al.,
2023a) compares with models injected with hallu-
cinations, aiming to enhance the factual accuracy.

Model Editing and In-Context Editing Model
Editing is a type of effective technique for KE, al-
tering the model’s internal structure to modify its
output regarding the edited content. Current model
editing methods (Meng et al., 2022a,b; Mitchell
et al., 2022; Yao et al., 2023; Xu et al., 2024)
for LLMs involve integrating an auxiliary network
with the original model or modifying and adding
model parameters to manipulate the model’s output.
The emergent method of ICE (Madaan et al., 2022;
Zhong et al., 2023; Zheng et al., 2023), demon-
strates significant potential, enabling the editing of
language models by prompting them with edited
fact and retrieving editing demonstrations from
the edit memory. This work aims to enhance the
ICE method by our designed contrasting decoding
method DeCK. This enhancement enables effec-
tive editing of stubborn knowledge to overcome
the hallucinations and misinformation in LLMs.

7 Conclusion

In this paper, we introduce Decoding by Contrast-
ing Knowledge (DeCK), a novel decoding strat-
egy aimed at enhancing in-context editing in over-
coming stubborn knowledge for LLMs. Based on
observations at the token-level of edited knowl-
edge, DeCK contrasts the logits of new knowledge
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with those from parametric knowledge to amplify
the changes in model knowledge brought about
by in-context editing. Experimental results show
that DeCK significantly improves editing accuracy.
Overall, DeCK is a critical step in enhancing in-
context editing to overcome stubborn knowledge.

Limitation

DeCK also has limitations; it requires the reception
of input from two different token sequences during
the generation process, resulting in approximately
a 1.6X increase in latency compared to original
decoding. This suggests that we can pursue further
optimization within the transformers architecture
or explore alternative, more cost-effective versions
of DeCK.

Ethics Consideration

Ethical considerations are of utmost importance
in our research endeavors. In this paper, we con-
scientiously adhere to ethical principles by exclu-
sively utilizing open-source datasets and employ-
ing models that are either open-source or widely
recognized in the community. Moreover, our pro-
posed method is designed to ensure that the model
does not produce any harmful or misleading infor-
mation. We are committed to upholding ethical
standards throughout the research process, priori-
tizing transparency, and promoting the responsible
use of technology for the betterment of society.
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A Knowledge Enhancement Divergence

Definition A.1 (KED) Let P̃ (x
(E)
m ) be the en-

hanced probability distribution of the next token
x
(E)
m after incorporating edited knowledge, and let

Q be the target distribution that assigns higher
probabilities to tokens related to the edited knowl-
edge. The KED between P̃ (x

(E)
m ) and Q is defined

as:

KED(P̃ ||Q) =
1

2

n∑

i=1

wi

(
P̃ (vi) log

P̃ (vi)

M(vi)
+

Q(vi) log
Q(vi)

M(vi)

)

(7)
where M = 1

2(P̃ +Q) is the average distribution,
and wi = s(vi, E) is the weight assigned to the
i-th token based on its semantic relevance score.
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