The Role of Deductive and Inductive Reasoning in Large Language Models

Chengkun Cai, Xu Zhao, Haoliang Liu, Zhongyu Jiang, Tianfang Zhang, Zongkai Wu, Jenq-Neng Hwang, Lei Li


Abstract
Large Language Models (LLMs) have demonstrated impressive capabilities in reasoning tasks, yet their reliance on static prompt structures and limited adaptability to complex scenarios remains a major challenge. In this paper, we propose the **Deductive and Inductive (DID)** method, a novel framework that enhances LLM reasoning by dynamically integrating both deductive and inductive reasoning approaches. Drawing from cognitive science principles, DID implements a dual-metric complexity evaluation system that combines Littlestone dimension and information entropy to precisely assess task difficulty and guide decomposition strategies. DID enables the model to progressively adapt its reasoning pathways based on problem complexity, mirroring human cognitive processes. We evaluate DID’s effectiveness across multiple benchmarks, including the AIW, MR-GSM8K, and our custom Holiday Puzzle dataset for temporal reasoning. Our results demonstrate great improvements in reasoning quality and solution accuracy - achieving 70.3% accuracy on AIW (compared to 62.2% for Tree of Thought), while maintaining lower computational costs.
Anthology ID:
2025.acl-long.820
Volume:
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Month:
July
Year:
2025
Address:
Vienna, Austria
Editors:
Wanxiang Che, Joyce Nabende, Ekaterina Shutova, Mohammad Taher Pilehvar
Venue:
ACL
SIG:
Publisher:
Association for Computational Linguistics
Note:
Pages:
16780–16790
Language:
URL:
https://preview.aclanthology.org/ingestion-acl-25/2025.acl-long.820/
DOI:
Bibkey:
Cite (ACL):
Chengkun Cai, Xu Zhao, Haoliang Liu, Zhongyu Jiang, Tianfang Zhang, Zongkai Wu, Jenq-Neng Hwang, and Lei Li. 2025. The Role of Deductive and Inductive Reasoning in Large Language Models. In Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 16780–16790, Vienna, Austria. Association for Computational Linguistics.
Cite (Informal):
The Role of Deductive and Inductive Reasoning in Large Language Models (Cai et al., ACL 2025)
Copy Citation:
PDF:
https://preview.aclanthology.org/ingestion-acl-25/2025.acl-long.820.pdf