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Abstract

Fine-Tuning of LLMs using RLHF / RLAIF
has been shown as a critical step to improve the
performance of LLMs in complex generation
tasks. These methods typically use response-
level human or model feedback for align-
ment. Recent works indicate that finer sen-
tence or span-level labels provide more accu-
rate and interpretable feedback for LLM opti-
mization. In this work, we propose FRACTAL,
a suite of models to disaggregate response-
level labels into sentence-level (pseudo-)labels
through Multiple Instance Learning (MIL) and
Learning from Label Proportions (LLP) for-
mulations, novel usage of prior information,
and maximum likelihood calibration. We
perform close to 2000 experiments across 6
datasets and 4 tasks that show that FRACTAL
can reach up to 93% of the performance of
the fully supervised baseline while requiring
only around 10% of the gold labels. Further-
more, in a downstream eval, employing step-
level pseudo scores in RLHF for a math reason-
ing task leads to 5% absolute improvement in
performance. Our work is the first to develop
response-level feedback to sentence-level scor-
ing techniques leveraging sentence-level prior
information, along with comprehensive evalu-
ations on multiple tasks as well as end-to-end
finetuning evaluations.

1 Introduction

Large language models (LLMs) are being increas-
ingly used for various generation tasks like gen-
erating text (Gero et al., 2022), seeking facts, an-
swering complex queries (Adiwardana et al., 2020;
Menick et al., 2022), and performing logical rea-
soning tasks (Kojima et al., 2022). The improve-
ments to LLMs rely heavily on their evaluation
using feedback from humans or automated model-
based scoring (Ouyang et al., 2022; Touvron et al.,
2023). However, such feedback has typically been

Task Retrieval | MultiSpanQA Dataset

Input Query Who were the last people to be hanged in england?

Retrieved
Context (Re-
sponse)

Nevertheless , there remained a working gallows at HMP
Wandsworth , London , until 1994 , which was tested every six
months until 1992 . This gallows is now housed in the Galleries
of Justice in Nottingham, England. In the United Kingdom : on 13
August 1964 , Peter Anthony Allen , at Walton Prison in Liverpool
, and Gwynne Owen Evans , at Strangeways Prison in Manchester
, were executed for the murder of John Alan West on 7 April that
year . Scotland : Henry John Burnett , 21 , on 15 August 1963 in
Craiginches Prison , Aberdeen , for the murder of seaman Thomas
Guyan.

Gold Response
Label

1 i.e. Retrieved Context is relevant to the Input

Sentence [0, 0, 1, 0]
Labels - FRAC-
TAL

i.e. third sentence contains the answer

Task Question Answering | QA-Feedback Dataset

Input Query What is the name of the pirate in spongebob?
Input Context SpongeBob SquarePants - Puff endures one of SpongeBob’s

crashes or is otherwise frightened, she puffs up into a ball. Spe-
cial episodes of the show are hosted by a live action pirate named
Patchy and his pet parrot Potty, ...

Response 1 The SpongeBob SquarePants is an American animated television
series based on the cartoon series SpongeBob SquarePants. A
live action pirate named Patchy and his pet parrot Potty, who host
special episodes of the show, are presented in a dual narrative with
the animated stories. Burger Beard is the name of the pirate in the
SpongeBob SquarePants movie.

Response 2 The SpongeBob Movie: Sponge Out of Water is a 2015 Ameri-
can live-action/animated absurdist comedy film based on the ani-
mated television series SpongeBob SquarePants. It follows a pi-
rate named Burger Beard, who steals the Krabby Patty secret for-
mula using a magical book that makes any text written upon it
come true. SpongeBob and his friends must travel to the surface
to confront Burger Beard and get the formula back.

Gold Prefer-
ence Label

1 i.e. Response 1 is better than Response 2

Sentence Response 1: [1, 1] ; Response 2: [1, 0, 0]
Labels - FRAC-
TAL

i.e. Sentences 2 and 3 of Response 2 are inaccurate.

Table 1: Our method, FRACTAL, dis-aggregates response-
level gold label into fine-grained sentence-level labels. These
examples are for the tasks of Retrieval and Question Answer-
ing from MultiSpanQA and QA-Feedback datasets respec-
tively.

taken at the response level, enabling efficient and
cost-effective assessments of overall output quality.

Recent evidence (Amplayo et al., 2022) suggests
that the sentence or step-level evaluation is more
reliable over response-level evaluation. Moreover,
Wu et al. (2023) have shown that collecting finer-
grained human feedback results in considerably im-
proved RLHF, as such feedback precisely localizes
the strengths and weaknesses within a generated
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response. It further provides greater interpretabil-
ity, allowing for more targeted LLM fine-tuning
by highlighting the specific portions of a response
that contribute to its overall quality. The work of
Lightman et al. (2023) came to a similar conclusion
for multi-step reasoning tasks, showing improved
performance of models fine-tuned using process-
supervised reward models (PRMs) trained on step-
level labels, as compared to outcome-supervised
reward models (ORMs) trained only on the correct-
ness of the entire solution, on the MATH dataset
(Hendrycks et al., 2021a). However, collecting
fine-grained annotations adds significant cost due
to the added quantity and precision of human labor
needed. Even in situations where it is feasible to
directly collect fine-grained feedback, doing so for
the Side-by-Side (SxS) feedback (Ouyang et al.,
2022) remains challenging.

In this paper, we argue that it is possible to con-
vert coarse response / paragraph level labels pro-
vided by humans into fine-grained sentence level
labels. We propose FRACTAL, a suite of modeling
based techniques to dis-aggregate response-level
labels into sentence-level pseudo-labels that accu-
rately reflect the underlying quality distribution
within a larger response. We show across 6 datasets
and 4 tasks that FRACTAL can reach upto 93% of
performance of a sentence-level model that uses
10X the number of labels as the FRACTAL model.
Table 1 shows two examples of how FRACTAL
converts a gold response label into precise sentence
level labels. We also apply FRACTAL to a the
fine-grained RLHF setting and show FRACTAL
is able to better glean information from outcome
labels for math reasoning and thereby provide a
5% boost to performance over vanilla response
RLHF. To the best of our knowledge, FRACTAL
is the first approach to comprehensively study the
task of fine-grained scoring from aggregate text
and demonstrate practical applicability on Fine-
Grained RLHF.

As in supervised training, the first component
of FRACTAL is a methodology to train a model
on the response-labels to predict the scores (label
probabilities) for sentences. For this we leverage
and build upon techniques from multiple instance
learning (MIL) and learning from label proportions
(LLP) (see Section 2 for previous work on MIL
and LLP). These have been used to train predictive
models on datasets partitioned into bags or sets of
instances. For the text-generation tasks, we model
each response as a bag and its instances are the con-

stituent sentences of the response. Each bag has an
aggregated label i.e., bag-label which is assumed to
be derived from the (unknown) instance-labels of
the bag via an aggregation function. The instance-
labels correspond to the sentence-labels and the
aggregated bag-label is the aggregated response-
label. In MIL, the aggregation is the MAX or MIN
of binary or ordinal instance-labels – applicable
to question-answering (relevance), summarization
and math reasoning tasks – while LLP, which mod-
els the bag-label as the AVG of the instance-labels,
is applicable to retrieval tasks. To estimate the
instance-labels from bag-labels, a standard tech-
nique in MIL and LLP is bag-loss which minimizes
a loss between the bag-labels and the aggregated
instance-predictions, summed over all bags. While
bag-loss is usually a strong baseline, the use of only
bag-labels is seen to be insufficient supervision. To
this extent, we propose use of prior distribution
on the instance-label modeled from application-
specific information.
We make the following contributions:
1. We propose a novel framework, FRACTAL, to

disaggregate response labels into constituent
sentence-labels. We formulate the fine-grained
prediction as an MIL and LLP task. This abstrac-
tion allows us to leverage baselines proposed for
MIL/ LLP . Through our experiments, we show
that this formulation alone is not sufficient to
demonstrate strong performance.

2. We introduce enhancements by adding priors
over the instances. We propose to add two types
of priors for every instance in a bag based on
document-sentence similarity scores and corre-
lations between sentences. The baseline MIL /
LLP methods are augmented with prior infor-
mation as new loss terms as show in Section 4.1.
To the best of our knowledge, use of such priors
to improve performance of MIL/LLP methods
has not been studied before.

3. We develop pseudo-labeling strategies to cali-
brate instance-level model predictions into la-
bels which are consistent with the response-level
labels, allowing us to train the model on the
derived pseudo-labels (refer Section 4.2). Our
ablation experiments demonstrate that both the
prior inclusion and pseudo-labeling steps signif-
icantly help improve performance.

4. In order to study the performance of FRAC-
TAL, we formulate a wide variety of tasks
shown in Section 5: retrieval, question answer-
ing, summarization, and math reasoning across
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6 datasets. We define the required formula-
tions for disaggregating response-level labels to
sentence-level labels applicable to these tasks.

5. Through thorough experiments in Section 6, we
show FRACTAL generalizes well across task ob-
jectives and aggregation functions. In intrinsic
evals, FRACTAL achieves up to 93% of the per-
formance of the fully supervised baseline while
requiring only around 10% of the number of la-
bels. In an extrinsic evals, FRACTAL also sub-
stantially improves over the performance of pref-
erence and response RLHF through fine grained
labeling.

2 Related Work

Multiple Instance Learning (MIL). Here the bag
label is modeled as MAX or MIN of the its (un-
known) instance-labels (typically labels are {0, 1}-
valued). Given a such a dataset of bags the goal is
to train a model either to predict the bag-labels
or in many cases the label of instances. Intro-
duced to model drug activity detection by Diet-
terich et al. (1997), MIL has been applied to do-
mains like drug discovery (Maron and Lozano-
Pérez, 1997), time series prediction (Maron, 1998),
retrieval (Lozano-Pérez and Yang, 2000), medi-
cal imaging (Wu et al., 2015a) and analysis of
videos (Babenko et al., 2009; Sikka et al., 2013).
On the theoretical side, Blum and Kalai (1998)
showed that MIL PAC learning can be achieved
using noise tolerant instance-level PAC learnability,
while Sabato and Tishby (2012) gave generaliza-
tion bounds for the classification error on bags.
Ramon and De Raedt (2000) proposed a bag-loss
method using log-sum exponential approximation
to MIN, which was followed by adaptations of
boosting and logistic regression (Zhang et al., 2005;
Ray and Craven, 2005), while specialized methods
such as diverse-density (DD) (Maron and Lozano-
Pérez, 1997) and and its EM-based variant, EM-
DD (Zhang and Goldman, 2001) have also been
developed. More recent works have proposed deep
learning methods for MIL based on convolutional
and attention mechanisms (Wu et al., 2015b; Ilse
et al., 2018).
Learning from Label Proportions (LLP). Here
the bag-label is the average of the instance-labels,
and the goal is to train a model to predict the la-
bels of instances. LLP arises in the context of
label privacy concerns (Rueping, 2010), costly su-
pervision (Chen et al., 2004) or lack of labeling

instrumentation (Dery et al., 2017). Early work de-
veloped Monte-Carlo (de Freitas and Kück, 2005;
Hernández-González et al., 2013), clustering (Chen
et al., 2009; Stolpe and Morik, 2011), and k-NN
and SVM (Musicant et al., 2007) based adaptations
of traditional supervised learning techniques. Sub-
sequently, specialized techniques were developed
by Quadrianto et al. (2009); Patrini et al. (2014)
who estimated model parameters from bag-labels,
and by Yu et al. (2013) who proposed a customized
SVM for LLP. More recent works have developed
methods based on the distribution and processing
of bags (Scott and Zhang, 2020; Saket et al., 2022;
Zhang et al., 2022; Chen et al., 2023; Busa-Fekete
et al., 2023) and methods for training deep net-
works on bags (Kotzias et al., 2015; Liu et al., 2019;
Dulac-Arnold et al., 2019; Nandy et al., 2022),
specifically Ardehaly and Culotta (2017) proposed
the bag-loss method which is commonly used as
a baseline. Practical applications of LLP include
image classification (Bortsova et al., 2018; Ørting
et al., 2016), IVF predictions (Hernández-González
et al., 2018), and privacy preserving modeling in
online advertising (O’Brien et al., 2022).

MIL and LLP for NLP. Applications such as sen-
timent analysis (Pappas and Popescu-Belis, 2014;
Angelidis and Lapata, 2018) and document mod-
eling (Pappas and Popescu-Belis, 2017) have pre-
viously admitted MIL techniques, while more re-
cently (Liu et al., 2022) modeled offensive lan-
guage detection as an MIL problem and proposed
a mutual attention based mechanism. On the
other hand, the applications of LLP are relatively
sparser: (Ardehaly and Culotta, 2016) applied it
to domain adaptation for text data, while recent
work (Chauhan et al., 2023) proposed a novel
method improving on the baseline model training
technique of (Ardehaly and Culotta, 2017) for text
classification.

For both MIL and LLP, previous works have pro-
posed pseudo-labeling based model training meth-
ods, in which the weak-supervision of bag-labels is
used along with model predictions to derive pseudo-
labels which can be used to train or fine-tune mod-
els. For e.g. pseudo-labels are computed via regu-
larization (Wang et al., 2023; Liu et al., 2021) or
expectation-maximization (Luo et al., 2020; Baru-
cic and Kybic, 2022) techniques.
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Figure 1: Overview of our proposed method, FRACTAL. Input is a set of responses each with a response label. A response is a
bag of sentences. The output is a model that can predict the score for each sentence in a response. The semantic meaning of a
score depends on how the response label was defined. FRACTAL consists of two key components a) Bag-level loss functions
and model training (Section 4.1), and b) Max-Likelihood Pseudolabeling (Section 4.2)

3 Preliminaries

As mentioned in Section 1, we consider text-
generation tasks where each response can be mod-
eled as a bag whose instances are the constituent
sentences of the response. The bag-label is the
response-label while the sentence-labels corre-
spond to the respective instance-labels. In the fol-
lowing, we formally define the notion of instances,
bags and their labels.

Let X be the underlying set of instances and Y
be the label-set which is {0, 1, . . . , C} for some
C ∈ Z+ where C = 1 for binary and C > 1 for
integer labels respectively. A dataset is a collection
of labeled instances.

A bag B is a subset of X and yB denotes its
label which is thought to depend on the labels of
the instances inB via an aggregation function AGG
which maps tuples with elements from Y to [0, C].
Specifically, if B = {x1, . . . ,xk} and yi is the
label of xi (i ∈ [k]), then yB = AGG (y1, . . . ,yk).
Typically, AGG is either MIN, MAX or AVG.

We consider prior information about the labels
on individual instances, for e.g. through unsuper-
vised modeling. For each x in the dataset, its point-
prior px ∈ [0, 1] is prior for yx/C where yx is the
underlying label of x and {0, . . . , C} is the label
set as defined above. The pair-prior for a pair (x, z)
of instances is given by pxz ∈ [0, 1] and measures
the correlation between x and z. See Appendix K
for a discussion on these priors. Section 5 and Ta-
ble 2 provide the specifics of the prior information
for various datasets and tasks in our experiments.

Some applications provide preference bag-labels
which encode comparisons between pairs of bags.
Specifically, for a pair of bags (B1, B2) the pref-
erence bag-label yB2>B1 is 0 if yB1 > yB2 , and 1

if yB1 < yB2 . There are no bag-labels, only pref-
erence bag-labels for some pairs of bags. In the
description of our techniques we will for conve-
nience use CE to denote the cross entropy loss.
Modeling Task. Given as input a collection B of
pairwise-disjoint (i.e., non-overlapping) bags along
with their bag-labels (or preference bag-labels),
possibly along with the priors {px} or {pxz}, the
goal is to output a model predicting a score for each
instance in X . For preference labels, the evaluation
is in terms of the accuracy of the preference labels
assigned by the model on a test set of bags.

4 Our Techniques

We present the components of the FRACTAL
method along with the BagLoss baseline approach
(see Figure 1). The two main components of FRAC-
TAL are (i) model training using bag-level loss
functions which incorporate the priors as defined in
Section 3, and a (ii) pseudo-labeling technique to
use the model predictions to provide instance-level
pseudo-labels using which the final model training
is trained.

4.1 Training with bag-loss and priors

We train a model M on the collection {B ∈
B} of training bags B with aggregate labels yB .
The prediction M(x) of the model on any in-
stance x is a probability distribution over the
label-set {0, . . . , C}, and we denote the proba-
bility of label ` by M(x)[`]. Also, by ỹ(x) we
denote the soft-label

∑
`∈{0,...,C} ` · M(x)[`], as-

signed by the model to x. Let probAGG be
an extension of AGG to sequences of model-
predictions. In particular, probAGG maps se-
quences (M(x1), . . . ,M(xk)) to a probability
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distribution over {0, . . . , C}, for k ∈ Z+. For
MIN, probAGG (M(x1), . . . ,M(xk)) =M(xi∗)
where i∗ := argmin (ỹ(x1), . . . , ỹ(xk))) is the in-
dex of the instance with the minimum soft-label.
We provide additonal details about probAGG for
the tasks used in our work in Appendix A.

The baseline BagLoss method optimizes the fol-
lowing loss, for a modelM:

Ltotbag(B,M)

:= |B|−1
∑

B∈B
CE (yB,M(B)) (1)

where M(B) = probAGG
(
(M(x))x∈B

)
is the

aggregate prediction of B, andM(B)[`] is proba-
bility of label `.
PriorsBagLoss. In our bag loss with priors
method, we have an additional loss which incorpo-
rates the priors. For point-priors {px} we have:

Ltotpntprior(X ,M)

:= |X |−1
∑

x∈X
CE (px, ỹ(x)/C) (2)

while for pair-priors {pxz} the loss is

Ltotprprior(X ,M)

:= |X |−2
∑

(x,z)∈X 2

Lprprior (pxz, ỹ(x), ỹ(z)) (3)

where Lprprior is a specialized loss.

Lprprior (pxz, ỹ(x), ỹ(z)) :=∣∣∣∣pxz −
ỹ(x)

C

ỹ(z)

C

∣∣∣∣

·
∣∣∣∣pxz −

(
1− ỹ(x)

C

)(
1− ỹ(z)

C

)∣∣∣∣ (4)

We assume that pxz represents the probability of
instances x and z having the same label. A low pxz
value indicates that these instances likely belong
to different classes. We design a loss function that
is minimized when the predicted classes for both
instances are consistent with the value of the prior.

The total loss in PriorsBagLoss is a convex
combination of bag and prior losses:

LtotPB = λLtotbag+λ1Ltotpntprior+λ2Ltotprprior (5)

for some λ, λ1, λ2 ∈ [0, 1] s.t. λ + λ1 + λ2 = 1.
The values λ, λ1 and λ2 are selected through a
hyperparameter search which is also described in
the Model Training Setup part of Section 6.

Input: Model M, bags B, batch size q, learning rate lr,
optimizer opt, weights λ, λ1, λ2, epochs N .
1. Order bags B in a random order π.
2. For epoch j = 1 to N :
(a) For each step i = 1 to |B|/q:

i. Sample a minibatch S of next q bags BS from π.
ii. Compute Ltotbag, Ltotpntprior and Ltotprprior restricted

only to the bags in S, and compute LtotPB.
iii. Using gradients from (1), (2) and (3) along with

lr and opt, update the weights of M.

Figure 2: Minibatch Model Training on Bags.

Using the above, Fig. 2 describes the minibatch
based model training on bags.
Preference based bag-loss with priors. The ap-
proach is similar to that in the previous subsec-
tion, where instead of Ltotbag we have a prefer-
ence based loss for the pairs of bags S for which
preference labels are available. Define ỹ(B) :=∑

`∈{0,...,C} ` · M(B)[`] be the real-valued soft-
label for a bag B. For a pair of bags (B1, B2) with
yB2>B1 be the preference-label, we incorporate the
Bradley-Terry model (Bradley and Terry, 1952) to
measure the inconsistency of the predictions with
the preference label. Specifically, we define the
loss:

Lpref(B1, B2, yB2>B1)

:= CE

(
yB2>B1 ,

ỹ(B2)

ỹ(B1) + ỹ(B2)

)
(6)

Lpref(B1, B2, yB2>B1) is averaged over all pairs
in S to obtain Ltotpref which we refer to as Pref-
BagLoss. The minibatch training now samples
pairs of bags and computes Ltotpref restricted to
the sampled pairs. In the priors based augmenta-
tion, PriorsPrefBagLoss, Ltotpntprior and Ltotprprior
losses remain the same, over all the instances in the
minibatch. In this case, the total loss is

LtotPPB

= λLtotpref + λ1Ltotpntprior + λ2Ltotprprior. (7)

4.2 PSLAB: Pseudo-labeling
Our pseudo-labeling method, PSLAB uses the
predictions of the model M trained as per the
techniques described above, to output the max-
likelihood instance-level labels for each bag, con-
sistent with the bag-label, i.e., an instance-level
pseudo-labeling independently for each bag, which
well-defined since the bags are disjoint. We de-
scribe PsLab for the binary case of C = 1 and only
for the MIN aggregation since MAX is equivalent
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to MIN by flipping the labels.
Case {0, 1}-labels and MIN aggregation. Given
bag B = {x1, . . . ,xk} and yB , we output a pseu-
dolabeling ΓB : {x1, . . . ,xk} → {0, 1} as fol-
lows: if yB is 1 then ΓB assigns 1 to all x ∈ B.

If not, we first set ΓB(x) = 1 for those x ∈ B
on which the model prediction M(x) is biased
towards 1. If this results in all ΓB assigning 1 to
all x ∈ B, then we let ΓB(z) = 0 for some z on
which the model predicts the smallest probability
for label 1. We provide a detailed explanation of
the PSLAB algorithm for C = 1 in Appendix I.

For C > 1 PSLAB is somewhat more involved
and the algorithmic details along with a proof of
correctness are included in Appendix J.

Model Training on Pseudo-labels. After comput-
ing the pseudo-labels on the training bags, we now
have a train-set with labeled instances. The model
retrained on this dataset is evaluated for compara-
tive performance.

5 Tasks and Datasets

We consider following six datasets covering four
tasks listed under Tables 2 and 3. More details on
data processing in Appendix B.
Long-form Question Answering. We use QA-
Feedback dataset, an SxS preference dataset col-
lected and released by (Wu et al., 2023). These
are human preferences on pairs of model generated
responses for input questions and relevant passages
from ASQA (Stelmakh et al., 2023). The data fur-
ther contains segment-level annotations, and we
make use of “irrelevance, repetition, or incoher-
ence” category for evaluation. The responses are
the bags and the preferences are the preference
bag-labels.We use AVG as the aggregation func-
tion and point-prior is cosine similarity between
knowledge passages and each sentence of the re-
sponse. Cosine-similarity represents the semantic
similarity or relevance between a sentence and the
context and is an estimate of the sentence label.
Specifically:

px := cosprior(x)

= 0.5 (1 + 〈x,U〉/(‖x‖2‖U‖2)) (8)

where x and U are (embeddings of) a sentence and
the relevant passage. Additionally, we incorporate
a pair-prior:

pxz := corrprior(x, z) = (1 + ρxz) /2 (9)

where ρxz is the Pearson’s correlation between sen-
tence embeddings x and z and represents the prob-
ability of two sentences have the same label.
Retrieval. We use two datasets for retrieval tasks:
MultiSpanQA and FiRA. MultiSpanQA (Li et al.,
2022) consists of question and retrieved context
pairs, with annotated discontinuous answer spans
for the train and validation splits (See Table 1 for
example). Both the instance and bag labels are
{0, 1}-valued.

The FiRA dataset (Hofstätter et al., 2020)
comprises word-level relevance annotations using
{0, . . . , 4}-valued labels. We derive the sentence-
level scores by taking the word-level average across
annotators and then the maximum across all words
in a sentence. Similar to the previous setup, we
treat the paragraph as a bag, its sentences as in-
stances, and employ MAX as the aggregation func-
tion. The instance and bag-level belongs to the set
{0, 1, 2, 3, 4}, with the goal of optimizing a cross
entropy loss.

For both datasets, we integrate a correlation
prior between sentence pairs and a cosine-similarity
prior (see (8), (9)) between the query and each sen-
tence of the context.
Summarization. We utilize two datasets: Wiki-
CatSum (Perez-Beltrachini et al., 2019) and Aqua-
MuSe (Kulkarni et al., 2020).

We adopt the binary entailment metric for this
task. The reference summaries already provided
in these two datasets serve as the entailed sum-
maries1 with each sentence considered positively
entailed. To generate non-entailed summaries, we
synthesize negatives similar to (Yin et al., 2021).
Examples of entailed and non-entailed summaries
are provided in Appendix H, along with the method
of generation.

As in previous tasks, we incorporate sentence-
document cosine similarity and sentence correla-
tion priors into our methods. Additionally, we ex-
periment with NLI entailment scores (Honovich
et al., 2022) as priors for this task.
Math Reasoning. We utilize PRM800K dataset
(Lightman et al., 2023) releasing step-level anno-
tations for model-generated solutions to MATH
problems (Hendrycks et al., 2021b). The task at
hand is to identify all the incorrect steps in the so-
lution. Similar to previous tasks, we experiment
with question-step cosine similarity prior and a cor-

1In this work, we do not filter any noise present in the
existing data splits.
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Dataset (Input for training) Bags Instances Task Prior

QA-Feedback (Question, Knowledge
Passage, Pair of Responses, Preference
Label)

Both responses are
treated as separate bags.

Sentences in a response + ques-
tion + Knowledge Passages

Learn sentence-level scores for relevance using only the
preference bag-label (indicates which response is better).
The aggregation function used is AVG

knowledge passage-
sentence cosine sim.,
corr. b/w sentences.

FirA (Paragraph, Query, Relevance
Score)

Paragraph sentence of the paragraph +
query

Learn {0, 1, 2, 3, 4}-valued relevance score for each sen-
tence wrt query. The aggregation function used is MAX

query-sentence cosine
similarity

MultiSpanQA (Context, Question, La-
bel (answer present in context)

Context Sentences of the context + Ques-
tions

Identify sentences of the context which contain the an-
swer to the question. We use MAX for this binary classi-
fication setup.

query-sentence cosine
sim., corr. b/w sen-
tences

AquaMuSe (Documents, Query, Sum-
mary, Entailment Label)

Summary Sentence of the summary + doc-
uments + query

Given a query, document and bag-level binary entailment
label, determine the non-entailed sentences in a summary.
MIN is the aggregate function used in this setup.

doc-sentence cosine
sim., corr. b/w sen-
tences

WikiCatSum (Documents, Summary,
Entailment Label)

Summary Sentence of a summary + docu-
ments

Given a document and bag-level binary entailment label,
determine the non-entailed sentences in a summary. MIN
is the aggregate function used in this setup.

doc-sentence cosine
sim., corr. b/w sen-
tences

PRM800K (MATH Problem, step-wise
solution, Label(correctness)

Solution to the MATH
problem

Step of the solution + question Using the binary aggregate label indicating the correct-
ness of the solution, identify all incorrect steps in the
solution.

question-step cosine
sim., corr. b/w steps

Table 2: Summary of the bags, labels, instances, annotations and priors for each dataset.

Task Dataset Objective Train | Test Instances Train Bags

Long-form QA QA-Feedback Preference 93.8k | 9k 14k
Retrieval FirA Classification 102k | 20.4k 18k
Retrieval MultiSpanQA Classification 47k | 5.7k 5k

Summarization AquaMuSe Classification 13.5k | 2.5k 3k
Summarization WikiCatSum Classification 209k | 10.7k 45k
Math Reasoning PRM800K Classification 663k | 18.5k 98k

Table 3: Summary of the setup used for each dataset

relation prior between steps of the solution.
A discussion on handling noisy priors and de-

signing task-specific priors is provided in Appendix
K.

6 Experiments

We evaluate FRACTAL along with baseline meth-
ods (listed below) on the tasks and datasets de-
scribed in Section 5.
Priors as Baselines. The following methods based
on the priors described in Section 5 are directly
used as baselines to score the sentences as shown
in Table 4:
Cosine Similarity: In this baseline, the semantic
similarity of individual sentences of the response
with the input context is used to estimate their rele-
vance score for the task. For this, we compute the
cosine similarity (see Eq. (8)) between the corre-
sponding embeddings.
NLI - Entailment Scorer: For summarization and
relevance tasks, we also compute entailment us-
ing the NLI scorer from TRUE paper (Honovich
et al., 2022). This is a T5x-11B model (Raffel et al.,
2023) finetuned on several NLI datasets.
Trainable Baselines. These baselines use the bag
or instance labels to train models.
BagLoss: This uses BagLoss, Ltotbag, on bag-
labels (or PrefBagLoss Ltotpref in case of pref-
erence bag-labels) described in Section 4.
Response-level: For training, this uses entire re-

sponse as a singleton bag i.e. |B| = 1 with x1 =
response. Inference is done on sentences.
Supervised: Trains directly on sentence-labels i.e.
Train Instances of Table 3 to provide an upper base-
line for comparison.
FRACTAL: As described in Section 4, this
involves PriorsBagLoss (or PriorsPrefBa-
gLoss) based model training using bag-labels
(or preference bag-labels) as well priors.
In the tables, PriorsBagLoss(λ1, λ2) and
PriorsPrefBagLoss(λ1, λ2) denote the instantiation
of these methods with weights λ1 and λ2 for the
losses corresponding to the point and pair priors
respectively (see (8), (9) and Section 4.1). For
the WikiCatSum dataset, we incorporate NLI
entailment scores as a prior, assigning a weight of
λ3 for the corresponding loss term. The weight for
bag-loss (or preference bag-loss) is adjusted so
that the sum of all the loss weights is 1. PSLAB

denotes the performance of the model trained
after pseudo-labeling the train-set using the best
performing prior augmented bag loss. Note that
when we only have preference bag-labels i.e., in
the QA Preference Feedback dataset PSLAB is not
applicable, and FRACTAL provides the model
trained using PriorsPrefBagLoss.
Model Training Setup. We use the same model ar-
chitecture across all tasks: a Sentence-T5 Large en-
coder to generate embeddings for text components,
followed by a 2-hidden layer MLP with 73728 pa-
rameters for predicting sentence-level scores. To
handle lengthy documents exceeding 2000 tokens
in MultiSpanQA, WikiCatSum, and AquaMuSe
datasets, we partition documents into 1000-token
paragraphs which are encoded separately to im-
prove embedding quality. Subsequently, attention
weights representing importance are learnt for each
document split, and the document embedding is ob-
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Method AUC-ROC AUC-PR Accuracy

MultiSpanQA (47k | 5.7k)
Supervised 0.734 ± 0.013 0.358 ± 0.009 0.872 ± 0.042
Cosine Similarity 0.455 0.135 0.851
NLI 0.631 0.366 0.859
Response-level Model 0.582 ± 0.113 0.221 ± 0.089 0.851 ± 0.007
BagLoss 0.662 ± 0.069 0.307 ± 0.075 0.849 ± 0.091
FRACTAL* 0.687 ± 0.062 0.329 ± 0.053 0.843 ± 0.049
FRACTAL/Supervised% 93.59% 91.89% 96.67%

QA Preference Feedback (93.8k | 9k)
Supervised 0.652 ± 0.008 0.611 ± 0.007 0.691 ± 0.015
Cosine Similarity 0.535 0.526 0.483
Response-level Model 0.491 ± 0.008 0.4643 ± 0.007 0.453 ± 0.015
PrefBagLoss 0.511 ± 0.004 0.53 ± 0.002 0.524 ± 0.007
FRACTAL** 0.537 ± 0.003 0.531 ± 0.003 0.519 ± 0.006
FRACTAL/Supervised% 82.36% 86.91% 75.11%

WikiCatSum (209k | 10.7k)
Supervised 0.831 ± 0.051 0.889 ± 0.062 0.714 ± 0.048
Cosine Similarity 0.408 0.829 0.362
NLI 0.639 0.817 0.648
BagLoss 0.478 ± 0.065 0.829 ± 0.038 0.569 ± 0.036
FRACTAL* 0.643 ± 0.031 0.875 ± 0.035 0.665 ± 0.062
FRACTAL/Supervised% 77.37% 98.42% 93.14%

AquaMuSe (13.5k | 2.5k)
Supervised 0.878 ± 0.007 0.925 ± 0.002 0.867 ± 0.008
Cosine Similarity 0.632 0.763 0.649
NLI 0.793 0.889 0.824
Response-level Model 0.695 ± 0.009 0.775 ± 0.007 0.673 ± 0.01
BagLoss 0.747 ± 0.007 0.824 ± 0.005 0.779 ± 0.01
FRACTAL* 0.815 ± 0.005 0.899 ± 0.006 0.833 ± 0.01
FRACTAL/Supervised% 92.71% 97.19% 96.08%

PRM800K (663k | 18.5k)
Supervised 0.652 ± 0.015 0.935 ± 0.013 0.727 ± 0.022
Cosine Similarity 0.51 0.876 0.516
Response-level Model 0.537 ± 0.057 0.879 ± 0.045 0.535 ± 0.076
BagLoss 0.562 ± 0.024 0.883 ± 0.029 0.671 ± 0.033
FRACTAL* 0.593 ± 0.014 0.901 ± 0.006 0.618 ± 0.016
FRACTAL/Supervised% 90.05% 96.35% 85.01%

Table 4: Evaluations on Test-set (instance-level). Prefix *
indicates PSLAB method and ** indicates PriorsPrefBagLoss.
Last row for each dataset has % of supervised achieved by
FRACTAL. Note: PSLAB is not applicable QA Preference
Feedback and FRACTAL is the model trained using Prior-
sPrefBagLoss.

Method MAE MSE

Supervised 0.283 ± 0.072 0.141 ± 0.088
Response-level Model 0.319 ± 0.047 0.186 ± 0.098
BagLoss 0.304 ± 0.007 0.163 ± 0.002
PriorsBagLoss(0.2, 0.2) 0.294 ± 0.003 0.155 ± 0.001
FRACTAL 0.293 ± 0.001 0.152 ± 0.002
FRACTAL/Supervised increase% 3.5% 7.8%

Table 5: Test-test (instance-level) evaluation on FiRA.

tained through a weighted sum of individual split
embeddings. We report mean and standard devia-
tion observed over 10 randomly seeded trials. We
conduct grid search hyperparameter tuning to iden-
tify optimal parameter configurations, including
learning rates, weights of prior terms integrated
into the loss function, and batch sizes. The range
of parameters we searched over and the list of opti-
mal hyperparameters for each dataset is provided
in Appendix F.

6.1 Experimental Results

Table 4 and 5 provide the detailed evaluations of
the baselines and FRACTAL i.e PSLAB with best
performing PriorsBagLoss. For QA Preference

Method QA-Feedback PRM800K
ROUGE Adv Acc

SFT + Pref. or Response RLHF 42.847 62.731 18.93
SFT + FG RLHF (FRACTAL) 43.221 37.269 24.17

Table 6: FRACTAL RLHF on QA-Feedback and PRM800K.

Method AUC-ROC AUC-PR Accuracy

MultiSpanQA
PriorsBagLoss(0.2, 0) 0.668 ± 0.054 0.313 ± 0.04 0.836 ± 0.052
PriorsBagLoss(0, 0.2) 0.629 ± 0.055 0.279 ± 0.028 0.850 ± 0.033

QA Preference Feedback
PriosrPrefBagLoss(0.2, 0) 0.517 ± 0.004 0.495 ± 0.003 0.512 ± 0.006
PriorsPrefBagLoss(0, 0.4) 0.528 ± 0.003 0.521 ± 0.002 0.533 ± 0.004
PriorsPrefBagLoss(0.2, 0.5) 0.537 ± 0.003 0.531 ± 0.003 0.519 ± 0.006

WikiCatSum
PriorsBagLoss(0.2, 0, 0) 0.636 ± 0.019 0.877 ± 0.003 0.639 ± 0.01
PriorsBagLoss(0, 0.3, 0) 0.518 ± 0.005 0.719 ± 0.009 0.391 ± 0.006
PriorsBagLoss(0.2, 0.1, 0) 0.639 ± 0.021 0.885 ± 0.009 0.653 ± 0.013
PriorsBagLoss(0, 0, 0.4) 0.643 ± 0.024 0.881 ± 0.012 0.652 ± 0.017

PRM800K
PriorsBagLoss(0.6, 0) 0.573 ± 0.014 0.889 ± 0.008 0.624 ± 0.017
PriorsBagLoss(0, 0.1) 0.577 ± 0.023 0.925 ± 0.017 0.603 ± 0.038
PriorsBagLoss(0.5, 0.1) 0.588 ± 0.017 0.891 ± 0.006 0.622 ± 0.015

Table 7: Prior Ablation: Across all tasks, we see that using
priors improves performance over all baselines given in Table
4 and that Point,Pair priors have additive benefits.

Feedback, since PSLAB is not applicable, FRAC-
TAL provides the model trained using PriorsPrefBa-
gLoss. Table 6 provides the results for fine-grained
RLHF on the QA-Feedback dataset using the frame-
work provided by Wu et al. (2023) by replacing the
human annotations (supervised) with relevance la-
bel predictions from our FRACTAL model trained
only on preference labels. We evaluated the perfor-
mance of the generated summaries by calculating
the ROUGE score between them and the reference
summaries across the entire test set. The Adv col-
umn provides the % of questions on which the
generated response is rated comparatively more rel-
evant by the Claude 3 Opus model (Cla). We repeat
the FRACTAL-RLHF experiment on PRM800K
(Table 6 column Acc) and evaluate using (Cla) the
final answer accuracy on the test set for both Re-
sponse and FRACTAL RLHF, noting a 5% abso-
lute improvement. In Appendix M, we compare
FRACTAL-RLHF with Implicit PRM (Yuan et al.,
2024), a more recent and highly performant method
for training PRMs using only response labels.
Ablations. In Table 7 we provide an ablation study
on the effectiveness of priors and show how much
addition of each prior contributes to the perfor-
mance of BagLoss shown in Table 4. We also adapt
our loss functions to ingest instance-level data by
adding the instance-level loss term. In Appendix
L, we demonstrate improvements by adding even
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20% instance level labels.
The code for the experiments included in
this paper is available at https://github.com/
google-deepmind/fractal_acl25.

6.2 Discussion
FRACTAL is highly label-efficient while per-
forming close to full supervision. As we can
see from Table 3, the number of training bags is
only a small fraction of (10 to 25 %) of the train-
ing instances. Thus, FRACTAL consumes only
10 to 25% of the labels required to train a fully
supervised model. Nevertheless, the classifica-
tion performance of the FRACTAL method (Table
4) shows that it achieves > 90% of the perfor-
mance of the fully supervised model for most of
the datasets/metrics except for QA Preference Feed-
back where the it recovers≈ 80% of the supervised
baseline.
FRACTAL renders more precise sentence-level
scores. From Table 4, we observe a consis-
tent improvement in the sentence scoring over
the BagLoss as well as the Response-level base-
line across all these datasets in terms of AUC-
ROC, bridging the performance gap between them
and the best approach supervised (instance-level
trained) model. The use of priors along with
pseudo-labeling based model training allows for
an improved estimation of task specific score for
sentences. It is interesting to note that BagLoss out-
performs the Response-level baseline, suggesting
that introduction of aggregate loss based methods
to estimate sentence-level scores is itself useful.
Response-level model trained with large response
doesn’t generalize well to individual sentences.
Leveraging Prior improves Feedback Disaggre-
gation. Among the key ideas of FRACTAL is to
augment BagLoss with cosine-similarity and corre-
lation priors at the sentence-level (see (8) and (9)).
As observed from our ablations in Table 7 along
with the results in Table 4, as well as Table 5 for
FiRA, introducing the prior loss terms, provides
substantially improved performance over either us-
ing just the BagLoss, or the cosine-similarity/NLI
baselines. In effect, our proposed combination per-
forms better than either of its constituents. We hy-
pothesize that the priors provide sentence-level in-
sight which complements the aggregate label based
optimization of BagLoss.
Calibrated Pseudo-Labels are more helpful.
From Tables 4, 5, 7 we can see that for all tasks
applying PSLAB produces outperforms the mod-

els trained using PriorsBagLoss. This indicates
the effectiveness of calibrating the disaggregated
scores such that their aggregate matches the re-
sponse scores for training the final model.
Downstream Tasks benefit from sentence-level
scoring. Wu et al. (2023) showed that using fine
grained human labels per segment level can help
improve performance. In their setup, we replace
the fine grained human labels of relevance with the
FRACTAL predictions (Refer Long-Form Ques-
tion Answering task in Section 5). We observe in
Table 6 that FRACTAL (Row 2) helps improve per-
formance over using only preference labels (Row
1) by around 0.873% in ROUGE score. Running
the same fine-tuning experiment on PRM800k re-
sulted in a 5% absolute increase in the accuracy of
the generated solutions over Response RLHF.

7 Conclusions

We propose a novel method FRACTAL, which aug-
ments bag-loss using instance level priors to train
predictor models, along with a pseudo-labeling
technique for improved model training. Extensive
evaluations of FRACTAL along with vanilla bag-
loss and response-level model training baselines, as
well as off-the-shelf scorers demonstrate substan-
tial performance gains from FRACTAL models on
six datasets spanning four tasks: retrieval, question
answering, summarization, and math reasoning.

8 Limitations

Our method for label calibration and pseudo-
labeling works well in classification tasks, leading
to better performance. However, applying this tech-
nique becomes difficult when dealing with pref-
erence feedback. Also, if the bag size becomes
very large, there is a risk of the bag-loss functions
becoming intractable. FRACTAL treats each step
or sentence independently. This results in a loss
of valuable sequential context, which can impact
the quality of the reward model. As a result, when
performing fine-tuning (FRACTAL-RLHF) using
predicted pseudo-labels, our method may underper-
form compared to recent approaches like Implicit
PRM (see Appendix M).

9 Ethical Considerations

We propose techniques to transform via model
training methods, a response-level score into
sentence-level scores. While such response-level
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scores are commonly obtained by human annota-
tors, we have not conducted any human annotations.
Our evaluations are on publicly available datasets,
and our method produces artificial labels for down-
stream tasks and does not modify in anyway the
original response scores or attempt to associate
them to any individual(s).
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A Choice of probAGG

The extension for MIN is:
probAGG (M(x1), . . . ,M(xk)) = M(xi∗)
where i∗ := argmin (ỹ(x1), . . . , ỹ(xk))) is
the index of the instance with the minimum
soft-label as defined in Section 4.1. We use
the in-built TensorFlow (TF) tf_math_argmin
function to compute argmin. For MAX we use the
tf_math_argmax function. We investigate other
popular differentiable approximations of the MIN
function and present experimental results for the
binary classification setting in Appendix D. For
AVG, we simply take the average of the model pre-
dictions i.e., probAGG (M(x1), . . . ,M(xk)) =
(1/k)

∑k
i=1M(xi).

B Details on Tasks and Datasets

Additional details for Retrieval and Summarization
tasks described in Section 5

Retrieval. We use two datasets for retrieval tasks:
MultiSpanQA and FiRA. MultiSpanQA (Li et al.,
2022) consists of question and retrieved context
pairs, with annotated discontinuous answer spans

for the train and validation splits (See Table 1 for
example). We randomly select 25% of the train-
split as the test-split. Context is treated as a bag,
with sentences as instances labeled 1 if they over-
lap with annotated spans, and 0 otherwise. The
MAX aggregation is used to indicate the presence
an answer in the context. Given all MultiSpanQA
samples contain answers, we create negative bags
for half of the samples by extracting context chunks
without answers. Thus, both the instance and bag
labels are {0, 1}-valued.

The FiRA dataset (Hofstätter et al., 2020)
comprises word-level relevance annotations using
{0, . . . , 4}-valued labels. We derive the sentence-
level scores by taking the word-level average across
annotators and then the maximum across all words
in a sentence. Similar to the previous setup, we
treat the paragraph as a bag, its sentences as in-
stances, and employ MAX as the aggregation func-
tion. The instance and bag-level belongs to the set
{0, 1, 2, 3, 4}, with the goal of optimizing a cross
entropy loss.

For both datasets, we integrate a correlation
prior between sentence pairs and a cosine-similarity
prior (see (8), (9)) between the query and each sen-
tence of the context.

Summarization. We utilize two datasets: Wiki-
CatSum (Perez-Beltrachini et al., 2019) and Aqua-
MuSe (Kulkarni et al., 2020).

We adopt the binary entailment metric for this
task. The reference summaries already provided in
these two datasets serve as the entailed summaries2

with each sentence considered positively entailed.
To generate non-entailed summaries, we synthesize
negatives similar to (Yin et al., 2021). Firstly, we
perturb the reference summary through sentence
replacement. This involves randomly selecting k
sentences, where k is less than the total sentences
in the summary, and iteratively feeding their left
context to an PALM-2 (Anil et al., 2023) to pre-
dict the next sentence. The predicted sentence is
then used to replace the selected one. Additionally,
we explore the standard word replacement tech-
nique, which randomly masks k words whose POS
tags are among proper nouns, numbers, and verbs,
to introduce factual errors in the summaries. The
masked words are then predicted using BERT (De-
vlin et al., 2018). The perturbed sentences within
the summary are considered non-entailed. Thus,

2In this work, we do not filter any noise present in the
existing data splits.
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the sentence as well as bag labels are {0, 1}-valued
with 1 indicating entailed and 0 non-entailed, with
MIN as the aggregation function. Examples of en-
tailed and non-entailed summaries are provided in
Appendix H. As in previous tasks, we incorporate
sentence-document cosine similarity and sentence
correlation priors into our methods. Additionally,
we experiment with NLI entailment scores (Hon-
ovich et al., 2022) as priors for this task.

C Task Specific Discussion of
Experimental Results

Following is the detailed per-task analysis:

Long-form Question Answering. As presented
in Table 4, the model trained using our PriorsBa-
gLoss method on preference labels with the cosine-
similarity prior has the best AUC-ROC, AUC-PR
and accuracy scores in the experiments on the QA-
feedback dataset. It outperforms both BagLoss as
well as the cosine-similarity based baselines, the
latter one by a significant margin. However, we ob-
serve that the performance of the correlation prior
based variant is worse than that of the BagLoss
baseline which itself is worse than the Response-
level trained baseline.

Retrieval. In the MultiSpan-QA dataset experi-
ments (Table 4) we observe that the model trained
by applying PsLab on the predictions of the model
trained on PriorsBagLoss with a combination of the
cosine-similarity and correlation priors achieves
the best AUC-ROC and AUC-PR scores (by a sig-
nificant gap) among the bag level baselines, while
the variant with only the cosine-similarity prior per-
forms the second bet on these metrics. However,
the Response-level trained model and BagLoss
achieve marginally higher accuracy scores. All
these methods also handily outperform the cosine-
similarity baseline. From the FiRA dataset results
(Table 5) we observe that the our prior augmented
BagLoss method, specifically the using both the
priors, performs the best on mae as well as mse
metrics.

Summarization. The experimental results on the
WikiCatSum dataset, presented in Table 4, show
that our PriorsBagLoss method with different com-
binations of the cosine-similarity and the correla-
tion priors, or using NLI as a prior, as well as the
PsLab method on these models yield the best perfor-
mance (by a significant margin) in terms of AUC-
ROC, AUC-PR and accuracy metrics. The compar-
ative baselines are the BagLoss, NLI and cosine-

Model AND Approx AUC-ROC AUC-PR

Instance Baseline - 0.837 0.894

BagLoss
Mult 0.449 0.785
GM 0.463 0.824
tf.reduce_min 0.478 0.829

PriorBagLoss(0.2, 0.1)
Mult 0.599 0.858
GM 0.631 0.862
tf.reduce_min 0.643 0.877

Table 8: Results for differentiable AND approximations on
WikiCatSum dataset

similarity. A similar trend is observed on the Aqua-
Muse dataset (Table 4) on which the our methods
significantly outperform the bag-level baselines, in
particular the PsLab applied to the PriorsBagLoss
method yields the best performing model.

Math Reasoning. On the PRM800k dataset, we
observe from the experimental evaluations (Table
4) that the BagLoss and PriorsBagLoss methods
are best performing among the bag-level baselines
and also outperform the cosine-similarity base-
lines. While PriorsBagLoss using a combination
of cosine-similarity and correlation priors achieves
better AUC-ROC scores, BagLoss has significantly
better accuracy while the AUC-PR scores are simi-
lar.

D Results for Differentiable Minimum
Approximations

In the binary-label case, the standard baseline is
Mult which is just the product of the soft-labels.
More sophisticated approximations that we include
in our study are LSE (Ramon and De Raedt, 2000),
ISR, NOR and GM (Zhang et al., 2005) (see Sec-
tion 2.4.1 of Babenko (2008) for details). For the
binary case, we can employ the in built TensorFlow
(TF) approximation tf_reduce_min over the soft-
label (which is used for the loss functions) in our
experiments, noting that MAX can be derived from
MIN applied to flipped variables in the binary case.

Table 8 has an ablation of Mult, GM and
tf_reduce_min for the BagLoss and PriorBagLoss
methods on the WikiCatSum dataset, demonstrat-
ing that tf_reduce_min outperforms the others in
AUC-ROC and AUC-PR metrics.

E Aggregate and instance-level
evaluations

We also include evaluations of the various methods
on a test set of bags w.r.t. bag-level metrics using
the corresponding AGG approximations. Tables 9,
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10, 11, 12, 13 and 10 contain the aggregate as well
as instance evaluations.

Table 15 compares the performance achieved on
the WikiCatSum dataset by varying the percentage
of 1-bags in the training set.

F Hyperparameter Tuning

The key hyperparameters in our approach include
the weights of the bag loss and prior loss terms,
as well as the learning rate. We conducted a grid
search over various values for these parameters to
identify the optimal combination for each dataset.
The learning rates considered were {1e− 2, 1e−
3, 1e− 4, 1e− 5, 1e− 6}, and the weights for each
term were selected from {0, 0.1, 0.2, · · · 1}. As
noted, we only consider convex combinations of
the different loss terms, so combinations where the
sum of the coefficients exceeds 1 were excluded.
Table 16 contains the best weights for our prior
augmented BagLoss method on different datasets,
along with the best learning rates and batch size in
the bag-level training.

G Details on Test Splits

We use the original test split for all datasets except
WikiCatSum, whenever applicable.
PRM800K: We use both Phase 1 and 2 of the
PRM800K dataset and maintain the same test splits
as the original dataset. We split the train set into
75% for training and 10% for validation.
MultiSpanQA: We randomly select 25% of the
train split to form the test split. This is because the
original dataset’s test split lacks annotated answer
spans.
FiRA: We partitioned the samples into 75% for
training, 10% for validation, and 15% for testing.
WikiCatSum: We subsample 750 samples from
test splits of the Animal and Film domains.
AquaMuSe: The original test split of the abstrac-
tive version of AquaMuSe has been utilized for
testing purposes.
QA Feedback: Preference annotations were avail-
able for both the training and development sets.
We reserved the dev set for validation purposes and
divided the original training dataset into an 80:20
ratio for training and testing. We only consider
wins and losses and have removed any ties before
splitting the dataset.

H Generation of Perturbed Summaries
from the WikiCatSum and Aquamuse
Datasets

We utilize two datasets: WikiCatSum and Aqua-
MuSe for the entailment (or summarization)
task. The WikiCatSum dataset (Perez-Beltrachini
et al., 2019) is specifically designed for multi-
document summarization tasks, focusing on gen-
erating Wikipedia-style lead sections for entities
within three domains: Companies, Films, and Ani-
mals out of which we focus on the Films and Ani-
mals domains. On the other hand, the AquaMuSe
dataset (Kulkarni et al., 2020) is tailored for multi-
document, question-focused summarization.

We adopt the binary entailment metric for this
task. The reference summaries already provided
in these two datasets serve as the entailed sum-
maries3. Each sentence in these summaries is
considered positively entailed. To generate non-
entailed summaries, we synthesize negatives by
employing various manipulations, similar to (Yin
et al., 2021). Firstly, we perturb the reference sum-
mary through sentence replacement. This involves
randomly selecting k sentences, where k is less
than the total sentences in the summary, and it-
eratively feeding their left context to an PaLM 2
Bison Chat (Google et al., 2023) to predict the next
sentence. The predicted sentence is then used to re-
place the selected one. Additionally, we explore the
standard word replacement technique, which ran-
domly masks k words whose POS tags are among
proper nouns, numbers, and verbs, to introduce fac-
tual errors in the summaries. The masked words
are then predicted using BERT. The number of re-
placed sentences and words is randomly selected
for each sample. The perturbed sentences within
the summary are considered non-entailed, while
the remaining unchanged sentences are deemed en-
tailed. Thus, the sentence as well as bag labels are
{0, 1}-valued with 1 indicating entailed and 0 non-
entailed, with MIN as the aggregation function.

Tables 17 and 18 contain the entailed and non-
entailed (perturbed) summaries for the Aquamuse
and WikiCatSum datasets respectively.

I PsLab for Binary Classification

The main idea behind PsLab is as follows: given
a bag-level label for a collection of sentences

3In this work, we do not filter any noise present in the
existing data splits.
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Evaluation Model AUC-ROC AUC-PR Accuracy Precision Recall

Aggregate

Cosine Similarity 0.488 0.287 0.698 0 0
NLI 0.6855 0.522 0.7453 0.7883 0.319
Response-level Model 0.681 ± 0.012 0.525 ± 0.081 0.726 ± 0.033 0.752 ± 0.011 0.428 ± 0.063
Sentence-level Model 0.653 ± 0.076 0.462 ± 0.050 0.723 ± 0.015 0.599 ± 0.093 0.435 ± 0.187
BagLoss 0.678 ± 0.082 0.525 ± 0.072 0.718 ± 0.057 0.717 ± 0.014 0.391 ± 0.033
0.8 BagLoss + 0.2 P1 0.683 ± 0.053 0.527 ± 0.02 0.722 ± 0.035 0.748 ± 0.009 0.461 ± 0.01
0.7 BagLoss + 0.2 P2 + 0.1 P1 0.665 ± 0.061 0.491 ± 0.04 0.727 ± 0.029 0.693 ± 0.018 0.316 ± 0.037

Instance

Cosine Similarity 0.455 0.135 0.851 0 0
NLI 0.631 0.366 0.859 0.872 0.178
Response-level Model 0.583 ± 0.187 0.217 ± 0.094 0.852 ± 0.003 0.529 ± 0.074 0.086 ± 0.04
Sentence-level Model 0.729 ± 0.016 0.354 ± 0.008 0.861 ± 0.046 0.717 ± 0.011 0.438 ± 0.072
BagLoss 0.661 ± 0.092 0.309 ± 0.127 0.852 ± 0.133 0.711 ± 0.074 0.24 ± 0.188
0.8 BagLoss + 0.2 P1 0.669 ± 0.063 0.311 ± 0.059 0.838 ± 0.071 0.65 ± 0.089 0.189 ± 0.112
0.7 BagLoss + 0.2 P2 + 0.1 P1 0.625 ± 0.07 0.271 ± 0.039 0.851 ± 0.021 0.639 ± 0.189 0.135 ± 0.098
FGLAB 0.693 ± 0.115 0.326 ± 0.071 0.842 ± 0.052 0.676 ± 0.043 0.228 ± 0.091

Table 9: Comparison of aggregate and instance-level performance on MultiSpanQA Dataset

Evaluation Method AUC-ROC AUC-PR Accuracy Precision Recall

Preference Cosine Similarity 0.4978 0.3952 0.477 0.379 0.4985
Response-level Model 0.546 0.4651 0.553 0.437 0.539
BagLoss 0.543 0.4644 0.5463 0.442 0.5324
PriorBagLoss(0.2,0) 0.568 0.4658 0.574 0.439 0.5467

Instance Sentence-level Model 0.647 0.611 0.686 0.722 0.418
Cosine Similarity 0.535 0.526 0.483 0.893 0.134
Response-level Model 0.491 0.4643 0.453 0.882 0.278
BagLoss 0.509 0.5269 0.5167 0.814 0.36
PriorBagLoss(0.2, 0) 0.516 0.4936 0.508 0.647 0.715

Table 10: Comparison of Preference and instance-level evaluation on QA Preference Feedback Dataset

and the model’s probabilistic predictions for in-
dividual sentence-level labels, the goal is to find
the maximum-likelihood configuration of sentence-
level labels that is consistent with the given bag
label. The likelihood is defined with respect to the
model’s predicted probabilities.

Below, we explain the algorithm using an exam-
ple focused on the MIN aggregation function ap-
plied over binary {0,1}-sentence labels. Consider
a task where the objective is to identify harmful
sentences, labeled as 0, within a document. The
document aggregate label is given which indicates
whether it is harmful or not, i.e., whether it contains
at least one harmful sentence.

• Case 1: Bag-label is 1
In this case, the only valid configuration is
the one where all sentences are labeled as 1
(i.e., none are harmful). This is because the
MIN function over the sentence-level labels
must return 1, which can only happen if every
sentence is labeled 1. The presence of even
a single harmful (label 0) sentence would re-
duce the MIN to 0, contradicting the true bag

label.

• Case 2: Bag-label is 0
Here, the MIN aggregation requires that at
least one sentence must be labeled as 0. The
unconstrained maximum-likelihood configu-
ration would assign label 1 to all sentences for
which the model’s predicted probabilities are
biased towards 1. If this configuration already
includes at least one sentence labeled 0, then
it is valid and can be used as is.

However, if all sentence labels are 1 in this un-
constrained configuration (thus violating the
bag-label constraint), we identify the sentence
whose predicted probability is least biased to-
wards 1 (i.e., closest to 0), and flip its label to
0.

We show in Appendix J that this results in the max-
likelihood valid configuration of sentence-labels.

J PsLab for Multiclass

Suppose that the label set is {0, . . . , C} where
C ∈ Z+ and C > 1. With the setup as in Section
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Evaluation Model MAE MSE

Aggregate
Instance-level Model 0.375 ± 0.09 0.247 ± 0.113
Response-level Model 0.320 ± 0.042 0.197 ± 0.017
BagLoss 0.326 ± 0.021 0.209 ± 0.007

Instance
Instance-level Model 0.283 ± 0.072 0.141 ± 0.088
Response-level Model 0.319 ± 0.047 0.186 ± 0.098
BagLoss 0.304 ± 0.007 0.163 ± 0.002
PriorBagLoss(0.3, 0) 0.298 ± 0.002 0.157 ± 0.004
PriorBagLoss(0.2, 0.2) 0.294 ± 0.003 0.155 ± 0.001

Table 11: Comparison of Aggregate and Instance-level evaluations on FirA Dataset

Method AUC-ROC AUC-PR Accuracy Precision Recall

Instance Baseline 0.837 ± 0.062 0.894 ± 0.085 0.718 ± 0.085 0.926 ± 0.001 0.733 ± 0.003
NLI 0.639 0.817 0.648 0.834 0.559
Cosine Similarity 0.408 0.829 0.362 0.719 0.276
BagLoss 0.477 ± 0.093 0.831 ± 0.052 0.562 ± 0.047 0.769 ± 0.018 0.319 ± 0.048
PriorBagLoss(0.2, 0.1) 0.641 ± 0.028 0.879 ± 0.013 0.651 ± 0.017 0.897 ± 0.009 0.658 ± 0.082
PSLAB 0.645 ± 0.038 0.879 ± 0.057 0.663 ± 0.091 0.884 ± 0.076 0.661 ± 0.092
0.6*BagLoss + 0.4*NLI 0.642 0.885 0.653 0.914 0.619

Table 12: Instance-level Evaluation on WikiCatSum

4.2, here we describe PsLab for MAX aggregation
which is used in the FirA dataset. Note that MIN
aggregation is equivalent to MAX with the ordering
on the labels reversed.
Case {0, . . . , C}-labels and MAX aggregation.
The algorithm AMAX

PsLab, on a given bag B and yB ,
outputs ΓB : B → {0, . . . , C} as
1. For each x ∈ B, let ΓB(x) =

argmax`∈{0,...,C}M(x)[`].
2. If yB > maxx∈B ΓB(x) then:

(a) Let z :=
argmaxx∈BM(x)[yB]/M(x)[Γ(x)].

(b) Assign ΓB(z) = yB .
3. else if yB < maxx∈B ΓB(x) then:

(a) Let S = {x ∈ B | ΓB(x) > yB}.
(b) For each x ∈ S: let ` =

argmaxk∈{0,...,yB}M(x)[k]/M(x)[ΓB(x)],
and set ΓB(x) = `.

(c) If yB > maxx∈B ΓB(x) repeat Steps 2(a)
and 2(b).

4. Output ΓB .
Note that AMAX

PsLab in the {0, 1}-label case, out-
puts the all 0s assignment for a bag B if yB = 0,
and if yB = 1, it first finds the max likelihood as-
signment, and if it is all 0s, then it sets the label
of z to 1 which maximizesM(x)[1]/M(x)[0] =
M(x)[1]/(1−M(x)[1]) which is the same as max-
imizingM(x)[1]. Thus, this is equivalent to the
algorithm for MIN aggregation described in Sec-
tion 4.2 by flipping the labels. Therefore, it suffices
to prove the correctness of AMAX

PsLab, as we do in the

following lemma. To aid our proof, we shall use
the definition of likelihood

G(M, B,Γ) :=
∏

x∈B
M(x)[Γ(x)] (10)

for bag B and Γ : B → {0, . . . , C}.
Lemma J.1. For any bag B with aggregate MAX
label yB , the output ΓB of AMAX

PsLab maximizes the
likelihood over the set of labellings P := {ω :
B → {0, . . . , C} | maxx∈B ω(x) = yB} i.e., it
satisfies:

G(M, B,ΓB) = max
ω∈P

G(M, B, ω) (11)

Proof. Let us first define another set of labellings
Q := {ζ : B → {0, . . . , C} | maxx∈B ζ(x) ≤
yB}. Clearly P ⊆ Q. We have the following
lemma.

Lemma J.2. Let ζ∗ = argmaxζ∈QG(M, B, ζ)
such that maxx∈B ζ∗(x) < yB , and let z :=
argmaxx∈BM(x)[yB]/M(x)[ζ∗(z)]. Then, with
ω defined as ω(z) = yB and for all x ∈ B \
{z}, ω(x) = ζ∗(x), we have that G(M, B, ω) =
maxω∈P G(M, B, ω).

Proof. Let ω∗ be a maximizer of G(M, B, ω) in
P , i.e. G(M, B, ω∗) = maxω∈P G(M, B, ω).
Now since P ⊆ Q, we have that G(M, B, ζ∗) ≥
G(M, B, ω∗). Let z′ ∈ B s.t. ω∗(z′) = yB which
must exist by the definition of P . Now, for all
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Method AUC-ROC AUC-PR Accuracy Precision Recall

Sentence-level Model 0.613 ± 0.028 0.928 ± 0.021 0.709 ± 0.051 0.902 ± 0.018 0.993 ± 0.004
Response-level Model 0.528 ± 0.145 0.895 ± 0.037 0.521 ± 0.082 0.851 ± 0.055 0.577 ± 0.065
Cosine Similarity 0.420 0.873 0.496 0.888 0.683
BagLoss 0.569 ± 0.019 0.924 ± 0.011 0.688 ± 0.071 0.904 ± 0.014 0.955 ± 0.048
PriorBagLoss(0.5, 0) 0.582 ± 0.034 0.927 ± 0.009 0.534 ± 0.044 0.920 ± 0.014 0.606 ± 0.037
PriorBagLoss(0, 0.1) 0.579 ± 0.052 0.925 ± 0.017 0.603 ± 0.038 0.908 ± 0.020 0.794 ± 0.055
PriorBagLoss(0.1, 0.1) 0.580 ± 0.068 0.926 ± 0.024 0.563 ± 0.049 0.914 ± 0.028 0.708 ± 0.077
psl 0.597 ± 0.093 0.927 ± 0.004 0.578 ± 0.063 0.911 ± 0.009 0.713 ± 0.128

Table 13: Instance-level Evaluation on PRM800K

Method AUC-ROC AUC-PR Accuracy Precision Recall

Sentence-level Model 0.648 0.611 0.686 0.722 0.418
Cosine Similarity 0.535 0.526 0.483 0.893 0.134
Response-level Model 0.491 0.4643 0.453 0.882 0.278
BagLoss 0.509 0.5269 0.5167 0.814 0.36
PriorBagLoss(0.2, 0) 0.516 0.4936 0.508 0.647 0.715
PriorBagLoss(0, 0.4) 0.527 0.515 0.529 0.519 0.763
PriorBagLoss(0.2, 0.5) 0.532 0.522 0.521 0.738 0.469

Table 14: QA Preference Feedback Results (Instance Evaluation)

x ∈ B \ {z′},M(x, ζ∗(x)) ≥M(x, ω∗(x)), oth-
erwise if there is some x violating this, then one
could increase G(M, B, ζ∗) by changing ζ∗(x)
to ω∗(x). Thus, we can define ω′ ∈ P where
ω′(z′) = ω∗(z′) = yB and for all x ∈ B \
{z′}, ω′(x) = ζ∗(x), so that G(M, B, ω′) ≥
G(M, B, ω∗). Now, in ω′ changing the label of
z′ to ζ∗(z′) followed by changing the label of z
(defined in the statement of lemma) to yB yields ω
and by the definition of z, this does not decrease
the likelihood, thus completing the proof.

Using the above lemma, we complete the proof
by observing that at the start of Step 2(a), ΓB =
argmaxζ∈QG(M, B, ζ) s.t. maxx∈B ΓB(x) <
yB . This of course is true when ΓB maximizes
the likelihood over all labelings. A simple argu-
ment shows that this is also true if ΓB is obtained
from Steps 3(b) followed by 3(c) satisfying the in-
equality in the latter: in this case ΓB is obtained
from a likelihood maximizer over all labelings, and
then for each x whose label is greater than yB , its
label is changed to the one in {0, . . . , yB} which
has the maximum probability.

K Discussion on Handling Noisy Priors

In each task we explored, it was possible to devise
task-specific hints that very coarsely capture the
propensity or probability of a sentence-level label.
Motivated by this observation, we designed the

FRACTAL framework to incorporate such hints in
the form of prior losses. This design choice makes
FRACTAL a highly flexible framework, allowing
it to integrate any task-specific priors.

For this work, we focused on two types of priors:
point and pair priors, which led to substantial per-
formance gains over the BagLoss baseline which
does not leverage any prior information. However,
it is important to note that these priors are not uni-
versal; rather, they can be tailored and refined to
better suit other tasks as needed.

For example, in the relevance task using the Mul-
tiSpanQA dataset, the objective is to identify sen-
tences within a paragraph that are relevant to a
given question, as opposed to verifying factual cor-
rectness. In this context, cosine similarity between
the question and the candidate sentences serves as
a useful signal for determining relevance. If the ob-
jective were instead to assess factuality, alternative
and more suitable priors could be developed within
the FRACTAL framework.

We emphasize that these priors are not equivalent
to the model’s final predictions. Instead, we define
priors as auxiliary signals based on information
available a priori. To ensure that only useful priors
are incorporated, we include a weighting term for
each prior in the loss function. These weights are
tuned via grid search, allowing the framework to
down-weight or omit priors that do not contribute
significantly to performance.
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Method AUC-ROC AUC-PR Accuracy

30% 1-bags
Supervised 0.735 ± 0.023 0.888 ± 0.006 0.762 ± 0.018
BagLoss 0.605 ± 0.011 0.879 ± 0.006 0.713 ± 0.015
PriorBagLoss(0.2, 0) 0.622 ± 0.018 0.887 ± 0.009 0.724 ± 0.032

40% 1-bags
Supervised 0.759 ± 0.028 0.887 ± 0.01 0.771 ± 0.015
BagLoss 0.569 ± 0.017 0.866 ± 0.004 0.694 ± 0.027
PriorBagLoss(0.2, 0) 0.618 ± 0.01 0.885 ± 0.006 0.723 ± 0.02

50% 1-bags
Supervised 0.831 ± 0.051 0.889 ± 0.062 0.714 ± 0.048
BagLoss 0.478 ± 0.065 0.829 ± 0.038 0.569 ± 0.036
PriorBagLoss(0.2, 0.1) 0.639 ± 0.021 0.881 ± 0.009 0.653 ± 0.013

60% 1-bags
Supervised 0.784 ± 0.02 0.886 ± 0.011 0.738 ± 0.027
BagLoss 0.617 ± 0.021 0.882 ± 0.014 0.697 ± 0.022
PriorBagLoss(0.2, 0) 0.629 ± 0.031 0.883 ± 0.01 0.668 ± 0.013

70% 1-bags
Supervised 0.721 ± 0.035 0.885 ± 0.013 0.743 ± 0.028
BagLoss 0.563 ± 0.019 0.861 ± 0.011 0.688 ± 0.025
PriorBagLoss(0.2, 0) 0.626 ± 0.017 0.886 ± 0.03 0.724 ± 0.033

Table 15: Comparison of performance achieved on the WikiCatSum dataset by varying the percentage of 1-bags in the training
set.

Dataset α1 α2 α3 Learning Rate Batch Size

QA-Feedback 0.3 0.2 0.5 1e-5 256
MultiSpanQA 0.8 0.2 0 1e-3 512
WikiCatSum 0.7 0.2 0.1 1e-4 1024
FiRA 0.6 0.2 0.2 1e-5 1024
AquaMuSe 0.7 0.2 0.1 1e-3 512
PRM800K 0.8 0.1 0.1 1e-4 64

Table 16: α1, α2, and α3 represent the coefficients of the BagLoss, cosine similarity prior and correlation prior terms in the loss
function.

L Ablation Study on Hybrid Datasets

Table 19 shows the performance of the fully super-
vised model trained on a randomly sampled subset
20% labeled training instances, along with models
trained using our methods on the hybrid dataset i.e.,
the 20% labeled training instances along with the
remaining bag-level training set. From Table 19 we
observe that with even 20% instance level labels,
we are able to further improve the performance
of FRACTAL across all datasets in comparison to
Table 4, while improving for most metrics on the
supervised model trained on 20% of the labeled
instances.

M Comparison of FRACTAL-RLHF
with Implicit PRM

In this section, we compare our method with the
recently proposed approach, Free Process Rewards
without Process Labels (Yuan et al., 2024). This

method (Implicit PRM) shares a similar motivation
to ours: both aim to capture the benefits of pro-
cess reward models (PRMs) while relying solely
on response-level supervision, thereby avoiding the
need for costly step-level annotations.

The key feature of their method is the training of
an outcome reward model (ORM) via implicit re-
ward modeling. Specifically, they compute process-
level rewards using the log-likelihood ratios be-
tween the policy and a reference model over partial
responses, and thus considers the sequence of the
steps in the response.

Their approach differs in several ways from
FRACTAL in which a task-specific aggregation
function explicitly links process-level labels to the
final outcome label. Based on this structure, we
define a loss function that incorporates both the ag-
gregation function and additional prior information
to disaggregate the outcome label into process-level
pseudo-labels, without considering any sequence
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Type Summary

Reference Sum-
mary

She also is the first ever woman in Indian History to be nominated as the Rajya Sabha mem-
ber. She is considered the most important revivalist in the Indian classical dance form of
Bharatanatyam from its original’ sadhir’ style, prevalent amongst the temple dancers, Devadasis,
she also worked for the re-establishment of traditional Indian arts and crafts.

Word Replace-
ment

She also is the first ever woman in Indian History to be nominated as the Rajya Sabha Independent
member. She is considered the most important revivalist in the Indian classical dance form of
Kathak from its Nautch ’sadhir’ style, prevalent amongst the temple singers. Furthermore, she
also advocated for the re-establishment of traditional Indian arts and crafts.

Sentence
Replacement

She also is the first ever woman in Indian History to be nominated as the Rajya Sabha mem-
ber. She is considered the most important revivalist in the Indian classical dance form of
Bharatanatyam from its original’ sadhir’ style, prevalent amongst the temple dancers. She was
also a strong advocate for animal welfare and environmental protection, actively participating in
campaigns and legislative efforts throughout her life.

Table 17: Example of the entailed and non-entailed versions of the summary from AquaMuSe Dataset. We either use entailed or
non-entailed version.

Type Summary

Reference Sum-
mary

the gold spangle ( autographa bractea ) is a moth of the family noctuidae . it is found in europe
, across western siberia and the altai mountains , the northern caucasus , northern turkey and
northern iran . its wingspan is 42 – 50 mm . the forewings are brown and gray with large
rhomboid golden marks . the hindwings and body are lighter grayish brown . the moth flies from
july to august depending on the location , and migrates long distances . the larvae feed on a wide
range of plants including hieracium , tussilago farfara , plantago , crepis paludosa , taraxacum ,
urtica , lamium , stachys and eupatorium cannabinum .

Word Replace-
ment

the gold spangle ( autographa californica ) is a moth of the family noctuidae . it is found in
western north america , across california and the altai mountains , south dakota and new mexico
. its wingspan is 16 - 25 mm . the forewings are blue and gray with silver-white long lateral
part and a patch of chestnut brown . the hindwings and body are a grayish tan . the moth flies
from march to september depending on the location , and migrates long distances . the larvae
feed on a wide range of herbaceous plants including legumes such as fabaceae , alfalfas , peas ,
taraxacum , urtica , lamium , stachys and eupatorium cannabinum .

Sentence
Replacement

the gold spangle ( autographa bractea ) is a moth of the family noctuidae . it is found in europe
, across western siberia and the altai mountains , the northern caucasus , northern turkey and
northern iran . its wingspan is 42 – 50 mm . the forewing has an inner line below middle
finely golden in color, and the outer one is golden at the inner margin only . the hindwings and
body are lighter grayish brown . the moth flies from july to august depending on the location ,
and migrates long distances . Occupying waste ground, gardens and moorland, this species is
widespread and fairly common in the north of Britain .

Table 18: Example of the entailed and non-entailed versions of the summary from WikiCatSum Dataset. We either use entailed
or non-entailed version.
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Method AUC-ROC AUC-PR Accuracy

MultiSpanQA Supervised (20%) 0.658 ± 0.019 0.299 ± 0.013 0.828 ± 0.031
FRACTAL* 0.691 ± 0.031 0.325 ± 0.027 0.844 ± 0.051

QA Preference Supervised (20%) 0.576 ± 0.007 0.539 ± 0.004 0.603 ± 0.012
FRACTAL** 0.585 ± 0.015 0.54 ± 0.006 0.607 ± 0.008

WikiCatSum Supervised (20%) 0.773 ± 0.041 0.88 ± 0.019 0.652 ± 0.039
FRACTAL* 0.662 ± 0.016 0.881 ± 0.009 0.674 ± 0.005

PRM800K Supervised (20%) 0.592 ± 0.012 0.897 ± 0.01 0.686 ± 0.017
FRACTAL* 0.599 ± 0.007 0.912 ± 0.004 0.651 ± 0.009

Table 19: Hybrid learning ablations with 20% instance-level
data. * indicates PSLAB method and ** indicates PriorsPref-
BagLoss.

information. These pseudo-labels are then used
to train a process-level reward model, followed by
Fine-Grained RLHF.

Our method can thus be viewed as a structured
preprocessing step that explicitly infers process-
level information before reward modeling and fine-
tuning. This modular design enables flexibility and
interpretability by allowing the integration of task-
specific priors and constraints.

However, the Implicit PRM method utilizes the
additional sequence information, which is impor-
tant in tasks such as Math reasoning. Also, in the
current implementation, there is a difference is the
choice of model architecture: we finetune the T5-
base model, whereas their method relies on more
recent and powerful models (see Table 1 of (Yuan
et al., 2024)).
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