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Abstract
Attributed Question Answering (AQA) has at-
tracted wide attention, but there are still sev-
eral limitations in evaluating the attributions,
including lacking fine-grained attribution cat-
egories, relying on manual annotations, and
failing to compare attributions with only sub-
tle differences. To bridge these gaps, we in-
troduce Complex Attributed Question Answer-
ing (CAQA), a large-scale benchmark contain-
ing comprehensive attribution categories, auto-
matically generated using Knowledge Graphs
(KGs), and complex attribution scenarios. We
have conducted extensive experiments to ver-
ify the effectiveness of CAQA, including the
benchmarking of 25 automatic evaluators, their
comparison with human evaluators, the testing
of LLM evaluators fine-tuned by CAQA and so
on. These experiments also lead to a series of
important findings that can benefit the future
research of AQA. All the codes and data are
publicly accessible at https://github.com/
HuuuNan/CAQA-Benchmark.

1 Introduction

Generative AI is increasingly adept together with
other techniques like search engines to produce
answers to natural language questions. However,
their tendency to generate confident yet inaccu-
rate or “hallucinated” contents (Ji et al., 2023; Pan
et al., 2023) poses significant risks in high-stakes
domains such as medicine (Lee et al., 2023). There-
fore, Question Answering (QA) with attribution has
been proposed, where not only answers but also
citations (or evidence snippets) for supporting the
answers are output (Menick et al., 2022; Rashkin
et al., 2023; Bohnet et al., 2022; Li et al., 2023).

Despite their potential, state-of-the-art imple-
mentations of Attributed QA (AQA), exemplified
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by Large Language Models (LLMs) with search
engines like Bing Chat, perplexity.ai and YouChat1,
still often produce erroneous attributions (Liu et al.,
2023). To develop systems for higher-quality at-
tributions, it is crucial to explore effective auto-
matic attribution evaluation methods, which can
not only compare and analyze different AQA sys-
tems, but also provide feedback to improve their
attributions (Asai et al., 2024; Yue et al., 2023; Gao
et al., 2023a; Bohnet et al., 2022), alleviating the
issues of factuality, faithfulness and hallucination
(Amouyal et al., 2023; Asai et al., 2024). However,
the existing AQA benchmarks (see Table 1) are
inadequate due to their limited sizes, incomplete
attribution categories (e.g., they do not fully con-
sider partially supportive where only some
sub-facts in the answer are supported), and ignore
of complex attribution scenarios which require rea-
soning with multiple evidence under various logic
operations, and are common in Bing Chat and
retrieve-and-read systems (Malaviya et al., 2024).

In this work, we adopt a comprehensive set
of attribution categories including supportive,
partially supportive, contradictory and
irrelevant (see Table 2 for examples) and define
different levels of attribution complexity based on
the reasoning required to infer the answer: single,
union, intersection, and concatenation (see
Table 17 for examples). Based on these foun-
dations, we construct a larger-scale Complex At-
tributed Question Answering (CAQA) benchmark
by an automatic generation method based on a
Knowledge Graph (KG) (Pan et al., 2017b,a) com-
posed of relational facts (Hogan et al., 2021; Bol-
lacker et al., 2008) and two existing KGQA datasets
containing question-answer pairs and correspond-
ing KG queries. Briefly, the construction method
first extends a query by introducing additional logi-

1bing.com/new, perplexity.ai, https://you.com/
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Table 1: CAQA and existing benchmarks. Attribution
categories include Supportive (S), Non-supportive (N),
Partially Supportive (P), Contradictory (C), Irrelevant
(I) and Extrapolatory (E), with E and I treated as equiv-
alent. Comp. denotes whether the benchmark consid-
ers attribution complexity. Auto. denotes whether the
benchmark is automatically constructed without manual
annotation.

Benchmarks #Sample Category Comp. Auto.

Bohnet et al. (Bohnet et al., 2022) 23,000 S/N ✗ ✗
HAGRID (Kamalloo et al., 2023) 2,638 S/N ✗ ✗
ExpertQA (Malaviya et al., 2024) 2,177 S/N ✗ ✗
AttributionBench (Li et al., 2024b) 17,816 S/N ✗ ✗
Liu et al. (Liu et al., 2023) 11,037 S/P/N ✗ ✗
ALCE (Gao et al., 2023b) 800 S/P/N ✗ ✗
AttrEval-Gen (Yue et al., 2023) 242 S/C/E ✗ ✗

AttrEval-Sim (Yue et al., 2023) 64.2K S/C/E ✗ ✓
CAQA (Ours) 161.1K S/P/C/I ✓ ✓

cal operators for increasing reasoning complexity,
then employs the extended queries to extract KG
sub-graphs (Huang et al., 2024), and finally ed-
its these sub-graphs using different strategies and
re-writes them into natural language citations as
attributions of different categories. This method
is flexible, allowing the generation of benchmarks
with varied features, and adaptable to different KGs
and KGQA datasets.

We use two existing attribution evaluators that
are fine-tuned on specific data and 23 LLM eval-
uators under the zero-shot, few-shot and fine-
tuning settings to demonstrate the effectiveness of
CAQA for assessing and developing AQA eval-
uators. Through extensive evaluation, we get a
series of important findings. (1) All the evaluators
struggle to identify the nuanced negative attribution
categories in both zero-shot and few-shot settings.
With fine-tuning, the F1 scores of all the categories
exceed 90% for most LLM evaluators. (2) All
the evaluators perform poorly in recognizing attri-
butions of partially supportive and perform
worse on more complex attribution scenarios, e.g.
the GPT models perform worse on those requiring
concatenation and intersection, while other
open source LLMs perform worse on those requir-
ing union. (3) The automatically generated CAQA
is reliable with high consistency as human anno-
tators. (4) When tested on an out-of-distribution
dataset, LLM evaluators fine-tuned by CAQA out-
perform the existing particularly developed evalua-
tors.

2 Related Work

Attributed Question Answering. LLMs now lead
the performance in QA, but often produce hallu-

cinations (Ji et al., 2023; Xiao and Wang, 2021;
Wang and Sennrich, 2020; Shuster et al., 2021). To
alleviate this issue, some studies (Menick et al.,
2022; Nakano et al., 2021; Gao et al., 2023b) train
attributed models to answer questions that generate
answers along with supporting evidence, typically
in the form of citations or references. Some other
studies augment LLMs with external tools (Mi-
alon et al., 2023; Shen et al., 2023; Schick et al.,
2023; Wang et al., 2024, 2025; He et al., 2025)
such as retrievers (Han et al., 2023; Shi et al., 2024;
Asai et al., 2024; Izacard et al., 2022; Min et al.,
2024, 2025; Shen et al., 2025) and search engines
(Nakano et al., 2021; Komeili et al., 2021), or in-
corporate external references for attribution. While
these approaches improve factual grounding, ensur-
ing attribution accuracy and consistency remains
an open challenge, underscoring the need for more
systematic evaluation.

Attributed QA is conceptually related to the
task of Attributing Unanswerable Questions (AUQ)
(Moradisani et al., 2024), although the two tasks
differ in scope. AUQ focuses on identifying ques-
tions that cannot be answered based on the given
context, typically due to factors such as negation,
entity swaps, or missing information, and explain-
ing why a valid answer does not exist. In contrast,
AQA aims to generate answers along with explicit
attribution from the context. A well-designed AQA
system should naturally refrain from answering
when no supporting evidence is available, thereby
addressing unanswerability through its attribution
mechanism.
Attribution Evaluation. Current methods for eval-
uating attribution predominantly depend on hu-
man annotation (Nakano et al., 2021; Bohnet et al.,
2022; Liu et al., 2023; Rashkin et al., 2023; Muller
et al., 2023), which is costly and inefficient. Re-
cent studies propose automatic attribution evalua-
tors based on LLMs, such as AUTOIS (Gao et al.,
2023a; Bohnet et al., 2022) and ATTRSCORE (Yue
et al., 2023). However, existing benchmarks are
inadequate for evaluating and advancing attribu-
tion evaluators due to their limited sizes and re-
stricted evaluation settings, including incomplete
attribution categories and the ignorance of attribu-
tion complexity. They mostly classify attribution
into only two categories: the cited evidence sup-
ports or does not support the answer (Gao et al.,
2023b; Li et al., 2024a,b; Malaviya et al., 2024;
Bohnet et al., 2022). Some benchmarks (Gao et al.,
2023b; Liu et al., 2023; Zhang et al., 2024) add
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a third category, partially supportive, but their
sizes are small and reliance on manual annotation.
(Yue et al., 2023) presents a method for automati-
cally generating attribution annotations to construct
large-scale samples with categories of supportive,
contradictory, and extrapolatory (equivalent to ir-
relevant). However, their method cannot support
partially supportive, as it relies solely on answer
word replacement. Our work addresses these limi-
tations by proposing a novel method based on KGs
and KGQA datasets to automatically create a large-
scale AQA benchmark with comprehensive attri-
bution categories. Notably, our benchmark is the
first to offer fine-grained evaluation for partially
supportive evidence and consider varying levels of
logical reasoning complexity in attribution.

3 Definitions in QA Attribution

3.1 Task Formulation

This work aims to evaluate the attribution in AQA.
It is to verify whether an evidence, which has one
or multiple citations (references) with facts stated,
can sufficiently support a generated answer towards
a natural language question. Formally, given a
question q, an answer statement a and an evidence
e, the objective of attribution evaluation is to map
them to an attribution category t (a.k.a. class label).
It can be represented by the function F : Q ×
A × E 7→ T , where Q, A and E denote the sets
of questions, answers and evidence, respectively,
and T denotes the set of potential categories, such
as {supportive, partially supportive, contradictory,
irrelevant} which mean “e is supportive, partially
supportive, contradictory or irrelevant to the fact
that a is the answer of q.”

3.2 Attribution Categorization

We analyse the results of practical AQA systems
(Gao et al., 2023b) and find that apart from cor-
rect attributions that are supportive, there are three
main categories of incorrect attributions: partially
supportive, contradictory and irrelevant. More de-
tails are shown in Appendix G. The four attribution
categories are defined below:
• Supportive (Sup.): The evidence includes facts
that can fully support the answer statement.
• Partially Supportive (Par.): The evidence lacks
a part of the facts that are required to infer the
answer statement.
• Contradictory (Con.): The evidence includes
facts that can infer a different answer statement.

• Irrelevant (Irr.): The evidence has no facts that
can be used to infer the answer statement.

Table 2 provides examples of the four attribu-
tion categories. In the supportive example, the
answer is backed by citation [1], which confirms
that “Ruth Madoc plays Fruma Sarah in Fiddler
on the Roof.” In the partially supportive example,
the answer cites [1] but does not fully align with
the complete context provided, mentioning only
“the actor Heath Ledger stars in the film 10 Things
I Hate About You” and missing the information
“Heath Ledger plays the character Patrick”. In the
contradictory example, the citation [1] states “The
Puppetoon Movie is directed by Arnold Leibovit,”
which contradicts the generated answer. The irrel-
evant example involves citing [1], which discusses
an unrelated actor, Chris Rankin, and his career of-
fers no relevant facts to verify the answer. Note that
the contradictory category differs from the partially
supportive or irrelevant categories in reasoning. In
the former, the evidence leads to another answer
that conflicts with the generated answer.

3.3 Attribution Complexity

Previous research has not explored different levels
of complexity in inferring the answer. Malaviya
et al. (2024) has shown that AutoIS (Bohnet et al.,
2022), the most commonly used automatic attribu-
tion evaluator, often mistakes in scenarios that re-
quire multiple pieces of evidence to validate the an-
swer. To advance automatic evaluators, our bench-
mark incorporates reasoning complexity by cate-
gorizing attribution into four levels of complexity,
based on the reasoning logic of supporting facts in
the citations (see Table 17 for examples):
• Single: The answer is supported by one single
citation.
• Union: The answer is supported by independent
facts from multiple citations.
• Intersection: The answer is supported by facts
with common entities from multiple citations.
• Concatenation: The answer is supported by
chains of facts from multiple citations.

4 Benchmark Construction

In this section, we introduce our benchmark con-
struction method. Figure 1 presents its overview in-
cluding four key steps: (1) Query Collection: given
a KGQA dataset, we collect data corresponding
to basic KG logical queries; (2) Query Extension:
two logical operators are applied to increase the
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Table 2: Examples of the four attribution categories. Green, yellow, and red text indicate the content in the answer
that is supported, not supported, or contradicted by the content in the citation, respectively.

Attribution Category Examples

Supportive

Question: Who plays Fruma Sarah in Fiddler on the Roof?
Answer: Fruma Sarah is a character in the musical “Fiddler on the Roof’’, and Ruth Madoc played the role [1].
Citations: [1] ... In 1971 Ruth Madoc played Fruma Sarah in the film version of the musical “Fiddler on the
Roof”, and in 1972 she appeared as ...

Partially Supportive

Question: Who plays Patrick in 10 Things I Hate About You?
Answer: Patrick is played by actor Heath Ledger in the film 10 Things I Hate About You [1].
Citations: [1] 10 Things I Hate About You is a 1999 American teen romantic comedy-drama film directed by
Gil Junger and starring Heath Ledger, Julia Stiles, Joseph Gordon-Levitt, and Larisa Oleynik. The screenplay,
written by ...

Contradictory

Question: Who directed a George Pal’s production?
Answer: George Pal directed a production called Puppetoons [1].
Citations: [1] ... The Puppetoon Movie is a 1987 animated film written, produced, and directed by Arnold
Leibovit ...

Irrelevant

Question: Who played the weasley brothers in Harry Potter?
Answer: James and Oliver Phelps, identical twin actors, played the roles of Fred and George Weasley in the
Harry Potter film series [1].
Citations: [1] Chris Rankin plays of “Bugsy Malone”, “The Lion, The Witch and The Wardrobe” and Harry
Potter series ... he plays a brother of Harry Potter’s best friend, ...

Figure 1: The entire process of constructing the CAQA benchmark.

complexity of the original queries; (3) Structured
Attribution Generation: the extended queries are
grounded in the KG to obtain relevant subgraphs,
which are then probabilistically edited using four
strategies to generate new subgraphs with four at-
tribution categories; (4) Data Generation: we pro-
duce AQA data, where each instance consists of
an extended question, rephrased answer entities,
citations derived from subgraphs, as well as the
attribution category and complexity labels.

4.1 Query Collection

The selection of KGs and KGQA datasets is pri-
marily motivated by two observations: (1) KGQA
is a well-established task with a wealth of open
resources, as evidenced by 25 KGQA datasets
for 5 KGs reported in (Jiang and Usbeck, 2022);
(2) existing KGQA datasets contain high-quality
question-answer pairs and corresponding KG logi-
cal queries, often expressed in SPARQL, which are
capable of deriving the correct answers and can be
leveraged to generate evidence.

A KG is composed of relational facts in the form

of triple, i.e., (h, r, t), where h and t denote a sub-
ject entity and a object entity, respectively, and r
denotes a relation between them. A KGQA dataset
D = {S1, S2, ..., SN} consists of samples in the
form of Si = (qi, ai, li), where qi denotes a natu-
ral language question, ai denotes its answer entity,
and li denotes the KG logical query of qi. Our
data collection focuses on samples where the KG
logical query falls into one of three types: single-
triple, path-like, or tree-like queries. As shown
in the first three columns in Table 3, a single triple
query denoted as (e0, r0, ?a) indicates that the an-
swer entity ?a can be obtained via the subject e0
and the relation r0. A path-like query denoted
as [e0, r0, ?v1, . . . , ?vn−1, rn−1, ?a] represents that
the answer ?a is reachable through an n-hop path
starting from e0, traversing n relations and n − 1
intermediate entities represented by query variables
?v1, . . . , ?vn−1. Specifically, ?v1 denotes the first
intermediate variable in the query path. Notably,
a path-like query reduces to a single-triple query
when n = 1. A tree-like query, formulated as
∧n−1
i=0 (ei, ri, ?a), includes n distinct triples, each
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originating from different subjects and converging
on the answer ?a.

4.2 Query Extension

For each KGQA example Si = (qi, ai, li), we ex-
tend the logical query li to l′i using a set of prede-
fined query extension rules designed based on the
logical operations intersection (i.e., conjunction, ∧)
and union (i.e., disjunction, ∨) (Ren et al., 2023)2.

Table 3 outlines the extension rules and we show
concrete examples of each extension rule in Ap-
pendix B. For a single-triple query l, the union op-
eration is used. Initially, we retrieve entities from
the KG that share the same name as e0 in l, produc-
ing a set of m entities {e1, . . . , em}, where m may
be zero. Subsequently, we generate logical queries
(e1, r0, ?a), . . ., (em, r0, ?a) by combining the re-
trieved entities and the relation r0 from l. These
new queries are then merged with l via union, re-
sulting in a union-tree-like query structure. This
structure implies that the final answer is derived
as the union of the answers obtained from each
subquery.

For a path-like query or a tree-like query, we ap-
ply the intersection operation in two distinct ways.
In the first way, we identify a unique subject entity
e0 for path-like queries or randomly select a sub-
ject ek for tree-like queries. We then retrieve cor-
responding triples (e1, rn, e0) or (en, rn, ek) from
the KG, where rn represents a relation not present
in l. These new triples are appended to the respec-
tive queries, ensuring that e0 and ek are connected
entities. This process maintains the overall struc-
ture of the path-like or tree-like query. In the sec-
ond way, we append a new query (e1, rn, ?a) or
(en, rn, ?a) to the respective logical forms, ensur-
ing that the intersection of the answers obtained
from the new queries with those from l is non-
empty. Through this extension, both the path-like
query and tree-like query are converted into the
tree-like structures.

For both a path-like query (n ≥ 2) and a tree-like
query, the two intersection extensions are applied
with equal probability. In contrast, for single-triple
queries (a special case of path-like queries), four
operations are equally likely: union extension, two
types of intersection extension, and no extension
(to preserve some single-triple queries). The exten-
sion process results in four query types: single-tree,

2Our method can be easily extended with more logical
operations like Negation and Kleene Plus (Ren et al., 2023).

union-tree-like, tree-like, and path-like, correspond-
ing to the attribution complexity types (denoted by
r)—single, union, intersection, and concatenation.

4.3 Structured Attribution Generation

We first obtain a KG subgraph G by grounding
each extended query l

′
in the KG, which returns

the entities that are assigned to all the variables in
the query for inferring the answer. The subgraph
G is regarded as the structured attribution to sup-
port the answer to the question and falls under the
supportive attribution category. To get structured
attributions of partially supportive, contradictory,
and irrelevant, we edit G as follows.

• Partially Supportive. The partially supportive
subgraph GIn is generated by partial deletion, re-
sulting in a subgraph that cannot fully support the
answer. For path-like queries, we randomly delete
one triple in G. For tree-like or union-tree queries,
we delete a path connecting one of the subject en-
tities to the answer. In the case of single-triple
queries, no deletion is performed.

• Contradictory The contradictory subgraph GC

is constructed by altering G such that its reasoning
conflicts with the answer. This is done by replacing
the answer entity in G with a non-answer entity
of the same type. Especially for queries involving
a union operation, we replace one of the answer
entities within G.

• Irrelevant The irrelevant subgraph GIr is ob-
tained by selecting an entirely different subgraph
from the KG that is structurally similar to G but
contains unrelated entities and relations, except for
the subject entity in G.

4.4 Data Generation

We employ ChatGPT with tailored prompts to trans-
form the subgraphs of G, GIn, GC and GIr into
citations (attributions) of supportive, partially sup-
portive, contradictory and irrelevant, respectively.
When the original logical query l is expanded to
l′, the original question q is similarly extended to
a new question q̃ using ChatGPT. In addition, the
answer entity a is paraphrased into a more detailed
answer statement ã. Ultimately, it yields an AQA
sample consisting of the question q or q̃, the answer
statement ã, the citation c, the attribution category
t, and the complexity label r. More details on this
step can be found in Appendix A.
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Table 3: The rules for extending the logical queries utilizing two query operations: intersection (∧) and union (∨).
All queries are classified according to their structure as single-triple (S.) queries, path-like (P.) queries, tree-like (T.)
queries and union-tree-like (U.) queries. The ‘Examples’ column presents corresponding graph representations for
the case where n = 2, m = 2, and k = 0, where grey nodes represent variables for answer entities.

Original Query l Extended Query l′

Definitions Structures Examples Definitions Structures Examples

(e0, r0, ?a) S. (e0, r0, ?a) U.
∨(e1, r0, ?a) ∨ . . . ∨ (em, r0, ?a)

[e0, r0, ?v1, . . . , ?vn−1, rn−1, ?a] P.

[e0, r0, ?v1, . . . , ?vn−1, rn−1, ?a] P.∧(e1, rn, e0)

[e0, r0, ?v1, . . . , ?vn−1, rn−1, ?a] T.
∧(e1, rn, ?a)

∧n−1
i=0 (ei, ri, ?a) T.

∧n−1
i=0 (ei, ri, ?a), i ̸= k

T.
∧(en, rn, ek) ∧ (ek, rk, ?a)

∧n−1
i=0 (ei, ri, ?a) ∧ (en, rn, ?a) T.

Table 4: Statistics of the CAQA dataset

Classes Train Test Total

137,211 23,963 161,174

Category

Sup. 39,489 6,668 46,157
Par. 28,868 5,065 33,933
Con. 36,620 6,423 43,043
Irr. 32,234 5,807 38,041

Complexity

Single 73,795 10,443 84,238
Concatenation 46,783 8,455 55,238

Union 5,347 886 6,233
Intersection 11,286 4,179 15,465

5 Experiment Setup

The CAQA Benchmark. It is constructed using
two KGQA datasets: GrailQA (Gu et al., 2021) and
WebQuestionsSP (Yih et al., 2016), and the Free-
base KG (Bollacker et al., 2008). See Table 4 for its
statistics. Additionally, we manually annotated the
attribution categories of 300 test samples to assess
their consistency with the original categories (see
results in Section 6.2). More details on CAQA are
in Appendix C, and human annotation processes
are described in Appendix H.
ALCE-FineGrained. We manually annotated 215
samples of the ALCE benchmark with the four
attribution categories, and get a new benchmark,
ALCE-FineGrained, as an out-of-distribution test-
ing set (see results in Section 6.4). Details of hu-
man annotation are given in Appendix H.
Attribution Evaluators. We evaluate state-of-the-
art LLMs as attribution evaluators across different
architectures and sizes: GPT-3.5, GPT-4o, GPT-4o

mini, LLaMA-2/3/3.1 (Grattafiori et al., 2024), Vi-
cuna (Chiang et al., 2023), Gemma-2 (Team et al.,
2024), Mistral (Jiang et al., 2023), Phi-3 (Abdin
et al., 2024), and Qwen2.5 (Hui et al., 2024). We
conduct evaluations in three settings: the zero-shot
setting, the few-shot setting where several attribu-
tion examples are given, and the fine-tuning set-
ting where the LLM is trained with the samples
in the training set. Additionally, we test two spe-
cially developed automatic attribution evaluators
AUTOIS (Honovich et al., 2022) and ATTRSCORE

(Yue et al., 2023). More details on the evaluators’
implementation are given in Appendix D.
Metrics. We report F1 score for the performance
on each attribution category and micro-F1 score for
the performance on each complexity level and over-
all performance. We also use the FACTSCORES

metric (Min et al., 2023) for a fine-grained evalua-
tion of the partially supportive category.

6 Evaluation

6.1 Overall Results
Table 5 shows the results of the attribution evalu-
ators on CAQA. Appendix E shows more experi-
ments. Our analysis is as follows:
All the evaluators perform poorly in identifying
nuanced negative attribution categories, espe-
cially partially supportive, under the zero-shot
and few-shot settings. Smaller LLMs (≤ 14B),
except for Gemma-2 and Qwen-2.5, perform ex-
tremely poorly on all three negative categories,
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Settings Evaluators (LLM Size) Category Complexity

Sup. Par. Con. Irr. Overall Single Concatenation Intersection Union

LLaMA-3 (8B) 0.467 0.120 0.072 0.007 0.296 0.304 0.271 0.283 0.259
LLaMA-3.1 (8B) 0.544 0.049 0.130 0.017 0.318 0.319 0.326 0.319 0.285
LLaMA-3.1 (70B) 0.688 0.168 0.547 0.609 0.544 0.545 0.549 0.545 0.499
Mistral-v0.3 (7B) 0.661 0.160 0.051 0.334 0.362 0.363 0.374 0.356 0.337
Mixtral-v1.0 (8x7B) 0.677 0.094 0.170 0.635 0.494 0.495 0.516 0.484 0.487
Vicuna (7B) 0.513 0.100 0.064 0.199 0.327 0.343 0.273 0.312 0.256
Vicuna (13B) 0.634 0.211 0.393 0.275 0.405 0.432 0.314 0.361 0.374

Zero-Shot Gemma-2 (9B) 0.667 0.280 0.498 0.624 0.556 0.557 0.572 0.552 0.508
Gemma-2 (27B) 0.653 0.184 0.569 0.646 0.566 0.566 0.579 0.566 0.537
Qwen-2.5 (14B) 0.680 0.132 0.708 0.660 0.617 0.640 0.622 0.611 0.547
Qwen-2.5 (72B) 0.629 0.266 0.701 0.471 0.571 0.593 0.583 0.565 0.530
GPT-4 0.771 0.456 0.745 0.473 0.630 0.685 0.451 0.514 0.616
GPT-4o 0.769 0.445 0.598 0.626 0.630 0.676 0.591 0.470 0.588
GPT-4o-mini 0.718 0.297 0.632 0.703 0.616 0.672 0.473 0.444 0.559

LLaMA-3 (8B) 0.573 0.202 0.234 0.156 0.336 0.356 0.279 0.310 0.294
LLaMA-3.1 (8B) 0.631 0.101 0.307 0.157 0.353 0.354 0.375 0.343 0.362
LLaMA-3.1 (70B) 0.698 0.259 0.713 0.665 0.627 0.626 0.638 0.632 0.589
Mistral-v0.3 (7B) 0.571 0.072 0.252 0.134 0.342 0.343 0.351 0.336 0.326
Mixtral-v1.0 (8x7B) 0.589 0.084 0.356 0.558 0.455 0.456 0.473 0.451 0.416
Vicuna (7B) 0.578 0.183 0.081 0.324 0.325 0.337 0.272 0.354 0.311
Vicuna (13B) 0.633 0.208 0.383 0.288 0.403 0.427 0.315 0.397 0.374

Few-Shot Gemma-2 (9B) 0.705 0.390 0.568 0.593 0.572 0.571 0.586 0.578 0.526
Gemma-2 (27B) 0.646 0.231 0.670 0.572 0.570 0.570 0.585 0.569 0.511
Qwen-2.5 (14B) 0.699 0.257 0.741 0.676 0.646 0.680 0.656 0.638 0.608
Qwen-2.5 (72B) 0.721 0.400 0.736 0.503 0.617 0.635 0.608 0.626 0.592
GPT-4 0.794 0.520 0.728 0.653 0.680 0.745 0.492 0.473 0.559
GPT-4o 0.783 0.507 0.683 0.641 0.664 0.730 0.559 0.449 0.529
GPT-4o-mini 0.763 0.435 0.705 0.700 0.657 0.741 0.430 0.404 0.588

LLaMA-3 (8B) 0.935 0.901 0.935 0.928 0.926 0.935 0.820 0.930 0.924
LLaMA-3.1 (8B) 0.946 0.919 0.944 0.934 0.941 0.953 0.850 0.939 0.945

Fine-Tuing Mistral-v0.3 (7B) 0.944 0.921 0.947 0.935 0.942 0.956 0.852 0.937 0.941
Vicuna (7B) 0.937 0.907 0.940 0.906 0.932 0.956 0.823 0.936 0.939
Vicuna (13B) 0.942 0.923 0.939 0.923 0.933 0.950 0.847 0.935 0.940

Existing Attribution Evaluators
AUTOIS (11B) 0.609 - - - - - - - -
ATTRSCORE (13B) 0.687 - 0.523 0.541 0.521 0.559 0.410 0.432 0.353

Table 5: Overall results on CAQA. Bold and underlined values are the best and second-best performance, respectively.
“-” indicates that the method is not applicable. More complete results can be found in Table 16.

suggesting that none of them are capable of dis-
tinguishing subtle differences between negative
attributions. Larger LLMs (≥ 27B) demonstrate
strong performance on certain negative categories
but consistently underperform on partially support-
ive category. For example, in both zero-shot and
few-shot settings, the highest scores—0.456 and
0.52, respectively—are achieved by GPT-4. This
highlights the challenges faced by the attribution
evaluator in accurately identifying partially sup-
portive category. We find that evaluators often
classify partially supportive as supportive, even
though it is apparent that part of the information is
missing.

Fine-tuning effectively enhances evaluator per-
formance, while few-shot prompting is partic-
ularly beneficial for large-scale evaluators. All
fine-tuned evaluators trained on our dataset achieve
similar performance, exceeding 90%, except for
Mistral-v0.2. AutoIS and AttrScore, which were
fine-tuned on other benchmarks, demonstrate lim-
ited ability to identify fine-grained attribution cat-
egories. Large-scale LLMs (≥ 70B) and GPT-

series models exhibit significantly stronger in-
context learning capabilities. Under few-shot set-
tings, these models improve by an average of
4.84% in distinguishing subtle attribution differ-
ences, demonstrating deeper contextual understand-
ing. However, few-shot prompting provides only
marginal performance gains for smaller LLMs and
can even be detrimental to certain models. See
more evaluation of the few-shot setting in Ap-
pendix E.

The evaluators are often impacted by the key-
word co-occurrence and fail to capture the rea-
soning in complex attribution scenarios. Con-
sidering examples of irrelevant: the question is
“What is the soundtrack of the video game X?” The
answer is, “The video game X’s soundtrack is Y,”
and the evidence is, “Z is a video game designer
who has designed games such as X”. The evalua-
tors often incorrectly treats the attribution as sup-
portive due to the co-occurring keywords “video
game” and “X”, neglecting the semantics of the re-
lation “Soundtrack_Of”. This issue is more serious
in the partially supportive category, where many
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Figure 2: Micro-F1 scores of the evaluators on CAQA
based on (1) CAQA’s own categories (y-axis) and (2)
human-annotated categories (x-axis).

instances are incorrectly identified as supportive.
This misclassification reduces the true positives for
partially supportive cases while increasing false
positives for supportive ones. Moreover, apart from
GPT models, most other evaluators struggle to un-
derstand reasoning logic that requires integrating
multiple pieces of evidence to prove the answer.
The observation can be verified by the fact that
all the evaluators usually perform worse on com-
plex attribution with concatenation, intersection
and union and on less complex attribution.

6.2 Consistency with Human Annotations

We assess the consistency between the automati-
cally generated categories in CAQA and new cate-
gories annotated by humans. With these two sets
of categories as gold standard, we compute and
compare the overall micro-F1 scores of each eval-
uator. Some of the results as shown in Figure 2.
The results demonstrate that the evaluators mostly
have consistent results between the two kinds of
categories, with a Pearson correlation coefficient
of 0.97. This confirms that evaluation using our au-
tomatically generated categories closely align with
manual evaluation.

6.3 Fine-grained Evaluation on Partially
Supportive

Our CAQA benchmark enables a more fine-
grained evaluation of attribution, particularly for
partially supportive cases, compared to ex-
isting benchmarks. To achieve this, we em-
ploy the metric FACTSCORES (Min et al., 2023),
which is the proportion of sub-facts in the an-
swer that are supported by the citations. For each
partially supportive case, human annotators
identify the supported sub-facts, allowing us to

Table 6: FACTSCORES results on 200 partially support-
ive samples in CAQA. Hum-Gap measures the discrep-
ancy of FACTSCORES w.r.t. human annotations (i.e.,
0.58). Fine-tuning uses the training set of CAQA.

Evaluators FACTSCORES Hum-Gap

LLaMA-3 (70B) 0.85 0.27
Zero-Shot GPT-3.5-turbo 0.93 0.35

GPT-4 0.84 0.26

LLaMA-3 (8B) 0.19 0.39
Fine-Tuning Vicuna (7B) 0.19 0.39

Vicuna (13B) 0.18 0.40

AUTOIS (11B) 0.44 0.14
ATTRSCORE (13B) 0.25 0.33

CAQA Annotations 0.62 0.04
Human Annotations 0.58 -

calculate FACTSCORES manually. Additionally,
CAQA can automatically compute FACTSCORES

by comparing the triples in the initial subgraph
with those in the subgraph after deletion. Various
automatic evaluators, including LLM evaluators,
as well as existing methods such as AutoIS and At-
trScore, generate their FACTSCORES by first con-
verting the triples in the initial subgraph G into
natural language sub-facts using ChatGPT. Then,
we apply the Retrieve→LM method (Min et al.,
2023) to obtain FACTSCORES (see details in Ap-
pendix D.2).

The results in Table 6 reveal a significant per-
formance gap between the selected evaluators and
human annotations. The three evaluators fine-tuned
on CAQA, which support four categories, and At-
trScore, which identifies three, exhibit worse per-
formance (much higher Hum-Gap) compared to
AutoIS which identifies only two categories. Mean-
while, the evaluators in the zero-shot setting have
much higher FACTSCORES than human annota-
tions, which reflects the finding in Section 6.1,
i.e., their attribution is impacted by keyword co-
occurrence in sub-facts and citations. Additionally,
the FACTSCORES of the automated annotations in
CAQA differ from human annotations by only 4%,
demonstrating that CAQA is a reliable benchmark
for automated fine-grained evaluation.

6.4 Exploration of Out-of-Domain Data

We compare the existing evaluators AutoIS (based
on T5-11B) and AttrScore (based on Vicuna-13B)
that are trained by some other benchmarks, with
T5-11B and Vicuna-13B fine-tuned by CAQA (de-
noted as T5-11B* and Vicuna-13B*), by testing
them on OOD benchmark ALCE-FineGrained. We
also further fine-tune Vicuna-13B* with a small
number of samples in ALCE-FineGrained. The
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Table 7: Performance on ALCE-FineGrained by (1) T5-
11B* and Vicuna-13B* and (2) AutoIS and AttrScore.

Evaluators ALCE-FineGrained

Sup. Non-Sup. Overall

AutoIS (T5-11B) 0.31 0.65 0.54
T5-11B* 0.44 0.72 0.63

Sup. Par. Con. Irr. Overall

AttrScore (Vicuna-13B) 0.52 - 0.21 0.42 0.36
Vicuna-13B* 0.54 0.24 0.30 0.34 0.38
Vicuna-13B* Fine-Tuning 0.69 0.36 0.40 0.46 0.52

results are in Table 7. Note for comparison with
AutoIS, we merge the three negative categories
into Non-Supportive. Compared to AutoIS and
AttrScore, T5-11B* and Vicuna-13B*, have com-
petitive performance in individual classes and the
overall score, demonstrating the effectiveness of
CAQA for developing attribution evaluators. Table
7 also verifies that fine-tuning with a few samples
of the domain of the testing dataset further improve
the evaluators. See more details in Appendix F.

7 Conclusion and Future Work

This work has advanced the evaluation of AQA
by proposing a new benchmark CAQA containing
comprehensive attribution categories and different
attribution complexity levels, and an automatic and
general benchmark construction method. Extensive
evaluation has been conducted over 25 automatic
evaluators, including two specifically developed
baselines, which has demonstrated the effective-
ness of CAQA for evaluator assessment and devel-
opment, and leads to a series of important findings
in AQA, such as the shortage of logical reason-
ing capabilities in dealing with complex attribution
scenario. In the future, we will study more robust
attribution evaluators with CAQA and its variants
from other KGs, supporting logical reasoning.

Limitations

Although we consider comprehensive attribution
categories and complex reasoning scenarios, some
more situations including lengthy answers and ci-
tations, mathematical, temporal and spatial reason-
ing, and reasoning requiring domain specific knowl-
edge could be considered in the future. For illus-
tration, consider the question: “When did England
last reach the quarterfinals of the World Cup?” The
provided answer is “England last made the quar-
terfinals in 1990,” with a citation noting that “The
England national football team finished in fourth
place in 2018 and reached the semifinals in 1990.”
To accurately attribute the answer, it is essential

to understand that finishing in fourth place implies
participation in the quarterfinals and that 2018 is
more recent than 1990. All these features could
be reflected in new versions of our benchmark via
considering corresponding KGs (or ontologies) and
queries in our automatic construction method.
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into comprehensible natural language citations, ex-
tending original questions, and converting answer
entities into detailed answer statements. Table 9
demonstrates the conversion of knowledge graph
subgraphs into natural language citations. Table 10
illustrates the example of generating the extended
question. Table 11 provides an example of how
answer entities are transformed into long-form an-
swer statements.

Additionally, we verify the quality of the KG-to-
natural language text generated by ChatGPT. We
ensure the quality of the natural language text gen-
erated by focusing on grammatical coherence and
content accuracy. Building on prior work (Axels-
son and Skantze, 2023), which demonstrates that
ChatGPT excels in KG-to-Text tasks with high
grammatical correctness and coherence, we pri-
marily evaluate content accuracy to ensure consis-
tency with the corresponding triples. Specifically,
we adopted the evaluation framework outlined in
the work (Axelsson and Skantze, 2023), assess-
ing whether the generated text accurately reflects
the triples. We randomly sampled 100 examples
(half of the examples are from generated natural
language citations, and the other half are from gen-
erated extended questions) and employed two inde-
pendent annotators to label each instance according
to one of three exclusive categories: (1) Full Cov-
erage: The text fully and correctly states all triples.
(2) Absent: The text misses some triples. (3) Hal-
lucinated: The text introduces content that actively
contradicts the triples. The results are shown in
Table 8.

Annotator Full Coverage Absent Hallucinated
A 92 5 3
B 95 3 2

Table 8: The human evaluation results of the KG-to-
natural language text generated by ChatGPT.

The Cohen’s Kappa score is 0.758, indicating
substantial agreement between two annotators. The
annotation results demonstrate that ChatGPT reli-
ably generates accurate and coherent text within
our benchmark.

B Concrete Cases of Query Extension

We incorporate concrete examples alongside expla-
nations of each query extension strategy described
in Section 4.2. These examples correspond to the
rules summarized in Table 3 and illustrate the pro-
cess of each extension strategy.

Instruction: Your task is to convert a specific
subgraph from the knowledge graph into one or more
coherent sentences that summarize the information
encapsulated within the subgraph.

Subgraph: [(“Wii/DS NA”, “type”, “com-
puter_game_region”), (“LostWinds: Winter of the
Melodias”, “type”, “game_version”), (“LostWinds:
Winter of the Melodias”, “game_version.regions”,
“Wii/DS NA”), (“LostWinds: Winter of the
Melodias”, “game_version.distributed_through”,
“WiiWare”), (“Frontier Developments”,
“cvg_developer.game_versions_developed”, “Lost-
Winds: Winter of the Melodias”)].

Sentences: LostWinds: Winter of the Melodias is a
computer game with a specific version tailored for
the Wii/DS NA region. This version is distributed
through WiiWare. The game was developed by Fron-
tier Developments, showcasing their involvement in
creating various game versions.

Table 9: An example about converting a subgraph to a
natural language citation using GPT-3.5-turbo.

Instruction: Given knowledge graph triples, your
task is to generate a question using all the triples.
The generated questions should contain all the
relationships.

# Extended Triples
Triples: [(?x, type, cvg.computer_videogame),
(?x, computer_videogame.influenced_by, Sengoku
Rance), (?x, fictional.setting, Touhou Project)]

Extended question: What computer video game was
influenced by Sengoku Rance and is set in the Touhou
Project fictional universe?

Table 10: An example about generating the extended
question using GPT-3.5-turbo.

Case 1: Single-triple Query with the Union
Extension Strategy. The grounded graph of the
original query l: (Rick Scott (Q439729), place
of birth, Bloomington). By querying the KG for
other entities with the same name (e.g., Rick Scott),
we may discover an additional entity Rick Scott
(Q7329369) and retrieve its place of birth: (Rick
Scott (Q7329369), place of birth, Stone Moun-
tain). The grounded graph of the extended query
l′ after Union extension becomes: [(Rick Scott
(Q439729), place of birth, Bloomington), (Rick
Scott (Q7329369), place of birth, Stone Moun-
tain)].

Case 2: Path-like Query with Intersection
Extension Strategies. The grounded graph of
the original query l: [(Rick Scott, place of birth,
Bloomington), (Bloomington, capital of, McLean
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Instruction: Your task is to convert a question along
with its concise answer into a comprehensive answer
statement.

Question: What group fought in the Battle of
Vicksburg that was based in Montgomery?
Answer: Army of Mississippi

Answer statement: The group that fought in the
Battle of Vicksburg and was based in Montgomery
was the Army of Mississippi.

Table 11: An example about converting the answer en-
tity to a long answer statement using GPT-3.5-turbo.

County)].
First Intersection Strategy (Head Entity Exten-

sion): We extend the query by adding a triple re-
lated to the head entity Rick Scott, e.g.: (Anna
Scott, spouse, Rick Scott). Then the grounded
graph of the extended query l′: [(Anna Scott,
spouse, Rick Scott), (Rick Scott, place of birth,
Bloomington), (Bloomington, capital of, McLean
County)].

Second Intersection Strategy (Answer Entity Ex-
tension): We extend based on the answer entity
Bloomington, adding: (McLean County, country,
United States).

Then the grounded graph of the extended query
l′ becomes: [(Rick Scott, place of birth, Blooming-
ton), (Bloomington, capital of, McLean County),
(McLean County, country, United States)].

Case 3: Tree-like Query (Intersection Exten-
sion Strategies). The grounded graph of the origi-
nal query l: [(Rick Scott, educated at, University of
Missouri–Kansas City), (Sharice Davids, educated
at, University of Missouri–Kansas City)].

First Intersection Strategy (Head Entity Exten-
sion): Add a triple involving the head entity Rick
Scott, such as: (Anna Scott, spouse, Rick Scott).
Then the grounded graph of the extended query
l′: [(Anna Scott, spouse, Rick Scott), (Rick Scott,
educated at, University of Missouri–Kansas City),
(Sharice Davids, educated at, University of Mis-
souri–Kansas City)].

Second Intersection Strategy (Answer Entity Ex-
tension): Extend the query by adding a triple about
the answer entity University of Missouri–Kansas
City: (University of Missouri–Kansas City, located
in, Kansas City). Then the grounded graph of the
extended query l′: [(Rick Scott, educated at, Uni-
versity of Missouri–Kansas City), (Sharice Davids,
educated at, University of Missouri–Kansas City),

(University of Missouri–Kansas City, located in,
Kansas City)].

C CAQA Benchmark Construction and
Statistics

The CAQA benchmark is built on the top of two
KGQA datasets, GrailQA3 and WebQuestionsSP,
with the knowledge graph Freebase, forming a com-
prehensive attribution evaluation testbed. We se-
lectively include samples from these two datasets
whose logical queries align with single-triple, path-
like, or tree-like queries, as delineated in Section
4.1. For path queries, we collect the example
with a path length of at most two hops. We treat
paths incorporating CVT (Compound Value Type)
nodes as one-hop. For example, [(Harper Lee,
person.education ?cvt), (?cvt education.institution,
Monroe County High School)] is a one-hop path,
where the node ?cvt holds no actual meaning. Re-
garding tree-liked queries, we restrict our selection
to those with a maximum of two non-answer nodes,
meaning up to two subject entities.

The length distribution (i.e., the number of to-
kens) of citations in the training and test sets of the
CAQA benchmark is depicted in Figures 3 and 4.
These distributions reveal a concentration of cita-
tions around 25 tokens, with a minority exceeding
60 tokens. In future work, we aim to enhance the
complexity and length of natural language refer-
ences by developing more intricate subgraphs. Ad-
ditionally, Figure 5 presents the domain distribution
within the CAQA benchmark. This distribution un-
derscores the benchmark’s broad domain coverage
and its encompassment of various sub-domains,
highlighting the diversity of our benchmark.

D Implementation Details

D.1 Details of Evaluators and Prompts
AutoIS is a natural language inference (NLI)
model4 based on T5-11B that outputs a “1” to indi-
cate that the citation supports the answer statement
or a “0” to indicate a lack of support. AttrScore
is a uniform name for attribution evaluators de-
veloped on various LLMs, and we use the best-
performing attribution evaluator (Vicuna-13B) on
the original work for comparison. Since AutoIS
can only recognise supportive and non-supportive
attribution categories, we only report its F1 score
on supportive in Table 5. In the experiments on the

3GrailQA is licensed under CC BY-SA 4.0.
4https://huggingface.co/google/t5_xxl_true_nli_mixture
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GPT series
Instruction: Your task is to evaluate the relationship between a provided citation and the answer to a specific question.
There are four possible types of relationships:
1. Supportive: Choose this if the citation directly confirms or is fully in alignment with the answer, providing all
necessary information to substantiate it.
2. Insufficient: Choose this when the citation provides only partial backing for the answer, lacking some essential details
or evidence needed for full support.
3. Contradictory: Choose this option if the citation is consistent with the intent of the question but directly opposes or
contradicts the answer.
4. Irrelevant: Select this option if the citation does not match the intent of the question and contains information that is
not useful for answering.
For each example provided: First, you need to look at the question given and the answer provided. Then, compare
them with the content of the citation. Finally, select the appropriate relationship category based on whether the citation
supports the answer, is missing information, contradicts itself, or is irrelevant to the answer.
Example:
Question: {question}
Answer: {answer statement}
Reference: {citation}
Relationship Category:

AttrScore
premise: {question|answer statement}
hypothesis: {citation}

AutoIS
Below is an instruction that describes a task, paired with an input that provides further context. Write a response that
appropriately completes the request.
Instruction: Verify whether a given reference can support the claim. Options: Attributable, Extrapolatory or Contradic-
tory.
Claim: {question|answer statement}
Reference: {citation}
Response:

Other Evaluators
Below is an instruction that describes a task, paired with an input that provides further context. Write a response that
appropriately completes the request.
Instruction: Verify whether a given reference can support the claim. Options: Supportive, Insufficient, Contradictory
or Irrelevant.
Claim: {question|answer statement}
Reference: {citation}
Response:

Table 12: Different prompts designed for different evaluators.

ALCE-FineGrained benchmark, to be able to com-
pare the evaluator trained on our benchmark with
AutoIS, we merge the three incorrect categories
into the non-supportive category, and then compute
F1 scores of supportive and non-supportive as well
as overall micro-F1 score.

Table 12 describes the different prompt designs
against the various attribution evaluators. During
our experiments, we have explored providing more
detailed explanations for each category to non-GPT
models. However, we observed that overly detailed
prompts often led to a decline in their performance.
To maximize the performance of all models and to
select the best attribution evaluator, we opted for
prompts that were calibrated to achieve the best
results for all models.

In the few-shot setting, we select one sample per

attribution category as a demonstration, as shown
in Table 13. We explore on more few-shot settings
in Appendix E. For model fine-tuning, we use the
prompt of “Other Evaluators” depicted in Table 12
as input of all models, and the output of the model
is one of the four attribution categories proposed.
We use two A100 80G GPUs for full parameter
fine-tuning and two A100 80G GPU for the infer-
ence phase (four A100 80G GPUs for inference
with model parameters greater than 70B). During
inference, text generation is conducted with a tem-
perature setting of 0 and vLLM (Kwon et al., 2023)
is used to acceleration. If LLMs produce an attri-
bution category with an explanation, we extract the
predicted label using regular expression techniques.
Due to high costs, we evaluate GPT models on only
3000 test samples.

17110



GPT-3.5 series
Instruction: Your task is to evaluate the relationship between a provided citation and the answer to a specific question.
There are four possible types of relationships:
1. Supportive: Choose this if the citation directly confirms or is fully in alignment with the answer, providing all
necessary information to substantiate it.
2. Insufficient: Choose this when the citation provides only partial backing for the answer, lacking some essential details
or evidence needed for full support.
3. Contradictory: Choose this option if the citation is consistent with the intent of the question but directly opposes or
contradicts the answer.
4. Irrelevant: Select this option if the citation does not match the intent of the question and contains information that is
not useful for answering.
Please read the examples and choose the most appropriate relationship category for the test example.
Example 1: {Support Example}
Example 2: {Missing Example}
Example 3: {Contradictory Example}
Example 4: {Irrelevant Example}
Test Example:
Question: {question}
Answer: {answer statement}
Reference: {citation}
Relationship Category:

Other Evaluators
Below is an instruction that describes a task, paired with an input that provides further context. Write a response that
appropriately completes the request.
Instruction: Verify whether a given reference can support the claim. Options: Supportive, Insufficient, Contradictory
or Irrelevant.
{Support Example}
{Missing Example}
{Contradictory Example}
{Irrelevant Example}
Claim: {question|answer statement}
Reference: {citation}
Response:

Table 13: Different few-shot prompts designed for different evaluators.

D.2 Implementations of Various Evaluators
for Calculating FACTSCORES

We describe how the various attribution evaluators
calculate FACTSCORES in the CAQA benchmark.
For each partially supportive case, we first use
GPT-3.5 to convert triples into natural language
subfacts with the prompt: “Your task is to convert
a triple into natural language statement”. Then,
following the Retrieve→LM method (Min et al.,
2023), we calculate the FACTSCORES for each at-
tribution evaluator. Specifically, the prompt is fed
into the evaluator, which predicts True or False to
calculate the FACTSCORES. For the zero-shot eval-
uator, we use the prompt: “Judge this fact based
on the given context.\n\n Fact: {sub-fact}\n Text:
{citation} \n\nTrue or False?\nOutput:”. For fine-
tuned and existing evaluators, the prompt provided
in Table 12 is used. Because these evaluators can
generate more than two attribution categories, we
categorize supportive as True and all other cate-
gories as False for calculating the FACTSCORES.
Human annotation, as described in Appendix H,

N-shot (GPT-3.5-turbo) CAQA

Sup. Par. Con. Irr. Overall

1-shot 0.613 0.026 0.318 0.609 0.476
2-shot 0.627 0.034 0.359 0.593 0.486
3-shot 0.599 0.015 0.378 0.581 0.478

Table 14: The performance of GPT-3.5-turbo under
various few-shot settings on CAQA.

involves annotators determining whether each sub-
fact is supported by its citation. The FACTSCORES

is the proportion of predictions classified as True
compared to the total number of subfacts evaluated.

E Detailed Experimental Results

E.1 Full Experimental Results

We present the full experimental results in Tables
16. We find that the newest LLMs demonstrate
slight improvements in overall performance for at-
tribution recognition compared to their earlier ver-
sions in all three settings. Specifically, in zero-shot
and few-shot settings, they show more balanced
and enhanced results across scenarios with varying
levels of complexity, highlighting advancements
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in their reasoning capabilities. However, they still
struggle to accurately distinguish fine-grained at-
tribute categories, with notable deficiencies persist-
ing in certain attribution recognition.

E.2 Exploration of Few-shot Settings
We investigate three few-shot settings: 1-shot, 2-
shot, and 3-shot in 5,000 test instances employing
GPT-3.5-turbo. In these settings, 1, 2, and 3 ex-
amples, respectively, are provided for each attri-
bution category. The outcomes, as displayed in
Table 14, suggest that increasing the number of
examples yields negligible improvement in perfor-
mance. Consequently, considering the associated
costs, we have opted to use the 1-shot setting in all
subsequent experiments.

E.3 Exploration of Advanced Baselines
We have included more advanced and diverse base-
lines, particularly incorporating LLM-based eval-
uators with CoT strategies. Specifically, inspired
by the approach proposed in (Min et al., 2023),
we designed a multi-step CoT evaluation strategy
that enhances the model’s attribution evaluation
capabilities:

1. Decomposition: The LLM is first prompted to
break down the answer into a series of atomic facts.
The prompt is: “Break the following sentence into
independent sub-facts. If the sentence is already
a minimal fact, return it directly. Each sub-fact
should be concise, self-contained, and listed on a
new line. \n Sentence: Sentence\n Sub-facts:”.

2. Atomic Fact Attribution Evaluation: For each
atomic fact, the LLM assesses its relationship with
the evidence, categorizing it as supportive, contra-
dictory, or irrelevant. The prompt is: “Evaluate
the relationship between the statement and refer-
ence. Choose one of the following categories based
on how the citation relates to the statement:\n1.
Supportive: Select this if the statement is present
and validated by the reference.\n 2. Contradictory:
Select this if the reference contains the fact that
directly opposes or contradicts the statement.\n
3. Irrelevant: Select this if the reference is com-
pletely unrelated to the statement.\n For each ex-
ample provided: First, you need to understand
precisely what the statement claims. Then, un-
derstand what facts or information the reference
actually provides. Finally, compare the statement
with the information of the reference and select the
appropriate relationship category.\n\n Example:\n
\n Statement: sub_fact\n Reference: reference\n

Relationship Category:”.
3. Final Attribution Classification: Based on

the attribution types of the atomic facts, we deter-
mine the overall attribution label for the answer
as follows: Supportive: All atomic facts are sup-
ported by the evidence. Partially Supportive: At
least one atomic fact is supported, and none are
contradictory. Contradictory: At least one atomic
fact is contradicted by the evidence. Irrelevant: All
atomic facts are irrelevant to the evidence.

The experiment results are shown in table 15.
Compared with the naive LLM evaluators (see Ta-
ble 5), the experimental results of our proposed
CoT-based evaluators reveal two key findings: 1.
Effectiveness in Complex Scenarios: The CoT-
based method demonstrates strong performance
in complex attribution scenarios, such as Concate-
nation, Intersection, and Union, achieving up to a
16% improvement over the naive LLM evaluator
in complex attribution scenarios. However, in the
simpler Single scenario, decomposition errors will
hinder performance, resulting in an overall score
that remains largely unchanged in the zero-shot
setting. 2. Improvement with Few-shot Learning:
Under the few-shot setting, the CoT-based evalua-
tor benefits significantly from in-context examples,
which help guide both fact decomposition and at-
tribution classification. Compared to the equally
naive LLM evaluator, the overall performance of
the CoT-based evaluator improved by as much as
5.2%, highlighting the value of in-context learning
in improving the evaluation of attribution.

F Details of Experiments on
ALCE-FineGrained

ALCE-FineGrained consists of 215 manually la-
belled samples containing 104 supportive samples,
58 partially supportive samples, 25 contradictory
samples, and 28 irrelevant samples. For the few-
shot setting, we select one sample for each attribu-
tion category as demonstration. For the fine-tuning
setting, we employ GPT-4 to annotate 800 sam-
ples from the ALCE benchmark as the training set.
Since there are fewer contradictory and irrelevant
attribution categories in the ALCE benchmark, we
use GPT-4 to edit the evidence to construct con-
tradictory and irrelevant samples, thus ensuring a
balanced number of the four categories.

Table 18 presents two ALCE-FineGrained exam-
ples, illustrating the attribution categories partially
supportive and irrelevant, respectively. It shows
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Settings Evaluators (Size) Category Complexity

Sup. Par. Con. Irr. Overall S. C. I. U.

Gemma-2 (27B) 0.663 0.216 0.55 0.597 0.556 0.557 0.667 0.542 0.375
LLaMA-3.1 (70B) 0.695 0.166 0.54 0.58 0.537 0.527 0.681 0.542 0.5

Zero-Shot Qwen-2.5 (72B) 0.653 0.294 0.75 0.496 0.604 0.585 0.744 0.639 0.538
GPT-4o 0.746 0.387 0.659 0.649 0.624 0.654 0.604 0.528 0.688
GPT-4o-mini 0.698 0.413 0.593 0.717 0.607 0.642 0.5 0.517 0.688

Gemma-2 (27B) 0.645 0.293 0.692 0.554 0.581 0.573 0.708 0.592 0.438
LLaMA-3.1 (70B) 0.722 0.361 0.714 0.637 0.64 0.64 0.688 0.637 0.562

Few-Shot Qwen-2.5 (72B) 0.755 0.449 0.771 0.505 0.646 0.636 0.708 0.682 0.5
GPT-4o 0.817 0.615 0.719 0.679 0.716 0.765 0.542 0.617 0.688
GPT-4o-mini 0.770 0.497 0.786 0.706 0.697 0.741 0.417 0.398 0.688

Table 15: Advanced baseline results on CAQA. The bold and underlined results show the best.

Settings Evaluators (Size) Category Complexity

Sup. Par. Con. Irr. Overall S. C. I. U.

LLaMA-2 (7B) 0.423 0.121 0.057 0.170 0.279 0.286 0.249 0.282 0.260
LLaMA-2 (13B) 0.418 0.164 0.161 0.125 0.279 0.314 0.270 0.303 0.253
LLaMA-3 (8B) 0.467 0.120 0.072 0.007 0.296 0.304 0.271 0.283 0.259
LLaMA-3.1 (8B) 0.544 0.049 0.130 0.017 0.318 0.319 0.326 0.319 0.285
LLaMA-3 (70B) 0.746 0.104 0.653 0.592 0.525 0.645 0.279 0.305 0.578
LLaMA-3.1 (70B) 0.688 0.168 0.547 0.609 0.544 0.545 0.549 0.545 0.499
Mistral-v0.2 (7B) 0.456 0.178 0.191 0.153 0.305 0.315 0.281 0.294 0.265
Mistral-v0.3 (7B) 0.661 0.160 0.051 0.334 0.362 0.363 0.374 0.356 0.337
Ministral* (8B) - - - - - - - - -
Mixtral-v1.0 (8x7B) 0.677 0.094 0.17 0.635 0.494 0.495 0.516 0.484 0.487

Zero-Shot Vicuna (7B) 0.513 0.100 0.064 0.199 0.327 0.343 0.273 0.312 0.256
Vicuna (13B) 0.634 0.211 0.393 0.275 0.405 0.432 0.314 0.361 0.374
Phi-3-small (7B) 0.624 0.217 0.481 0.569 0.507 0.509 0.508 0.504 0.453
Phi-3-medium (14B) 0.627 0.148 0.383 0.291 0.406 0.406 0.413 0.407 0.391
Gemma-2 (9B) 0.667 0.28 0.498 0.624 0.556 0.557 0.572 0.552 0.508
Gemma-2 (27B) 0.653 0.184 0.569 0.646 0.566 0.566 0.579 0.566 0.537
Qwen-2.5 (7B) 0.696 0.241 0.617 0.404 0.556 0.557 0.572 0.551 0.537
Qwen-2.5 (14B) 0.68 0.132 0.708 0.66 0.617 0.640 0.622 0.611 0.547
Qwen-2.5 (72B) 0.629 0.266 0.701 0.471 0.571 0.593 0.583 0.565 0.53
GPT-3.5-turbo 0.583 0.017 0.598 0.512 0.497 0.555 0.321 0.363 0.363
GPT-4 0.771 0.456 0.745 0.473 0.630 0.685 0.451 0.514 0.616
GPT-4o 0.769 0.445 0.598 0.626 0.630 0.676 0.591 0.47 0.588
GPT-4o-mini 0.718 0.297 0.632 0.703 0.616 0.672 0.473 0.444 0.559

LLaMA-2 (7B) 0.300 0.066 0.009 0.334 0.248 0.259 0.218 0.167 0.308
LLaMA-2 (13B) 0.419 0.199 0.167 0.089 0.272 0.274 0.271 0.233 0.267
LLaMA-3 (8B) 0.573 0.202 0.234 0.156 0.336 0.356 0.279 0.310 0.294
LLaMA-3.1 (8B) 0.631 0.101 0.307 0.157 0.353 0.354 0.375 0.343 0.362
LLaMA-3 (70B) 0.741 0.192 0.608 0.584 0.531 0.628 0.295 0.314 0.563
LLaMA-3.1 (70B) 0.698 0.259 0.713 0.665 0.627 0.626 0.638 0.632 0.589
Mistral-v0.2 (7B) 0.412 0.152 0.041 0.415 0.349 0.339 0.278 0.300 0.271
Mistral-v0.3 (7B) 0.571 0.072 0.252 0.134 0.342 0.343 0.351 0.336 0.326
Ministral (8B) 0.646 0.114 0.405 0.498 0.463 0.461 0.475 0.47 0.453
Mixtral-v1.0 (8x7B) 0.589 0.084 0.356 0.558 0.455 0.456 0.473 0.451 0.416

Few-Shot Vicuna (7B) 0.578 0.183 0.081 0.324 0.325 0.337 0.272 0.354 0.311
Vicuna (13B) 0.633 0.208 0.383 0.288 0.403 0.427 0.315 0.397 0.374
Phi-3-small (7B) 0.592 0.185 0.301 0.498 0.445 0.444 0.455 0.448 0.416
Phi-3-medium (14B) 0.626 0.122 0.095 0.447 0.417 0.417 0.445 0.415 0.385
Gemma-2 (9B) 0.705 0.390 0.568 0.593 0.572 0.571 0.586 0.578 0.526
Gemma-2 (27B) 0.646 0.231 0.67 0.572 0.57 0.57 0.585 0.569 0.511
Qwen-2.5 (7B) 0.676 0.198 0.677 0.545 0.57 0.572 0.582 0.563 0.555
Qwen-2.5 (14B) 0.699 0.257 0.741 0.676 0.646 0.680 0.656 0.638 0.608
Qwen-2.5 (72B) 0.721 0.4 0.736 0.503 0.617 0.635 0.608 0.626 0.592
GPT-3.5-turbo 0.602 0.031 0.340 0.604 0.467 0.512 0.324 0.384 0.368
GPT-4 0.794 0.520 0.728 0.653 0.680 0.745 0.492 0.473 0.559
GPT-4o 0.783 0.507 0.683 0.641 0.664 0.73 0.559 0.449 0.529
GPT-4o-mini 0.763 0.435 0.705 0.7 0.657 0.741 0.43 0.404 0.588

LLaMA-2 (7B) 0.922 0.897 0.944 0.933 0.926 0.923 0.815 0.931 0.921
LLaMA-2 (13B) 0.929 0.907 0.938 0.923 0.925 0.954 0.824 0.936 0.939
LLaMA-3 (8B) 0.935 0.901 0.935 0.928 0.926 0.935 0.820 0.930 0.924

Fine-Tuing LLaMA-3.1 (8B) 0.946 0.919 0.944 0.934 0.941 0.953 0.850 0.939 0.945
Mistral-v0.2 (7B) 0.927 0.908 0.944 0.849 0.882 0.935 0.831 0.921 0.905
Mistral-v0.3 (7B) 0.944 0.921 0.947 0.935 0.942 0.956 0.852 0.937 0.941
Vicuna (7B) 0.937 0.907 0.940 0.906 0.932 0.956 0.823 0.936 0.939
Vicuna (13B) 0.942 0.923 0.939 0.923 0.933 0.950 0.847 0.935 0.940

Existing Attribution Evaluators
AUTOIS (11B) 0.609 - - - - - - - -
ATTRSCORE (13B) 0.687 - 0.523 0.541 0.521 0.559 0.410 0.432 0.353

Table 16: Full results on CAQA. The bold and underlined results show the best and second best results respectively.
Ministral behaves abnormally in the zero-shot setting and does not obey the instruction to select one of the four
attribution categories.
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that these two categories, which are not included
in the previous attribution categories, are common
and different in practical situations. In example
1, where the attribution category is partially sup-
portive, most of the answer statement (highlighted
in green) is mentioned in the citation, but the key
information “The Maryland Transportation Author-
ity” (highlighted in yellow) is not mentioned in the
citation. This demonstrates the subtleties that can
render an attribution insufficient. In example 2,
which is categorised as irrelevant, the entirety of
the answer statement is irrelevant to the citation.
This exemplifies a clear case of irrelevant attribu-
tion. Notably, previous evaluators, AutoIS and
AttrScore, are unable to accurately classify these
cases. In contrast, Vicuna, an evaluator trained
with our CAQA benchmark, successfully identifies
the correct attribution categories. This underscores
the effectiveness and practicality of employing the
CAQA benchmark for developing attribution eval-
uators.

G Analysis of Existing Attributed QA
Systems

Following the work of Gao et al. (Gao et al., 2023b)
we reproduce the attributed question answering
system based on Vicuna-13B model, noted for its
effectiveness in smaller language model configu-
rations. Specifically, we provide the model with
the top-3 retrieved passages and instruct the model
to cite them accordingly. The retrieved passages
and the instruction are consistent with the original
implementation. Upon reviewing 234 instances
of the system, our analysis revealed that: 44.4%
of the instances accurately cited evidence support-
ing their answers, while 24.8% cited evidence that
only partially supported the answers. Contradictory
evidence was cited in 10.7% of cases, and 12.0%
of the responses involved citations of irrelevant
evidence. Additionally, 8.1% of the cases were cat-
egorized under other issues, including incomplete
or unclear answers. The predominant challenges
in incorrect attributions are identified as partially
supportive, contradictory, and irrelevant citations,
with partially supportive citations being the most
common problem.

H Human Annotation

The human annotation process for our study was
conducted by the authors themselves, eliminating
the need for external paid services. Three of our

annotators were asked to read these guidelines care-
fully. Only annotators with a thorough understand-
ing of the guidelines and the task were allowed to
participate in the manual evaluation. We ensured
the reliability of the results by retaining only those
annotations that were aligned across all three anno-
tators. Annotation guidelines are shown in Fig. 6
and 7.

For the CAQA benchmark, we sampled 400
cases and provided them to three annotators.
Among these, 2 examples were deemed unclear
by more than one annotator and subsequently dis-
carded. This resulted in 398 valid annotated exam-
ples. The Fleiss’ Kappa score for these annotations
was 0.780, reflecting a substantial level of agree-
ment. For the ALCE-FineGrained benchmark, we
sampled 300 cases and provided them to three anno-
tators. Of these, 24 examples were deemed unclear
and were excluded, leaving 276 valid annotated
examples. The Fleiss’ Kappa score for these an-
notations was 0.748, also indicating a substantial
level of agreement.

Additionally, we analyzed the labeling process
and identified patterns of agreement and disagree-
ment among annotators. Overall, the category with
the highest agreement was ‘supportive’, followed
by ‘irrelevant’, while the categories ‘partially sup-
portive’ and ‘contradictory’ exhibited lower agree-
ment. Specifically, annotators often confused ‘par-
tially supportive’ with ‘irrelevant’, frequently mis-
classifying examples between these two categories.
This confusion arose because distinguishing be-
tween them required identifying sub-facts (i.e., the
smallest semantic units containing a subject, verb,
and object) from answer statements and evidence.
The process often required domain-specific knowl-
edge, which annotators lacked, leading them to
rely on co-occurring keywords rather than deeper
semantic understanding. Similarly, annotators had
difficulty identifying ‘contradictory’ due to a lack
of domain knowledge. This led to misclassifica-
tions of ‘contradictory’ as either ‘partially support-
ive’ or ‘irrelevant’. Determining contradictions
requires nuanced reasoning beyond surface-level
overlaps, which posed challenges in the absence of
sufficient domain context.

I License

Our dataset will be distributed under the CC BY-SA
4.0 license.
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Figure 3: Histogram of the number of tokens across
all citations in the CAQA benchmark training set.

Figure 4: Histogram of the number of tokens across
all citations in the CAQA benchmark test set.

Figure 5: The distribution of examples across different domains in the CAQA benchmark.

Table 17: Examples of the four complexity types. Reasoning Graphs show the reasoning relationships between
citations-answers. Green represents content associated with the answer, gray indicates excluded content, and orange
indicates the common term connecting the citations.

Complexity Examples Reasoning Graphs

Single

Question: Which radio program episode appears in All Things Considered?
Answer: The radio program episode in which All Things Considered appears is Remorse:
The 14 Stories of Eric Morse [1].
Citations: [1] Remorse: The 14 Stories of Eric Morse is an episode of the radio program
All Things Considered....

Union

Question: Which university did Rick Scott attend?
Answer: Rick Scott attended the University of Missouri–Kansas City and Southern Methodist
University [1][2].
Citations: [1] Rick Scott graduated from the University of Missouri–Kansas City ... [2]
Rick Scott earned a juris doctor degree by working his way through Southern Methodist
University, ...

Intersection

Question: The computer designer for Macintosh 128k and NeXT computer was whom?
Answer: The computer designer for Macintosh 128k and NeXT computer was Steve Jobs
[1][2].
Citations: [1] The computer designer for Macintosh 128k was Jerry Manock, who worked
with Steve Jobs to develop the vertical body ... [2] ...Several former Apple employees followed
Jobs to NeXT, including Joanna Hoffman, Bud Tribble, George Crow, Rich Page...

Concatenation

Question: What are the official languages in the politician Mohammad Najibullah’s country?
Answer: Pashto and Dari are the official languages in the politician Mohammad Najibullah’s
country. [1][2].
Citations: [1] Mohammad Najibullah was the president of Afghanistan from 1986 to 1992
... [2] Afghanistan s a multilingual country, where Pashto and Dari (a dialect of Persian)
are the official languages with ...
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Example 1
Question: The Maryland Transportation Authority is in charge of what landmarks?
Answer Statement: The Maryland Transportation Authority is in charge of providing funding for the construction
of revenue-producing transportation facilities for the Maryland Department of Transportation, which have included
improvements at the Port of Baltimore and the Baltimore-Washington International Airport
Citation: of a commercial enterprise. Its capital projects and operations are funded by tolls, concessions, investment
income, and revenue bonds. In addition to its own toll facilities, the Authority finances construction of other revenue-
producing transportation facilities for the Maryland Department of Transportation (MDOT). These projects have
included improvements at the Port of Baltimore and the Baltimore-Washington International Airport. To provide
construction funding, the Authority issues revenue bonds, which will be paid off over a period of years by tolls and other
user fees generated by the facilities. The MDTA can issue either taxable or exempt bonds to finance large scale projects.
AutoIS: Supportive ✗
AttrScore: Irrelevant ✗
Vicuna†: Partially Supportive ✓

Example 2
Question: When did the last season of jersey shore air?
Answer Statement: The TV show Jersey Shore aired its final episode on December 20, 2012.
Citation: 8.56 million viewers, only to set another record with the airing of the fourth episode, which garnered 8.87
million viewers. On January 25, 2011, it was confirmed that the show had been renewed for a fourth season, to be
filmed in Italy during the first half of 2011. The fourth season premiered August 4, 2011. MTV confirmed in June 2011
that the fifth season would return to Seaside Heights. Believed complications caused by Nicole Polizzi’s pregnancy, and
several cast members (including Polizzi, DelVecchio, and Farley) receiving spin-offs sparked talk about the future of the
series past the fifth season, however
AutoIS: Supportive ✗
AttrScore: Contradictory ✗
Vicuna†: Irrelevant ✓

Table 18: Two examples of the results of the three attribution evaluators on ALCE-FineGrained. Content in yellow
highlights portions of the answer statement not found in the citation, whereas green indicates content present in the
citation.
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You will see a question, the corresponding answer, and the cited reference. What you
need to do is:
1. Read the question, the answer and the cited reference carefully.
2. You should judge whether the cited reference is supportive, partially supportive,
contradictory, or irrelevant to answer of the question.

• Supportive: The cited reference includes facts that can fully support the answer.
• Partially Supportive: The cited reference lacks a part of the facts that are required to
infer the answer.
• Contradictory: The cited reference includes facts that can infer a different answer.
• Irrelevant: The cited reference has no facts that can be used to infer the answer.

Here are some examples of the four categories:
1. Supportive
Question:Who is hosting the next world cup 2022?

Answer: The 2022 FIFA World Cup will be hosted by Qatar

Reference: Title: 2018 and 2022 FIFA World Cup bids. Content: FIFA's headquarters in Zurich. Russia was

chosen to host the 2018 World Cup, and Qatar was chosen to host the 2022 World Cup. This made Russia the first

Eastern European country to host the World Cup, while Qatar would be the first Middle Eastern country to host the

World Cup. Blatter noted that the committee had decided to "go to new lands" and reflected a desire to "develop

football" by bringing it to more countries. In each round a majority of twelve votes was needed. If no bid received

12 votes in a round, the bid with the fewest votes

Question:Who lived to be the oldest person in the world?

Answer: The longest-lived human on record was Jeanne Calment, who lived to be 122 years and 164 days old

Reference: Title: Oldest people. Content: Oldest people This is a list of tables of the oldest people in the world in

ordinal ranks. To avoid including false or unconfirmed claims of extreme old age, names here are restricted to

those people whose ages have been validated by an international body that specifically deals in longevity research,

such as the Gerontology Research Group (GRG) or "Guinness World Records" (GWR), and others who have

otherwise been . According to this criterion, the longest human lifespan is that of Jeanne Calment of France

(1875–1997), who lived to the age of 122 years, 164 days. She met Vincent van

2. Partially Supportive
Question:What do you use to test for lipids?

Answer: To test for lipids, a blood sample is taken after a 12-hour fast, which is then used to measure a lipid

profile through mass spectrometry, chromatography, or nuclear magnetic resonance

Reference: Title: Cholesterol. Content: and then every 3–12 months thereafter. A blood sample after 12-hour

fasting is taken by a doctor, or a home cholesterol-monitoring device is used to measure a lipid profile, an

approach used to estimate a person's lipoproteins, the vastly more important issue because lipoproteins have

always been concordant with outcomes though the lipid profile is commonly discordant LDL Particle Number and

Risk of Future Cardiovascular Disease in the Framingham Offspring Study. The lipid profile measures: (a) total

cholesterol, (b) cholesterol associated with HDL (i.e. Higher Density {than water}

Lipids-transported-within-proteins) particles ("which can regress arterial disease"), (c) triglycerides and (d) (by

Figure 6: First page of the annotation guidelines.
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Question:Where was in the dark tv series filmed?

Answer: In the Dark, a British crime drama series, was filmed in Manchester and Marsden

Reference: Title: In the Dark (UK TV series). Content: of kidnapping two young girls. In the second two-parter, a

heavily pregnant Helen is pulled into the dark side of urban Manchester as she deals with an unexpected tragedy.

Filming for the series began in April 2017 in Manchester and Marsden. "The Daily Telegraph"s Michael Hogan

gave the first episode three stars out of five, noting that: ""In the Dark" did show promise and could yet come

good. It was taut and tensely atmospheric with an intriguing premise which found its heroine caught in the middle

between police and prime suspect." Reviewing the first episode, "The Guardian"s Sam Wollaston concluded

3. Contradictory
Question: When did spain win their first world cup?

Answer : Spain won their first FIFA World Cup in 1964, hosted in their home country

Reference: Title: Spain national football team. Content: the silver medal. Spain qualified for their first FIFA

World Cup in 1934, defeating Brazil in their first game and losing in a replay to the hosts and eventual champions

Italy in the quarter-finals. The Spanish Civil War and World War II prevented Spain from playing any competitive

matches between the 1934 World Cup and the 1950 edition's qualifiers. At the 1950 finals in Brazil, they topped

their group to progress to the final round, then finished in fourth place. Until 2010, this had been Spain's highest

finish in a FIFA World Cup finals, which had given them the name

Question: Who was the last person hanged in england?

Answer : Peter Manuel was the last person to be hanged in the UK for killing a police officer

Reference: Title: Harry Allen (executioner). Content: 1957 reduced the number of condemned criminals by 75%,

from an average of 15 a year in the early 1950s to about four a year in the late 1950s. As Chief Executioner, on 11

July 1958 Allen hanged American-born Scottish serial killer Peter Manuel at Barlinnie prison, Glasgow. He also

hanged Guenther Podola on 5 November 1959, a German-born petty thief, and the last man to be hanged in the UK

for killing a police officer. His most controversial case was that of James Hanratty, hanged on 4 April 1962 at

Bedford Prison for the "A6 murder" case. Efforts to

4. Irrelevant
Question: Who plays patrick in 10 things i hate about you?

Answer : Patrick is played by actor Heath Ledger in the 1999 film 10 Things I Hate About You

Reference: Title:10 Things I Hate About You. Content: assists by convincing Joey to pay Patrick to take out Kat,

under the pretense that this will allow Joey to date Bianca. Patrick agrees to the deal, but Kat rebuffs his first few

advances. Michael and Cameron help him by prying Bianca for information on Kat's likes and dislikes. Armed

with this knowledge, Patrick begins to win Kat's interest. She goes to a party with him, which enables Bianca to go

as well, much to Walter's dismay. At the party, Kat becomes upset when she sees Bianca with Joey,

Question: How many medals did australia win in the 2000 olympics?

Answer : According to the information provided in the search results, Australia won a total of 58 medals at the

2000 Summer Olympics, with 14 gold, 26 silver, and 28 bronze

Reference: Title: 2000 Summer Paralympics medal table. Content: The location and facilities were shared with

the largest event, the 2000 Summer Olympics, which concluded on 1 October. The Games set records for athlete

and country participation, tickets sold, hits to the official Games website, and medals on offer. A record of 122

countries (or 123 delegations including independent athletes from Timor-Leste) participated; 68 countries won

medals, of which seven won a medal for the first time. A total of 1,657 medals were awarded during the Sydney

games: 550 gold, 549 silver, and 558 bronze. Among these performances,

Figure 7: Second page of the annotation guidelines.
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