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Abstract

Integrating split learning with large language
model fine-tuning (LLM-FT) enables secure
collaboration between a trusted local client and
a well-equipped remote server, but it is vul-
nerable to data reconstruction attacks (DRAs)
that exploit transmitted activations and gradi-
ents. Current defense methods, like adding
noise to activations or gradients, often sacrifice
task-specific model performance under strict
privacy constraints. This paper introduces Du-
alGuard, a bidirectional defense mechanism
against DRAs for split-based LLM-FT. Du-
alGuard proposes a local warm-up parameter
space transformation to alter client-side model
parameters before training, using multi-task
learning to strike a balance between privacy
protection and model performance. Addition-
ally, a global fine-tuning parameter space reten-
tion strategy prevents the model from reverting
to vulnerable states during formal fine-tuning.
Experiments show that DualGuard outperforms
current defense methods against various DRAs,
while maintaining task performance. Our code
will be made publicly available.

1 Introduction

Large language model fine-tuning (LLM-FT) cus-
tomizes a pre-trained model (Bommasani et al.,
2021; Brown et al., 2020; Touvron et al., 2023) for a
specific task by training it further on new data (Gu-
rurangan et al., 2020; Lee et al., 2020; Radford,
2018). Combining LLM-FT with split learning
(SL) (Gupta and Raskar, 2018; Vepakomma et al.,
2018), which splits the model into client-resident
head and tail layers and server-resident trunk lay-
ers, allows a trusted local client to co-train with a
powerful remote server. The client processes the
raw data, generates intermediate smashed data, and
sends them to the server for further training. By
only transmitting intermediate data, data privacy is
maintained while the language model is efficiently
fine-tuned (Chen et al., 2024b; Wu et al., 2023).
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Figure 1: Privacy risk in split-based LLM fine-tuning,
where attackers may reconstruct the original data via
transmitted intermediate activations or gradients.

While split-based LLM-FT (Cao et al., 2024;
Lin et al., 2024; Shen et al., 2023) enhances data
privacy by avoiding transmitting raw data, privacy
leakage risk remains through transmitted intermedi-
ate data (Pasquini et al., 2021; Li et al., 2024). Ma-
licious attackers can reconstruct the original data
using data reconstruction attacks (DRAs), as shown
in Figure 1. Forward smashed data inversion (He
et al., 2019; Zhang et al., 2023; Chen et al., 2024a)
can reconstruct input data from intermediate acti-
vations. Backward gradient matching attacks (Zhu
et al., 2019; Deng et al., 2021; Balunovic et al.,
2022) can generate dummy gradients to reconstruct
output labels and deduce the original input.

To mitigate DRAs, additional defense measures
are needed (Shen et al., 2023; Thapa et al., 2022;
Nguyen et al., 2023). Perturbation-based tech-
niques, especially leveraging differential privacy
(DP) (Dwork et al., 2006), are commonly used
to modify sensitive attributes and enhance privacy
protection. For forward smashed data inversion
attacks, DP noise is added to either the original
data output (Hoory et al., 2021) or intermediate
activations (Du et al., 2023b,a) to prevent recon-
structing the original data. To address backward
gradient matching attacks, introducing noise into
gradients can help thwart attempts to reconstruct
label information (Abadi et al., 2016).
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However, these defense methods face limitations
in split-based LLM-FT scenarios. Firstly, there
is a trade-off between privacy protection and task
performance. Perturbation-based methods often
rely on high noise levels to enhance data secu-
rity, potentially impacting task performance (Far-
rand et al., 2020). Secondly, the inherent "auto-
regressive" nature of LLMs creates a significant
overlap between original inputs and output labels,
rendering them susceptible to both forward and
backward attacks (Chen et al., 2024a). However,
current defense mechanisms primarily target one
type of attack, leaving vulnerabilities against the
other. Lastly, the "not-too-far" property of LLM-
FT, where fine-tuned model parameters remain
close to the pre-trained model, allows attackers
to acquire extensive prior knowledge. This poses a
significant vulnerability that current methods strug-
gle to fully mitigate (Chen et al., 2024a). For a
detailed discussion and experimental validation of
these limitations, please refer to Appendix E.

To tackle the limitations and bolster defense
against DRAs while maintaining downstream task
performance, this paper presents DualGuard, a
bidirectional defense mechanism tailored for split-
based LLM-FT scenarios. DualGuard underscores
the importance of prior knowledge in pre-trained
models for DRAs and introduces a novel parame-
ter space transformation approach. This approach
aims to increase the dissimilarity between the client
model and the pre-trained model, preventing attack-
ers from exploiting the pre-trained model’s prior
knowledge. DualGuard provides defense against
both forward and backward attacks while main-
taining downstream task performance. Our key
contributions include:

• We first propose a local warm-up parameter
space transformation strategy to locally adjust
the client-side model parameters to a different
parameter space before formal training. This
is achieved by connecting the client-resident
head and tail models through a projection
layer and using multi-task learning to balance
privacy protection and task performance.

• During formal fine-tuning, the tail model
may revert to the original pre-trained param-
eter space, leaving it vulnerable to backward
gradient-matching attacks. Hence, we fur-
ther introduce a global fine-tuning parameter
space retention strategy to locally preserve the
modified parameter space of the tail model.

• We implement DualGuard and conduct exten-
sive experiments to demonstrate its effective-
ness in defending against various DRAs. Our
results show a significant decrease in the at-
tack success rate, with the average RougeL-F
score decreasing from 0.752 to 0.167. Im-
portantly, we maintain robust performance on
downstream tasks, effectively balancing pri-
vacy protection and task performance.

2 Background and Related Works

2.1 Split-based LLM Fine-Tuning

In resource-constrained environments like small
enterprises and research institutions, data own-
ers face challenges in fine-tuning LLMs due to
limited computational resources and privacy con-
cerns. Split Learning (Gupta and Raskar, 2018;
Vepakomma et al., 2018; Chen et al., 2024a; Han
et al., 2021; Wang et al., 2023; Shen et al., 2023)
addresses these issues by splitting the model into
client-resident and server-resident components, re-
ducing the client’s computational load and ensuring
privacy by transmitting smashed data instead of raw
data. The U-shaped split learning (USL) (Gupta
and Raskar, 2018; Lyu et al., 2023) further en-
hances privacy protection by splitting the model
into head, trunk, and tail layers, with the trusted
client managing head and tail layers and server han-
dling trunk layers, as shown in Figure 1. During
forward computation, the client processes raw data,
generates smashed data, and sends it to the server
for trunk layer training. The client then trains the
tail layers to infer labels. In backward propaga-
tion, gradients flow from the tail through the trunk
layers to the head layers. This process enables ef-
ficient training with a resource-constrained client,
all while avoiding the transmission of the raw data.

2.2 Data Reconstruction Attacks Vulnerabilities

In split-based LLM-FT, while raw data is not di-
rectly transmitted, vulnerabilities persist through
transmitted smash data. Data reconstruction attack-
ers (DRAs) on the server typically rely on four
types of information to reconstruct the raw data:
(1) white-box access to the server-side model (in-
cluding model structure and all fine-tuned parame-
ters), (2) semi-white-box access to the client-side
model (comprising model structure and only pre-
trained parameters), (3) public auxiliary datasets
with similar data distribution, and (4) transmitted
smash data and gradients during fine-tuning.
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Several common DRA methods can be applied in
split-based LLM-FT scenarios, where the client ex-
changes smashed data and gradients during forward
and backward propagation, respectively. Forward
smashed data inversion attacks (He et al., 2019;
Zhang et al., 2023; Chen et al., 2024a) involve
reconstructing original inputs from smashed data
using an inversion attack model trained with an
auxiliary dataset and the pre-trained head model.
Backward gradient matching attacks (Zhu et al.,
2019; Deng et al., 2021; Balunovic et al., 2022;
Li et al., 2024) aim to reconstruct output labels,
which can deduce the original input in LLM. These
attacks utilize the trunk model’s output activations
and a pre-trained tail model to adjust a dummy gra-
dient that matches real gradients, and reconstruct a
dummy label that closely resembles the real output
label. Besides, advanced BiSR (Chen et al., 2024a)
achieves high-quality bidirectional reconstructions
by combining forward smashed data inversion with
backward gradient matching, posing a significant
privacy risk in split-based LLM-FT scenarios.

2.3 Defense Methods against DRA
To thwart attackers attempting to reconstruct origi-
nal data from forward smashed data and backward
gradients, perturbation-based approaches are com-
monly used (Feyisetan et al., 2020; Chatzikokolakis
et al., 2013; Shen et al., 2023; Du et al., 2023b,a;
Wang et al., 2024; Mai et al., 2023). These methods
obscure sensitive information in private data with
differential privacy (DP) (Dwork et al., 2006) noise
during forward or backward propagation. In for-
ward propagation, noise is added to intermediate
layers, such as embedding vectors (Chatzikoko-
lakis et al., 2013) or activation values (Du et al.,
2023b), to prevent attackers from inferring original
inputs from perturbed smashed data. For back-
ward propagation, DP noise is introduced into gra-
dients (Abadi et al., 2016) to ensure that the gradi-
ents utilized in model updates do not reveal private
output labels. However, these methods can only
defend against either forward or backward attacks
individually, not simultaneously for both.

Additionally, techniques like homomorphic en-
cryption (Lu et al., 2023; Zimerman et al., 2023;
Chen et al., 2022) and multi-party secure computa-
tion (Dong et al., 2023; Akimoto et al., 2023) offer
effective data security guarantees. Nonetheless,
their significant computational and communication
overhead currently renders them impractical for
use in the training process of LLM fine-tuning.

3 The Proposed DualGuard Approach

In this section, we introduce DualGuard, a bidirec-
tional defense mechanism specifically designed for
split-based LLM-FT scenarios. We first overview
the main idea behind DualGuard and then explore
its key design components, i.e., local warm-up pa-
rameter space transformation and global fine-tuned
parameter space retention.

3.1 Overview

DualGuard aims to prevent attackers from ex-
ploiting prior knowledge in split-based LLM-FT,
defend against both forward and backward at-
tacks, and maintain task performance. To achieve
these objectives, DualGuard introduces a novel pa-
rameter space transformation paradigm. Unlike
perturbation-based approaches that involve adding
DP noise to smashed data or gradients, DualGuard
emphasizes the importance of safeguarding prior
knowledge within the client-resident head and tail
models, and strategically increases the disparity
between the private client model and the public
pre-trained model, thereby effectively defending
against various data reconstruction attacks (DRAs).

DualGuard comprises two main components: lo-
cal warm-up parameter space transformation and
global fine-tuned parameter space retention, with
the design flow illustrated in Figure 2. In the lo-
cal warm-up phase, before formal fine-tuning, the
head and tail models are transformed into a secure
parameter space using a projection layer, which
thwarts attackers from exploiting prior knowledge.
During fine-tuning, the global retention strategy
ensures that the client’s tail model does not revert
to its pre-trained state, providing protection against
gradient-based attacks while preserving task per-
formance. Next, we delve into the design details.

3.2 Local Warm-up Parameter Space Transformation

To address attacks that exploit prior knowledge
from pre-trained models, we propose a local warm-
up parameter space transformation strategy to de-
crease the relevance between server-side knowl-
edge and client-side models. This warm-up phase
is conducted locally on the client side to prevent
data exposure to the server. This strategy involves
a projection-based nonlinear transformation that
links the head and tail models, transforming their
parameters into a new space through a projection
layer. This process typically employs a three-layer
MLP, chosen for its lightweight architecture and
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Figure 2: DualGuard utilizes a combination of local warm-up parameter space transformation and global fine-tuning
parameter space retention to safeguard client model parameters, effectively balancing privacy protection and task
performance. The warm-up phase takes place exclusively on the client side, mitigating data leakage risks with low
computational overhead. In the global fine-tuning phase, the head model remains static to extract features, while the
tail model undergoes further fine-tuning to adapt to downstream tasks within a secure parameter space.

ability to effectively transform the parameter space.
It detaches the model’s features from their original
pre-trained forms, hindering attackers from recon-
structing the model using pre-trained parameters.

To protect privacy while maintaining down-
stream task performance, we adopt a multi-task
learning method during the local warm-up phase.
This warm-up phase is designed around three main
goals: (1) preventing reconstruction from smashed
data, (2) deactivating the applicability of the pre-
trained tail model, and (3) maintaining downstream
task performance. By optimizing these objectives,
we can strike a balance between safeguarding pri-
vacy and preserving task effectiveness.

3.2.1 Prevent reconstruction from smashed data
The risk of smashed data reconstruction arises
from semi-white-box inversion models like SIP,
which leverage the semantic properties of smashed
data to reconstruct original inputs. These mod-
els, trained on auxiliary datasets and pre-trained
models, can still utilize inherent semantic relation-
ships in smashed data, allowing strong inversion
even with real privacy data and fine-tuned mod-
els. To counter this, we disrupt these relationships
by transforming the head model’s parameter space.
By inputting smashed data into the pre-trained SIP
model to calculate inversion loss (Linv) and opti-
mizing the head model parameters to maximize this
loss, we increase the difficulty for attackers to re-
construct the original input, ensuring better protec-
tion against semi-white-box inversion attacks.The
anti-inversion loss is formally defined as:
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Figure 3: Comparison of RougeL-F scores between pre-
trained and fine-tuned tail models.

Lanti_inv =
1

Linv
(1)

3.2.2 Deactivating Pre-trained Model Applicability
In split-based LLM-FT, the ’not-too-far’ property
allows the server to feed its output into the pre-
trained tail model, which can infer label informa-
tion, potentially leaking private data. This attack,
called the Connect to Pre-trained Tail Model Attack
(CPTA), is illustrated in Figure 3, which compares
RougeL-F scores between original labels and pre-
dictions from the pre-trained versus fine-tuned tail
model, showing the pre-trained model can effec-
tively reconstruct the original labels.

To mitigate this, we propose to transform the
parameters of the client tail model to a different
space than the pre-trained tail model to reduce its
vulnerability to reconstruction attacks. By pass-
ing the head model’s output through a projection
layer into the pre-trained tail model, we calculate a
reconstruction loss and optimize it to prevent the
model from generating accurate labels. This re-
duces the applicability of the tail model for label
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reconstruction, enhancing privacy protection.The
method is formalized through the anti-pre-trained
tail model loss, defined as:

Lanti_local_pt =
1

Llocal_pt
(2)

3.2.3 Maintain downstream task performance
By minimizing the two losses, we prevent attackers
from reconstructing input data and labels from ac-
tivations or gradients. At the same time, we ensure
that both the head and tail models remain func-
tional for subsequent tasks, with the downstream
task loss defined as the cross-entropy loss.

Llocal_ft = − 1

N

N∑

t=1

logPθ(xt|x<t) (3)

where N denotes the total length of the input se-
quence, xt represents the t-th token in the sequence,
x<t denotes all tokens before the t-th token, and
Pθ(xt|x<t) is the probability of predicting xt based
on x<t.

3.2.4 Loss Function Design
Based on the three objectives described above, we
define the loss function for the warm-up phase as
follows:

Lwarm_up = Llocal_ft + λ1Lanti_inv + λ2Lanti_local_pt
(4)

Here, Llocal_ft maintains the performance of down-
stream tasks, Lanti_inv increases the difficulty for
attackers to reconstruct input data from forward-
propagated activations, and Lanti_local_pt reduces the
applicability of the pre-trained tail model in the at-
tacker’s model. λ1 and λ2 are hyper parameters that
balance the weights of different objectives within
the loss function.

3.3 Global Fine-tuned Parameter Space Retention

After the local warm-up parameter space transfor-
mation, the client head and tail models are moved
to a secure space. The head model is frozen to en-
sure safe forward activations, while the trunk and
tail models continue fine-tuning for tasks.
Issue of tail model reversion to unsafe states.
However, during fine-tuning, the client tail model
may revert to an unsafe state as the trunk model,
with its extensive layers, dominates the process.
This reversion enables gradient matching attacks
and CPTA, risking private data reconstruction (as
shown in subsection 4.4).

Parameter space retention. To prevent this, we
introduce a global fine-tuned parameter space reten-
tion strategy, adding an anti-pre-trained tail model
loss term, Lanti_global_pt, to keep the tail model in
the secure parameter space and prevent it from
reverting to the pre-trained model’s unsafe state.
Formally, the Lanti_global_pt and the complete loss
function Loss in formal split-based fine-tuning can
be expressed as follows:

Lanti_global_pt =
1

Lglobal_pt
(5)

Lglobal = Lglobal_ft + λ3Lanti_global_pt (6)

where Lglobal_pt denotes the accuracy of the
pre-trained model in reconstructing private data,
Lglobal_ft represents the client-side loss on down-
stream tasks, and λ3 is the weight factor balancing
privacy protection and task performance.

During this stage, the client head model remains
frozen, effectively extracting features from the in-
put data. Moreover, the client tail model is main-
tained within a safe parameter space throughout
training and is continuously fine-tuned to adapt to
downstream tasks.

4 Experiment

4.1 Experimental Setup
Models and Datasets. We choose three popular
large language models, i.e., GPT2-Large (Radford
et al., 2019), Llama3.2-1b (Dubey et al., 2024), and
Qwen2-1.5b (Yang et al., 2024). We perform ex-
periments on five different datasets. Each dataset
corresponds to a different natural language gener-
ation task, including structured data text genera-
tion (e2e (Novikova et al., 2017)), code generation
(CodeAlpaca-20k (Chaudhary, 2023)), mathemati-
cal reasoning (GSM8k (Cobbe et al., 2021)), and
dialogue summary generation (Dialogsum (Chen
et al., 2021)). In addition, the Wikitext dataset
(Merity et al., 2016) was used as an auxiliary
dataset for the attackers in the experiments.
Tested Attack Methods. The considered data re-
construction attacks (DRAs) methods include the
forward smashed data inversion attack SIP (Chen
et al., 2024a), backward gradient matching attacks
TAG (Deng et al., 2021) and LAMP (Balunovic
et al., 2022), bidirectional data augmentation at-
tack BiSR (Chen et al., 2024a), and the directly-
connecting attack CPTA (refer to §3.2).
Baseline and Defense Methods. We compare the
performance of DualGuard’s mechanism with a
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Attack
Method

Defense
Method

GPT2-large Llama3.2-1b Qwen2-1.5b
GSM8k Dialogsum CodeAl e2e GSM8k Dialogsum CodeAl e2e GSM8k Dialogsum CodeAl e2e

SIP

w/o defense 87.63 89.78 77.92 89.33 84.32 91.08 68.04 85.59 84.20 88.02 64.49 85.75
DP-forward 36.37 27.90 36.39 38.92 0.39 14.75 0.24 0.12 12.94 14.75 4.93 12.85

dχP 44.48 41.84 43.59 60.30 61.23 68.97 53.19 69.22 18.76 13.38 15.94 22.47
DP-SGD* 87.37 90.31 77.95 88.30 86.24 91.43 70.49 87.20 84.57 87.52 67.80 85.82
DualGuard 0.00 0.88 0.00 0.00 0.49 0.18 0.05 0.00 9.04 2.02 6.47 0.30

TAG*

w/o defense 81.05 80.93 77.91 84.91 94.91 93.86 72.14 95.78 81.90 93.81 77.70 93.35
DP-forward 86.84 50.20 79.86 80.44 83.03 89.69 88.85 71.94 80.70 89.00 83.10 91.44

dχP 87.30 73.40 78.62 71.24 78.36 69.13 69.54 92.96 67.99 67.40 66.86 80.08
DP-SGD* 0.00 0.24 0.04 0.00 1.21 0.94 1.40 0.40 1.23 1.27 0.74 0.00
DualGuard 20.96 18.94 8.24 15.28 21.77 24.02 10.34 3.61 23.55 5.25 4.91 13.05

LAMP*

w/o defense 79.50 80.35 78.93 85.31 94.78 96.02 72.72 96.02 83.96 93.13 81.13 92.77
DP-forward 85.51 47.30 79.67 81.81 84.07 89.73 89.25 71.98 81.03 87.30 85.46 92.25

dχP 87.73 67.75 78.31 67.02 79.94 66.75 67.28 95.21 68.02 66.85 66.86 81.08
DP-SGD* 0.35 0.09 0.14 0.00 1.31 1.13 1.84 0.52 1.47 2.14 0.92 0.44
DualGuard 25.35 22.66 10.63 19.14 22.32 33.11 11.28 4.72 26.31 5.62 5.78 12.28

BiSR

w/o defense 79.54 78.05 71.32 82.88 84.22 83.45 56.31 80.03 82.28 86.29 76.80 86.38
DP-forward 79.02 44.86 62.98 77.30 35.08 29.42 28.78 22.60 64.01 74.12 62.98 91.04

dχP 57.56 40.16 52.50 57.16 66.95 56.23 56.28 81.66 40.89 34.67 58.53 68.91
DP-SGD* 12.20 7.96 11.22 6.65 7.25 6.44 6.12 1.48 7.92 5.47 5.88 2.31
DualGuard 1.58 6.77 5.63 1.89 2.46 2.25 3.70 0.00 5.35 3.68 4.09 1.56

CPTA

w/o defense 75.52 64.80 80.98 80.19 82.56 71.58 86.96 80.23 85.88 71.92 89.21 80.28
DP-forward 78.48 63.66 69.23 78.62 60.51 51.23 47.29 59.59 73.02 55.93 65.17 77.63

dχP 66.43 55.35 68.95 73.78 73.81 63.94 73.27 71.88 43.87 34.78 33.23 44.28
DP-SGD* 71.77 53.60 69.55 48.73 76.55 58.79 78.83 51.86 81.46 61.36 80.86 65.69
DualGuard 0.00 0.00 0.98 0.00 0.38 0.45 0.71 0.01 5.20 5.67 0.76 0.55
w/o defense 87.63 89.78 80.98 89.33 94.91 96.02 86.96 96.02 85.88 93.81 89.21 93.35

Optimal DP-forward 86.84 63.66 79.86 81.81 84.07 89.73 89.25 71.98 81.03 89.00 85.46 92.25
dχP 87.73 73.40 78.62 73.78 79.94 69.13 73.27 95.21 68.02 67.40 66.86 81.08

Attack DP-SGD* 87.37 90.31 77.95 88.30 86.24 91.43 78.83 87.20 84.57 87.52 80.86 85.82
DualGuard 25.35 22.66 10.63 19.14 22.32 33.11 11.28 4.72 26.31 5.62 6.47 13.05

Table 1: Defense performance, measured in ROUGE-L F1 Score % (↓), of various defense methods against five
attackers. The optimal attack among the five attackers against a particular defense method, are listed in the final
row and highlighted with a gray background, represents the comprehensive defensive capability of each defense
method. To counter gradient matching attacks, we adapt the original DP-SGD method, which clips and adds noise
to model weight gradients, to be applied to the server’s output activation gradients. TAG and LAMP, designed for
white-box settings, are modified for semi-white-box SL by replacing white-box model sections with pre-trained
weights. Results for these variants are marked with an asterisk *.

baseline no-defense approach and three advanced
defense mechanisms: two designed to defend
against forward attacks (DP-forward (Du et al.,
2023b), dχP (Chatzikokolakis et al., 2013)) and
one tailored for defending against backward attacks
(DP-SGD (Abadi et al., 2016)). More setup details
and evaluations on split segment analysis, defense
overhead, and convergence performance can be
found in Appendices A, B, C, and D, respectively.

4.2 Defense Performance against DRAs

In this subsection, we test the defensive capabili-
ties of DualGuard against the five attack methods,
compared with existing defense methods. We mea-
sure their effectiveness using text similarity scores
RougeL-F and Meteor, with lower values indicating
better defense performance. The results measured
by RougeL-F are shown in Table 1, with the re-
sults measured by Meteor shown in Appendix F.
We also present a real example from the GSM8k
dataset showcasing attack outcomes under various
defense methods in Appendix G. Next, we discuss

defense performance against different attackers.
Defense against forward smashed data inversion.
We chose to use Wikitext as an auxiliary dataset
to train a GRU model as a smashed data inversion
model (ref to (Chen et al., 2024a)) to perform
the SIP attack because of its rigorous linguistic
structure, high-quality content, and coverage of
different topics and domains. The SIP row in Ta-
ble 1 shows that without any defense mechanism,
the SIP attack can reconstruct most of the origi-
nal inputs, as seen in RougeL-F scores exceeding
85% across models and datasets. Forward defense
mechanisms like DP-forward and dχP can reduce
privacy risks. However, backward defenses like
DP-SGD* fail to prevent original data reconstruc-
tion. In contrast, DualGuard effectively protects
private data, reducing RougeL-F scores to below
10%. The benefits of our DualGuard mainly come
from the proposed local warm-up parameter space
transformation strategy, which transforms the client
head model into a different parameter space before
the formal split-based LLM fine-tuning. Conse-
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Model Defense
Method

GSM8k Dialogsum CodeAlpaca e2e
RougeL-F Meteor RougeL-F Meteor RougeL-F Meteor RougeL-F Meteor

GPT2-
large

w/o defense 81.422 75.688 73.549 70.985 81.837 76.719 80.633 76.884
DP-forward 76.447 65.466 64.139 58.768 58.926 58.257 76.682 72.405

dχP 70.267 58.072 60.690 52.860 72.262 62.066 67.160 57.602
DP-SGD* 77.545 65.826 66.921 64.166 78.584 72.306 76.380 71.349
DualGuard 80.046 73.107 71.520 67.762 79.624 74.326 79.596 74.737

Llama
3.2-1b

w/o defense 84.352 82.712 76.163 73.068 87.108 85.128 80.642 76.858
DP-forward 69.250 57.130 58.039 51.739 56.684 45.191 63.963 57.325

dχP 77.528 68.872 68.561 63.162 76.603 68.130 75.887 70.914
DP-SGD* 81.976 78.036 71.562 66.422 85.088 82.985 73.109 66.985
DualGuard 82.163 79.152 73.950 69.688 83.231 80.708 77.191 73.473

Qwen
2-1.5b

w/o defense 86.055 88.444 76.787 74.256 89.286 87.652 80.637 76.629
DP-forward 78.262 73.834 66.169 62.661 72.335 64.029 77.907 73.357

dχP 51.946 35.287 41.797 30.831 51.946 35.284 49.116 37.109
DP-SGD* 86.016 88.340 73.413 70.580 87.949 85.181 77.679 73.072
DualGuard 83.658 83.982 74.225 72.166 85.536 83.153 79.389 74.968

Table 2: Task performance (ROUGE-L F1 Score and Meteor Score % ↑) of models under different methods and
datasets. Higher scores indicate better performance. The scores of no-defense method are labeled in underline and
the scores of the optimal defense method are highlighted in bold.

quently, during formal split-based fine-tuning, the
SIP attack model trained on the original pre-trained
model completely loses its ability to reconstruct
data when confronted with our defense strategy.
Defense against backward gradient matching
attacks. We study the effectiveness of defense
mechanisms against backward gradient matching
attacks TAG and LAMP, as shown in the corre-
sponding TAG* and LAMP* rows in Table 1. The
results reveal that the TAG and LAMP attackers
achieve significant reconstructions of the original
private sequences without defense mechanisms.
Forward defenses like DP-forward and dχP are in-
effective against these backward gradient matching
attacks. Conversely, the backward defense mecha-
nism DP-SGD*, successfully defends against gra-
dient matching attacks. However, it does not fully
prevent attackers from reconstructing original in-
puts using smashed data. DualGuard proves to be
effective in defending against gradient matching
attacks, with RougeL-F scores ranging from 3.61%
to 33.11%. This level of recovery is inadequate for
reconstructing coherent sentences or maintaining
valid semantics (refer to Appendix G for a specific
example). This success results from the synergy
of local warm-up parameter space transformation
and global fine-tuning parameter space retention.
These mechanisms collectively transform the client
tail model into a distinct parameter space from the
pre-trained model, preventing activation gradients
from being exploited during backward propagation.
Defense against bidirectional and direct-
connecting attacks. The advanced DRA method
BiSR combines optimized SIP and TAG attacks
for bidirectional data reconstruction in split-based
LLM-FT. DualGuard consistently outperforms

other defenses against BiSR, keeping RougeL-F
scores below 5.63%, thanks to its parameter space
transformation paradigm, which counters both
forward smashed data inversion and backward
gradient matching attacks. We also evaluated
the CPTA attack, which directly connects the
fine-tuned server-side trunk model to the public
pre-trained tail model. Due to the ’not-too-far’
property of LLM-FT, perturbation-based defenses
struggle, with CPTA achieving RougeL-F scores
between 20% and 90%. DualGuard mitigates this
risk by transforming the client’s fine-tuned tail
model into a secure parameter space, reducing
CPTA attack effectiveness and keeping RougeL-F
below 27% across all models and datasets.
Defense against optimal attacks. It is essential to
simultaneously evaluate defense mechanisms based
on their effectiveness in defending against various
attacks in both forward and backward propagation
processes. The maximum reconstruction success
rate, as the attacker’s optimal attack strategy, is a
key and real indicator of a defense method’s effi-
cacy in split-based LLM-FT. For a clearer illustra-
tion, see a real example in Appendix G. As shown
in the last row of Table 1, DualGuard shows robust
defense capabilities against optimal attacks, with
an average RougeL-F score of 1.67% across mod-
els and datasets. This outperforms existing meth-
ods, with average scores of 8.21% for DP-forward,
8.67% for dχP, and 7.52% for DP-SGD*, which
illustrates that the existing methods can only de-
fend against one type of attack but not against bidi-
rectional attacks. DualGuard effectively thwarts
attacks from both forward and backward directions,
offering better protection than unidirectional de-
fense methods vulnerable to optimal attacks.
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4.3 Downstream Tasks Performance.

To study the impact of our method on the perfor-
mance in downstream tasks, we compare Dual-
Guard with the baseline no-defense approach and
the four defense methods, with the same models
and datasets above. The results are shown in Ta-
ble 2. The results reveal that the downstream task
performance of our DualGuard defense mechanism
is well maintained compared to the scenario with-
out defense, with difference scores of RougeL-F
averaging at 2.4%. This performance surpasses
other privacy defense methods in most test cases,
with the average difference scores of DP-forward,
dχP, and DP-SGD* being 15.2%, 21.6%, and 4.2%,
respectively, across different models and datasets.
Although DP-SGD* shows slightly better perfor-
mance in a few test cases, the improvement is min-
imal. However, DP-SGD* entirely fails to defend
against the reconstruction of original input data
by forward smashed data inversion attackers, as
shown in Table 1. In comparison, our method
demonstrates robust bidirectional defense capabili-
ties while preserving the performance of large lan-
guage models in downstream tasks.

4.4 Ablation Experiments

In this subsection, we analyze the impact of two
proposed strategies on the above five attackers
using the Qwen2-1.5b model and the two large
datasets CodeAlpaca20K and e2e.
Impact of local warm-up parameter space trans-
formation. The warm-up phase aims to transfer
the parameters to a secure space capable of with-
standing various attack methods. After this phase is
completed, we connect the head and tail models to
the pre-trained trunk model (marked as Warm-up
Only) and compare the results against a baseline
approach without defense mechanisms (marked as
Naive USL) to assess effectiveness. As shown
in Figure 4, our method shows almost complete
resistance to SIP attacks, with RougeL-F scores
dropping from more than 70% to less than 10%. It
also significantly reduces the RougeL-F scores of
TAG*, LAMP*, BiSR, and CPTA attacks, confirm-
ing that the warm-up head and tail model parame-
ters diverge from the pre-trained model parameters.
Impact of global fine-tuned parameter space re-
tention. The global fine-tuned parameter space re-
tention strategy prevents the tail model parameters
from reverting to the original vulnerable space dur-
ing formal fine-tuning after the warm-up phase. We

conduct experiments comparing RougeL-F scores
with and without this strategy (marked as Warm-
up+USL and DualGuard, respectively). In Fig-
ure 5, without the strategy, the RougeL-F scores
for the TAG*, LAMP*, and BiSR attacks are sig-
nificantly higher compared to when the strategy
is used. Moreover, under the CPTA attack, de-
fense capabilities are completely lost without this
strategy, as the parameters revert to the vulnerable
space during formal fine-tuning. This issue is sig-
nificantly alleviated when the strategy is applied.
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Figure 4: Impact of local warm-up parameter space
transformation by comparing the defense performance
for naive USL and our warm-up-only version (↓).
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Figure 5: Impact of global fine-tuned parameter space
retention by comparing the defense performance for
warm-up driven USL and our complete DualGuard (↓).

4.5 Hyper-parameter Experiment
Impact of λ1, λ2 and λ3. To evaluate the effects of
hyperparameters λ1, λ2, and λ3, we conducted ex-
periments using the GSM8K dataset and the GPT-2
model, testing various hyperparameter combina-
tions, as illustrated in Figure 6. Our results high-
light the influence of these hyperparameters on
model task performance and defense performance.
Specifically, as λ1 increasing from 0 to 40, the SIP
attack success rate from 86.64% to 0.00% while
task performance remains stable, slightly decreas-
ing from 81.43% to 80.95%. Similarly, increasing
λ2 from 0 to 80 decreases the TAG attack success
rate from 67.98% to 8.78%, with task performance
remaining consistent. For λ3, increasing its value
from 0 to 4 significantly lowers the TAG attack
success rate from 98.68% to 19.24%. However, fur-
ther increases in λ3 lead to a rebound in the attack
success rate, likely due to excessive transformation
of the tail model’s parameters, which disrupts the
synergy among the tail, head, and trunk models.
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Figure 6: Task performance (ROUGE-L F1 score ↑) and attack performance (ROUGE-L F1 score ↓) of GPT-2 Large
on GSM8K across λ1, λ2 and λ3 configurations.

This disruption may cause gradient information
leakage, exploitable by the adaptive TAG attack
strategy. Consequently, the optimal value of λ3

is critical and may vary depending on the specific
model and dataset employed. In this paper, we
adopt default hyperparameter settings of λ1 = 40,
λ2 = 80, and λ3 = 10, which consistently achieve
near-optimal results across most scenarios. In fu-
ture work, we plan to investigate adaptive strategies
for optimizing these parameter settings to further
enhance performance.

Impact of Llocal_ft. To evaluate the impact of the
proposed loss term Llocal_ft in the warm-up phase,
We conducted experiments on multiple datasets
using GPT-2 Large, measuring task performance
using the ROUGE-L F1 score (%). The results
are presented in Table 3, comparing the task per-
formance with and without Llocal_ft. As shown in
Table 3, when Llocal_ft is applied, the ROUGE-L
F1 scores range from 73.55% to 81.84%. However,
removing this loss term leads to a drastic decline
in performance, with scores dropping to a range
of 28.89% to 69.32%. On average, the absence
of Llocal_ft results in a performance degradation
of approximately 29.64%, underscoring its critical
role in maintaining model accuracy. These results
demonstrate that Llocal_ft is essential for achiev-
ing high task performance, as its absence severely
disrupts feature extraction in the head model and
reduces the tail model’s adaptability to downstream
tasks during the warm-up phase.

Dataset w/ Llocal_ft w/o Llocal_ft

GSM8k 81.42 42.81
Dialogsum 73.55 43.21
CodeAlpaca 81.84 28.89
e2e 80.63 69.32

Table 3: Task performance (ROUGE-L F1 Score % ↑)
with and without Loss term Llocal_ft.

5 Conclusion

This paper introduces DualGuard, a bidirectional
defense mechanism designed to combat data re-
construction attacks in split-based LLM-FT. Dual-
Guard combines local warm-up parameter space
transformation and global fine-tuned parameter
space retention to increase the divergence between
client models and their pre-trained counterparts,
thwarting attacks with priority knowledge. Experi-
mental results show that DualGuard surpasses cur-
rent defenses, offering superior privacy protection
while maintaining task performance.

Limitations

Although DualGuard has proven effective in coun-
tering DRAs, there are areas for further research to
overcome its limitations. One potential improve-
ment is to explore alternative projection strategies
beyond the current three-layer MLP, aiming to en-
hance privacy protection with minimal overhead.
Additionally, optimizing the weights of the loss
function for multiple goals could be enhanced by
implementing dynamic weight adjustments instead
of fixed empirical values. Furthermore, to improve
scalability, distributing the head and tail models
of DualGuard to clients using a distributed GPU
cluster could support larger language models.

Acknowledgments

This research is supported by the “Pioneer" R&D
Program of Zhejiang (Grant No.2024C01019) and
the Hangzhou Joint Fund of the Zhejiang Provin-
cial Natural Science Foundation of China (Grant
No.LHZSD24F020001). The author gratefully ac-
knowledges the support of Zhejiang University Ed-
ucation Foundation Qizhen Scholar Foundation.

17073



References
Martin Abadi, Andy Chu, Ian Goodfellow, H Bren-

dan McMahan, Ilya Mironov, Kunal Talwar, and
Li Zhang. 2016. Deep learning with differential pri-
vacy. In Proceedings of the 2016 ACM SIGSAC con-
ference on computer and communications security,
pages 308–318.

Yoshimasa Akimoto, Kazuto Fukuchi, Youhei Aki-
moto, and Jun Sakuma. 2023. Privformer: Privacy-
preserving transformer with mpc. In 2023 IEEE 8th
European Symposium on Security and Privacy (Eu-
roS&P), pages 392–410. IEEE.

Mislav Balunovic, Dimitar Dimitrov, Nikola Jovanović,
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A Experimental Setup Details

Hyper Parameter Settings. To access DualGuard
within a split-based LLM-FT framework, the mod-
els are divided into a head model, a trunk model,
and a tail model to ensure a manageable computa-
tional load on the client’s end. The hyperparame-
ters used for each LLM model are optimized for
performance, as detailed in Table 4. It is impor-
tant to notice that three numbers in split segments
means the layers count of the head model, the trunk
model, and the tail model respectively. In addition,
in our experiments, we fixed the weights for the
loss functions of the local warm-up and global fine-
tuning phases, based on the empirical optimum
determined during the experiments.

We employ LoRA (Hu et al., 2021) to fine-tune
the head and tail models to adapt a real-world
resource-constrained environment, and LoRA con-
figurations are listed in Table 5. All experiments are

Model Split Segments λ1 λ2 λ3 Warm-up Epc

GPT2-large 3-30-3 Layers 40 80 10 2
Llama3.2-1b 3-26-3 Layers 40 80 10 2
Qwen2-1.5b 2-12-2 Layers 40 80 10 2

Table 4: DualGuard hyper parameters for LLMs.

conducted on a Tesla V100-SXM2 GPU (32GB) to
simulate the split-based LLM-FT scenario, similar
to existing split learning based works (Chen et al.,
2024a; Lin et al., 2024; Thapa et al., 2022).

Model Task Type r LoRA Alpha LoRA Dropout Target Modules

GPT2-large CAUSAL-LM 2 32 0.1 c-proj , c-attn
Llama3.2-1b CAUSAL-LM 2 32 0.1 q-proj , v-proj
Qwen2-1.5b CAUSAL-LM 2 32 0.1 q-proj , v-proj

Table 5: DualGuard LoRA hyper parameters for LLMs.
This is implemented by peft package in Python.

Besides, We need to compare the performance of
our DualGuard with three advanced defense mech-
anisms, DP-forward, dχP, and DP-SGD. It is im-
portant to note that the ϵ values, which indicate
the noise level in perturbation-based methods (the
higher the ϵ value, the less noise is added), are set
as ϵ = 2 for DP-forward and DP-SGD, and ϵ = 0.15
for dχP. These settings are optimized to strike a
balance between defense performance and task per-
formance, with the corresponding task performance
shown in Appendix E.
Evaluation metrics. To comprehensively eval-
uate the effectiveness of the proposed defense
mechanism and its impact on downstream task
performance, we adopt two widely used metrics
for assessing natural language generation quality:
RougeL-F (Lin, 2004) and Meteor (Banerjee and
Lavie, 2005). RougeL-F evaluates the longest com-
mon subsequence (LCS) matching between the gen-
erated text and reference text. Meteor complements
this by capturing multi-level similarity between the
generated and reference texts, including lexical,
semantic, and word-order matching.
Details of Applied Datasets. We performed ex-
periments on five different datasets. Each dataset
corresponds to a different natural language gener-
ation task, including structured data text genera-
tion (e2e (Novikova et al., 2017)), code generation
(CodeAlpaca-20k (Chaudhary, 2023)), mathemati-
cal reasoning (GSM8k (Cobbe et al., 2021)), and
dialogue summary generation (Dialogsum (Chen
et al., 2021)). In addition, the Wikitext dataset
(Merity et al., 2016) was used as an auxiliary
dataset for the attackers in the experiments.
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Dataset Task Avg. length Total samples

e2e structured data
text generation 61.5 42061

CodeAlpaca code
generation 112.4 18019

GSM8k mathematical
reasoning 157.1 7473

Dialogsum dialogue summary
generation 248.1 12460

Table 6: Summary of datasets used in the experiments

B Impact of Split Segments

In the split learning framework, the default split seg-
ments for the head, trunk, and tail models are 3, 30,
and 3 layers, respectively. This subsection investi-
gates the task and defense performance with differ-
ent split segments. We test three attacker methods:
the forward SIP attack, the backward TAG attacker,
and the bidirectional BiSR attacker. Table ?? il-
lustrates the effectiveness of DualGuard in down-
stream tasks and defense against various attacks at
different split segments, with Naive indicating USL
without any defense mechanisms. As the split seg-
ments of the head and tail models increase from 1
to 11 layers, the performance of downstream tasks
experiences a slight reduction in RougeL-F from
80.91% to 78.73%. This reduction is attributed to
the increasing number of model layers in the frozen
head model. Hence, it is recommended to allocate
fewer layers to the head model and more layers
to the tail model if there are more computing and
storage resources available on the local client to
avoid this issue. In contrast, the defense against the
backward attack TAG* is strengthened, with the
RougeL-F scores reduced from 39.44% to 3.16%
as the split segments of the head and tail models
increase from 1 to 7 layers. This improvement is
due to the increased number of model layers in
the tail model, leading to more divergence in ac-
tivation gradients from the pre-trained tail model
and neutralizing the gradient matching attacks. Be-
sides, DualGuard consistently demonstrates robust
effectiveness against SIP and BiSR attacks, with
the RougeL-F scores staying below 6% benefiting
from our parameter space transformation method.

C Defense Overhead

To assess the time and memory overhead of Du-
alGuard compared to other methods, we conduct
experiments on GPT2-large using various datasets.
Figure 7 illustrates the time and memory overhead
of DualGuard and other defense methods. The
time cost of DualGuard is slightly higher than
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Figure 8: Convergence curves of datasets GSM8k and
e2e under different methods and model GPT2-large.

the method without defense (1.01 to 1.13 times)
but remains lower than some other defense meth-
ods. This increase is due to DualGuard’s multi-task
learning strategy, which involves additional com-
putation of the loss of the pre-trained tail model,
leading to a moderate increase in time overhead.
Nonetheless, DualGuard is notably more efficient
than perturbation-based defense methods that re-
quire frequent cropping and noise addition during
training. Regarding memory overhead, DualGuard
exhibits a slight increase (1.05 to 1.18 times) com-
pared to the method without defense and other de-
fense methods. Although the head model is frozen
in DualGuard, reducing the need for optimizer and
gradients for this part during training, an extra copy
of the pre-trained tail model must be stored by the
client, resulting in additional memory usage. How-
ever, since the pre-trained tail model comprises a
small number of layers and does not require train-
ing, the additional memory overhead is minimal
and remains within acceptable limits.
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Figure 9: Trade-off between defense and task perfor-
mances under different privacy budgets, with ↑ indi-
cating higher values are better and ↓ indicating lower
values are better.
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Split
Segments

TASK (↑) SIP (↓) TAG* (↓) BiSR (↓)
RougeL-F Meteor RougeL-F Meteor RougeL-F Meteor RougeL-F Meteor

Naive 81.84 76.72 89.78 93.42 80.93 85.68 78.05 81.45
1-34-1 80.91 75.60 0.16 0.03 39.44 17.00 3.86 1.39
3-30-3 80.60 75.06 0.00 0.00 15.28 4.42 1.89 0.88
5-26-5 80.10 74.67 0.00 0.00 3.74 1.00 5.73 3.31
7-22-7 79.74 74.40 0.00 0.00 3.16 0.65 5.92 3.03
9-18-9 78.90 73.38 1.03 0.15 9.39 2.55 3.94 1.00

11-14-11 78.73 73.03 5.61 1.07 4.43 1.43 4.33 0.80

Table 7: Task performance (ROUGE-L F1 Score and Meteor Score % ↑) and defense performance (ROUGE-L F1
Score and Meteor Score % ↓) across split segments.
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Figure 10: Defense efficacy of diverse attack-defense
pairs.

D Convergence performance

Since the methods change the head model and tail
model parameter space during local warm-up pa-
rameter space transformation phase, which may
causes a slowdown in convergence during formal
fine-tuning, so we use the GPT2-large model and
two datasets, GSM8k and e2e, to compare the con-
vergence of the various methods. The convergence
curves are shown in Figure 8.

In this experiment, the horizontal coordinate is
the number of validations, it should be noted that
each epoch will be validated 5 times, and the av-
erage loss of the whole validation dataset will be
taken each time, i.e., the vertical coordinate. Be-
sides, due to the different epochs required for the
completion of the fine-tuning of the different meth-
ods, this truncated the loss data with only a selected
number of validation times, 28 for GSM8k and 14
for e2e, respectively. We can find that our method
does cause a slowdown in convergence compared
to the method without defense, but converges a
little faster than perturbation-based methods DP-
Forward, Dχp, and DP-SGD.

E Limitations of Defense in Split-Based
LLM-FT

Although the perturbation-based method provides
effective protection for general deep learning and
LLM-FT scenarios, it faces several constraints

when applied to split-based LLM-FT situations.

Trade-off between privacy preservation and task
performance. One major limitation of introducing
random noise is the potential performance degra-
dation in downstream tasks. Strengthening privacy
protection often requires higher noise levels, which
can adversely hamper task-specific model perfor-
mance (Zhu et al., 2019; Farrand et al., 2020).
To validate it, we run the GPT2-large (Radford
et al., 2019) model on the GSM8k (Cobbe et al.,
2021) dataset using the SIP reconstruction (Chen
et al., 2024a) for attack and the state-of-the-art DP-
forward (Du et al., 2023b) for defense, and show
the defense performance and the task performance
under different privacy budgets ϵ in Figure 9(a)
and Figure 9(b), respectively, with the y-axis rep-
resenting the text similarity metric RougeL-F (Lin,
2004). We can see that, as ϵ decreases (indicating
increased noise levels), defense performance im-
proves as the similarity between attacker-generated
sequences and original input decreases. However,
this improvement comes at the cost of decreased
task-specific model performance. For instance, re-
ducing ϵ from 8 to 1 results in a drop in RougeL-F
score for SIP reconstruction from 86% to 9%, along
with a decrease in the performance of downstream
tasks from 81.9% to 69.8%.

Inadequate defense against bidirectional attacks.
Existing defense mechanisms often focus on either
forward or backward propagation, overlooking the
interconnectedness of LLMs. The auto-regressive
nature of the LLMs results in substantial overlap
between input and labels during training, requir-
ing simultaneous protection for both. Defenses
against forward activations alone do not suffice
against gradient matching attacks, and defenses
against backward gradients leave models vulner-
able to smashed data inversion attacks. To verify
this, we test the defense performance, measured by
the RougeL-F metric, of different defense mech-
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anisms (DP-forward (Du et al., 2023b) and DP-
SGD (Abadi et al., 2016)) against different attacks
(forward smashed data inversion (SIP) (Chen et al.,
2024a), backward gradient matching (TAG) (Deng
et al., 2021), and bidirectional(BiSR) attack (Chen
et al., 2024a)) using the GPT2-large (Radford et al.,
2019) model on the GSM8k (Cobbe et al., 2021)
and e2e (Novikova et al., 2017) datasets. The re-
sults, shown in Figure 10, indicate that defenses
targeting only one direction of attack are ineffec-
tive against the other. For example, on the GSM8k
dataset, DP-SGD effectively defends against TAG
attacks but fails to prevent SIP reconstruction. Con-
versely, DP-Forward can resist SIP attacks but is in-
effective against TAG attacks. Besides, an attempt
to merge DP-SGD and DP-forward resulted in a
notable decline in downstream task performance,
with RougeL-F dropping to below 40%, based on
our experiments.
Significant prior knowledge in split-based LLM-
FT. Additionally, the not-too-far property of LLM-
FT indicates that fine-tuning involves minimal up-
dates to model parameters, keeping the features
embedded in the pre-trained weights largely intact.
These retained features serve as crucial prior knowl-
edge for DRAs, granting attackers extensive insight.
When coupled with bidirectional attack strategies,
attackers can exploit this prior knowledge to launch
sophisticated attacks, challenging existing defense
mechanisms and hindering effective risk mitiga-
tion (Chen et al., 2024a). For instance, applying
the advanced defense method DP-Forward with the
noise level set as ϵ = 2, to the GPT-2 model on
the GSM8K dataset only marginally reduces the
RougeL-F score of the BiSR attacker from 79.54%
to 79.02%, as depicted in Figure 10.

F Defense Performance against DRAs in
Meteor Metric

To more comprehensively assess DualGuard’s abil-
ity to defend against various data reconstruction
attacks (DRAs), we evaluated the Meteor metrics
for DualGuard and other defense methods across
different attack strategies. These metrics are used
to measure the semantic similarity between the re-
constructed text and the original text, as shown
in Table 8. Forward defense methods such as
DP-forward and Dχp are effective against forward-
direction attacks like SIP but are unable to defend
against backward attacks such as TAG and LAMP,
and the meteoric ratio of the reconstruction result

to the original text is greater than 66.75% and up
to 92.25%. Meanwhile, DP-SGD is able to resist
the reverse attack but not the forward attack, and
the meteoric ratio of the reconstruction result to
the original text is greater than 67.80% and up
to 91.41%. When facing the attacker’s optimal
attack, the reconstruction rate with methods like
DP-forward, DXP, and DP-SGD exceeds 63.66%,
reaching up to 96.02%. In contrast, the recon-
struction rate for the optimal attack using the Du-
alGuard defense remains below 33.11%. Thus,
DualGuard demonstrates bidirectional defense ca-
pabilities, which other methods lack, and the exper-
imental results align with those discussed in §4.2.

G Illustrative Example of Attack Results

To provide a clearer visualization of data recon-
struction attacks (DRAs), we utilize the GPT2-
large model and a single input sample from the
GSM8k dataset to showcase the real outcomes of
different defense mechanisms against DRAs. We
select forward smashed data inversion (SIP) and
backward gradient matching (TAG) as our attack
methods for comparison. Additionally, we evalu-
ate DualGuard against a no-defense method and
perturbation-based methods DP-Forward and DP-
SGD. Note that, since DP-Forward and Dχp both
introduce noise to smashed data during forward
propagation, we only show the results of more su-
perior DP-Forward in this comparison.

As shown in Figure 11, the original input (which
is the same as the output labels in LLM situations
due to the self-regressive nature) is represented by
the blue text, while the outcomes of the data recon-
struction attackers after applying various defense
methods are displayed, with the red content indi-
cating the overlap with the origin input data. We
can see that, Without any defense, SIP and TAG
successfully recover over 90% of the original data.
The DP-Forward defense effectively combats for-
ward attacker SIP, recovering approximately 40%
of the origin input data, but backward attacker TAG
still manages to recover most of the output labels,
which can also expose the original data. In con-
trast, DP-SGD successfully prevents TAG recovery
but fails against SIP. Our DualGuard method pro-
vides robust defense against both SIP and TAG,
with no data recovered after SIP and only a few
after TAG. These findings highlight that in the face
of simultaneous bidirectional attacks, our method
outperforms single-directional defense strategies.
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Attack
Method

Defense
Method

GPT2-large Llama3.2-1b Qwen2-1.5b
GSM8k Dialogsum CodeAl e2e GSM8k Dialogsum CodeAl e2e GSM8k Dialogsum CodeAl e2e

SIP

w/o defense 87.63 89.78 77.92 89.33 84.32 91.08 68.04 85.59 84.20 88.02 64.49 85.75
DP-forward 36.37 27.90 36.39 38.92 0.39 14.75 0.24 0.12 12.94 14.75 4.93 12.85

dχP 44.48 41.84 43.59 60.30 61.23 68.97 53.19 69.22 18.76 13.38 15.94 22.47
DP-SGD* 87.37 90.31 77.95 88.30 86.24 91.43 70.49 87.20 84.57 87.52 67.80 85.82
DualGuard 0.00 0.88 0.00 0.00 0.49 0.18 0.05 0.00 9.04 2.02 6.47 0.30

TAG*

w/o defense 81.05 80.93 77.91 84.91 94.91 93.86 72.14 95.78 81.90 93.81 77.70 93.35
DP-forward 86.84 50.20 79.86 80.44 83.03 89.69 88.85 71.94 80.70 89.00 83.10 91.44

dχP 87.30 73.40 78.62 71.24 78.36 69.13 69.54 92.96 67.99 67.40 66.86 80.08
DP-SGD* 0.00 0.24 0.04 0.00 1.21 0.94 1.40 0.40 1.23 1.27 0.74 0.00
DualGuard 20.96 18.94 8.24 15.28 21.77 24.02 10.34 3.61 23.55 5.25 4.91 13.05

LAMP*

w/o defense 79.50 80.35 78.93 85.31 94.78 96.02 72.72 96.02 83.96 93.13 81.13 92.77
DP-forward 85.51 47.30 79.67 81.81 84.07 89.73 89.25 71.98 81.03 87.30 85.46 92.25

dχP 87.73 67.75 78.31 67.02 79.94 66.75 67.28 95.21 68.02 66.85 66.86 81.08
DP-SGD* 0.35 0.09 0.14 0.00 1.31 1.13 1.84 0.52 1.47 2.14 0.92 0.44
DualGuard 25.35 22.66 10.63 19.14 22.32 33.11 11.28 4.72 26.31 5.62 5.78 12.28

BiSR

w/o defense 79.54 78.05 71.32 82.88 84.22 83.45 56.31 80.03 82.28 86.29 76.80 86.38
DP-forward 79.02 44.86 62.98 77.30 35.08 29.42 28.78 22.60 64.01 74.12 62.98 91.04

dχP 57.56 40.16 52.50 57.16 66.95 56.23 56.28 81.66 40.89 34.67 58.53 68.91
DP-SGD* 12.20 7.96 11.22 6.65 7.25 6.44 6.12 1.48 7.92 5.47 5.88 2.31
DualGuard 1.58 6.77 5.63 1.89 2.46 2.25 3.70 0.00 5.35 3.68 4.09 1.56

CPTA

w/o defense 75.52 64.80 80.98 80.19 82.56 71.58 86.96 80.23 85.88 71.92 89.21 80.28
DP-forward 78.48 63.66 69.23 78.62 60.51 51.23 47.29 59.59 73.02 55.93 65.17 77.63

dχP 66.43 55.35 68.95 73.78 73.81 63.94 73.27 71.88 43.87 34.78 33.23 44.28
DP-SGD* 71.77 53.60 69.55 48.73 76.55 58.79 78.83 51.86 81.46 61.36 80.86 65.69
DualGuard 0.00 0.00 0.98 0.00 0.38 0.45 0.71 0.01 5.20 5.67 0.76 0.55
w/o defense 87.63 89.78 80.98 89.33 94.91 96.02 86.96 96.02 85.88 93.81 89.21 93.35

Optimal DP-forward 86.84 63.66 79.86 81.81 84.07 89.73 89.25 71.98 81.03 89.00 85.46 92.25
dχP 87.73 73.40 78.62 73.78 79.94 69.13 73.27 95.21 68.02 67.40 66.86 81.08

Attack DP-SGD* 87.37 90.31 77.95 88.30 86.24 91.43 78.83 87.20 84.57 87.52 80.86 85.82
DualGuard 25.35 22.66 10.63 19.14 22.32 33.11 11.28 4.72 26.31 5.62 6.47 13.05

Table 8: Defense performance (measured by Meteor Score % ↓) of different defense method against various DRAs.
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### Question: Janet’s ducks lay 16 eggs per day. She eats three for breakfast every morning and bakes muffins for her friends every day with four. She sells
the remainder at the farmers' market daily for $2 per fresh duck egg. How much in dollars does she make every day at the farmers' market?\n###Answer:
Janet sells 16 - 3 - 4 = <<16-3-4=9>>9 duck eggs a day.\nShe makes 9 * 2 = $<<9*2=18>>18 every day at the farmer’s market.\n#### 18
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Figure 11: The attack outcomes of the forward attacker SIP and backward attacker TAG under each defense,
when the GPT2-large model is fine-tuned on an input sample from the GSM8k dataset. The original input data
is highlighted in blue, while the attack outcomes that restore the original text are highlighted in red. It is evident
that only DualGuard effectively defends against both forward and backward attackers, successfully protecting the
privacy of the original data.
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