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Abstract

LLMs’ performance on complex tasks is still
unsatisfactory. A key issue is that presently
LLMs learn in a data-driven schema, while the
instructions about these complex tasks are both
scarce and hard to collect or construct. On
the contrary, a prominent phenomenon is that
LLMs can learn rather fast on simpler tasks
with adequate prior knowledge captured during
pretraining stage. Thus, if the prerequisite and
mechanism of such rapid generalization could
be elucidated, it could enhance the efficiency
and effectiveness of the LLM’s ability to learn
complex tasks. Thus, in this paper, we employ
a gradient-based method, to dissect the process
that the SFT process adapts LLMs to down-
stream tasks via the perspective of attention
patterns. We find that: (1) LLMs selectively ac-
tivate task-specific attention heads during SFT;
(2) activation patterns for complex tasks are
combinations of basic task patterns; and (3)
changes in a few parameters can significantly
impact activation patterns after SFT on a small
number of samples. Based on these insights,
experiments are conducted to actually enhance
the efficiency and effectiveness of SFT. The
source code for this work is publicly available
at: https://github.com/zy125413/SFT_AP.

1 Introduction

The Supervised Fine-tuning Process (SFT) is essen-
tial for optimizing Large Language Models (LLMs)
to effectively complete downstream tasks (Zhang
et al., 2023). Leveraging the extensive prior
knowledge acquired during pretraining, fine-tuning
LLMs on instruction sets enables them to perform
well across various tasks (Dong et al., 2023; Xia
et al., 2024). However, in more complex tasks
like mathematical reasoning, LLM performance
remains unsatisfactory (Fourrier et al., 2024; Con-
tributors, 2023). One major reason for such per-
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Figure 1: Visualization of activation pattern changes in
Llama3-8B on the test set before and after SFT with the
GSM8K training set.

formance limitation is that these complex tasks of-
ten require simultaneously using multiple types of
knowledge and skills, and thus, more instructions
are often required to adapt LLMs to these tasks (Ka-
plan et al., 2020). However, the more complex the
task, the more challenging it is to collect and con-
struct relevant instruction data (Zhang et al., 2023;
Minaee et al., 2024). This in turn limits the ability
of LLMs to improve performance on these tasks.

In contrast, on most basic tasks, LLMs demon-
strate prominent rapid generalization (Zhang et al.,
2023). By training on just a few thousand in-
structions, LLMs can learn to complete various
tasks (Xia et al., 2024). Therefore, understanding
the mechanisms and conditions that enable LLMs’
rapid learning and generalization could strongly
guide their adaptation to complex tasks and poten-
tially enhance their efficiency.

To address this issue, we propose to analyze
the prerequisite and mechanism of such rapid task
adaption during SFT from the perspective of acti-
vation patterns of attention heads using a gradient-
based method. Previous studies show that attention
heads serve as basic functional units in transformer-
based models (Voita et al., 2019; Clark et al., 2019;
Hao et al., 2021; Wang et al., 2023). These atten-
tion heads could capture different types of informa-
tion and model various relationships for completing
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different tasks. Therefore, analyzing how LLMs
learn to utilize these basic function units to solve
tasks during the SFT process could shed light on
the mechanisms behind instruction learning and
generalization. If an attention head influences out-
puts in certain tasks, it is heuristically considered
“activated”. The composition of activations across
different attention heads forms the activation pat-
tern of the LLMs (Figure 1), indicating how the
model’s functional units are integrated to solve a
specific task.

To determine if an attention head influences the
output, we use a gradient-based method as gradi-
ents naturally measure the sensitivity and impact of
output changes with respect to input features (Wang
et al., 2024a). By calculating the expected value
of the gradient on the attention score matrix, we
can quantify the impact of each attention head on
model performance before and after SFT and ex-
plains how SFT adapts LLMs to downstream tasks.

From the perspective of attention head activa-
tion patterns, we find the critical role of the change
of activation pattern in fast learning and general-
ization during the SFT process: (1) LLMs learn
to complete tasks by selectively activating at-
tention heads during the SFT process. After
SFT, the LLMs activate certain tasks-specific at-
tention heads, and the differences in activation pat-
terns between tasks become more pronounced; (2)
LLMs complete tasks by learning to integrate
basic skills.This finding suggests that complex
task-solving in LLMs may be decomposed into
a series of simpler subtasks, offering a modular
perspective on how LLMs can be more effectively
fine-tuned for intricate problems; (3) Changes in
a few parameters can significantly impact acti-
vation patterns after SFT on a small number of
samples. The model’s activation patterns exhibit
significant changes compared to the base model
in the early stage of the SFT process with rather
limited optimization steps, showing that minimal
parameter adjustments can significantly alter acti-
vation patterns.

We validate our findings by exploring their prac-
tical application in enhancing the effectiveness and
efficiency of SFT, particularly for complex tasks
and in scenarios where high-quality instructions
are scarce. Specifically: (1) When complex task
data is limited, by fine-tuning LLMs using instruc-
tions on the basic skills required for these tasks,
the efficiency of instruction tuning significantly
improves. (2) When high-quality domain data is

private or unavailable, based on activation patterns,
we can select relevant instructions from a large
pool of publicly available data to approximate the
effects of private data. These findings not only
validate our understanding of rapid learning and
generalization mechanisms but also provide a scal-
able framework for improving LLM performance
in real-world, data-constrained scenarios, such as
specialized industries or domains where data avail-
ability is limited.

2 Background and Related Work

One major factor limiting the learning efficiency
of instruction learning of LLMs is the opacity
of their internal mechanisms. Though pioneer
studies recognized key features or parameters of
LLM (Hao et al., 2021; Wang et al., 2023; Yang
et al., 2023b), the mechanism of adapting LLMs to-
wards downstream tasks during SFT is still largely
unknown (He et al., 2024; Dong et al., 2023). In
this paper, we aim to serve as a pioneer to explore
these underlying mechanisms.

A critical issue is from which perspective should
we start. Instead of focusing on the parameters
of LLMs, we choose to investigate the activation
pattern of attention heads, as:

(1) Previous studies have identified that an at-
tention head can act as a basic functional unit in
transformer-based models (Voita et al., 2019; Clark
et al., 2019; Wang et al., 2023), with different atten-
tion heads serving distinct functions. For example,
Voita et al. (2019) and Clark et al. (2019) found
that attention heads at different layers focus on dif-
ferent parts-of-speeches, while Wang et al. (2023)
observed that during in-context learning, differ-
ent attention heads focus on different parts of the
prompts.

(2) Additionally, prior research (Jin et al., 2024;
Lee and Hwang, 2024) has suggested the task-
specific activation of attention heads, as pruning
certain attention heads would lead to task-specific
performance degradation. Heuristically, since a
task can be viewed as a combination of several ba-
sic tasks, completing it requires the coordination of
multiple corresponding basic functional units, i.e.,
attention heads.

(3) In contrast, Previous studies (Yu et al., 2024;
Fu et al., 2023) have suggested that parameter
changes after SFT are limited. Furthermore, given
the vast number of parameters in LLMs, interpret-
ing the significance of these parameters and their
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changes are highly challenging.
For clarity, we define attention heads that impact

downstream tasks as activated and those that do not
as inactive. The matrix representing the influence
of attention heads on downstream tasks is called
the activation pattern.

3 Methodology

During pretraining, LLMs learn to use different
attention heads to capture various types of infor-
mation (Voita et al., 2019; Khaki and Plataniotis,
2024). Heuristically, a complex task can often
be viewed as a composition of several basic tasks.
For instance, solving a mathematical problem us-
ing code, can be broken down into fundamental
tasks like code generation and mathematical rea-
soning. Since each attention head may correspond
to a specific function, an LLM can invoke multi-
ple attention heads and integrate their functions
to accomplish a complex task. Combining these
observations leads to our core assumption: dur-
ing the SFT process, LLMs quickly adapt to
downstream tasks by invoking different atten-
tion heads. Thus, in this paper, we investigate the
mechanism of fast generalization in the SFT pro-
cess by analyzing changes in the activation patterns
of attention heads.

3.1 Gradient-Based Analysis of Attention
Head Activation Patterns

A key issue is determining whether an attention
head is activated during a task. Inspired by Hao
et al. (2021) and Wang et al. (2023), we measure
this using model gradients, as they reflect the influ-
ence of input features or parameters on the model’s
output (Wang et al., 2024a). A larger gradient for a
particular attention head suggests that the model’s
output is more sensitive to it, indicating a stronger
influence on outputs.

Specifically, given an LLM with L layers and H
attention heads per layer, and a dataset T , the acti-
vation pattern AP T can be represented as an L×H
matrix, with each element representing the activa-
tion level reflecting the contribution of one specific
attention head to a given task:

AP T = {ALT
l,h}l∈[1,...,L],h∈[1,...,H], (1)

where each element ALl,h corresponds to the ac-
tivation level of the h-th attention head in the l-th

layer during the given task, which is measured as:

ALl,h =
1

N

∑

i

ΓT
l,h

∂L(xi)

∂Γl,h
, (2)

where N represents the size of T , xi is the ith
instance in T and L(xi) is the loss value of the
model for xi. Γl,h is the attention matrix of the
h th attention head in the l th layer.∂L(xi)

∂Γl,h
is the

gradient of the h th attention head in the lth layer
with respect to L(xi). By combining the absolute
values of attention scores with the sensitivity of
the loss to these scores, the total influence of a
specific attention head on outputs and the task can
be quantified. Thus, AP task, composed of ALtask,
reflects how each attention head contributes to task
completion.

3.2 Analytical Framework

To validate our core assumption, we focus on three
progressive issues: (1) How do activation patterns
change during the SFT process for each task, and
are these changes task-specific? In other words, can
we grasp the characteristics of the task from the
perspective of activation patterns? (2) What is the
relationship between activation patterns in complex
tasks and basic tasks? This reflects the prerequisites
that may be necessary for learning complex tasks;
and (3) on basic tasks, how many training samples
are required to significantly change the activation
patterns? The necessary sample size indicates the
model’s ability to achieve rapid generalization.

First, we evaluated the changes in activation pat-
terns across tasks before and after SFT. We ob-
served that more attention heads are activated after
SFT, and these activations are task-specific, sug-
gesting that attention heads are selectively activated
during SFT. Next, we explored the relationship
between activation patterns in complex and basic
tasks, finding that the patterns of several basic tasks
effectively approximate those of complex tasks.
This led us to conclude that activation patterns in
complex tasks are combinations of basic task pat-
terns. Finally, dynamic observations during SFT
showed that even small datasets can significantly
alter activation patterns.

To further validate our conclusions, we applied
these insights to enhance SFT effectiveness on com-
plex tasks. The resulting improvements further con-
firmed our theory. The following sections provide
a detailed analysis and conclusions.
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4 SFT Adapts to Downstream Tasks by
Modifying Activation Patterns

This section uses gradient-based analysis to ex-
amine the effect of SFT on transformer attention
head activation patterns. We identify three key in-
sights: (1) After SFT, LLMs accomplish tasks by
selectively activating specific attention heads. (2)
Changes in activation patterns for compound tasks
can be interpreted as a combination of those in
more basic tasks. (3) During SFT, activation pat-
terns exhibit swift changes, even small datasets can
cause significant changes.

4.1 Attention Heads are Selectively Activated

In this section, we analyze changes in attention
head activation patterns before and after SFT across
various tasks and explore the relationships between
these changes.

4.1.1 Analytical Method
To analyze changes in model activation patterns
before and after SFT for each task, we used three
metrics: Gini Coefficient, Coefficient of Variation
(CV), and Kurtosis. The Gini Coefficient mea-
sures distribution inequality, with values above 0.4
indicating a concentration of activation in a few
attention heads. The Coefficient of Variation re-
flects relative dispersion, with values over 1 signal-
ing substantial variability across attention heads.
Kurtosis describes the distribution’s shape, where
values above 3 suggest heavy tails and sharp peaks,
indicating the presence of extreme values

4.1.2 Experiments Setup
We conducted experiments on models with
varying performance levels, including Llama3-
8B (Grattafiori et al., 2024), Gemma-7B (Team
et al., 2024), and OPT-6.7B (Zhang et al., 2022),
across a range of tasks: mathematical reasoning
(MATH (Hendrycks et al., 2021b), GSM8K (Cobbe
et al., 2021)), coding (Code Search Net (Husain
et al., 2019), SGSM (Christ et al., 2024)), and
natural language processing and reasoning (Hel-
laSwag (Zellers et al., 2019), Winogrande (Sak-
aguchi et al., 2021), ARC (Clark et al., 2018)).

4.1.3 Results
As shown in Table 1, before SFT, base models ex-
hibited significant outliers (Kurtosis > 3), uneven
distribution (Gini > 0.4), and high variability (CV
> 1) in activation patterns, suggesting that only a

Model State Gini CV Kurtosis

Llama3-8B Before SFT 0.50 1.19 95.37
After SFT 0.33 0.71 39.55

Gemma-7B Before SFT 0.48 1.71 240.99
After SFT 0.38 1.23 130.82

OPT-6.7B Before SFT 0.42 1.06 50.67
After SFT 0.38 0.82 24.23

Table 1: Statistics on the distribution of activation pat-
terns for different LLMs. Experiments were conducted
on tasks such as Code Search Net, GSM8k, MATH,
SGSM, ARC, HellaSwag, and Winogrande.

Figure 2: The correlation coefficients of the activation
pattern change rates for the Llama3-8B, Gemma-7B,
and OPT-6.7B models on tasks before SFT, after SFT,
and during the SFT process (corresponding to the top,
middle, and bottom sections, respectively).

few attention heads contributed to the tasks. Af-
ter SFT, activation patterns became more uniform,
with decreases in Gini, CV, and Kurtosis, indicat-
ing that SFT adapts LLMs by increasing activation
levels across attention heads. However, activation
values remain skewed, showing that a few heads
still dominate.

Figure 2 shows the similarity in activation pat-
tern change rates across tasks for three models be-
fore and after SFT, measured by correlation coef-
ficients. After SFT, tasks grouped into two cate-
gories—math/code and text reasoning—aligning
with human understanding of task relationships.
This suggests that attention patterns reflect task
characteristics and specificity. Post-SFT, stronger
task specificity is observed, as indicated by de-
creased correlation coefficients between tasks, im-
plying reduced similarity.

Considering that the activation levels increase
after SFT, we deduce that SFT adapts models to spe-
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In a farmyard, there are chickens and rabbits. There are a 
total of 35 heads and 94 legs. How many chickens and how 

many rabbits are there?

A basic Task Relying Solely on Mathematical Ability

Build a binary tree using Python

A basic Task Relying Solely on Code Ability

Implement a solution to the “chicken and rabbit in the same 
cage” problem using Python……

A Complex Task Requiring Both Mathematical and Coding Ability

Activation Pattern

Activation Pattern

Activation Pattern

Figure 3: The two tasks above are basic tasks that each
rely on a single skill, while the one below is a complex
task that relies on both coding and mathematical skills.

cific tasks by selectively enhancing task-relevant
activation patterns.

4.2 Activation Patterns on Complex Tasks are
Combinations of Basic Tasks

This section focuses on the relationship between
activation pattern changes in basic and complex
tasks. Understanding this relationship is key to
equipping models with the necessary prerequisites
for rapid learning of complex tasks.

4.2.1 Analytical Method
In this paper, we define complex tasks as those that
can be decomposed into basic skills. For example,
as shown in Figure 3, solving the “chicken and
rabbit” problem requires mathematical reasoning,
while constructing a binary tree requires Python
coding—both of which are basic tasks. However,
solving the “chicken and rabbit” problem using
Python code is a complex task, as it integrates both
mathematical reasoning and coding skills.

The actual relationship between activation pat-
terns in basic tasks and complex tasks can be quite
intricate. without loss of generality, in our study,
we employ a linear function to model the relation-
ship between the activation patterns of basic and
complex tasks. Specifically, we take the changes in
activation patterns for complex tasks as the depen-
dent variable, and employ the changes in activation
patterns for multiple simple tasks as independent
variables, using the least squares method to fit the
regression coefficients.

∆AP complex =

n∑

i=1

αi∆AP basici + ϵ, (3)

where αi is a regression coefficient representing
the contribution of each basic task i to the change

Figure 4: Top: The least squares method was used to fit
the activation pattern changes of traditional NLP tasks
in SFT to the activation pattern changes in SGSM. A
higher R2 indicates a better fit, with Code Search Net
and GSM8k showing the highest R2 values. Bottom:
The least squares method was used to fit the activa-
tion pattern changes of SFT instruction data to those
of tasks requiring both “logical reasoning” skills and
“programming and software development” instructions.
The combination of “logical reasoning” skills and “pro-
gramming” instructions achieved the highest R2 value.

in activation patterns for the complex task, n is the
total number of basic tasks, and ϵ is the error term.
Subsequently, we employ the R-squared (R2) value
to measure the goodness of fit, which represents the
proportion of the variance in the dependent variable
that can be explained by the independent variables.

4.2.2 Experiments Setup
In this study, we conducted two groups of experi-
ments: (1) We take MATH, GSM8K, Code Search
Net, HellaSwag, Winogrande, and ARC as the ba-
sic tasks, and select the SGSM task, which requires
coding ability and elementary math skills, as the
complex task. (2) We conduct experiments on the
Infinity Instruct dataset (Zhao et al., 2024), which
provides each instruction tags describing the skills
and knowledge required to complete that instruc-
tion, so that we can select both basic and complex
task-related instructions. Specifically, we selected
instructions requiring only a single skill, including
‘mathematics’, ‘logical reasoning’, ‘programming
and software development’, ‘education and con-
sulting’, ‘financial and business knowledge’, and
‘legal knowledge’, to form into the basic task data
set. Next, we selected instructions requiring both
‘logical reasoning’ and ‘programming/software de-
velopment’ skills as the complex tasks for SFT and
calculated their activation patterns.

4.2.3 Result
The upper part of Figure 4 shows the R2 values
obtained by fitting the activation patterns of vari-
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ous traditional NLP tasks using the least squares
method, with the activation pattern changes of the
SGSM task as the dependent variable. Among
these tasks, Code Search Net and GSM8K yield
the highest R2 value of 0.97. This indicates that
(1) the activation patterns of complex tasks can be
well-fitted by the linear combination of activation
patterns from simpler tasks; (2) SGSM is a task that
involves solving elementary math problems using
code, requiring a combination of elementary math
and coding skills. In fact, the changes in SGSM’s
activation patterns can be well-fitted by the activa-
tion pattern changes from the elementary math task
GSM8K and the coding task dataset Code Search
Net.

A similar phenomenon can be observed in the
results based on Infinity Instruct. The lower part
of Figure 4 shows the R2 values obtained by fit-
ting the activation patterns of various instruction-
based NLP tasks using the least squares method,
with the activation pattern changes of the instruc-
tion tasks that require both logical reasoning and
programming/software development skills as the
dependent variable. Among these tasks, the instruc-
tions that rely solely on logical reasoning and those
that rely solely on programming/software develop-
ment yield the highest R2 value of 0.95.

This shows that the activation patterns of com-
plex tasks can be formed by combining the acti-
vation patterns of several simpler tasks, and this
compositional relationship reflects the real-world
connections between these tasks. Therefore, SFT
adapts LLMs to complex tasks by integrating the
attention heads corresponding to the simpler tasks.

Furthermore, the weighted sum of activation
patterns from models fine-tunned on simple tasks
resembles that on complex tasks. It suggest that
learned enough from basic tasks, its state will ap-
proximate that of a model directly fine-tuned with
instructions related to complex tasks. This pro-
vides guidance on how to establish the necessary
prerequisites for complex task performance.

4.3 Small Data Can Change Activation
Patterns

In this section, we find that SFT can quickly adapt
LLMs to certain basic tasks by adjusting the acti-
vation level of attention heads with rather limited
instances. This suggests that with sufficient prior
knowledge, the model can quickly adapt to a task
even with a small amount of data.

Figure 5: Tracking changes in correlation coefficient
and MSE activation patterns of the Llama3-8B, Gemma-
7B, and OPT-6.7B models during fine-tuning on datasets
including Code Search Net, GSM8k, MATH, SGSM,
ARC, HellaSwag, and Winogrande.

4.3.1 Analytical Method
To analyze changes in instruction activation pat-
terns during SFT, we saved checkpoints throughout
the process for different tasks. We measured the
similarity and distance between the activation pat-
terns at different checkpoints using two metrics:
Correlation Coefficient and Mean Squared Error
(MSE). Specifically, we calculated the Correlation
and MSE between the activation patterns of the
model at the i-th step of SFT on a given task and
the activation patterns of the base model on the
same task. The Correlation reflects the consistency
in activation pattern changes, while MSE captures
the magnitude of these changes.

4.3.2 Experiments and Results
As shown in Figure 5, activation patterns change
rapidly in the initial steps of SFT. This suggests that
fine-tuning with small datasets can significantly
reshape a model’s attention patterns and alter its
performance. Previous research (Xia et al., 2024)
supports this, indicating that rapid learning during
SFT is driven by swift changes in attention patterns.

Moreover, the extent of changes in activation
patterns correlates with improvements in model
performance. As shown in Figure 5, the OPT-6.7B
model shows significant changes in activation pat-
terns across most tasks, particularly for complex
tasks like MATH. The shifts in activation patterns
post-fine-tuning are more pronounced compared
to those in the Llama3-8B and Gemma-7B mod-
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els. This suggests that the initial activation patterns
of OPT-6.7B may not be well-suited for solving
complex problems like MATH, and thus need more
instances to approach the convergence.

By analyzing models with varying capabilities,
we find that for simpler tasks, fewer steps, samples,
and less SFT data are needed for stronger LLMs to
approach convergence and adapt to the task. In con-
trast, weaker models require more data due to hav-
ing less prior knowledge from pre-training. This
suggests that the foundation of rapid generalization
is sufficient prior knowledge. Consequently, with
enough prior knowledge, a small number of sam-
ples can enable rapid learning of complex tasks.
Given that complex tasks can be decomposed into
simpler ones, this raises the question: Once a
model has sufficient prior knowledge, can it be
fine-tuned with just a small number of instruc-
tions to rapidly learn complex tasks?

5 Deduction and Applications

We further validate our conclusions by testing their
applicability in enhancing the effectiveness of SFT.
Based on our observations of activation patterns,
we focus on two scenarios: (1) Can we improve
SFT on complex tasks by providing LLMs with
prior knowledge of the basic tasks that make up
the complex task? (2) Can we identify relevant
data from a large candidate pool to approximate
the effect of a target dataset, particularly when the
target dataset is unavailable?

5.1 Scenario 1: Combining Data of Basic
Tasks to Promote the Learning of
Complex Task

Our analysis indicates that LLMs learn to complete
complex tasks by leveraging a combination of their
fundamental capabilities. A natural question arises:
for a complex task, can we enhance the efficiency
and effectiveness of the learning process by equip-
ping LLMs with relevant basic capabilities? We
conduct experiments on these settings: (1) Aiming
at adapting LLMs to a complex task with a limited
number of instructions given; (2) A large number of
instructions about various basic tasks are available;
(3) The relationship between the complex task and
basic tasks are unknown.

Since the relationships between the complex task
and basic tasks are unknown, we first estimate
these relationships using the regression function
described in Equation 3. Intuitively, the regres-

Model Base SFT Random Ours

Llama-7B 28.68 31.78 33.82 36.82
Llama2-7B 29.07 36.43 34.51 40.70
Llama3-8B 50.39 52.33 51.16 55.03

Table 2: Performance on the Mathbench test set: "Base"
refers to the base model results, “SFT” refers to re-
sults after fine-tuning with 100 Mathbench samples, and
“Random” represents the average of five runs trained
with a randomly mixed dataset of GSM8K and RefGPT
data, followed by fine-tuning with 100 Mathbench sam-
ples.

sion coefficients αi describe the proportion that
the complex task can be “composed ” of a basic
task i. Based on the regression coefficients, we
create a preliminary instruction set by combining
instructions from basic tasks.

Datasetpre = {N × αi/
∑

i

αi}|B|
i=0 (4)

where |B| is the number of candidate basic tasks,
N is the predefined size of Datasetpre. During ex-
periment, LLM is first trained on Datasetpre, then
finetuned on the target task dataset Datasetcomplex.

5.1.1 Experiment Settings

To simulate scenarios where LLMs lack sufficient
preliminary knowledge, we conducted experiments
on the Llama series models, which have not been
specifically optimized for Chinese corpora and ex-
hibit relatively limited performance on Chinese-
related tasks. In this section, we set the target com-
plex task as MathBench (Liu et al., 2024), which
requires the model to solve school mathematics
questions using Chinese. The MathBench dataset
358 instances, and we use only 100 instances as
Datasetcomplex, the left part for testing. In addition
to the basic tasks described in Section 4.2, we in-
clude RefGPT (Yang et al., 2023a) (a dataset of
Chinese factual knowledge) as a basic task dataset.
After the regression process, we keep only basic
datasets with the Top 2 largest regression coeffi-
cients, so as to filter out the noises. The remaining
basic tasks are GSM8K (English elementary math)
and RefGPT.Experiments are conducted on mod-
els of similar size but varying capabilities: Llama-
7B (Touvron et al., 2023a), Llama2-7B (Touvron
et al., 2023b), and Llama3-8B (Grattafiori et al.,
2024).
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5.1.2 Analysis
As shown in Table 2, our approach consistently out-
performs baseline models across all evaluations, in-
cluding models fine-tuned solely on the Mathbench
training set and those trained with a random mix of
elementary mathematics and Chinese instruction
data. Compared to models fine-tuned only on Math-
bench, our method shows significant improvements
in handling complex tasks through subtask training.
Moreover, constructing datasets based on activation
patterns improves the model’s ability to leverage
simple task data for complex tasks, surpassing mod-
els trained on randomly mixed subtasks. For Llama-
7B, learning from randomly proportioned basic task
data can still improve complex task performance,
but for more powerful models like Llama2-7B and
Llama3-8B, this approach may hinder performance.
These findings suggest that guiding dataset con-
struction using activation patterns from basic tasks
significantly enhances the model’s ability to learn
and generalize to complex tasks, supporting our
observation that complex tasks could be a combi-
nation of basic tasks, and once equipped with the
necessary preliminary knowledge, the LLM could
quickly adapt to the complex task.

5.2 Scenario 2: Selecting Relevant Data from
Candidates

While various Domain-LLMs demonstrate strong
capabilities, their instruction data is often unavail-
able. Considering the task-specificity of activation
patterns, can we select relevant datasets from open
instruction sets to approximate the performance
of models trained on private domain datasets?
Thus, we conduct experiments under the follow-
ing settings: (1) only a small amount of developer-
constructed pseudo-private data is available; (2) the
complete dataset used to train the Domain-LLM is
unknown;(3) the public data pool is large enough
to contain data relevant to the target task.

5.2.1 Experiment Settings
We simulated LLM performance without target
data using the multi-domain MMLU dataset, des-
ignating test set data from specific domains as pri-
vate (target data) and treating the remaining as non-
target data. We used validation and dev set data
from the target domains as pseudo-private data,
simulating small, manually created datasets that de-
velopers might construct when original data is un-
available. As concluded in Section 4.1, fine-tuning
on pseudo-private data improves the model’s task

Model Base T100 R100 T300 R300 T500 R500

Llama-7B 30.00 31.66 30.33 36.15 32.81 39.09 34.68
Llama2-7B 35.08 39.05 37.06 40.51 37.62 40.70 37.95
Llama3-8B 56.75 57.39 56.19 57.95 56.37 57.51 56.19

Table 3: Average accuracy of the model on four tasks:
mathematics, physics, chemistry, and biology. "Base"
represents the baseline model’s average accuracy on
these tasks. “T100” indicates the accuracy after fine-
tuning with 100 most similar data points based on activa-
tion patterns. "R100" represents the accuracy after fine-
tuning with 100 randomly selected unrelated MMLU
data points, with similar meanings for “T300”, “R300”,
“T500”, and “R500”.

specificity in the target domain.
We used Equation 5 to identify the top m non-

target data points from MMLU most similar to
the pseudo-private data. These data points were
then used for further training. We compared the
performance of this approach with the base model
and models trained on an equal amount of randomly
selected non-target data.

To ensure robustness, we averaged the results
across multiple domains—mathematics, physics,
chemistry, and biology—treating them as target
data.

Datasetapp = TopmCorr(AP tar, APDi), (5)

where Datasetapp represents the entire dataset, Di

is the i-th sample from D, APDi is the activa-
tion pattern for the i-th sample after SFT, and
Corr(∗, ∗) is the correlation coefficient.

5.2.2 Analysis
As shown in Table 3, models trained with data se-
lected by activation pattern similarity consistently
outperform those trained with randomly selected
data. This suggests that using the similarity of ac-
tivation patterns, we can effectively identify data
that share similarities with the private data. These
results support our hypothesis that attention heads
carry task-specific information, enabling LLMs to
adapt to various tasks. They also demonstrate the
potential for identifying rare relevant data from
large datasets to approximate private datasets.

6 Conclusion

This study investigated the mechanisms behind the
rapid learning and generalization observed during
SFT. We found that attention heads are selectively
activated in a task-specific manner during SFT, and
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that the activation patterns for complex tasks can
be decomposed into combinations of basic task pat-
terns. This offers a viable data substitution strategy
when high-quality complex data is scarce.

Our experiments demonstrated that even small
amounts of data can significantly alter activa-
tion patterns, validating the feasibility of (1) pre-
training on simple tasks to equip large models with
essential knowledge, and (2) fine-tuning with se-
lected relevant data to enable rapid generalization.
The improved effectiveness observed in these sce-
narios further supports the validity of our analytical
approach and offers practical solutions to data chal-
lenges in complex and specialized tasks.

7 Limitations

While this study demonstrates the role of atten-
tion head activation patterns in rapid learning and
generalization during the SFT process, we did not
explore the specific impact of individual attention
head activation levels on model performance in
detail. Additionally, our method validation was
primarily conducted on simpler tasks, and its appli-
cability to more complex and real-world tasks re-
mains to be fully evaluated. Future work will focus
on finer-grained analysis of activation levels and
further testing the effectiveness of our approach in
more challenging and practical domains to enhance
its performance in real-world applications.
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A Dataset Details

In this paper, we utilize a wide range of datasets related to LLMs, many of which are commonly used in
prominent large model evaluation frameworks (Fourrier et al., 2024; Contributors, 2023).

• MATH (Hendrycks et al., 2021b): An advanced mathematical reasoning dataset.

• GSM8K (Cobbe et al., 2021): A dataset for elementary mathematical reasoning.

• Code Search Net (Husain et al., 2019): A large dataset of code sourced from GitHub; we specifically
use the Python subset in this paper.

• SGSM (Christ et al., 2024): A dataset for solving math problems using code, requiring strong code
generation and mathematical reasoning abilities.

• HellaSwag (Zellers et al., 2019): A dataset for natural language processing and reasoning tasks.

• Winogrande (Sakaguchi et al., 2021): Another dataset for natural language processing and reasoning
tasks.

• ARC (Clark et al., 2018): A dataset for natural language processing and reasoning tasks.

• Infinity Instruct dataset (Zhao et al., 2024): A bilingual dialogue dataset; we use the English portion
in this study. This dataset is annotated with the specific skills required to complete each dialogue,
allowing us to determine which capabilities are needed for each task.

• MathBench (Liu et al., 2024): A dataset for evaluating mathematical performance in large models.
We use the Chinese portions of the middle and primary subsets.

• RefGPT (Yang et al., 2023a): A Chinese dataset focused on factual knowledge.

• MMLU (Hendrycks et al., 2021a): A dataset containing data from 57 domains. Following the
approach of Wang et al. (2024b), we use "college mathematics," "abstract algebra," "elementary
mathematics," "high school statistics," and "high school mathematics" to represent math-related data;
"college physics," "high school physics," and "conceptual physics" for physics-related data; "college
chemistry" and "high school chemistry" for chemistry-related data; and "college biology" and "high
school biology" for biology-related data.

B Training Details

• All experiments were conducted on an NVIDIA A100 GPU cluster.

• The training was performed using the DeepSpeed framework, following the hyperparameters outlined
in Yuan et al. (2023). We set ZeRO to 2, used a batch size of 4, a maximum token length of 1024, a
learning rate of 1e-6, and gradient accumulation set to 4. Full fine-tuning was conducted with bf16
precision.

• Given the varying sizes of the datasets, to ensure consistency within each experiment, the number of
training samples was set to match the smallest dataset in the group, ensuring that the results were not
influenced by the amount of data.

• To ensure fair evaluation, all assessments were conducted using the OpenCompass framework (Con-
tributors, 2023), employing greedy search to eliminate randomness in the results.
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C Equation Details

MSE represents the average distance between two matrices. The larger the MSE, the greater the difference
between the two matrices.

MSE(APtask1,APtask2) =
1

L×H

L∑

l=1

H∑

h=1

(APtask1
l,h −APtask2

l,h )2, (6)

where APtask1 and APtask2 represent the activation pattern matrices for tasks 1 and 2, respectively, and
L and H represent the number of layers and the number of heads per layer, respectively.

The Gini coefficient, which measures the inequality within the data of a matrix AP, can be expressed
as:

G(AP) =

∑L
i=1

∑H
j=1

∑L
k=1

∑H
l=1 |APij −APkl|

2LH
∑L

i=1

∑H
j=1APij

(7)

Coefficient of Variation The Coefficient of Variation (CV), which measures the relative variability of
the data in matrix AP, is given by:

CV (AP) =
σ(AP)

µ(AP)
, (8)

where σ(AP) is the standard deviation of AP, and µ(AP) is the mean of AP.
The Kurtosis, which measures the peakedness of the data distribution in matrix AP, can be expressed

as:

K(AP) =
LH

∑L
i=1

∑H
j=1(APij − µ(AP))4

(∑L
i=1

∑H
j=1(APij − µ(AP))2

)2 , (9)

where µ(AP) is the mean of the matrix AP.
These expressions can be used in a LaTeX document to calculate the Gini coefficient, Coefficient of

Variation, and Kurtosis for the matrix AP.
We use R2 to analyze the task fitting performance:

R2 = 1−
∑L

l=1

∑H
h=1

(
∆AP

complex
lh −∆ÂP

complex
lh

)2

∑L
l=1

∑H
h=1

(
∆AP

complex
lh −∆AP complex

)2 (10)

The coefficient of determination, denoted as R2, is a statistical measure that indicates how well the data
fits a regression model. In this context, ∆AP

complex
lh represents the observed change in activation patterns

at layer l and head h for a complex task, while ∆ÂP
complex
lh denotes the corresponding predicted change.

The numerator captures the sum of squared errors between the observed and predicted values, whereas
the denominator reflects the total variance in the observed data. ∆AP complex represents the mean of the
observed changes in activation patterns.
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