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Abstract

Data pruning—selecting small but impactful
subsets—offers a promising way to efficiently
scale NLP model training. However, existing
methods often involve many different design
choices, which have not been systematically
studied. This limits future developments. In
this work, we decompose data pruning into two
key components: the data representation and
the selection algorithm, and we systematically
analyze their influence on the selection of in-
stances. Our theoretical and empirical results
highlight the crucial role of representations:
better representations, e.g., training gradients,
generally lead to a better selection of instances,
regardless of the chosen selection algorithm.
Furthermore, different selection algorithms ex-
cel in different settings, and none consistently
outperforms the others. Moreover, the selec-
tion algorithms do not always align with their
intended objectives: for example, algorithms
designed for the same objective can select dras-
tically different instances, highlighting the need
for careful evaluation.

1 Introduction

A major drive of recent progress in NLP has been
the scaling of training data, regarding both pretrain-
ing (Kaplan et al., 2020; Hoffmann et al., 2022;
Sardana et al., 2024) and fine-tuning (Zhang et al.,
2024). However, recent studies have shown that
by carefully selecting a small subset of the original
dataset, a process known as data pruning, one can
train models of comparable or even better perfor-
mance with much less data (Sorscher et al., 2022;
Du et al., 2025; Xia et al., 2024).

Different data pruning methods exist, involving
various design choices. However, no existing work
has systematically studied the influence of each
choice, hindering future progress. Although these
methods appear diverse, we decompose them into
two key components: (1) obtaining data represen-
tations, usually from a reference model, and (2)

running a selection algorithm using these repre-
sentations. Moreover, while the specific steps of
selection algorithms vary, they share common ob-
jectives, such as maximizing the difficulty or di-
versity of the selected instances. Distinguishing
these two components allows us to study funda-
mental questions: which representations and selec-
tion objectives work better, and whether selection
algorithms indeed meet their objectives.

In this paper, we conduct a comprehensive study
to answer these questions through both a theoretical
and empirical lens. Our contributions are:

1. To study the impact of different design choices
in existing data pruning methods, we conduct
a comprehensive review and identify two key
components: data representations and selec-
tion algorithms. Moreover, we identify three
common sources for representations: training
dynamics, e.g., loss trajectory across epochs,
hidden states, and gradients; and three com-
mon selection objectives: maximizing diffi-
culty, diversity, and relevance to validation
data of the selected instances (§2).

2. To study which representations are more ef-
fective and why, we first identify three key
criteria that effective representations should
satisfy. We then theoretically analyze whether
different representations meet these criteria.
Finally, on both a simple synthetic task and
NLP task-specific fine-tuning, we empirically
validate that the representations that are more
useful in theory (i.e., meet more criteria), e.g.,
gradients, are indeed more effective than oth-
ers, e.g., hidden states (§3.1).

3. We study which selection objectives are more
effective and find that no one clearly stands
out: which selection objective works better
depends on the context. For example, max-
imizing relevance to validation data excels
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when a substantial train-test distribution shift
is present, and maximizing difficulty works
well with high data budgets. Surprisingly, rep-
resentations are more influential than selec-
tion algorithms: when different selection algo-
rithms use the same representation, the over-
lap in selected instances is greater than when
the same selection algorithm is used with dif-
ferent representations (§3.2).

4. To gain insights into whether algorithms fol-
low their intended objectives, we visualize
their instance selection, and assess the consis-
tency between the selections of different algo-
rithms aiming for difficulty. Surprisingly, our
results suggest that these algorithms do not al-
ways align with their objective. For instance,
when maximizing difficulty, they sometimes
prefer instances that are correctly predicted
and far from the decision boundary; however,
these are usually considered to be easier in-
stances. Furthermore, the same objective of
maximizing difficulty can lead to drastically
different selections (§4).

Our findings provide actionable insights for the
development of data pruning methods. Future re-
search should: (1) develop scalable yet strong rep-
resentations, and (2) carefully assess whether se-
lection algorithms follow their intended objective.1

2 Representation-selection decoupling

Given a data budget, such as 30% of the original
dataset, data pruning methods aim to select an in-
formative subset of the data. However, it remains
unclear how different design choices of these meth-
ods impact their effectiveness, because previous
studies typically treat them as cohesive units. To
address this gap, we identify two key components
in data pruning methods: first, obtaining represen-
tations for each instance, such as hidden states or
gradients, using a reference model, either off-the-
shelf or fine-tuned on the original dataset; second,
a selection algorithm to choose a subset of the data
guided by a selection objective, such as maximiz-
ing the difficulty of the selected instances. This
selected subset is then used to train the main model,
which is the final model of interest.2

1Our code is available at https://github.com/nlpsoc/
data_pruning_disentangle.

2We exclude methods that rely on prompting LLMs for
quality scoring (Sachdeva et al., 2024; Chen et al., 2024; Lu
et al., 2024; Liu et al., 2024), as these approaches add com-

2.1 Commonly-used representations and
selection objectives

Representations Training dynamics are widely
used as a source for extracting representations, es-
pecially in fine-tuning tasks. These include met-
rics such as the correctness of predictions across
epochs (Toneva et al., 2019), prediction probabili-
ties of the correct class (Swayamdipta et al., 2020;
Jiang et al., 2021), training error norms (Paul et al.,
2021), the number of layers required for correct
classification (Baldock et al., 2021), and perplex-
ity (Moore and Lewis, 2010; Marion et al., 2023;
Kwok et al., 2024). Differently, hidden states from
pretrained language models are frequently used
in pretraining scenarios (Abbas et al., 2023; Tiru-
mala et al., 2023), because they can capture se-
mantic information while being computationally
efficient. Gradients are another common represen-
tation in fine-tuning. They are often used to esti-
mate the impact of specific instances on model pre-
dictions, either through influence functions (Koh
and Liang, 2017; Park et al., 2023) or training
unrolling methods (Pruthi et al., 2020; Xia et al.,
2024). There are also methods that use text-based
features, such as bag-of-words (Canuto et al., 2018)
and TF-IDF (Cunha et al., 2021).

Selection objectives After obtaining represen-
tations, various objectives are used to guide the
implementation of selection algorithms. One com-
mon objective is to maximize the difficulty of se-
lected instances, i.e., to select those that are harder
for models to fit, as indicated by being more for-
gettable (Toneva et al., 2019), having a lower pre-
diction confidence (Swayamdipta et al., 2020), a
higher loss (Jiang et al., 2021; Li et al., 2024), more
layers required for prediction (Baldock et al., 2021),
a higher perplexity (Kwok et al., 2024), a higher
self-influence (Thakkar et al., 2023), and larger dis-
tances from prototypical examples (Sorscher et al.,
2022). Another objective is to maximize diversity
in the selected data (Carbonera and Abel, 2015,
2016; Malhat et al., 2020). For example, Abbas
et al. (2023) measure the similarity between in-
stances and keep only one from each pair of highly
similar instances, and Yang et al. (2024) randomly
sample from different clusters of instances. More-
over, when specializing models, e.g., adapting a
general model to the medical domain, it is common
to maximize the relevance of selected instances to

plexity through heuristic prompts and often function as black
boxes, making their results difficult to interpret.
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validation data. For example, assuming the avail-
ability of a validation set, Xia et al. (2024) and
Engstrom et al. (2024) select the most influential
training instances based on training unrolling meth-
ods and influence functions, respectively.

2.2 Representative methods
Having identified commonly used representations
and selection objectives, we focus on six represen-
tative methods (see Table 1, where we also include
their corresponding representations and objectives).
These methods cover the most common represen-
tation types: training dynamics, hidden states, and
gradients, as well as key selection objectives: max-
imizing difficulty, diversity, and relevance to vali-
dation data. We provide an in-depth description of
the methods in Appendix B.3

3 Deciphering the impact of different
components on instance selection

This section investigates how different data repre-
sentations and selection algorithms influence the
selection of training instances. We first provide a
theoretical analysis on how various representations
differ in terms of the signals they encode (§3.1).
Clarifying these differences allows us to understand
the fundamental benefits and limitations of differ-
ent representations, without considering specific se-
lection algorithms. Next, we empirically compare
the instances selected with different combinations
of representation and selection algorithms, through
experiments with both an interpretable classifier on
a synthetic dataset, and the fine-tuning of language
models for various tasks (§3.2).

Notation We denote the original training set with
N instances as D = {(xi, yi)}Ni=1. The selected
subset of data is represented by S ⊂ D. We use
B to denote the data budget (e.g., B = |S| =
0.2N ). For a data point (xi, yi) and a model
M, we use pM(yi|xi) and ℓM(xi, yi) to denote
the model’s prediction probability of the correct
class/token and loss, hM(xi) to denote the last
hidden state, i.e., before classifier or unembed-
ding layer of M. Moreover, we use ∇θℓM(xi, yi)
to represent the gradient of a group of parame-
ters θ of M w.r.t. ℓM(xi, yi). When taking the
training process of T epochs into account, we use
p
(t)
M(yi|xi) and ∇θℓ

(t)
M(xi, yi) to denote pM(yi|xi)

3Different methods were originally proposed for specific
contexts. Our goal is not to invalidate them, but to offer
additional insights into their components.

and ∇θℓM(xi, yi) at epoch t ≤ T , and ηt to denote
the average learning rate of the model in epoch t.

3.1 Properties of representations

Our analysis centers on one key quantity: the dis-
tance between two instances, i and j, based on
different representations. Measuring instance dis-
tances allows for assessing how well representa-
tions group instances of shared attributes together.
Indeed, these distances are central to most meth-
ods, enabling functionalities like clustering (e.g.,
S2L and Prototypicality), duplicate identification
(e.g., SemDeDup), and instance relevance measure-
ment (e.g., LESS). For example, the Prototypical-
ity method first clusters instances, and then selects
instances far from the centroids as “difficult" exam-
ples. However, this raises an important question:
are the clusters good enough in separating different
instances?

Specifically, we first investigate the criteria for
good representations, including the information
representations should encode, and their discrimi-
native power for different inputs, i.e., how well they
separate different types of instances. We then ana-
lyze whether different representations meet these
criteria. To the best of our knowledge, we are the
first to systematically compare different representa-
tions in the context of data pruning.

Setup For the simplicity of analysis,4 we con-
sider a binary classification task with labels y ∈
{−1,+1}, optimized with binary cross-entropy
loss, and focus on the classification layer. For-
mally, given two training instances (xi, yi) and
(xj , yj), a model M, and its classification layer w,
we study the squared Euclidean distances between
these two instances, computed by hidden states
hM(·), losses ℓM(·), and gradients ∇wℓM(·). We
denote them as Dh, Dℓ, and Dg respectively. More-
over, we use hidden states as the basis for our
analysis, because they serve as inputs to the classi-
fication layer to compute other representations.5

What makes a good representation? To select
a minimal subset of training data while preserv-
ing generalization, we propose that the selections
need to be non-redundant and diverse. Importantly,

4Our analysis can be extended to multi-class classification
or generation tasks by considering the prediction of a specific
class or token, similar to Park et al. (2023).

5In other words, we treat hidden states as inputs throughout
the analysis, and compute quantities such as the distances
between instances and the decision boundary based on them.
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Representations
Selection Training dynamics Hidden states Gradients

Max. diversity SmallToLarge (S2L)
(Yang et al., 2024)

SemDedup
(Abbas et al., 2023)

Max. difficulty

Hard-to-learn
(Swayamdipta et al., 2020;
Jiang et al., 2021; İnce et al.,
2023)

Prototypicality
(Sorscher et al., 2022)
SemDedup
(Abbas et al., 2023)

Self-Influence (SI)
(Feldman and Zhang, 2020;
Bejan et al., 2023)

Max. relevance LESS (Xia et al., 2024)

Table 1: Representative methods from §2.2, categorized by their representations and selection objectives.

we argue that the redundancy and diversity here
should be considered with respect to model train-
ing. Specifically, selected instances must discard
less relevant examples, while being diverse enough
to train a robust classifier w. This entails retaining
instances (1) close to the decision boundary6, as
those far away are either trivial (following the repre-
senter theorem (Yeh et al., 2018)), or are mislabeled
or rare outliers that destabilize training (Minder-
mann et al., 2022): this helps select non-redundant
instances; and (2) diverse enough, as otherwise we
are likely to obtain biased models, i.e., models that
make predictions using a narrow set of rules (Tiru-
mala et al., 2023).

We therefore argue that good representations
should ensure that the distances between instances
D satisfy three key criteria. First, D should
account for instances’ distances to the decision
boundary. Second, D should contain instance la-
bel information, to help selection algorithms bal-
ance samples across different labels. Third, D
should be more discriminative for important in-
stances, e.g., those closer to the decision boundary.
This enables selection algorithms to preserve diver-
sity among these important samples, by identifying
their differences, while deprioritizing less relevant
data.

Encoded information We express gradients and
losses as functions of hidden states and model pa-
rameters to study information encoded by different
representations, and have the following result, for
which the derivation can be found in Appendix D.

Remark 3.1 (Explicit expressions). Let z∗ =
y∗wThM(x∗) be the (signed and scaled) dis-
tance from hM(x∗) to the decision boundary.
We have Dℓ = (log ((1 + e−zi)/(1 + e−zj )))2,

6The decision boundary of the final model, which we ap-
proximate using that of the reference model.

Dg = ∥yihM(xi)
1+ezi − yjhM(xj)

1+ezj
∥22 =

∥hM(xi)∥22
(1+ezi )2

+

∥hM(xj)∥22
(1+ezj )2

− 2
yiyjhM(xi)

T hM(xj)

(1+ezi )(1+ezj )
.

We make two key observations. First, compared
to the distance between hidden states (Dh), the dis-
tance between losses (Dℓ) additionally integrates
the distances to the decision boundary (i.e., zi and
zj). Second, gradients (Dg) further reflect label
agreement. Specifically, Dg is small when (1) in-
stances are easy (i.e., zi and zj are large), increas-
ing denominators; and (2) hidden states are similar
when their labels agree, and vice versa, increas-
ing the third term’s numerator. These observations
show that losses and gradients are stronger than
hidden states, for identifying instances that are sim-
ilar for the training process, because they encode
instances’ distances to the decision boundary. Fur-
thermore, only gradients are label-aware.

Discriminative power We examine the discrimi-
native power of the distance between two instances
based on different representations: the more sen-
sitive these distances are to the changes of inputs,
i.e., hidden states here, the more discriminative
they are. Specifically, we analyze how this discrim-
inative power varies with an instance’s distance to
the decision boundary. Ideally, distances should
be more discriminative for instances near the deci-
sion boundary, enabling data pruning methods to
capture finer distinctions, while ignoring variations
among instances further away, since they are less
relevant. To quantify this, we measure the Jaco-
bian magnitudes of these distances w.r.t. hidden
states.

Formally, let JhM(xi)(Dh), JhM(xi)(Dℓ), and
JhM(xi)(Dg) be the Jacobian matrices of Dh, Dℓ,
and Dg with respect to hM(xi). By our dis-
tance definition, for a given representation r(·),
the distance between two instances is defined as
Dr = ∥r(xi, yi)− r(xj , yj)∥22. We can then write
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the Jacobian of Dr with respect to hM(xi) as

JhM(xi)(Dr) =
∂Dr

∂r(xi, yi)

∂r(xi, yi)

∂hM(xi)

= 2JhM(xi)

(
r(xi, yi)

)⊤(
r(xi, yi)− r(xj , yj)

)
.

Here we can see the Jacobian is influenced by the
distance value through r(xi, yi)− r(xj , yj). How-
ever, our goal here is to quantify how inputs’ dis-
tances to the decision boundary (based on hidden
states) relate to Dr’s discriminative power, indepen-
dent of the specific distance value. Therefore, we
focus on JhM(xi)

(
r(xi,yi)

)
, and use the spectral

norm to measure its magnitude. Formally:

Definition 3.2 (Discriminative power). We define
the discriminative power of losses and gradients as
the spectral norms of their Jacobian w.r.t. hM(xi):

Cℓ = ∥JhM(xi)(ℓM(xi, yi))∥,
Cg = ∥JhM(xi)(∇wℓM(xi, yi))∥,

where ∥ · ∥ denotes the spectral norm. Analogously,
we get Ch = 1.

Based on the above definitions we have the fol-
lowing results. Both proofs are in Appendix D.

Theorem 3.3 (Region dependence). Cℓ and Cg
are dependent on inputs’ distances to the decision
boundary, satisfying

Cℓ =
∥w∥

1 + ezi
= (1− pM(yi|xi))∥w∥, and

Cg ≤ 1

1 + ezi
+

ezi

(1 + ezi)2
∥hM(xi)∥∥w∥.

Corollary 3.4. Let α := ∥w∥∥hM(xi)∥. When α
is smaller than the positive root of −x(1− ex) =
1 + ex (approximately 1.544), Cg decreases mono-
tonically as zi increases, similar to Cℓ. However,
when α is larger, Cg increases with zi for zi ≤
log

(
α−1
α+1

)
, and decreases for zi > log

(
α−1
α+1

)
.

Remark 3.5. Theorem 3.3 shows that, Cℓ mono-
tonically decreases with zi and pM(yi|xi), i.e., the
prediction probability.

Remark 3.6. Corollary 3.4 indicates that, when
α >∼ 1.544, Cg peaks at zi = log

(
α−1
α+1

)
, which

means the corresponding data point is close to the
decision boundary but misclassified. Meanwhile,
when α is smaller, Cg decreases with z (and thus
prediction probability), similar to Cℓ.7

7Intuitively, α reflects the magnitudes of the model’s
weights and the inputs’ hidden states. Across all models of
our experiments, we consistently find α >∼ 1.544.
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Figure 1: (Min-max normalized) discriminative power
of the distance between instances, computed by dif-
ferent representations: the loss’s discriminative power
(Cℓ) monotonically decreases, while the gradient’s (Cg)
peaks near the decision boundary for large αs.

We provide a visual illustration of the discrim-
inative power of different representations in Fig-
ure 1. In particular, we highlight the property of
the gradients with α = 5: it is discriminative when
predictions are wrong, and peaks near the decision
boundary, and becomes very small once the pre-
diction is confidently correct. According to our
previous analysis, this effectively enables the se-
lection of diverse and non-redundant examples for
learning classifiers, as they make instances near
the decision boundary more distinguishable while
ignoring the redundant easy ones. In contrast, algo-
rithms that use losses will likely over-select those
with a high loss (potentially destabilizing training),
while distances based on hidden states are indiffer-
ent to inputs’ distance to the decision boundary.

3.2 Properties of selection algorithms

Building on the insights into representations (§3.1),
this section examines the properties of selection
algorithms. We focus on two key aspects. First,
we analyze how changing the data representations
affect the selection of instances, to understand the
joint effects of both steps and the sensitivity of se-
lection algorithms to different representations. Sec-
ond, we investigate whether selection algorithms
indeed follow their objectives, by visualizing the
selections and comparing the overlap between se-
lection algorithms with the same objective.

Setup We focus on three selection algorithms
with different objectives from §2.2: (1) prioritizing
difficulty, as in prototypicality (difficultyproto); (2)
prioritizing diversity, as in S2L (diversitys2l); and
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(b) Selection consistency on NLP tasks.

Figure 2: The consistency of selections across different representations and selection algorithms. (a) Synthetic data:
we generate 600 data points from a 2D Gaussian mixture model with red and blue data points representing two
classes. The different background colors visualize the decision boundary of the logistic regression reference model.
The green Xs are the selected data points (30% of the data). (b) NLP tasks: we use different methods to select 30%
of the data points and compute their overlapping ratios (i.e., |S1 ∩ S2|/|S1| for two subsets S1 and S2). Here we
show the results for DeBERTaV3-Large on CAD and WinoGrande.

(3) prioritizing relevance to validation data, as in
LESS (relevanceless). We combine each selection
algorithm with all three representations. We also
compare Hard-to-Learn (difficultyhtl) with proto-
typicality, because both methods aim to select dif-
ficult instances. We use 30% of the data as our
budget.

First, we conduct a synthetic experiment to pro-
vide an interpretable analysis. We use a 2D Gaus-
sian mixture model to generate 600 data points,
which we treat as the hidden states. We then train a
logistic regression classifier as the reference model
to collect training dynamics and gradients. We
visualize the selected instances in Figure 2a.

Second, we conduct task-specific fine-tuning ex-
periments on three different types of tasks: CAD
(binary hate speech classification, Vidgen et al.,
2021), for which we also include DynaHate as an
OOD test set (Kiela et al., 2021), WinoGrande
(multiple choice commonsense reasoning, Sak-
aguchi et al., 2021), and DialogSum (abstractive
summarization, Chen et al., 2021). We use DeBER-

TaV3 base and large (He et al., 2023) for CAD and
WinoGrande, and OPT 125M and 350M (Zhang
et al., 2022) for DialogSum.8 We show the ratios
of mutually selected instances between different
representation-selection combinations in Figure 2b.
Note that because we select 30% of the data points,
random selection would result in an overlap ratio
of 0.3.910

Varying representations drastically changes se-
lection For example, hM-difficultyproto and ℓM-
difficultyproto on synthetic data respectively select
instances far from and near the decision bound-
ary (Figure 2a), and hM-relevanceless and ∇wℓM-
relevanceless have lower-than-random overlap on

8We use relatively small models to avoid huge computation
during both training (we trained 1200+ models for controlled
comparisons) and gradient projection (which can take > 10
times longer than training due to high dimensionality).

9Let N be the total size of the dataset. The expected num-
ber of overlap items is |S1 ∩ S2| = 0.3N × 0.3N = 0.09N .
Since |S1| = 0.3N , the overlap ratio is 0.09N/0.3N = 0.3.

10We focus on settings where the validation set come from
the same distribution as the test set. However, we also include
a discussion of the out-of-distribution settings in Appendix C.
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both NLP tasks (Figure 2b). Nevertheless, we find
the the sensitivity of selection algorithms towards
representations varies. Particularly, diversity-
preserving algorithms are less affected by the repre-
sentation choice. For instance, compared to proto-
typicality using different representations, diversity
shows smaller variations in Figure 2a, and similar
results are observed in the NLP tasks in Figure 2b.
This is consistent with that diversity-preserving al-
gorithms sample evenly from different regions.

Representations are more influential than the
selection algorithms themselves For example,
∇wℓM-difficultyproto overlaps more on CAD with
∇wℓM-diversitys2l (0.46) and ∇wℓM-relevanceless
(0.79), than with hM-difficultyproto (0.26), see Fig-
ure 2b. Additionally, the selections based on gra-
dients and losses have larger overlap with each
other than with those based on hidden states. For
example, the overlap when using gradients and
losses with the same selection algorithm (∇wℓM-
difficultyproto and ℓM-difficultyproto) is as large as
0.75 on CAD. The observations here are consistent
with our theoretical analysis in §3.1: losses and
gradients are more informative.

Selections do not always following their objec-
tives Because selection algorithms are typically
heuristic-driven to achieve specific objectives, it is
crucial to assess whether they indeed follow these
objectives. Surprisingly, our results suggest other-
wise: (1) On synthetic data, most selections from
hM-difficultyproto—which aims to select difficult
instances—are those that are correctly predicted
and far from the decision boundary, which can be
considered to be the easier ones. (2) Comparing
the selections under the same objective, we observe
that these selections can be vastly different. For ex-
ample, even though they both aim to select difficult
instances, hM-difficultyproto and ℓM-difficultyhtl
show very low consistency in instance selections:
this divergence is evident in synthetic data, where
only a few data points are mutually selected (Fig-
ure 2a); and in NLP tasks, their overlap ratios are
close to the random-guess baseline (Figure 2b).
This result highlights the need for carefully assess-
ing the consistency between selection algorithms
and their intended objectives, in future studies.

4 Performance Across Data Budgets

Building on our previous analyses on how different
components affect data selection (§3.2), this sec-

tion examines their impact on model performance
under different data budgets. These experiments
help validate our previous findings on the effective-
ness of different representations and selection algo-
rithms, while addressing practical questions about
which data pruning methods are best suited for
specific tasks and data budgets, such as when han-
dling substantial distribution shift between training
and testing data. Moreover, we perform two sets
of ablation experiments: using fine-tuned instead
of pretrained hidden states, as they may encode
task-specific information; and experimenting with
different representation-selection pairs, to better
understand the contribution of each component.

Setup Our experiments on NLP tasks follow the
same setup as in §3.2. Moreover, we use six dif-
ferent data budgets 5%, 15%, 30%, 50%, and 70%
of the original dataset, and train all models for 15
epochs. Additionally, we consider three baselines:
random selection (Rand), the full original dataset
(Full Data), and a dummy predictor (Dummy),
which represents the better performance between a
randomized predictor and a majority class predictor.
See Appendix A for more details.

4.1 Main observations

We make two main observations from our results
(see Figure 3 for representative examples, with
additional results in Appendix E). First, selecting
the appropriate data pruning method for each spe-
cific setting is crucial: when they are applied out-
side their original context, they are often outper-
formed by random selection, which is consistent
with Okanovic et al. (2024). Notably, hidden-state-
based methods perform worse than or similarly to
random selection on all tasks, especially with lower
data budgets. This aligns with our previous results
(§3), that pretrained hidden states may not have
sufficient discriminative power to select the most
important instances for the model parameters.11

Similarly, higher data budgets are needed for other
methods that aim to select difficult instances, i.e.,
hard-to-learn and self-influence: they achieve com-
petitive performance with > 30% data budgets, but
are only comparable to the dummy baseline with
lower data budgets. This is consistent with the ob-
servations in Swayamdipta et al. (2020), that using

11Note that our experiments differ from previous studies
that use hidden states, as they only experimented under high
data budget settings (Sorscher et al., 2022) and noisy pretrain-
ing datasets (Abbas et al., 2023).
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Figure 3: Results with DeBERTaV3Large and OPT-350M models. (a)–(d) show performance across data budgets,
(e) presents label distributions, while (f) and (g) compare pretrained vs. fine-tuned hidden states, and (h) and (i)
examine representation variation for WinoGrande and DynaHate.

only the hardest instances will make models fail to
converge.

Second, gradient-based methods like LESS and
self-influence perform competitively across most
tasks (Figure 3a & 3c), reaffirming the effectiveness
of gradients as data representations. Interestingly,
LESS performs well on highly imbalanced datasets
only when applying label matching, i.e., enforc-
ing selected instances to maintain the original label
ratio. Without this constraint, LESS tends to over-
select majority-label training instances, because it
selects training instances based on their distance
to validation data. Since instances with the same
label tend to have shorter distances between their
gradient representations (§3.1), LESS would fur-
ther amplify this bias. We validate this on CAD,
where only 10% of the instances are hateful (Fig-
ure 3e), by plotting the ratio of hateful labels in
selected instances. Figure 3e shows that LESS pri-

marily selects non-hateful instances, with very few
hateful ones included until the data budget reaches
90%. However, this constraint can be detrimen-
tal to methods like hard-to-learn, which prioritizes
rare instances such as hateful ones.

4.2 Ablation analysis

Fine-tuned hidden states We previously ob-
served that hidden-state-based methods perform
similarly to random selection. Since effective rep-
resentations should encode label information and
the distance to the decision boundary, we exam-
ine whether fine-tuning can help improve their per-
formance. Specifically, we compare two types of
hidden states when models stop training at early
(one epoch, retaining more pretrained knowledge)
and late (15 epochs, encoding more task-specific
information) stages, as shown in Figure 3f and 3g.
However, there is little difference between using
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different hidden states, with none of them clearly
outperforming random selection, suggesting the
insufficiency of fine-tuning.

Varying representations We have shown that
data representations have a greater influence on se-
lections than the selection algorithms themselves
(§3). To study whether this holds for model perfor-
mance, we similarly use different representations
with diversitys2l, difficultyproto, and relevanceless,
and show the results for DeBERTaV3Large on Wino-
Grande and DynaHate in Figures 3h & 3i. In line
with §3.2, we find that similar representations often
lead to similar performance (Figure 3h). Never-
theless, the best selection algorithm is still task-
dependent. For example, when there is a train-test
distribution mismatch (e.g., DynaHate in Figure 3i),
LESS performs better than other methods by con-
sidering validation performance.

5 Conclusion

Despite the success of data pruning, the contribu-
tions of its design choices have remained unclear.
This paper has identified two key components:
data representations and selection algorithms, and
provided a comprehensive overview of common
choices (§2). Moreover, we have provided both the-
oretical and controlled empirical analyses on their
effectiveness (§3), and their implications across
different data budgets (§4). Our results highlight
the critical role of data representations due to their
impact on selected instances, and the importance
of evaluating selection algorithms carefully, as they
are not guaranteed to meet their objectives. Our
findings stress the need for the development of effi-
cient and informative data representations.

Limitations

One limitation of our work is its focus on task-
specific fine-tuning, leaving other settings, like pre-
training, supervised fine-tuning, and reinforcement
learning from verifiable rewards, unexplored. This
is largely due to (1) the large amount of computa-
tion required to conduct rigorous controlled studies
such as ours, and (2) the challenges in scalable and
low-cost evaluation (Zheng et al., 2023). Future
studies could explore data pruning approaches in
these settings by generating synthetic training and
validation tasks, which allows for low-cost and con-
trolled studies. This has been recently shown to be
useful for proof-of-concept studies (Allen-Zhu and
Li, 2024), whose conclusions generalize to larger

scale settings well. Moreover, we focus on methods
that do not require external models (e.g., prompt-
ing language models to evaluate example quality).
Future work could expand our analyses to include
such approaches.
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A Experimental Details

Implementation Details All experiments were
conducted using the AdamW optimizer. For most
models, we set the learning rate to 2e-5, except
for DeBERTaV3Large, where we followed He et al.
(2023) and used 1e-5. Additionally, we do a learn-
ing rate warmup for the first 10% of training steps.
For gradient-based pruning, the reference models
were trained with LoRA, using a higher learning
rate of 1e-4, r = 64, and α = 16 following Ivison
et al. (2023), and apply LoRA on all linear layers.
We train all models for 15 epochs, For batch size,
we used 16 for both WinoGrande and DialogSum,
and 32 for CAD, to fit all experiments on a single
NVIDIA A100-40GB GPU. We use maximum se-
quence lengths of 300, 128, and 512 tokens. For
all experiments we use the same reference models
as the main models for fair comparison.

For k-Means clustering in S2L, Prototypicality,
and SemDedup, we use 100 clusters on CAD and
DialogSum, and 200 clusters on WinoGrande, fol-
lowing the suggestions from Tirumala et al. (2023)
to set the number of clusters to around the square
root of the number of instances. Moreover, we
compute gradients using the first five checkpoints
for all experiments, and project them into a 1024-
dimensional space using Park et al. (2023) (details
see hyperparameter search).

Evaluation Metrics We evaluated CAD and Dy-
naHate using the macro F1 score, WinoGrande by
accuracy, and DialogSum by ROUGE-1, ROUGE-
2, and ROUGE-L (from HuggingFace Evaluate),
following the original studies (Vidgen et al., 2021;
Sakaguchi et al., 2021; Chen et al., 2021).

Infrastructure All experiments were run on a
single NVIDIA A100-40GB GPU using three ran-
dom seeds. We used PyTorch 2.3, Transformers
4.42, and vLLM 0.5 for training and inference.
Moreover, we use bfloat16 on all experiments
to improve efficiency.

Hyperparameter Search We searched for four
hyperparameters: the number of training epochs,
the number of clusters for k-Means clustering, the
dimensionality of the projected gradients, and the
checkpoints to use for gradient computation.

For the number of training epochs, we first per-
form a search over 3, 5, 7, and 10 epochs on all
datasets and models, using three random seeds.
We observe that models of different sizes share

similar performance trends over epochs, with im-
provements continuing as the number of epochs
increased. We therefore use the smaller models,
i.e., DeBERTaV3Base and OPT-125M, and extend
this search over 15, 20, and 25 epochs. Across all
datasets, the best performance is achieved with 15
epochs.

For the number of clusters, we search over 2, 5,
10, 20, 50, 100, and 200 clusters for each dataset
and model, using three random seeds. The results
are highly consistent across cluster numbers. Fol-
lowing Tirumala et al. (2023), we use the square
root of the dataset size as a guideline, settling on
100 clusters for CAD and DialogSum, and 200 for
WinoGrande.

For gradients, we use smaller models
(DeBERTaV3Base and OPT-125M) for hyper-
parameter search, and only one random seed (0) to
avoid the high costs of computing and projecting
gradients. We compute the gradients for all 15
checkpoints, and project them into 1024, 2048,
and 4096 dimensions. First, we observe that
different projections yield similar results, and thus
choose 1024 for further experiments for efficiency.
Second, we experimented with different strategies
for selecting checkpoints, including the first three,
the last three, the first five, the last five, and evenly
spaced three and five checkpoints. Using the first
checkpoints is the most consistent with using all
checkpoints, with the first five yielding a minimum
Spearman’s rank correlation of 0.96. We therefore
use the first five checkpoints for all experiments.

B Overview of Data Pruning Methods

Hard-to-Learn (training dynamics) The Hard-
to-Learn method is based on a simple intuition:
training instances that are difficult for models to fit
often contain fewer regular patterns and can thus
improve model generalization (Swayamdipta et al.,
2020; Jiang et al., 2021). In classification tasks,
the score of an instance (xi, yi) is defined as the
average prediction probability of the correct label
across different epochs, i.e., 1

T

∑T
t=1 p

(t)
M(yi|xi).

The main model is then trained on instances with
the lowest scores. Originally proposed for classifi-
cation tasks, Bhatnagar et al. (2022) and İnce et al.
(2023) extend this concept to generation tasks, by
replacing the minus average prediction probability
with the inverse perplexity.

SmallToLarge (training dynamics) SmallTo-
Large (S2L; Yang et al., 2024) is proposed to select
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diverse instances, to preserve full-dataset knowl-
edge during supervised fine-tuning. Noting that
similar loss trajectories indicate similar knowledge,
S2L performs three steps to ensure the diversity of
the selected data. First, each training instance is
represented by its cross entropy loss trajectory ob-
served during reference model training. S2L then
performs k-means clustering on these trajectories.
Finally, S2L iteratively samples from each clus-
ter, while balancing the number of instances across
clusters.

Prototypicality (hidden states) The Prototypi-
cality method (Sorscher et al., 2022) selects dif-
ficult instances in pretraining, by exploiting their
similarities: it measures difficulty based on how
prototypical an instance is. Specifically, after rep-
resenting instances by their hidden states, pro-
totypicality applies k-means clustering and ranks
instances based on their distances to their cluster
centroids. Instances with larger distances are con-
sidered less prototypical and therefore more diffi-
cult, and are thus selected to train the main model.

SemDeDup (hidden states) Building on Proto-
typicality, targeting large-scale pretraining, SemD-
eDup includes an additional step to also account
for data diversity (Abbas et al., 2023): after clus-
tering, it identifies semantically duplicate pairs of
instances within each cluster using cosine similar-
ities of their hidden states. For each identified
duplicate pair, it retains the instance that lies far-
ther from the cluster centroid, thereby prioritizing
diversity while maintaining difficulty.

LESS (gradients) Proposed for supervised fine-
tuning, LESS additionally requires a validation set
to select more relevant instances, using cosine
similarities between gradients (Xia et al., 2024).
Formally, the relevance of (xi, yi) w.r.t. a valida-
tion instance (xval, yval) is defined as

∑T
t=1 ηt ·

∇θℓ
(t)
M(xi, yi)

⊤∇θℓ
(t)
M(xval, yval)), where ηt is the

average learning rate between the t-th and the t+1-
th checkpoint. These gradients are normalized in
generation tasks because their norms negatively
correlate with sequence lengths.

Self-Influence (gradients) Feldman and Zhang
(2020) define memorization during training as the
prediction probability decrease of an instance be-
fore and after removing it from the training set,
i.e., self-influence. They argue that memorized in-
stances are usually difficult-to-predict, and thus

contribute more to generalization under the long-
tail assumption of testing cases (Feldman, 2020).
In this work, following Bejan et al. (2023), we
use TracIn (Pruthi et al., 2020) for approximation.
Formally, the self-influence score of (xi, yi) is esti-
mated as

∑T
t=1 ηt∇θℓ

(t)
M(xi, yi)

⊤∇θℓ
(t)
M(xi, yi).

C Discussion of out-of-distribution
settings

We focus on in-distribution settings in this paper,
where the validation and test data come from the
same distribution, although the train data may come
from a different distribution, e.g., CAD(train)-
DynaHate(validation/test) in HSD. Here we dis-
cuss the potential impact of the out-of-distribution
(OOD) settings, where the training and validation
data come from different distributions.

Regarding representations, we expect they per-
form similarly as in in-distribution settings. For
example, gradients should be better: their discrim-
inative power can help model build robust deci-
sion boundaries, in both in-distribution and out-of-
distribution settings; meanwhile, we still expect
hidden states to be less effective, because they lack
the discriminative power to distinguish instances
that offer different signals for model training.

Regarding selection objectives, we expect meth-
ods that prioritize difficult instances to perform
better, because easy training instances usually con-
tain more regularities and shortcuts. For example,
in NLI, contradiction with negation words usually
are considered “easier” than the ones without nega-
tion words, because they are seen more frequently
in the training data; meanwhile, we expect methods
that prioritize relevance to perform worse, because
this might drive the training data distribution fur-
ther away from the test data distribution, since the
validation sets that guide these selections follow
different distributions than the test sets.
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D Proofs

D.1 Derivation of Remark 3.1

We first restate the remark for reference.

Remark D.1 (Explicit expressions). Let z∗ =
y∗wThM(x∗) be the (signed and scaled) dis-
tance from hM(x∗) to the decision boundary.
We have Dℓ = (log ((1 + e−zi)/(1 + e−zj )))2,
Dg = ∥yihM(xi)

1+ezi − yjhM(xj)

1+ezj
∥22 =

∥hM(xi)∥22
(1+ezi )2

+

∥hM(xj)∥22
(1+ezj )2

− 2
yiyjhM(xi)

T hM(xj)

(1+ezi )(1+ezj )
.

Derivation. We first derive the expression for Dℓ.

Dℓ:= ∥ℓM(xi, yi)− ℓM(xj , yj)∥22 (1)

= ∥ log(1 + e−yiw
T hM(xi))

− log(1 + e−yjw
T hM(xj))∥22 (2)

= (log(1 + e−zi)− log(1 + e−zj ))2 (3)

= (log(
1 + e−zi

1 + e−zj
))2 (4)

Next, we derive the expression for Dg. Recall
that in §3, we defined Dg := ∥∇wℓM(xi, yi) −
∇wℓM(xj , yj)∥22. We first derive ∇wℓM(xi, yi) =
yihM(xi)
1+ezi .

∇wℓM(xi, yi)= ∇w log(1 + e−yiw
T hM(xi))(5)

= ∇w log(1 + e−zi) (6)

= −(1− σ(zi))yihM(xi) (7)

= −yihM(xi)

1 + ezi
(8)

The derivation of ∇wℓM(xj , yj) =
yjhM(xj)

1+ezj

is analogous to the one above, and thus we get
Dg = ∥yihM(xi)

1+ezi − yjhM(xj)

1+ezj
∥22.

D.2 Proof of Theorem 3.3

We first restate the theorem for reference.

Theorem D.2. The discriminative power of losses
and gradients (relative to that of hidden states) are
dependent of the region the hidden states lie in,
satisfying

Cℓ =
ezi

1 + ezi
∥w∥, and

Cg ≤ 1

1 + ezi
+

ezi

(1 + ezi)2
∥hM(xi)∥∥∥w∥.

Proof. We first prove the discriminative power of
losses. Let σ(zi) = 1

1+e−zi
, we have

∂ℓM(xi, yi)

∂hM(xi)
= −∂ log σ(zi)

∂zi

∂zi
∂hM(xi)

(9)

= −(1− σ(zi))yiw (10)

= − 1

1 + ezi
w (11)

= −(1− pM(yi|xi))w. (12)

Therefore,

Cℓ = ∥∂ℓM(xi, yi)

∂hM(xi)
∥ =

1

1 + ezi
∥w∥. (13)

Next, we prove the discriminative power of gra-
dients. We have

∂∇wℓM(xi, yi)

∂hM(xi)
(14)

=
∂((yihM(xi))/(1 + ezi))

∂hM(xi)
(15)

=
yi

1 + ezi
I − yihM(xi)e

zi

(1 + ezi)2
∂z

∂hM(xi)
(16)

=
yi

1 + ezi
I − ezi

(1 + ezi)2
hM(xi)w

⊤. (17)

Therefore,

Cg = ∥∂∇wℓM(xi, yi)

∂hM(xi)
∥ (18)

= ∥ 1

1 + ezi
I − ezi

(1 + ezi)2
hM(xi)w

⊤∥ (19)

≤ ∥ 1

1 + ezi
I∥+ ∥ ezi

(1 + ezi)2
hM(xi)w

⊤∥(20)

=
1

1 + ezi
+

ezi

(1 + ezi)2
∥hM(xi)∥∥w∥. (21)

D.3 Proof of Corollary 3.4

We first restate the corollary for reference.

Corollary D.3. Let ∥w∥∥hM(xi)∥ = α. When
α is smaller than the positive root of function
−x(1 − ex) = 1 + ex (∼ 1.544), Cg monotoni-
cally decreases as zi increases, which is similar
to Cℓ. However, when α is larger, Cg increases
with zi when zi ≤ log(α−1

α+1), which is negatively
close to the decision boundary, and decreases when
zi > log(α−1

α+1).

Proof. To study the behavior of Cg with zi, we take
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the derivative of Cg with respect to zi,

∂Cg
∂zi

=
∂

∂zi
(

1

1 + ezi
+

ezi

(1 + ezi)2
α) (22)

= − ezi

(1 + ezi)2
+

ezi

(1 + ezi)2
α− 2e2zi

(1 + ezi)3
α

=
ezi

(1 + ezi)2
(−1 + α− 2ezi

1 + ezi
α)

=
ezi

(1 + ezi)3
(α(1− ezi)− (1 + ezi))

=
ezi

(1 + ezi)3
((α− 1)− (α+ 1)ezi). (23)

For the domain of zi, we know that

zi = yiw
⊤hM(xi) = α cos(ϕ) ∈ [−α, α](24)

, where ϕ is the angle between w and hM(xi).
When zi > 0, i.e., the prediction is correct,

∂Cg/∂zi < 0. Therefore, Cg monotonically de-
creases as zi increases.

When zi < 0, i.e., the prediction is incorrect:

• If 0 < α ≤ 1, α − 1 ≤ 0. From Eq. 23,
we know that ∂Cg/∂zi < 0. Therefore, Cg
monotonically decreases as zi increases.

• If α > 1, when zi ≤ log(α−1
α+1), ∂Cg/∂zi >

0. Therefore, Cg increases with zi ∈
[−α, log(α−1

α+1)) (if exists), then decreases
when zi ≥ log(α−1

α+1). To make sure the range
exists, we need log(α−1

α+1) > −α, which is
equivalent to α >∼ 1.544. Otherwise, sim-
ilar to the case of α ≤ 1, Cg monotonically
decreases as zi increases.

E Additional Results
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Figure 5: Ablation studies on pretrained vs. fine-tuned hidden states.
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(c) DeBERTaV3Base on DynaHate (F1)

0.0 0.2 0.4 0.6
Data budget

0.50

0.55

0.60

0.65

0.70

0.75

Dummy

Full Data

Selection

Diversitys2l

Difficultyproto

Relevanceless

Representation

`M
hM
∇w`M

(d) DeBERTaV3Base on WinoGrande (Ac-
curacy)

0.0 0.2 0.4 0.6
Data budget

26

27

28

29

30

31

32
Full Data

Selection

Diversitys2l

Difficultyproto

Relevanceless

Representation

`M
hM
∇w`M

(e) OPT-125M on DialogSum (Rouge-L)
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(f) OPT-350M on DialogSum (Rouge-L)
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(g) OPT-125M on DialogSum (Rouge-1)
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(h) OPT-350M on DialogSum (Rouge-1)
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(i) OPT-125M on DialogSum (Rouge-2)
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Figure 6: Ablation studies on using different data representations with the same selection algorithm.
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