
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 16951–16966
July 27 - August 1, 2025 ©2025 Association for Computational Linguistics

TST: A Schema-Based Top-Down and Dynamic-Aware Agent of
Text-to-Table Tasks

Peiwen Jiang1, Haitong Jiang2, Ruhui Ma1†, Yvonne Jie Chen3†, Jinhua Cheng4†,
1School of Computer Science, Shanghai Jiao Tong University, Shanghai, China

2College of Comuputer Science and Software Engineering, Shenzhen University,
Shenzhen, China

3School of Entrepreneurship and Management, ShanghaiTech University, Shanghai, China
4KoGuan School of Law , Shanghai Jiao Tong University, Shanghai, China

{wayneroaming}@sjtu.edu.cn

Abstract

As a bridge between natural texts and infor-
mation systems like structured storage, statisti-
cal analysis, retrieving, and recommendation,
the text-to-table task has received widespread
attention recently. Existing researches have
gone through a paradigm shift from traditional
bottom-up IE (Information Extraction) to top-
down LLMs-based question answering with
RAG (Retrieval-Augmented Generation). Fur-
thermore, these methods mainly adopt end-to-
end models or use multi-stage pipelines to ex-
tract text content based on static table struc-
tures. However, they neglect to deal with pre-
cise inner-document evidence extraction and
dynamic information such as multiple entities
and events, which can not be defined in static
table head format and are very common in nat-
ural texts.

To address this issue, we propose a two-stage
dynamic content extraction agent framework
called TST (Text-Schema-Table), which uses
type recognition methods to extract context ev-
idences with the conduction of domain schema
sequentially. Based on the evidence, firstly
we quantify the total instances of each dy-
namic object and then extract them with or-
dered numerical prompts. Through exten-
sive comparisons with existing methods across
different datasets, our extraction framework
exhibits state-of-the-art (SOTA) performance.
Our codes are available at https://github.
com/jiangpw41/TST.

1 Introduction

Human natural language texts that widely exist
in traditional publishing and the Internet, are the
most natural and extensive forms of organizing in-
formation. How to utilize these unstructured or
semi-structured text data has become one of the

†Co-corresponding authors.

main challenges of contemporary information sys-
tems, such as business intelligence (Vidal-García
et al., 2019), recommendation systems (Vidal-
García et al., 2019), intelligent law and economics
(Ash and Hansen, 2023; Ashley, 2017), and smart
healthcare (Ahad et al., 2024). These practical
fields require organizing text into structured forms,
such as triplets, graphs, and tables, for statisti-
cal analysis and storage purposes (Jiang et al.,
2024). Due to the widespread use of relational
databases and the need for statistical convenience,
text-to-table tasks have received widespread atten-
tion (Deng et al., 2024).

The text-to-table task aims to systematically ex-
tract key information from natural texts, often con-
sisting of row names, column names, and cell con-
tent in triplets. With the development of deep learn-
ing techniques, especially LLMs (Large Language
Models), existing research has undergone a tran-
sition from end-to-end to multi-stage. The for-
mer follows the ideas of early IE, such as NER
(Named Entity Recognition) and RE (Relationship
Extraction), modifying the Transformer network to
generate tables in the form of Seq2Seq (Wu et al.,
2021; Li et al., 2023; Pietruszka et al., 2022). The
latter uses LLMs as universal solvers to extract
table elements in the form of Q&A (Question and
Answer), with original texts as context (Deng et al.,
2024; Sundar et al., 2024). In addition, some meth-
ods assume that the row and column names (table
schema) are unknown, and the header elements
need to be generated without any external infor-
mation about the task domain (Chen et al., 2024;
Zhao et al., 2024b; Wu et al., 2021). Other methods
assume that the table schema in the specific domain
should be pre-defined for the actual demand (Dong
et al., 2024; Jiang et al., 2024).

However, existing methods have obvious short-
comings. Firstly, the core difference between text-
to-table and traditional IE is that it does not only
extract elements based on linguistic concepts but

16951

https://github.com/jiangpw41/TST
https://github.com/jiangpw41/TST

rather uses domain knowledge to purposefully ex-
tract for downstream needs, which makes it difficult
to generate usable structured data without external
knowledge (Jiang et al., 2024). Secondly, the end-
to-end method relies on a large amount of training
data (Xu et al., 2024) and cannot handle complex
table structures (Dagdelen et al., 2024). Thirdly,
due to their focus on single documents, multi-
stage methods based on LLMs either incorporate
prompts with the entire document or partial chunks,
or simply adapt RAG methods that are better suited
for document sets (Fan et al., 2024). However,
these methods often underperform in fine-grained
and word-order-sensitivity tasks. Fourthly, most
existing datasets are synthetic, simple, and have
rigid enumeration structures (Jiang et al., 2024),
and all related methods are for static tables, which
cannot handle dynamic multi-instance extraction,
such as multiple occurrences of certain events, mul-
tiple entities of the same type of role, etc.

Based on the above issues, we propose three
core judgments for text-to-table at the current stage.
Firstly, the generation of table schema is an iner-
tia of the early end-to-end models, as these mod-
els need to include all the elements of the table.
However, in the current multi-stage method, header
generation can be an independent task, such as gen-
erating a knowledge graph and its schema from text
(Chen et al., 2023; Pan et al.; Jiang et al., 2024),
to ensure that the basis for extracting meets ac-
tual needs. Secondly, considering the context con-
straints and the requirement for model processing
accuracy, a more fine-grained document content
retrieval method should be adopted to construct
prompt words more accurately and economically.
Finally, it is necessary to consider the dynamic
information in the text so that it can adapt to more
complex table extraction tasks.

We propose a two-stage text-to-table frame-
work TST based on type recognition retrieval
and dynamic-aware agent. Firstly, the frame-
work adopts a predefined domain knowledge graph
schema as guidance, utilizing its dynamic struc-
ture to extract information top-down. Secondly, to
avoid redundant information or loss of key infor-
mation, we adopt a scalable inner-document type
recognizer based on sentence-level chunk strategy,
which extracts sentences in primitive order as ev-
idence. Finally, our dynamic-aware agent adopts
a two-stage strategy of counting first and then ex-
tracting sequentially. For entities, relationships, or
attributes marked as dynamic in the schema, first

perform instance counting and then add order infor-
mation to the prompt for extraction. Through exper-
iments on two of the most complex datasets consid-
ering dynamic instance situations, we demonstrate
the superiority of our method over existing SOTA
methods.

Our main contributions are as follows:

• Propose a two-stage dynamic-aware agent
framework. To the best of our knowledge,
this is the first method that formally addresses
dynamic table structures.

• Propose a new scalable method for inner-
document retrieval based on data type recogni-
tion, which can avoid redundant information
caused by complete document prompts, as
well as the problems of inaccurate and loss of
word order of current RAG.

• Design comprehensive comparison and abla-
tion experiments to demonstrate the superior-
ity of our TST over existing SOTA methods,
and the necessity of TST components.

2 Related Work

Text-to-table is a sub-task of IE but has more com-
plex extraction formats and requirements. Accord-
ing to different usage paradigms, it can be divided
into two types: end-to-end and multi-stage.

2.1 End-to-End

Early IE methods mainly adopt the Seq2Seq model
with additional parameters in the Transformer
mechanism to handle specific rows and columns.
The earliest work (Wu et al., 2021) achieves the
conversion by using the table constraint and table
relation embeddings method, but has poor accuracy
for long texts and rigidly penalize the difference
in order between rows. This study (Li et al., 2023)
improves it by demonstrating that row generation is
sequence insensitive and adopting a sequence to se-
quence & set model. MedT2T (Zhao et al., 2024b)
proposes a method for the medical field that uti-
lizes adaptive medical numerical constraints to fa-
cilitate precise embedding. BnText2Table (Zariyat
et al., 2024) develops a model specifically for the
Bengali language based on BART and T5. Stable
(Pietruszka et al., 2022) proposes a permutation-
based decoder that effectively processes informa-
tion by maximizing the expected logarithmic like-
lihood of the table content. These methods design

16952

How many defendants?

Agent Counter

Agent Extractor

What's the name of the first defendant ?

What's the name of the second defendant ?

What was stolen the first time ?

......

Court Judgment

Plaintiff: James
Defendant: Jerry, Tom
......
The plaintiff, James, claimed that Jerry
stole his one cheese yesterday Today
morning, Jerry stole again...... Tom
provided Jerry with a ladder......

The defendant, Jerry argued that the
first time, and the second time

After the trial, the court has
ascertained that

The above facts are evidenced

Holding:

Judge: xxx
June 22, 2024

Context Evidence

......

......
How many times has James been stolen?

......

Defendant: Jerry, Tom

......Jerry stole his one cheese yesterday......

......Tody morning, Jerry stole again......

Graph Schema

Type Recognizer Two-Stage Agent

Figure 1: Overview of our dynamic-aware agent with type recognizer.

special Transformer structures for specific scenar-
ios but rely on extensive training data and can only
adapt to relatively simple static tables. With the
widespread application of LLMs, LLMs become
the new extractor (Dagdelen et al., 2024). This
work (Coyne and Dong) proposes that LLMs can
utilize their zero-shot ability as table extractors,
which follows the end-to-end approach but is diffi-
cult to complete specific tasks without explicit user
queries.

2.2 Multi-Stage

Mainstream researches focus on multi-stage meth-
ods based on LLMs. This work (Chen et al., 2024)
proposes a new lightweight framework (DDSF),
which is based on the semantic understanding abil-
ity of LLMs and extracts the header and table
content separately. A similar work (Sundar et al.,
2024) proposes a two-stage method called gTBLS,
which firstly infers the table structure to formulate
prompts for LLMs. This work (Deng et al., 2024)
proposes a three-stage approach, which uses LLMs
as triplet extractors and then merges triples to form
a table. Although LLMs are used as general solvers
in these works, they adopt the bottom-up and end-
to-end manner to extract key elements and rely on
simple chunked textual evidence, which can not
serve precise complex table structures. OpenTE
(Dong et al., 2024) designs a three-stage table ex-
traction framework for open structures, which com-
bines the serialization generation of BART and
the few-shot ability of GPT-3.5/4. This method is
based on a pre-defined table structure, but still uses
an end-to-end method to generate the entire table,
with LLMs only serving as correction tools. The

latest work, TKGT (Jiang et al., 2024), proposes a
table extraction method based on knowledge graph
guidance and RAG. Although it considers the im-
portance of pre-defined table structures for com-
plex specialized tasks, it cannot handle dynamic
table structures and can only process this dynamic
information through pre-set hyper-parameters. In
addition, the Hybrid-RAG it uses is suitable for a
large number of document sets, often has low accu-
racy, and loses semantic order information between
chunks when retrieving within documents (Zhao
et al., 2024a).

3 Methods

As shown in Fig. 1, TST consists of three compo-
nents: a predefined graph schema, a type recog-
nizer for context retrieval, and a two-stage agent
that adopts a workflow of first counting dynamic
objects and then sequentially extracting them.

3.1 Predefined Graph Schema
To avoid the static limitations of traditional table
schema, we adopt a dynamic graph schema as the
form of field definitions, which defines the entities
and relations in specific domain. As shown in the
Appendix A, the schema contains dynamic struc-
tural and type information that are needed by type
recognizer and agent. Specifically, for extraction
tasks in specific scenarios, text sets often share an
event model that includes specific roles, relation-
ships, and attributes. For example, the Rotowire
dataset (Wiseman et al., 2017) can assign various
scoring data of players and the team as a whole to
the attributes of the team and player roles. CPL
(Jiang et al., 2024), on the other hand, natively

16953

supports more complex graph structures of the pri-
vate lending case, including roles such as the court,
plaintiff, defendant, and complex lending relation-
ships.

Algorithm 1 Dynamic-Aware Two-Stage Agent

Require: Predefined Graph Schema Schema
Ensure: Extracted Dynamic Field Values

1: SchemaDict← EMPTYSCHEMA(Schema)
2: for all Object ∈ Schema do
3: if the Object is dynamic then
4: Context ←

TYPEREC(Schema,Object)
5: ObjNumber ←

AGENTCOUNTER(Schema,Object,
Context)

6: else
7: ObjNumber ← 1
8: end if
9: for i = 1 to ObjNumber do

10: ObjDict ←
EMPTYOBJ(Schema,Object)

11: for all Field ∈ Object do
12: if the Field is dynamic then
13: ContextF ield ←

TYPEREC(Schema,Object, i, F ield)
14: FieldNumber ←

AGENTCOUNTER(Schema,Object, i,
F ield, ContextF ield)

15: else
16: FieldNumber ← 1
17: end if
18: for j = 1 to FieldNumber do
19: V alue ←

AGENTEXTRACTOR(Schema,Object, i
, ContextF ield, F ield, j)

20: ObjDict[Field].append(
V alue)

21: end for
22: end for
23: SchemaDict[Object].append(

ObjDict)
24: end for
25: end for
26: return SchemaDict

3.2 Type Recognizer

To avoid the limitations of traditional RAG, such
as the poor performance of statistically sparse re-
trievers in a single document and the problem of
chunk word order loss in multi-channel recall and

rerank, we adopt a method based on sentence-level
data type recognition and supplemented by dense
retrieval. This method relies on some recogniz-
able rules in text representation, such as scoring
information in Rotowire and LiveSum (Deng et al.,
2024) ball games often having a specific set of
terms, and lending information in court judgment
documents such as CPL often including money
amounts, interest rates, and dates, which can be
recognized according to commonly used expres-
sion rules and have very high retrieval efficiency.
In addition, this method adopts a strategy of travers-
ing chunks, which can preserve the sentences order
in the original text, providing order information
for some dynamic structures. In short, our type
recognizer is an improved version of Hybrid-RAG
that combines type recognition keyword retriever
and dense retriever.

3.3 Two-Stage Agent
Existing methods only generate once for each field,
and can only use hyperparameter setting times
for dynamic structural information. For example,
TKGT (Jiang et al., 2024) defaults to 3 for all be-
haviors that may exist multiple times, which not
only performs a large number of invalid searches
leading to illusions but may also be unable to han-
dle a small amount of tail information. Therefore,
we propose an agent that counts first and then ex-
tracts sequentially. The agent adopts a top-down
and dynamic-aware workflow that can deal with
globally extended context and multi-instance fields.
As shown in the Algorithm 1, the agent traverses
the graph structure for retrieval under the guid-
ance of a predefined schema. For dynamic multi-
instance fields, we first obtain the instance number
in the text and use the quantity keyword as the en-
hanced information for RAG. Besides, we use the
type recognizer to extract the most relevant context
for the current field extraction task based on the
schema’s elements such as entity, attribute, action,
relationship, and frequency information.

Specifically, we initialize the predefined graph
schema and start iterating through two layers. The
first layer traverses all entity types in the schema,
and the second layer traverses every field of each
entity type for extraction. When traversing an en-
tity’s field, the first step is determining whether the
field is static or dynamic based on the schema. If
it is static, the default number is set to 1. Other-
wise, the counter workflow is used to count the
number of instances of the field in the document

16954

using LLMs and RAG.
It should be noted that some fields are dependent,

such as the field about the interest to be repaid as
the main field, which has dependent sub-fields like
interest rate, calculation start time, calculation end
time, interest type, etc. We do not need to traverse
all dependent fields, but should determine the in-
stance number of the main field first to avoid invalid
Q&A. When obtaining the entity, the field, its cor-
responding number, and other schema description
information, we can more accurately retrieve rele-
vant context and obtain answers. The core of the
agent mechanism lies in a fact: for multi-instance
objects, an indication about the ordinal or total
number will effectively improve the performance
of RAG. These will be demonstrated explicitly in
the experiment section.

4 Experiment

We conduct comparative experiments with vari-
ous naive methods and baselines on two datasets
considering dynamic instances and conduct abla-
tion experiments on the type recognizer component.
Due to the large amount of result data, we place the
result tables on the CPL dataset in the Appendix E
and F.

4.1 Testbed

To explore the potential for deployment at the edge
and large-scale parallelism, we focus more on small
LLMs (0.5B to 8B). These models have the poten-
tial to be deployed on consumer grade GPUs, and
the cost of task-oriented instruction fine-tuning is
low. All small model experiments are conducted on
a local server (DELL DSS8440, 8 × 3090 24GB)
using Llama-Factory as the fine-tuning tool and
vLLM as the inference engine. We also use Ope-
nAI’s GPT APIs to use the SOTA commercial large
LLMs for comparison.

4.2 Dataset

The experiment mainly covers two datasets. (1)
LiveSum, a recently proposed (Deng et al., 2024)
synthetic football game comments dataset that aims
to gather overall team data by analyzing each
player’s score from the comments texts. This
dataset differs from previous E2E, Rotowire, and
Wikipedia datasets (Wu et al., 2021) for its multi-
instance and dynamic nature, indicating that a
team’s score on a particular indicator depends on
how many players relate to that indicator score

in the text. (2) CPL, a recently proposed (Jiang
et al., 2024) lending case judgment dataset which
consists of multiple roles and dynamic instance
numbers, and its fields are divided into two parts
(the static and dynamic). This work also proposes a
method called TKGT, but it only tests on the static
part previously due to inability to handle dynamic
instances. In our work, we utilize the richer range
of the CPL dataset dynamic part called CPL (D),
whose details can be found in Appendix D.

4.3 Baseline and Model

We mainly use the previous SOTA T-Tuple-T (T3)
(Deng et al., 2024) and TKGT (Jiang et al., 2024)
along with naive LLMs strategies (CoT, ICL, Fine-
tuning, and GPT-4 JSON Schema) as our base-
lines. Besides, we choose several popular LLMs
as processors to extensively test the universality
of our method. For the small-scale LLMs, we use
the Llama series1, Mistral2 and its Chinese ver-
sion (Zhou and Yuqi, 2024), Qwen3, ChatGLM34,
Baichuan25, whose numbers of model weights
ranges from 0.5B to 8B. As for large-scale models,
we choose the GPT-4o6.

The experiment setting can be found in Ap-
pendix C, and the prompt templates can be found
in Appendix B.

4.4 Metrics

We use two metrics. (1) The Triplet Metric. For
the experiments on CPL datasets, we use the tradi-
tional text-to-table metric consisting of precision,
recall, and F1-score along with the overall error
rate of the generated triplet. In addition, to further
evaluate the effectiveness, all metrics above are per-
formed at three levels: precise matching, character
matching, and semantic similarity; further details
of these metrics can be found at (Wu et al., 2021).
(2) The Counting Metric. For the experiments on
LiveSum datasets and our Agent Counter on CPL,
we predict the number of instances of each type
in each sample and evaluate RMSE and error rate
(Deng et al., 2024). Based on counting tests for
CPL, we select the best intermediate result to guide
the generation of instance triplets.

1https://www.llama.com/
2https://mistral.ai/
3https://github.com/QwenLM
4https://github.com/THUDM/ChatGLM3
5https://github.com/baichuan-inc/Baichuan2
6https://openai.com/index/gpt-4-research/

16955

https://www.llama.com/
https://mistral.ai/
https://github.com/QwenLM
https://github.com/THUDM/ChatGLM3
https://github.com/baichuan-inc/Baichuan2
https://openai.com/index/gpt-4-research/

Model Easy
RMSE ER

Medium
RMSE ER

Hard
RMSE ER

Average
RMSE ER

Fine-Tuned Small LLMs
Mistral-7B-Instruct-v0.2
LLaMA-2-Chat 7B
LLaMA-2-Chat 13B

1.045 38.36
1.047 38.41
1.043 39.22

3.832 85.11
3.728 84.91
3.587 84.60

7.115 95.52
7.107 95.40
6.671 94.42

4.564 76.03
4.512 75.91
4.287 75.71

Zero-Shot Medium and Large LLMs
LLaMA-2-Chat 13B
LLaMA-2-Chat 13B (COT)
LLaMA-2-Chat 70B
LLaMA-2-Chat 70B (COT)
ChatGPT
ChatGPT (COT)
Claude 2.1
Claude 2.1 (COT)
Mistral Large
Mistral Large (COT)
GPT-4
GPT-4 (COT)
Claude 3 Opus
Claude 3 Opus (COT)

0.775 33.29
0.780 31.83
0.410 12.34
0.450 12.86
0.200 8.06
0.229 10.61
1.014 10.08
1.496 14.06
0.005 0.27
0.018 0.73
0.156 4.64
0.154 4.38
0.078 2.52
0.040 1.59

4.554 87.37
4.376 87.42
3.189 88.59
3.221 89.25
2.864 72.73
2.809 72.75
2.581 63.99
2.291 61.70
2.385 52.45
2.311 51.82
1.167 46.05
1.173 45.86
1.617 51.36
1.642 49.60

5.203 93.29
5.088 92.35
4.941 92.41
5.314 94.24
4.257 90.62
4.087 90.38
4.621 90.58
4.081 90.38
2.712 84.62
2.608 84.08
4.114 88.53
3.981 88.73
3.713 88.06
3.265 87.86

4.279 75.33
4.162 74.75
3.455 70.48
3.613 71.40
3.008 61.03
2.911 61.62
3.171 57.16
2.918 56.96
2.209 47.45
2.139 47.12
2.273 46.32
2.225 46.20
2.253 48.33
2.079 47.17

Zero-Shot Large LLMs with T3

Claude 2.1 (T3)
Mistral Large (T3)
GPT-4 (T3)
Claude 3 Opus (T3)

0.193 8.95
0.191 8.82
0.056 3.18
0.081 5.30

1.965 44.99
1.596 42.37
0.854 25.83
0.406 14.79

2.751 72.15
2.136 69.23
1.219 46.22
0.477 21.29

2.066 42.77
1.631 40.70
0.929 25.27
0.438 14.04

Original Small LLMs with T3 Stages
T3 Stage 1
T3 Stage 2
T3 Stage 3
All Zero

1.190 37.83
1.183 38.46
1.196 38.30
1.192 38.06

5.830 86.92
6.301 89.84
6.279 89.94
6.303 90.19

11.703 99.40
12.328 99.97
12.312 99.93
12.361 99.97

7.231 77.77
7.660 79.53
7.646 79.53
7.675 79.60

Original Small LLMs with TST
Pure Rule
ChatGLM3-6B
Baichuan2-7B-Chat
Qwen2.5-0.5B
Mistral-7B-Instruct-v0.2
Llama-2-7b-chat
Llama-3-8B-Instruct
Qwen1.5-7B-Chat

16.579 99.14
0.264 12.93
0.731 25.60
0.437 14.95
0.129 4.57
0.442 15.68
0.069 3.28
0.131 4.87

5.766 89.16
2.316 60.44
5.665 85.91
0.768 32.82
0.628 26.84
0.642 27.58
0.759 33.87
0.642 27.83

8.410 97.25
11.003 99.90
10.809 99.90
6.441 88.26
2.729 83.02
2.722 83.32
3.961 94.36
2.733 83.19

10.320 93.68
5.764 58.43
6.768 74.33
3.302 42.22
1.475 35.32
1.516 38.54
2.076 41.35
1.480 35.93

Fine-Tuned Small LLMs with TST
ChatGLM3-6B
Llama-3-8B-Instruct
Mistral-7B-Instruct-v0.2
Qwen2.5-0.5B
Qwen1.5-7B-Chat

0.271 8.42
0.034 1.79
0.037 1.62
0.069 2.72
0.079 3.22

4.988 77.17
0.509 20.97
0.550 22.55
2.778 42.32
0.532 21.49

10.839 99.90
1.004 51.49
0.971 49.01
3.961 89.95
0.984 50.90

6.499 65.67
0.660 23.81
0.669 23.93
2.812 44.33
0.675 24.27

Table 1: Previous T3 results (Deng et al., 2024), new results of T3 stages ablation, and our TST method experiments
with different models on LiveSum datasets using the counting metric.

16956

4.5 Results on LiveSum Dataset

The T3 method related to this dataset is a three-
stage pipeline based on LLMs question and answer.
In the first stage, a LLM is used to generate all the
triplets in the entire document. In the second stage,
code is generated to process and integrate these
tuples. In the third stage, the code execution results
are processed and saved in CSV format. The first
half of Table 1 contains the original experiments
results from the T3 (Deng et al., 2024), mainly cov-
ering the experimental results using the T3 method
on the fine-tuned open source model with weights
from 7B to 13B, the results of the SOTA large com-
mercial LLMs using the zero-shot method and T3

method. Overall, the previous results demonstrate
the potential of open-source small models in this
type of task and the outstanding performance using
large LLMs with T3.

Based on this, we conduct two sets of experi-
ments as follows.

4.5.1 Results of T3 Stages Ablation
This part explores the performance of T3 with
open-source small LLMs (Mistral-7B-Instruct-
v0.2) without fine-tuning and conduct ablation ex-
periment for its three stages. As shown in the Orig-
inal Small LLMs with T3 Stages part of Table 1,
we split the three-stage pipeline of T3, process the
intermediate results through simple engineering
methods, and evaluate them. At the same time,
we list the evaluation results with all predicted re-
sults set to zero as a baseline. Firstly, T3 is almost
unable to function correctly on the pre-trained 7B
open-source model with results similar to the all
zero one. Secondly, generating all triples in the
first stage is the most critical and possibly the only
practical step, as the latter two stages provide little
help in improving the evaluation results. Finally,
the first stage of T3 requires the entire text in the
prompt templates, which can result in input lengths
that are too long for most existing open-source
small models.

4.5.2 Results of TST
We select a group of internationally renowned open-
source models, with the smallest being Qwen with
0.5B and the largest being Llama with 8B weights,
which can easily run on consumer-grade GPUs.
Due to the fact that TST uses type recognizer is a
rule-based keyword retriever, and LiveSum does
provide a set of commonly used expressions during
the synthesis process, there may be some overlap

between the two. However, TST’s rule-based key-
words are derived from statistics rather than direct
results provided by LiveSum. To prove this point,
we first provide the count results of Pure Rule in
the Original Small LLMs with TST part of Table
1. It can be seen that although it is slightly better
than all zeros on the Medium and Hard fields, it
has more than ten times the error on the Easy field.

In addition, we first conduct experiments
on seven open-source models, among which
Llama-3-8B-Instruction and Mistral-7B-Instruct-
v0.2 achieve the best results at four difficulty
degrees. Specifically, Llama-3-8B-Instruction’s
RMSE 0.069 and ER 3.28 on the Easy field ex-
ceed the vast majority of results obtained by the T3

method. Moreover, Mistral-7B-Instruct-v0.2 gets
an RMSE of 0.628 on the Medium field, even sec-
ond only to Claude 3 Opus using T3, which has an
RMSE of 0.406. The experimental results of TST
with small open-source models are efficient, as they
demonstrate that we can not only achieve results
comparable to SOTA and expensive models at al-
most free cost but also have the potential to open
up practical avenues for large-scale text processing
with their speed and low-cost scalability.

However, our goal is broader than this. We first
select five well-performing models for fine-tuning.
Due to the different goals of T3 and TST, TST
could not use the fine-tuning dataset of T3. There-
fore, we spend a small amount of human resources
(about an hour for a human) to create a tiny dataset
containing two samples of approximately 450 pairs.
The tiny fine-tuning only cost about twenty min-
utes. It can be seen that the fine-tuned models
show comprehensive improvement compared to be-
fore, with Llama-3-8B-Instruction getting results
of RMSE 0.034 and ER 1.79, which surpass the
optimal results of GPT-4 using T3 of RMSE 0.056
and ER 3.18 on Easy fields.

The above results demonstrates that our TST
method can rival or even defeat the SOTA T3 meth-
ods on open-source small models without requiring
much time for fine-tuning. In addition, it is worth
noting that although our results on the Qwen2.5-
0.5B small model are not outstanding in compari-
son, its extreme size can still perform well, proving
the potential of ultra-small LLM in some informa-
tion extraction tasks.

4.6 Results on CPL Dataset
For the CPL dataset, we select the dynamic fields as
a sub-dataset named CPL (D), details can be found

16957

in Appendix D. Besides, results of this section can
be found in the Appendix E and F. We first use GPT-
4o and its structured output function as the baseline.
We simply convert the same TST schema into a
format adapted to the OpenAI interface, adding
rich prompts with explanations. In addition, in
terms of small open-source models, we select five
models that are good at handling both Chinese and
English, and fine-tune three of them accordingly.
Methodologically, we conduct experiments using
T3 method, static TKGT method, and dynamic TST
method. Among them, TKGT itself cannot handle
dynamic field types. To allow it to participate in the
experiment, we make a simple modification and set
it to extract three instances for all fields by default.

As shown in Table 3 at Appendix E, on the CPL
(D) dataset, the T3 method still performs poorly on
the original open-source model, achieving almost
zero gains in accurate output due to the one-time
absorption of the entire document. Besides, the
T3 method fine-tuned with instructions can usually
work, but they are far inferior to GPT-4o in triplet
extraction and do not have practical value. The T3

performance using GPT-4 achieves the best within
the method on both the first column and table head-
ers, but is generally inferior to TKGT and TST, and
is far inferior to T3 using the fine-tuned model on
data cells. On the surface, for complex tables, the
ability to generate all triples at once using SOTA
commercial models is limited.

In contrast, although the TKGT method per-
forms poorly on original open-source models, infe-
rior to GPT-4o and the fine-tuned T3 method, the
TKGT method can achieve good performance af-
ter fine-tuning, significantly surpassing GPT-4o af-
ter fine-tuning on Chinese-Mistral-7B Instruction.
However, it is worth noting that this is a TKGT
method that assumes a set instance count of three.
Finally, we conduct experiments on the TST, It can
be seen that TST on models that are not fine-tuned
can achieve better results than GPT-4o, T3, and
TKGT without fine-tuning. After fine-tuning, its
accuracy can be further improved.

The above results demonstrate the superiority of
the TST method. To further explore the reasons for
its excellent performance, we apply the RMSE met-
ric to count on all generated results, which demon-
strates that the first stage Agent Counter method of
TST outperforms existing methods in terms of accu-
racy in counting the number of dynamic instances.
Details can be found at Appendix F.

Easy Medium Hard Average
Difficulty Level

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

RM
SE

 S
co

re

0.002

0.140

0.332

0.260

0.013

0.203

0.364

0.301

0.049

0.226

0.421

0.350

RMSE Scores of Different Context Strategies
TypeRec
WholeDoc
HybridRAG

Figure 2: Results of different context strategies on CPL
datasets. TypeRec refers to our method, Hybrid-RAG
refers to the method used in TKGT, and WholeDoc
refers to using the whole document as context.

4.7 Ablation Experiments

As shown in the Fig. 2, to validate our innovative
type recognizer content retriever used in our two-
stage agent method, we use the counter metric to
evaluate the RMSE of different content strategies,
which are all based on the best Chinese-Mistral-
7B-Instruc-v0.1 model. The experimental results
show that on three difficulty levels, the contextual
evidence obtained by our type recognition retriever
can help LLMs more accurately count the number
of instances. In addition, due to the preservation
of the word order of instances in the text, using
the entire document as evidence has a secondary
effect. However, using the Hybrid-RAG method
based on dense and sparse retrievers may not be as
accurate as using the entire text as evidence due to
the loss of word order in multiple recalls and lower
precision.

Therefore, an important finding is that for inner-
document tasks such as text-to-table, the first con-
sideration is whether a type recognizer can be used.
If some of the fields do not have significant type
rules, but the document length does not exceed the
model input limit, consider using full-text or rule
paragraphs; Hybrid-RAG can only be used as a last
resort, and it is recommended to keep the original
order of the chunks.

5 Conclusion

We propose a two-stage dynamic-aware agent
framework, termed TST, which leverages type
recognition to address the issue of neglecting fine-
grained content evidence retrieval and dynamic
table structures in existing text-to-table methods.
Through extensive comparative and ablation ex-

16958

periments on different models and datasets, we
demonstrate the superiority of TST over existing
SOTA methods T 3 and TKGT and demonstrate
that our type recognizer is better than existing con-
tent evidence retrieval strategies.

Our framework assumes that there is already a
graph schema for a certain domain, so the gener-
alization cost mainly lies in designing a standard-
ized schema template for the new domain. But the
good news is that we do not pursue a universal and
complete knowledge graph structure. Our schema
directly serves downstream task requirements, that
is, target extraction fields. Therefore, for any do-
main task with a clear goal, generalization lies in
abstracting the knowledge graph skeleton (schema)
from the target field set and adding some necessary
metadata for each entity and field, such as basic
definition, whether it is dynamic, matching tem-
plates or term sets, etc. This should be a simple
task for experts in the field.

Limitations

Although our inner-document type recognizer is
significantly more fine-grained and precise as a
content evidence retriever compared with existing
methods, it relies on the data types defined by the
task objectives and needs to be extended for spe-
cific tasks. In addition, due to the diversity of lan-
guage expressions in natural texts, type recognizers
sometimes still need to rely on dense retrievers,
which can lead to unavoidable issues of false evi-
dence and hallucinations.

Ethics Statement

This work does not adopt AI assistants. The
two datasets we use are entirely from the MIT li-
cense open-source pre-processing results of previ-
ous work (Deng et al., 2024; Jiang et al., 2024) and
they do not contain any personal privacy threats. In
addition, all experiments in this work follow the
expected purpose of their research. Therefore, to
the best of the author’s knowledge, we believe that
this work will not bring any additional risks.

Acknowledgement

The work was supported by Shanghai Key Labora-
tory of Scalable Computing and Systems, Shanghai
Municipal Science and Technology Major Project,
National Key Laboratory of Ship Structural Safety,
Center for Empirical Legal Studies of Shanghai
Jiao Tong University, National Social Science Fund

Key Project of China (23AFX002), National Natu-
ral Sciences Foundation of China (72473101), and
the CUPL Data Law Lab. We also thank the re-
viewers for their insightful comments.

References
Abdul Ahad, Zheng Jiangbina, Mohammad Tahir, Ibra-

heem Shayea, Muhammad Aman Sheikh, and Faizan
Rasheed. 2024. 6g and intelligent healthcare: Taxon-
omy, technologies, open issues and future research
directions. Internet of Things, page 101068.

Elliott Ash and Stephen Hansen. 2023. Text algorithms
in economics. Annual Review of Economics, 15(Vol-
ume 15, 2023):659–688.

Kevin D. Ashley. 2017. Artificial Intelligence and Legal
Analytics: New Tools for Law Practice in the Digital
Age. Cambridge University Press, Cambridge.

Chen Chen, Yufei Wang, Aixin Sun, Bing Li, and Kwok-
Yan Lam. 2023. Dipping plms sauce: Bridging struc-
ture and text for effective knowledge graph comple-
tion via conditional soft prompting. arXiv preprint
arXiv:2307.01709.

Jiarui Chen, Shuangyin Li, and Yuncheng Jiang. 2024.
A decomposed-distilled sequential framework for
text-to-table task with llms. In Pacific Rim Inter-
national Conference on Artificial Intelligence, pages
403–410. Springer.

Steven Coyne and Yuyang Dong. Large language mod-
els as generalizable text-to-table systems.

John Dagdelen, Alexander Dunn, Sanghoon Lee,
Nicholas Walker, Andrew S Rosen, Gerbrand Ceder,
Kristin A Persson, and Anubhav Jain. 2024. Struc-
tured information extraction from scientific text with
large language models. Nature Communications,
15(1):1418.

Zheye Deng, Chunkit Chan, Weiqi Wang, Yuxi Sun,
Wei Fan, Tianshi Zheng, Yauwai Yim, and Yangqiu
Song. 2024. Text-tuple-table: Towards information
integration in text-to-table generation via global tuple
extraction. arXiv preprint arXiv:2404.14215.

Haoyu Dong, Mengkang Hu, Qinyu Xu, Haochen Wang,
and Yue Hu. 2024. Opente: Open-structure table
extraction from text. In ICASSP 2024-2024 IEEE
International Conference on Acoustics, Speech and
Signal Processing (ICASSP), pages 10306–10310.
IEEE.

Wenqi Fan, Yujuan Ding, Liangbo Ning, Shijie Wang,
Hengyun Li, Dawei Yin, Tat-Seng Chua, and Qing
Li. 2024. A survey on rag meeting llms: Towards
retrieval-augmented large language models. In Pro-
ceedings of the 30th ACM SIGKDD Conference on
Knowledge Discovery and Data Mining, pages 6491–
6501.

16959

https://doi.org/10.1146/annurev-economics-082222-074352
https://doi.org/10.1146/annurev-economics-082222-074352
https://doi.org/10.1017/9781316761380
https://doi.org/10.1017/9781316761380
https://doi.org/10.1017/9781316761380

Peiwen Jiang, Xinbo Lin, Zibo Zhao, Ruhui Ma,
Yvonne Chen, and Jinhua Cheng. 2024. Tkgt: Re-
definition and a new way of text-to-table tasks based
on real world demands and knowledge graphs aug-
mented llms. In Proceedings of the 2024 Conference
on Empirical Methods in Natural Language Process-
ing, pages 16112–16126.

Tong Li, Zhihao Wang, Liangying Shao, Xuling Zheng,
Xiaoli Wang, and Jinsong Su. 2023. A sequence-
to-sequence&set model for text-to-table generation.
In Findings of the Association for Computational
Linguistics: ACL 2023, pages 5358–5370.

Shirui Pan, Linhao Luo, Yufei Wang, Chen Chen, Jiapu
Wang, and Xindong Wu. Unifying large language
models and knowledge graphs: A roadmap, 2023.
arXiv preprint arXiv:2306.08302.

Michał Pietruszka, Michał Turski, Łukasz Borchmann,
Tomasz Dwojak, Gabriela Pałka, Karolina Szyndler,
Dawid Jurkiewicz, and Łukasz Garncarek. 2022. Sta-
ble: Table generation framework for encoder-decoder
models. arXiv preprint arXiv:2206.04045.

Anirudh Sundar, Christopher Richardson, and Larry
Heck. 2024. gtbls: Generating tables from text
by conditional question answering. arXiv preprint
arXiv:2403.14457.

Javier Vidal-García, Marta Vidal, and Rafael Hernández
Barros. 2019. Computational Business Intelligence,
Big Data, and Their Role in Business Decisions in
the Age of the Internet of Things, page 1048–1067.
IGI Global.

Sam Wiseman, Stuart M Shieber, and Alexander M
Rush. 2017. Challenges in data-to-document genera-
tion. arXiv preprint arXiv:1707.08052.

Xueqing Wu, Jiacheng Zhang, and Hang Li. 2021. Text-
to-table: A new way of information extraction. arXiv
preprint arXiv:2109.02707.

Derong Xu, Wei Chen, Wenjun Peng, Chao Zhang, Tong
Xu, Xiangyu Zhao, Xian Wu, Yefeng Zheng, Yang
Wang, and Enhong Chen. 2024. Large language mod-
els for generative information extraction: A survey.
Frontiers of Computer Science, 18(6):186357.

Tahreema Rahman Zariyat, Fahim Irfan Ahmed,
Tahsina Tajrim Oishi, and Maruf Morshed. 2024.
BnText2Table–dataset and Text-to-Table generation
in Bangla. Ph.D. thesis, Brac University.

Siyun Zhao, Yuqing Yang, Zilong Wang, Zhiyuan He,
Luna K Qiu, and Lili Qiu. 2024a. Retrieval aug-
mented generation (rag) and beyond: A comprehen-
sive survey on how to make your llms use external
data more wisely. arXiv preprint arXiv:2409.14924.

Wang Zhao, Dongxiao Gu, Xuejie Yang, Meihuizi Jia,
Changyong Liang, Xiaoyu Wang, and Oleg Zolotarev.
2024b. Medt2t: An adaptive pointer constrain gen-
erating method for a new medical text-to-table task.
Future Generation Computer Systems, 161:586–600.

Chen Zhou and Bai Yuqi. 2024. Chinese-mistral:
An efficient and effective chinese large lan-
guage model. https://github.com/THU-ESIS/
Chinese-Mistral.

16960

https://doi.org/10.4018/978-1-5225-7501-6.ch055
https://doi.org/10.4018/978-1-5225-7501-6.ch055
https://doi.org/10.4018/978-1-5225-7501-6.ch055
https://github.com/THU-ESIS/Chinese-Mistral
https://github.com/THU-ESIS/Chinese-Mistral

A Dynamic Schema

Below is an example of the schema of dynamic
scenario which is shown in Fig. 1. The core dif-
ference between the dynamic and static schema is
whether the entity or attribute is unique. Besides,
dynamics are reflected in a table as a set of sub
fields appearing in multiple rows.

"plaintiff": {
"metadata": {

"type": "entity",
"description": "xxx",
"unique": true

},
"attributes": {

"name": {
"description": "xxx",
"type": "string"

},
"address": {

"description": "xxx",
"type": "string"

}
}

},
"defendant": {

"metadata": {
"type": "entity",
"description": "xxx",
"unique": false

},
"attributes": {

"name": {
"description": "xxx",
"type": "string",
"unique": true

},
"address": {

"description": "xxx",
"type": "string",
"unique": true

}
}

},
"stealing": {

"metadata": {
"type": "edge",
"description": "xxx",

"direction": "defendant-plaintiff",
"unique": false

},
"attributes": {

"theft_target": {
"description": "xxx",
"type": "string",
"unique": true

},
"date": {

"description": "xxx",
"type": "string",
"unique": true,
"format": "xxxx"

},
"order": {

"description": "xxx",
"type": "integer",
"unique": true

},
"stealer": {

"description": "xxx",
"type": "string",
"unique": true

},
"person_stolen":{

"description": "xxx",
"type": "string",
"unique": true

}
}

}

B TST Prompt Template

The prompt template used by TST is dynamically
constructible to ensure that each attribute field
value for each entity is given a prompt that is as ap-
propriate as possible. This dynamic prompt word
template system combines the CoT principle, dy-
namically selects ICL examples, and performs con-
text retrieval as accurately as possible, providing
the most appropriate and accurate questioning state-
ments. As shown in Fig. 3 and 4 below, here are
two examples of our TST prompt templates. Firstly,
the Instruction section provides background knowl-
edge, conceptual explanations, reasoning logic, and
principles related to the task. The Examples select
corresponding input-output pair samples from a
samples library according to the entity and field,
which ensures that ICL samples that meet the cur-
rent task can be provided for LLMs. The Input
part contains input information in the same for-
mat as the examples in Examples, divided into two
parts: context and question. The former is obtained
through Hybrid RAG technology, while the latter

16961

Instruction_Counter

Examples

Input

You are a legal assistant who needs to ... and accurately answer the number of instances Please note the following:
(1) The number of instances refers to ... (concept explanation);
(2) Please strictly control the output to be a simple integer, so that Note that the range of values for all quantities is [0,5] (output constraint);
(3) Here provides ... in the 'Text' section and t... in the 'Questions' section. You should first ..., and then Finally, ...(CoT).
(4) Finally, please note that If there is no content about the agreement in the text, please answer 0 (some principles and encouragements).

{EXAMPLES} (ICL examples from lib)

Please practice below:
Text: {CONTEXT} (RAG Retrieved)
Question: {QUESTION} (Dynamically constructed based on entity and field)
Answer:

{NUMBER} {an integer as output}

Output

Figure 3: TST prompt template for instance counter.

{EXAMPLES} (ICL examples from lib)

Please practice below:
Text: {CONTEXT} (RAG Retrieved)
Question: {QUESTION} (Dynamically constructed based on entity and field)
Answer:

{STRING} {can constrcut triplet with
entity and field}

Instruction_Extractor

Examples

Input

You are a legal assistant who needs to read a judgment document of a civil lending case and ...(background information)... following:
(1) Here provides the content of the judgment document in the 'Text' and specific requirements in the 'Questions' section. You should first ...,
and then ..., without... (CoT).
(2) Please note that when valid agreement appears in the question,......(some principles).
(3) The text may not contain any valid information, so do not blindly follow it. If, please boldly answer <NOT FOUND>.

Output

Figure 4: TST prompt template for instance extractor.

generates grammatically correct questions based
on rules. The final Output part is the output with
specific format requirements. Sometimes, LLMs
cannot be output according to format requirements.
Solutions include breaking down complex output
formats into multiple outputs or building a format
fine-tuning dataset to fine-tune LLMs.

C Experiment Setting

As shown in Table 2, we test all methods on differ-
ent datasets and metrics.

D Dynamic Part of CPL Dataset

For CPL dataset, we select the dynamic fields as a
sub-dataset, which consists of names of the plain-
tiff, defendant, and court, as well as the six main
fields of the court and the plaintiff regarding the
lending voucher, agreed lending amount, agreed
repayment date, agreed interest, agreed overdue in-
terest, and agreed liquidated damages, and dozens

of sub-fields such as the name and content of the
lending voucher, the agreed form, and agreed time.
It has difficulties such as multi-perspective inter-
ference, multi-instance interference, and inter-field
dependencies. Fig. 5 shows the results of distribu-
tion statistics on the above-mentioned subjects and
fields.

Like LiveSum, we also classify the difficulty of
different fields into three levels: green represents
Easy, blue represents Medium, and red represents
Hard. It can be seen that there are some patterns
in the distribution of fields, among which, in the
simple name field, the court has uniqueness, the
vast majority of plaintiffs are unique, and there
can be multiple defendants. In the blue field, most
instances are within two instances, with one in-
stance being the majority case. In the red fields,
the majority are zero, and some fields have less
than one-tenth of their non-zero instances, which
is a standard tail field. Therefore, simple fields

16962

Datasets Methods Models Type Metrics

LiveSum

T3

T3

Pure Rule
TST
TST
TST
TST
TST
TST
TST

Previous works
Mistral-7B-Instruct-v0.2
/
Llama-2-7B-Chat
Llama-3-8B-Instruct
Baichuan2-7B-Chat
ChatGLM3-6B
Mistral-7B-Instruct-v0.2
Qwen1.5-7B-Chat
Qwen2.5-0.5B

/
Original
/
Original
Original | FT
Original
Original | FT
Original | FT
Original | FT
Original | FT

RMSE | ER
RMSE | ER
RMSE | ER
RMSE | ER
RMSE | ER
RMSE | ER
RMSE | ER
RMSE | ER
RMSE | ER
RMSE | ER

CPL (D)

Naive
All Zero
All One
T3

T3 | TST | TKGT
T3 | TST | TKGT
T3 | TST | TKGT
T3 | TST | TKGT
T3 | TST | TKGT

GPT-4o with JSON Schema
/
/
GPT-4
ChatGLM3-6B
Mistral-7B-Instruct (zh)
Qwen1.5-7B-Chat
Baichuan2-7B-Chat
Qwen2.5-0.5B

Original
/
/
Original
Original | FT
Original | FT
Original | FT
Original
Original

RMSE | ER
RMSE | ER
RMSE | ER
RMSE | ER | F1-Score
RMSE | ER | F1-Score
RMSE | ER | F1-Score
RMSE | ER | F1-Score
RMSE | ER | F1-Score
RMSE | ER | F1-Score

Table 2: Experiment settings of the second stage of TST. Experiments on E2E, Rotowire, CPL (S) are designed to
demonstrate the performance of TKGT, while experiments on LiveSum and CPL (D) are for TST.

are mainly responsible for examining the ability of
extraction methods to extract accurately, medium
fields focus on counting and distinguishing, and
hard fields challenge the model’s ability to say I do
not know.

E Results on CPL with the Triplet Metric

As shown in Table 3, we test all methods on the
CPL dynamic dataset with the triplet metric. The
analysis content can be found in the experiment
part.

F Results on CPL with the Counting
Metric

As shown in Table 4, the TST method will first gen-
erate statistics about the number of times, but other
methods directly generate results, so we deduced
the count from the results and obtained Table 4.
Similarly, we have added two outcome baselines,
all zeros, and all ones, besides the GPT-4o base-
line. It can be seen that GPT-4o (Json Schema)
achieved a very low RMSE of 0.006 and ER of
0.47 on the Easy field, which exceeds most subse-
quent methods. However, GPT-4o performs poorly
in the Medium and Hard fields, even far below all
ones and all zeros. Through sample analysis, we

found that GPT-4o is very negative in answering
questions that are not known, which is also the
reason for its poor performance in the tail fields.
In addition, in the comparison of T3, TKGT, and
TST methods, we can clearly see the significant
advantage of TST in counting. Significantly, the
Qwen1.5-7B Chat and Chinese-Mistral-7B Instruc-
tion models outperform other methods in all fields
after being fine-tuned. Therefore, a significant por-
tion of the superiority of TST comes from its first
step of counting the number of instances. This
information about the number of instances can ef-
fectively improve the accuracy of information ex-
traction results.

16963

Methods The first column F1
Exact Chrf BERT

Table header Fl
Exact Chrf BERT

Data cell F1
Exact Chrf BERT

GPT-4o (Json Schema) 100.00 100.00 100.00 69.69 78.10 82.50 57.63 62.90 66.83
T3

ChatGLM3-6B
Qwen1.5-7B-Chat
Mistral-7B-Instruct (zh)
Baichuan2-7B-Chat
Qwen2.5-0.5B
ChatGLM3-6B (FT)
Qwen1.5-7B-Chat (FT)
Mistral-7B-Instruct (zh, FT)
GPT-4

2.16 3.55 3.42
31.10 31.50 31.80
0.24 0.24 0.24
0.00 0.00 0.00
0.19 0.19 0.19
83.70 85.05 86.11
97.77 97.91 98.01
59.15 59.15 59.15
98.89 98.90 98.91

0.50 1.02 1.29
0.92 5.97 8.74
0.00 0.09 0.13
0.00 0.00 0.00
0.00 0.00 0.00
55.11 62.11 66.39
35.00 36.77 38.38
21.44 22.32 23.58
60.77 70.37 75.92

0.19 0.25 0.25
0.99 1.67 1.91
0.00 0.00 0.01
0.00 0.00 0.00
0.00 0.00 0.00
42.82 47.16 50.01
43.13 43.96 44.51
27.22 27.44 27.57
30.48 35.17 36.51

TKGT
ChatGLM3-6B
Qwen1.5-7B-Chat
Mistral-7B-Instruct (zh)
Baichuan2-7B-Chat
Qwen2.5-0.5B
ChatGLM3-6B (FT)
Qwen1.5-7B-Chat (FT)
Mistral-7B-Instruct (zh, FT)

93.93 94.72 95.27
100.00 100.00 100.00
98.01 98.29 98.49
74.74 77.27 79.11
100.00 100.00 100.00
100.00 100.00 100.00
100.00 100.00 100.00
100.00 100.00 100.00

36.77 54.72 64.39
36.12 55.81 66.10
36.22 55.32 65.43
23.92 37.54 47.46
35.20 54.19 64.43
51.54 66.77 74.66
73.65 80.74 84.65
77.09 83.08 86.41

1.81 6.57 8.71
15.22 28.51 34.68
5.00 19.95 23.23
0.50 2.05 2.93
0.78 8.14 10.96
37.19 45.05 50.12
66.14 70.53 73.57
67.85 72.02 74.93

TST
ChatGLM3-6B
Qwen1.5-7B-Chat
Baichuan2-7B-Chat
Mistral-7B-Instruct (zh)
Qwen2.5-0.5B
ChatGLM3-6B (FT)
Qwen1.5-7B-Chat (FT)
Mistral-7B-Instruct (zh, FT)

97.16 97.26 97.43
99.72 99.76 99.78
98.34 98.47 98.57
99.81 99.84 99.86
97.91 98.09 98.25
100.00 100.00 100.00
100.00 100.00 100.00
100.00 100.00 100.00

69.50 75.55 79.11
84.18 88.07 90.20
97.66 97.93 98.11
72.26 79.90 83.67
66.96 74.82 79.01
86.23 89.71 91.54
86.93 90.83 92.24
87.65 90.83 92.55

65.40 67.55 69.32
83.56 85.15 86.41
0.65 0.71 0.77
73.04 74.70 76.02
64.86 66.17 67.26
85.98 87.53 88.83
86.58 88.07 89.32
87.15 88.65 89.87

Table 3: Results of T3, TKGT, and TST methods on CPL datasets using the triplet metric. Json Schema is an
API function provided by advanced models such as GPT-4o, which can force the output of LLMs to be structured.
Besides, adding the letters FT after the model indicates that it’s a fine-tuned model, and zh means its a Chinese
fine-tuned version.

16964

Model Easy
RMSE ER

Medium
RMSE ER

Hard
RMSE ER

Average
RMSE ER

GPT-4o (Json Schema)
All Zero
All One

0.006 0.47
0.891 100.00
0.240 15.17

1.032 52.29
0.258 19.75
0.633 81.99

1.489 88.78
0.728 68.96
0.450 44.87

1.185 56.52
0.665 55.48
0.541 53.78

T3

ChatGLM3-6B
Qwen1.5-7B-Chat
Baichuan2-7B-Chat
Mistral-7B-Instruct (zh)
Qwen2.5-0.5B
ChatGLM3-6B (FT)
Qwen1.5-7B-Chat (FT)
Mistral-7B-Instruct (zh, FT)
GPT-4

0.888 98.89
0.859 95.42
0.891 100.00
0.891 100.00
0.891 100.00
0.549 57.35
0.085 3.79
0.370 41.07
0.030 3.0

0.277 20.46
0.428 26.62
0.258 19.75
0.260 19.98
0.258 19.75
0.304 19.04
0.289 20.22
0.258 19.75
0.881 36.57

0.766 69.12
0.742 69.04
0.728 68.95
0.728 69.04
0.728 68.96
0.900 67.93
0.765 68.33
0.734 67.14
1.195 77.65

0.691 55.61
0.724 57.35
0.665 55.48
0.665 55.61
0.665 55.48
0.702 46.26
0.555 36.18
0.576 42.97
0.973 46.29

TKGT
ChatGLM3-6B
Qwen1.5-7B-Chat
Mistral-7B-Instruct (zh)
Baichuan2-7B-Chat
Qwen2.5-0.5B
ChatGLM3-6B (FT)
Qwen1.5-7B-Chat (FT)
Mistral-7B-Instruct (zh, FT)

1.561 91.94
0.021 1.58
0.086 5.69
1.058 100.00
1.098 87.20
0.256 16.59
0.240 15.17
0.240 15.17

0.412 27.65
2.283 59.40
1.186 59.32
0.361 24.49
0.901 50.00
0.968 51.42
0.285 22.04
0.255 19.67

2.026 79.78
2.370 91.07
2.875 94.08
1.188 72.59
2.542 89.10
2.379 91.39
0.941 64.30
0.939 58.37

1.581 61.36
2.260 60.51
2.032 62.50
0.976 58.83
1.847 73.08
1.704 60.44
0.664 37.57
0.658 34.25

TST
ChatGLM3-6B
Qwen1.5-7B-Chat
Mistral-7B-Instruct (zh)
Baichuan2-7B-Chat
Qwen2.5-0.5B
ChatGLM3-6B (FT)
Qwen1.5-7B-Chat (FT)
Mistral-7B-Instruct (zh, FT)

0.444 26.54
0.056 4.74
0.025 2.05
0.330 26.22
0.533 48.82
0.209 13.74
0.010 0.79
0.002 0.16

0.419 34.20
0.270 21.25
0.497 48.10
0.276 22.12
0.576 37.68
0.255 20.54
0.149 11.53
0.140 10.82

0.643 57.74
0.390 31.12
0.593 46.52
0.583 46.05
0.804 70.93
0.413 38.23
0.314 25.67
0.332 25.91

0.588 42.09
0.355 21.90
0.532 38.26
0.483 32.51
0.733 53.21
0.376 26.26
0.256 15.04
0.260 14.72

Table 4: Results of T3, TKGT, and TST methods on CPL datasets using the counting metric. Json Schema is an
API function provided by advanced models such as GPT-4o, which can force the output of LLMs to be structured.
Besides, adding the letters FT after the model indicates that it’s a fine-tuned model, and zh means its a Chinese
fine-tuned version.

16965

0 1 2 3 4 5
0

100

200

300

400

500

Do
cu

m
en

t N
um

be
rs 492

0 0 0 0 0

Court

0 1 2 3 4 5
0

100

200

300

400

500 479

12 10 0 0

Plaintiff

0 2 4 6 8
0

50

100

150

200

250
277

157

41

8 6 210

Defendant

0 2 4 6
0

50

100

150

200

250

300

Do
cu

m
en

t N
um

be
rs 301

85

3
25

76

1 1

Court Judges: Lending Evidence

0 1 2 3 4 5
0

50
100
150
200
250
300
350

361

57

17

55

2 0

Court Judges: Agreed Lending Amount

0 1 2 3 4 5
0

50

100

150

200

250
212

243

6

31

0 0

Court Judges: Agreed Repayment Date

0 1 2 3 4 5
0

50

100

150

200

250

Do
cu

m
en

t N
um

be
rs

213

259

17
3 0 0

Court Judges: Agreed Interest

0 1 2 3 4 5
0

100

200

300

400
422

69

1 0 0 0

Court Judges: Agreed Overdue Interest

0 1 2 3 4 5
0

100

200

300

400
433

58

1 0 0 0

Court Judges: Agreed Liquidated Damages

0 1 2 3 4 5
0

50

100

150

200

250

Do
cu

m
en

t N
um

be
rs 246

186

46

13
1 0

Plaintiff claims: Lending Evidence

0 1 2 3 4 5
0

50

100

150

200

250

300
322

112

2

41
14

1

Plaintiff claims: Agreed Lending Amount

0 1 2 3 4 5
0

50

100

150

200

250
262

207

21
2 0 0

Plaintiff claims: Agreed Repayment Date

0 1 2 3 4 5
Instance Numbers

0

50

100

150

200

250

300

Do
cu

m
en

t N
um

be
rs

179

295

14 3 1 0

Plaintiff claims: Agreed Interest

0 1 2 3 4 5
Instance Numbers

0

100

200

300

400

451

41
0 0 0 0

Plaintiff claims: Agreed Overdue Interest

0 1 2 3 4 5
Instance Numbers

0

100

200

300

400

450

42
0 0 0 0

Plaintiff claims: Agreed Liquidated Damages

CPL Dynamic Fields Instance Numbers Distribution

Figure 5: The instance numbers distribution of CPL (D) fields. Colors represent fields’ difficulty level: green means
easy, blue means medium, and red means hard.

16966

