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Abstract

Simultaneous speech translation (SST) outputs
translations in parallel with streaming speech
input, balancing translation quality and latency.
While large language models (LLMs) have
been extended to handle the speech modal-
ity, streaming remains challenging as speech
is prepended as a prompt for the entire gener-
ation process. To unlock LLM streaming ca-
pability, this paper proposes SimulS2S-LLM,
which trains speech LLMs offline and employs
a test-time policy to guide simultaneous in-
ference. SimulS2S-LLM alleviates the mis-
match between training and inference by ex-
tracting boundary-aware speech prompts that
allows it to be better matched with text input
data. SimulS2S-LLM achieves simultaneous
speech-to-speech translation (Simul-S2ST) by
predicting discrete output speech tokens and
then synthesising output speech using a pre-
trained vocoder. An incremental beam search is
designed to expand the search space of speech
token prediction without increasing latency.
Experiments on the CVSS speech data show
that SimulS2S-LLM offers a better translation
quality-latency trade-off than existing methods
that use the same training data, such as improv-
ing ASR-BLEU scores by 3 points at similar
latency.

1 Introduction

Simultaneous speech translation converts input
speech into translation output before the speech
input utterance ends, enabling low-latency interac-
tion (Zhang et al., 2024). The translation can be
text or speech, classified as Simul-S2TT or Simul-
S2ST. Conventional Simul-S2ST use a cascaded
approach that includes automatic speech recogni-
tion (ASR), machine translation (MT), and text-to-
speech (TTS) (Nakamura et al., 2006). However,
cascaded methods suffer from error propagation
and hinder joint optimisation (Deng and Woodland,
2024b). In Simul-S2ST the model must decide

when to emit translation tokens from incomplete
speech input, which is challenging due to the con-
tinuous nature and the uncertain duration of spoken
data1. Recent work has begun exploring end-to-end
(E2E) Simul-S2ST (Ma et al., 2024a; Zhang et al.,
2024; Barrault et al., 2023). However, leveraging
large language models (LLMs), known for their re-
markable performance across a wide range of tasks,
in Simul-S2ST remains a challenge.

Text-based LLMs have shown widespread suc-
cess (Brown et al., 2020; Touvron et al., 2023;
Dubey et al., 2024; Ouyang et al., 2022) and have
been extended to handle speech (Chu et al., 2023;
Tang et al., 2024; Deng et al., 2025), by prepending
the speech as a prompt for LLM output generation
and conditioning the LLM on the speech prompts.
However, this decoder-only architecture struggles
with streaming, since all of the speech prompt is
prepended beforehand, and all subsequent gener-
ated output attends to the speech prompts (Chen
et al., 2024). Therefore, online modifications must
rely on previously obtained speech-text alignments
to limit the speech accessible for each text token
(Seide et al., 2024; Tsunoo et al., 2024).

To address these challenges and enable the use
of speech LLMs for simultaneous speech transla-
tion, this paper proposes SimulS2S-LLM, which
to the best of our knowledge is the first work to
apply LLMs for Simul-S2ST. Moreover, SimulS2S-
LLM aims to avoid restricting speech LLMs to spe-
cific streaming tasks, achieved via offline training.
SimulS2S-LLM adopts a test-time Wait-k strategy
(Ma et al., 2018) during inference to achieve simul-
taneous translation, allowing it to use only limited
speech input as prompts to generate predicted trans-
lations. To alleviate the training-testing mismatch
caused by offline training, SimulS2S-LLM lever-
ages a continuous integrate and fire (CIF) mech-

1Simultaneous inference/translation means both speech
input and output are streamed, in contrast to work that only
streams speech generation based on complete input speech.
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anism (Dong and Xu, 2020) to extract a token
boundary-aware speech prompt from the stream-
ing encoder input. For Simul-S2ST, SimulS2S-
LLM predicts target-language discrete speech to-
kens based on the LLM hidden states and then syn-
thesising output speech in the target language using
a pre-trained vocoder. An incremental beam search
is introduced to expand the search space while
avoiding additional latency. The system is trained
in an end-to-end fashion with a fixed text LLM. The
proposed SimulS2S-LLM was evaluated on a Com-
mon Voice-based Speech-to-Speech (CVSS) trans-
lation corpus, showing improved quality-latency
trade-offs compared to existing Simul-S2ST meth-
ods, despite being trained offline.

The main contributions of the paper are listed
below:

• SimulS2S-LLM, to our knowledge, is the first
work extending LLMs to Simul-S2ST.

• With boundary-aware speech prompts, a novel
offline training method is proposed, unlocking
the Simul-S2ST capabilities of speech LLMs
without restricting them to certain streaming
tasks, aligning with the expectations of LLMs.

• Based on LLM multi-layer hidden states, in-
cremental beam search is designed to expand
the prediction search space of speech tokens.

• Extensive experiments were conducted, in-
cluding comparisons of different methods to
extract speech prompts.

2 Related Work

2.1 Simultaneous Speech Translation
Existing simultaneous speech translation methods
focus on speech-to-text translation (Simul-S2TT),
which can be divided into fixed and flexible poli-
cies. Wait-k is a typical fixed read-write policy
that was initially proposed for text machine transla-
tion (Ma et al., 2018) and then extended to speech
translation (Ma et al., 2020c; Ren et al., 2020;
Zeng et al., 2021; Dong et al., 2022). Further-
more, many studies have also explored flexible
policy approach, including monotonic multi-head
attention (MMA) (Ma et al., 2020b), the CIF-based
method (Chang and Lee, 2022), neural transduc-
ers (Xue et al., 2022), and its variants (Deng and
Woodland, 2024b; Liu et al., 2021; Tang et al.,
2023). These methods train the model in a stream-
ing manner, enabling it to decide when to emit

translation tokens on the fly. Recently, some stud-
ies have explored using offline-trained attention-
based encoder-decoder models for simultaneous in-
ference (Liu et al., 2020; Papi et al., 2023a,b), such
as determining whether to output translations based
on attention scores (Papi et al., 2023a). However,
this strategy may pose challenges when applied
to decoder-only architectures due to the reliance
solely on self-attention.

2.2 Direct Speech-to-Speech Translation

Recent advancements in direct speech-to-speech
translation have been driven by the use of discrete
speech tokens, extracted from self-supervised pre-
trained models such as HuBERT (Hsu et al., 2021).
The target-language discrete speech tokens are used
as the training objective and vocoders are used to
synthesise speech (Lee et al., 2022). Inaguma et al.
(2023a) first transforms the source speech into hid-
den text states in the target language, based on
which the target discrete speech tokens are gener-
ated. Dong et al. (2024) uses cross-lingual LMs to
convert source semantic tokens into target semantic
tokens, which are then used to predict target acous-
tic tokens for speech generation. Similarly, Le et al.
(2024) jointly predicts the target-language text and
residual vector quantisation codes.

Direct speech-to-speech translation is already
very challenging, and performing it simultaneously
(Simul-S2ST) requires the translation to be gen-
erated based on incomplete source speech and is
therefore a still harder task. StreamSpeech (Zhang
et al., 2024) uses connectionist temporal classifica-
tion (CTC) (Graves et al., 2006) to align the source
speech with the source text and target text, which
are then used to guide simultaneous inference. It
employs multi-task training, including ASR and
Simul-S2TT tasks, to help in Simul-S2ST training.
(Zhao et al., 2024) uses a neural transducer model
(Graves, 2012) to predict target-language discrete
speech tokens from source speech. However, there
is still a lack of research that effectively leverages
powerful LLMs for Simul-S2ST.

2.3 Speech Large Language Models

LLMs have achieved success (Achiam et al., 2023;
Scao et al., 2022) and have been applied to text-
based simultaneous translation (Koshkin et al.,
2024a,b). Several studies have extended LLMs to
handle speech input (Chu et al., 2023; Zhang et al.,
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2023). Speech LLMs2 can be divided into two cat-
egories (Cui et al., 2024). The first uses discrete
speech tokens to extend the LLM vocabulary and
build spoken generative LMs (Zhang et al., 2023;
Borsos et al., 2023; Wang et al., 2023). The second
category uses continuous speech representations as
the prompt to condition LLMs (Chu et al., 2023;
Deng et al., 2025; Fathullah et al., 2024; Wu et al.,
2023; Yu et al., 2024; Chen et al., 2023; Huang
et al., 2024). This paper falls into the second cat-
egory, as previous work (Fang et al., 2024) has
shown that this approach can effectively leverage
off-the-shelf text-based LLMs for efficient training.

With the advent of GPT-4o, speech-to-speech
LLMs have attracted more attention and given rise
to a series of models such as SpeechGPT (Zhang
et al., 2023). Mini-Omni (Xie and Wu, 2024) intro-
duced parallel generation of text and audio, allow-
ing models to initiate reasoning directly in audio.
Llama-Omni (Fang et al., 2024) generates semantic
speech tokens based on text hidden states. Moshi
(Défossez et al., 2024) leverages both acoustic and
semantic speech tokens to simultaneously model
the input and output streams, enabling full-duplex
operation. LSLM (Ma et al., 2024b) introduces
a simplified way to achieve full-duplex operation
using only semantic tokens. There are also some
multi-modal generative LLMs, such as AnyGPT
(Zhan et al., 2024). Our work differs by focusing
on simultaneous inference, predicting target speech
from incomplete source speech. In contrast, prior
work (Fang et al., 2024; Xie and Wu, 2024; Ma
et al., 2024b) supports streaming speech genera-
tion but needs complete speech inputs or segments
with sufficient information, whereas Simul-S2ST
requires low latency and is thus more challenging.

3 SimulS2S-LLM

SimulS2S-LLM, as shown in Fig. 1, uses a stream-
ing encoder to extract a boundary-aware speech
prompt from the source speech and pre-pends it
before the embeddings (z0 · · · zN ) of LLM text to-
ken input ([sos], · · · , yN ), which follows a decoder-
only architecture. The multi-layer hidden states
of the LLM are weighted and summed, and the
discrete output speech tokens (s1 · · · sL) are pre-
dicted in a streaming manner. SimulS2S-LLM is
trained in an offline3 manner, so that SimulS2S-

2Further analysis of speech LLMs refers to (Fathullah et al.,
2024; Deng et al., 2025).

3Offline training refers to training where speech LLMs
are not streaming-based, meaning that during training, the
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Figure 1: Illustration of SimulS2S-LLM offline training.
⊕ denotes addition. Prefix and postfix text contain
template instructions. The hidden states of each LLM
layer are weighted (βi) and summed.

LLM retains the potential to be applied to other
non-streaming tasks. After training, SimulS2S-
LLM directly performs simultaneous inference for
Simul-S2ST.

3.1 SimulS2S-LLM Architecture
SimulS2S-LLM contains four main modules: a
streaming acoustic encoder, a CIF module, a text-
based LLM, and a streaming speech generator.
The encoder and the CIF are used to extract the
boundary-aware speech prompts in a streaming
manner, which is then fed into the text-based LLM
along with other prompt templates that contain task
instructions, i.e. the prefix and postfix text in Fig. 1,
which are used to condition the text generation.

Training with teacher-forcing in LLMs can in-
troduce a mismatch between training and testing,
which may particularly affect the last-layer hid-
den state due to its focus on semantic information
(Chang et al., 2023). To address this, this paper em-
ploys a weighted sum of multi-layer LLM hidden
states. Specifically, denote hm

i as the hidden state
of the m-th layer at the i-th step, the weighted sum
is obtained with trainable weights βm:

hi = β1 · h1
i + · · ·+ βm · hm

i (1)

The hidden states hi are fed into a streaming
speech generator, which uses causal Transformer

prediction of all tokens can attend to the entire speech input.
This is independent of whether a streaming encoder is used.
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Figure 2: Illustration of the boundary-aware speech
prompt extraction using the CIF. ⊕ denotes addition.

layers to enable streaming. SimulS2S-LLM em-
ploys semantic speech tokens as targets, with the
predicted tokens passed to a vocoder to synthesise
speech in the target language. Inspired by (Saharia
et al., 2020; Fang et al., 2024), SimulS2S-LLM
up-samples hi and applies a simple CTC objective
to align the target speech tokens.

3.2 Boundary-aware Speech Prompt

The challenges faced by SimulS2S-LLM mainly
stem from the mismatch between offline training
and simultaneous inference. This paper does not
focus on scenarios with extremely low latency (e.g.,
AL < 1 s in Simul-S2TT), as prior work (Deng and
Woodland, 2024b) indicates these are unsuitable for
offline-trained models and compromise translation
quality due to the need for re-ordering.

Preliminary experiments showed that simply us-
ing down-sampling methods, such as stacking en-
coder outputs (Fathullah et al., 2024; Yu et al.,
2024; Ma et al., 2024c) to obtain speech prompts,
leads to poor performance during simultaneous in-
ference after offline training. However, inspired
by the fact that the test-time wait-k strategy works
well in text-based simultaneous machine transla-
tion (Gu et al., 2017; Ma et al., 2018), this paper
proposes that the key to unlocking simultaneous in-
ference for offline-trained speech LLMs is extract-
ing boundary-aware speech prompts, which makes
the system closer to the text-based scenario. Sim-
ple down-sampling during simultaneous decoding,
where only partial speech prompts are available,
ignores word boundary information and prevents
the model from making correct predictions.

SimulS2S-LLM obtains the boundary-aware

speech prompts using the CIF4 mechanism (Dong
and Xu, 2020), a non-autoregressive method that
jointly learns alignments and high-level represen-
tations. To be more specific, a scalar weight αt is
learned for each encoder output frame et, and the
boundary-aware speech prompts pi are obtained
via weighted addition. Following (Deng and Wood-
land, 2024b), this paper simply uses the last dimen-
sion of et as the raw scalar attention value αt to
avoid additional parameters: αt = sigmoid(et,d),
where d is the dimension size of et. The weights
αt are accumulated from left to right (i.e., to sup-
port streaming) until the sum exceeds a thresh-
old of 1.0. Once the threshold is reached, the
current weight αt is split into two parts αt,1 and
αt,2: αt,1 ensures the accumulation of exactly
1.0, while αt,2 is used for the next integration.
For instance, as shown in Fig. 2, if the thresh-
old 1.0 is reached at t = 5, the boundary-aware
speech prompts at the 1-st step can be obtained via:
p1 =

∑4
j=1 αj · ej,1:d−1 + α5,1 · e5,1:d−1. The

pi will be mapped to the same dimension size as
the LLM embedding size before being fed in. The
accumulation is then reset to zero and conducted in-
crementally. To learn the CIF alignment, a quantity
loss Lqua = |∑T

j=1 αj −N | is calculated during
training, guiding accumulated weights to align with
the source text length (N).

3.3 Offline Training of SimulS2S-LLM

SimulS2S-LLM uses a two-stage training strategy.
The first stage of training corresponds to the speech-
to-text translation task. An off-the-shelf text-based
LLM is used and kept fixed. The encoder and CIF
are optimised under the supervision of the cross-
entropy loss function as shown in Fig. 1, where the
target-language text tokens (y1, · · · , [eos]) is used
as the training target. In addition, the quantity loss
is also considered:

LFirst
Train = LCE + γLqua (2)

Note the entire speech prompt is pre-pended to
the input text embedding sequence (z0 · · · zN ), en-
abling offline training. In addition, the template
instructions that determine the translation task, e.g.
“Translate the French text into English", are used in
both the first and second-stage training.

In the second stage of training, only the layer-
wise weights βi and speech generator are updated

4The visualisation of CIF alignment refers to the supple-
mentary materials of Deng and Woodland (2024a)
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Figure 3: Illustration of the simultaneous inference of offline-trained SimulS2S-LLM (with wait-3 as an example)
(a) the generation of the 1-st hidden state and corresponding speech tokens ti; (b) 2-nd generation; (c) overall
illustration of the hidden state generation order according to the speech prompt (always wait 3 more steps here).

under the supervision of the CTC loss, where the
speech semantic tokens are used as the target.

3.4 Simultaneous Inference of SimulS2S-LLM

SimulS2S-LLM uses the wait-k strategy during
testing to achieve simultaneous inference. The CIF
module, along with the streaming encoder, extracts
the speech prompts online, whose length is at the
text token level. Therefore, the inference process
is determined and driven by CIF. When k = 3 in
wait-k, as shown in Fig. 3, the hidden states corre-
sponding to the translation generated by the LLM
are always two steps behind the speech prompt. For
example, in Fig. 3, a speech prompt of length 3 cor-
responds to the generation of the first LLM token
(Fig. 3(a)), while a speech prompt of length 4 corre-
sponds to the generation of the second LLM token
(Fig. 3(b)). Note when a new speech prompt is ob-
tained from newly received speech, past keys and
values including positional information need to be
updated accordingly before LLM generation. Once
the entire speech input is loaded, the LLM is no
longer constrained by the speech prompt length and
completes the prediction auto-regressively, making
use of tail beam search (Ma et al., 2018).

Whenever a new hidden state is generated, it is
fed into the speech generator, where it undergoes
up-sampling (e.g., by a factor of sampling rate U )
before being passed into a causal Transformer layer.
The speech generator then outputs new CTC logits.
To mitigate the independence assumption of CTC,
a speech token-based n-gram LM is built to assist
the CTC frame-synchronous decoding via shallow
fusion. To expand the search space without in-
troducing additional latency, an incremental beam
search is designed. Specifically, within the range
of new CTC logits (i.e., of length U , which is the
up-sampling rate)), decoding is performed frame
by frame using beam search. After decoding the

Algorithm 1 SimulS2S-LLM Inference
Input: E:(n+1)∗c,y, Lmax,K, Final
Output: sgen

1: Lprev ← len(y): Get the previous token y length Lprev
2: Lp, p ← CIF(E:(n+1)∗c): Get speech prompt p and its

length Lp with the input chunks of speech E0:(n+1)∗c
3: if Final then
4: Lgen ← Lmax: Set the new token number Lgen to the

max length Lmax if the input is the final complete one
5: else
6: Lgen ← (Lp − Lprev −K + 1): Guided by wait-k
7: if Lgen <= 0 then
8: return
9: ygen, hgen ← LLM(p, Lgen): New tokens ygen and hidden

states hgen based on p and length constraint Lgen
10: sgen ← Speech-Generator(hgen): New speech tokens
11: return sgen

final frame, only the highest-probability hypothesis
is retained, while other hypotheses are pruned. For
example, the predicted speech tokens (s1 · · · sA) in
Fig. 3(a) are the prefixes of the predicted speech
tokens in Fig. 3(b). Note this pruning is no longer
needed once the input speech has been fully loaded.

This paper uses a chunk-based mask operation
to implement the streaming Transformer encoder.
Therefore, at inference, the speech input is loaded
chunk by chunk, and CIF continues to accumu-
late αt based on the newly read speech chunk, dy-
namically generating new speech prompts. Before
the entire speech input is read, the number of new
LLM tokens generated for each new speech chunk
is still determined by wait-k, i.e. the total length
of LLM tokens remains k shorter than the latest
speech prompt length. If multiple LLM tokens can
be generated within a single speech chunk, beam
search is used to expand the search space. After
generating the last LLM token in each chunk, only
the highest-probability hypothesis is retained to
implement pruning, avoiding additional latency.

The detailed procedure for this simultaneous in-
ference is shown in Algorithm 1, where the inputs
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are the streaming speech encoder output E:(n+1)∗c
(with a chunk size of c), previously predicted to-
kens y, the maximum generation length Lmax, the
wait-k K steps, and whether the input speech is
now a complete utterance, denoted Final. Then
the newly predicted speech semantic tokens sgen

(s1 · · · sA · · ·) will be returned. Note that the func-
tions LLM and Speech-Generator in Algorithm 1
have recorded the past keys and values in a cache,
so only the speech content of the current chunk is
needed to complete the generation.

4 Experimental Setup

4.1 Dataset
Experiments were conducted on CVSS-C data (Jia
et al., 2022b), which is a large-scale speech-to-
speech translation data created from the CoVoST
2 (Wang et al., 2021) speech-to-text translation
dataset with synthesised target speech. SimulS2S-
LLM was evaluated on Spanish-English (Es-En),
French-English (Fr-En), and German-English (De-
En) pairs. Additional details about the data are
provided in Appendix A.

4.2 Model Descriptions
Speech semantic tokens were extracted from the
target speech using mHuBERT (Popuri et al., 2022).
Based on the training set, target speech token-based
4-gram LMs were obtained using KenLM toolkit,
which was incorporated into CTC decoding with
0.5 weight. The raw speech waveform was used
as input. For Es-En and Fr-En, BLOOMZ-7B1
(Scao et al., 2022) was used as the text-based LLM
and kept fixed all the time. For De-En, Llama3-8B
(Dubey et al., 2024) was used as BLOOMZ un-
derperforms in German. A pre-trained unit-based
HiFi-GAN vocoder (Kong et al., 2020) was used
to synthesise speech. To achieve streaming speech
generation, partially predicted speech tokens are
directly sent to the vocoder. The resulting audio
signal is used as the prefix for the next prediction
and will no longer be modified.

All models built in this paper used the same
streaming Transformer encoder, fine-tuned from
the "xlsr_53_56k" model provided by Fairseq (Ott
et al., 2019), with a chunk-based masking operation.
The chunk size was set to 32, corresponding to a
theoretical average latency of 320 ms. More details
can be found in Appendix B.

SimulS2S-LLM In addition to the encoder, as
mentioned in Sec. 3.2, the CIF module only in-

volves a fully-connected (FC) layer to map the
speech prompt dimension to the LLM embedding
dimension, i.e. 4096. The speech generator con-
sists of 8 causal Transformer layers (1024 attention
dimension, 2048 feed-forward dimension, and 8
heads), which use subsequent masks to avoid see-
ing future information. The up-sampling rate U
was set to 25. The beam size of the incremental
beam search was set to 10.

Boundary-unaware SimulS2S-LLM A fixed
down-sampling method (Fathullah et al., 2024) was
implemented to extract a boundary-unaware speech
prompt for comparison with SimulS2S-LLM. This
model, referred to as boundary-unaware SimulS2S-
LLM, serves as the baseline model. Following
(Fathullah et al., 2024), considering the frame stride
of the encoder was 20 ms, every 16 consecutive
acoustic encoder output frames were stacked to
achieve down-sampling. Then, an additional FC
layer was applied to map the stacked encoder out-
puts to the LLM embedding dimension (i.e., 4096)
before feeding them into the LLM. This model also
used the wait-k policy for inference, with every
fixed 16 encoder outputs used as one step.

StreamSpeech StreamSpeech (Zhang et al.,
2024) is a recent Simul-S2ST model that has
achieved state-of-the-art (SOTA) results, with
the same speech tokens and vocoder used as in
SimulS2S-LLM. Note that it is not an LLM-based
approach and is used to provide a benchmark result.

4.3 Metrics
Experiments were implemented based on the
ESPnet-ST (Inaguma et al., 2020). SimulEval (Ma
et al., 2020a) was used to evaluate the models.
ASR-BLEU For Simul-S2ST, the ASR-BLEU
toolkit5 was used to evaluate the translation quality,
which transcribes the synthesised speech into text
before calculating SacreBLEU (Post, 2018) with
the reference text.
ATD Following the Simuleval example6, the aver-
age token delay (ATD) (Kano et al., 2022) was used
to measure the speech generation latency. ATD
refers to the average delay between output sub-
segments and corresponding input sub-segments.

Text output Simul-S2TT was also evaluated, and
the translation quality was measured using Sacre-

5https://github.com/facebookresearch/fairseq/
tree/ust/examples/speech_to_speech/asr_bleu

6https://github.com/facebookresearch/
SimulEval/tree/main/examples/speech_to_speech
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Simul-S2ST Es-En

Simul-S2ST Fr-En
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Figure 4: Simul-S2ST quality-latency trade-off curves
on CVSS-C Es-En, Fr-En, and De-En test sets. The
x-axis represents the latency, measured by ATD, and
the y-axis represents the speech translation quality, mea-
sured by ASR-BLEU. Note that the y-axis scales can be
different on different sub-figures.

BLEU. The speech version of the word-level Av-
erage Lagging (AL) (Ma et al., 2018, 2020c) was
used to measure latency.

5 Experimental Results

This section compares the proposed SimulS2S-
LLM with existing methods, such as StreamSpeech,

S2ST Models Es-En Fr-En De-En
Offline

S2UT 18.53 22.23 –
Translatotron 8.72 16.96 –
Translatotron 2 22.93 26.07 16.91
DASpeech 21.37 25.03 16.14
UnitY 24.95 27.77 18.74
Offline StreamSpeech 27.25 28.45 20.93

Streaming
StreamSpeech 22.94 25.30 17.0
SimulS2S-LLM 26.33 26.93 21.5

Table 1: ASR-BLEU (↑) results on the CVSS-C data
for different models, including S2UT (Lee et al., 2022),
Translatotron (Jia et al., 2019), Translatotron 2(Jia et al.,
2022a), DASpeech (Fang et al., 2023), UnitY (Inaguma
et al., 2023b). The SimulS2S-LLM results correspond
to the last points in Fig. 4. Note the comparisons are not
well-controlled. The published benchmark results are
reproduced from Zhang et al. (2024) on CVSS-C.

as well as boundary-unaware SimulS2S-LLM. Ab-
lation studies were conducted to evaluate the effec-
tiveness of boundary-aware speech prompts, util-
ising multi-layer hidden states and speech token
generation. Note, in order to ensure high translation
quality, SimulS2S-LLM does not target scenarios
requiring extremely low latency.

5.1 Simul-S2ST Results

Figure 4 shows the Simul-S2ST results on CVSS-
C Es-En, Fr-En, and De-En data, with the ASR-
BLEU scores plotted against ATD. Although
SimulS2S-LLM was trained offline, it still clearly
outperforms the strong StreamSpeech models with
simultaneous inference. For example, on the Es-
En test set, SimulS2S-LLM outperformed Stream-
Speech by approximately 4 ASR-BLEU points
while maintaining the same latency. This demon-
strates that SimulS2S-LLM can effectively lever-
age the strong LLM generation capabilities in a
streaming manner. Previous work has shown that
text-based LLMs can be extended to speech with
strong performance across a wide range of tasks,
such as translation and question answering (Tang
et al., 2024; Chu et al., 2023). SimulS2S-LLM
further unlocks simultaneous inference while po-
tentially retaining these emergent abilities by fol-
lowing the same training paradigm. Additionally,
the boundary-unaware version of SimulS2S-LLM
failed to achieve such strong performance, in line
with our expectation that learning boundary-aware
speech prompts can unlock the simultaneous in-
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Figure 5: Simul-S2TT quality-latency trade-off curves
on CVSS-C Es-En test set. The x-axis represents the
latency, measured by AL, and the y-axis represents the
speech translation quality, measured by BLEU.

ference abilities of offline-trained speech LLMs.
With a boundary-aware speech prompt, SimulS2S-
LLM shares more similarities with text-based si-
multaneous translation, where test-time wait-k is
commonly used. Hence, the extensive compar-
isons with both StreamSpeech and the boundary-
unaware SimulS2S-LLM provide strong evidence
for the superiority of our method. The numeri-
cal results in Fig. 4 are given in Appendix C and
extended computation-aware results are shown in
Appendix D.

Table 1 compares streaming SimulS2S-LLM
with published speech-to-speech translation (S2ST)
results from the literature on CVSS-C, showing that
SimulS2S-LLM achieves competitive performance
as a streaming model. In the streaming scenario,
the results for SimulS2S-LLM and StreamSpeech
are represented by the last points in Fig. 4.

Appendix E compares with SOTA models like
SeamlessStreaming (Barrault et al., 2023) which
uses 9,300 hours of speech-to-speech data in con-
trast to between 69.5 and 174 hours of speech-to-
speech data for individual language pairs used here.

5.2 Ablation on Speech Prompt Type for
Simul-S2TT

This sub-section compares SimulS2S-LLM and
boundary-unaware SimulS2S-LLM on the Simul-
S2TT task. Since the only difference between them
is the speech prompt used, this comparison can
effectively evaluate the importance of boundary-
aware speech prompts in unlocking simultaneous
inference. As shown in Fig. 5, SimulS2S-LLM con-
sistently outperformed the boundary-unaware one.
For example, with similar latency, the boundary-
aware SimulS2S-LLM was about 4 BLEU points
higher. Hence, the experimental results on both the

Figure 6: Simul-S2ST Es-En results for SimulS2S-LLM
with single or multi-layer LLM hidden states.

Simul-S2ST and Simul-S2TT tasks demonstrate
the importance of using boundary-aware speech
prompts for offline-trained speech LLMs. The nu-
merical results in Fig. 5 are given in Appendix F

Moreover, by comparing the differences in
translation quality between SimulS2S-LLM and
boundary-unaware SimulS2S-LLM in Fig. 4 and
Fig. 5, it can be observed that the gap is similar,
with the ASR-BLEU and BLEU values both differ-
ing by around 4 points at similar latencies. There-
fore, the main reason for the poorer performance
of boundary-unaware SimulS2S-LLM is the pre-
diction error of the LLM, which is in line with
expectations as they use the same speech generator.

5.3 Ablation on Multi-layer Hidden States

An ablation study was conducted to evaluate the ef-
fectiveness of using multiple layers of LLM hidden
states. Fig. 6 shows that leveraging LLM multi-
layer hidden states is more beneficial for predicting
speech tokens, causing about one ASR-BLEU point
improvement. The final hidden layer focuses on
semantic information (Chang et al., 2023), which
is favourable for text token prediction, whereas
multiple hidden states capture richer information.
Moreover, due to the mismatch caused by teacher
forcing in training, using multiple hidden states
seems to be more robust.

5.4 Ablation on Speech Token Generation

This sub-section compares the use of n-gram and
greedy search for predicting discrete speech tokens.
As shown in Table 2, although discrete speech to-
kens are more challenging to predict than text units,
n-gram LMs based on discrete speech tokens can
still assist CTC in making more accurate predic-
tions, thus improving the translated speech quality.
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Models ASR-BLEUATD (ms)
SimulS2S-LLM w/ n-gram 26.3 3440
SimulS2S-LLM w/ greedy 24.7 3439

Table 2: ASR-BLEU (↑) results on the CVSS-C Es-En
data for different speech token generation methods.

S2ST Models Unsupervised QE Ref
Offline UnitY 0.51 3.33 3.26
Offline StreamSpeech 0.52 3.37 3.35
SimulS2S-LLM 0.72 3.72 3.59

Table 3: BLASER 2.0 (↑) results on the CVSS-C Es-
En data. The published results of offline UnitY and
StreamSpeech are from Zhang et al. (2024).

5.5 Speech Evaluation with BLASER 2.0

This section further uses BLASER 2.0 (Dale and
Costa-jussà, 2024) to evaluate the generated speech
quality of SimulS2S-LLM. BLASER 2.0 includes
three scores: Unsupervised (0–1), QE (1–5), and
Ref (1–5). The Unsupervised version computes co-
sine similarity between sentence-level embeddings
without supervision, while QE and Ref are super-
vised models trained to predict human ratings, with
Ref additionally requiring reference target speech.

Table 3 results show that as a streaming model,
SimulS2S-LLM gave higher BLASER 2.0 scores
compared to the offline StreamSpeech and UnitY
models on the CVSS-C benchmark data, demon-
strating superior translation and speech quality.

6 Conclusions

This paper proposes SimulS2S-LLM, the first work
to extend LLMs to Simul-S2ST while avoiding
being constrained to specific streaming tasks via
offline training. SimulS2S-LLM uses a test-time
wait-k policy to guide the simultaneous inference.
To alleviate offline training and simultaneous infer-
ence mismatch, SimulS2S-LLM extracts boundary-
aware speech prompts based on CIF. To generate
high-quality speech in streaming, multi-layer LLM
hidden states are used by a causal Transformer-
based speech generator to predict discrete speech
tokens. To enhance this prediction process, an in-
cremental beam search is designed to expand the
search space of speech tokens without introducing
additional latency, while a speech token-based n-
gram LM is also incorporated. Experiments show
that SimulS2S-LLM gives a better quality-latency
trade-off than existing Simul-S2ST methods.

Limitations

This paper has the following limitations.

1. SimulS2S-LLM relies on off-the-shelf text-
based LLMs, meaning that the performance
is inherently constrained by the capabilities
of the available text-based models. Due to
limited computing resources, this paper fo-
cuses on using 7B/8B LLMs, as larger models
are beyond our computational capacity. Addi-
tionally, SimulS2S-LLM is restricted to open-
source LLMs and cannot use closed-source
models like GPT-4.

2. This paper does not focus on scenarios with
extremely low latency (e.g., AL < 1 s in
Simul-S2TT), as prior work (Deng and Wood-
land, 2024b) indicates these are unsuitable for
offline-trained models and compromise trans-
lation quality due to the need for re-ordering.
Moreover, using LLMs increases the compu-
tational load, which leads to higher latency
when considering computation time. This is
a common challenge faced by the commu-
nity, and significant research development is
needed to accelerate LLM inference speed.
As such, this aspect is beyond the scope of
this paper and is left as future work. In ad-
dition, since this is the first work to apply
LLM to the Simul-S2ST task, we couldn’t
find an LLM-based method to compare with
SimulS2S-LLM on the Simul-S2ST task.

3. As mentioned in Section 3.4, during the simul-
taneous inference of the proposed SimulS2S-
LLM, when a new speech chunk is read in, the
past keys and values need to be updated before
LLM generation. However, according to the
analysis in Appendix D, the time consumed by
this process should not be significant as it can
be performed in parallel. This paper has also
not evaluated SimulS2S-LLM on long-form
Simul-S2ST due to the lack of data.

4. Due to limitations in training data and com-
puting resources, we were unable to train our
SimulS2S-LLM as extensively as some foun-
dation models like SeamlessStreaming (Bar-
rault et al., 2023) which uses 9,300 hours of
speech-speech data. However, we conducted
comprehensive experiments across three lan-
guage pairs and CVSS-C is the most widely
used speech-to-speech translation data set,
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even though the individual language pairs
have only between 69.5 and 174 hours of
speech-to-speech data. In addition, if more
speech-to-speech translation data is used, the
speech generation performance of SimulS2S-
LLM can be expected to greatly improve.

5. This paper evaluates SimulS2S-LLM on three
European language pairs, each in a single
translation direction (i.e., Es-En, Fr-En, and
De-En). While we believe the technique can
be extended to other languages, including non-
European ones, and additional translation di-
rections, its performance in these cases re-
mains unverified and is left for future work.
In addition, simultaneous translation varies in
difficulty for different language pairs due to
the extent of re-ordering, so achieving Simul-
S2ST for certain language pairs can be chal-
lenging.

6. This paper evaluates SimulS2S-LLM only on
simultaneous speech translation tasks, includ-
ing Simul-S2TT and Simul-S2ST. Although it
claims that SimulS2S-LLM avoids constrain-
ing speech LLMs to specific streaming tasks
through offline training, it does not directly
evaluate its performance on other simultane-
ous inference tasks with speech as the input
or on offline inference tasks. This is because
preserving the zero-shot task capabilities of
speech LLMs is not the main focus of this pa-
per and has already been extensively studied
in prior work.

Ethics Statement

Deep learning systems are data-hungry, and with-
out sufficient data, it is difficult to achieve promis-
ing model performance. For under-resourced lan-
guages or domains, this issue will be even more
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minority groups, resulting in their views being un-
derrepresented or misunderstood. The SimulS2S-
LLM technique proposed in this paper can alleviate
this issue by translating low-resource data into high-
resource data in a low-latency manner, enabling the
model to better handle the task.
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Simul-S2ST Models ASR-BLEU ATD StartOffset EndOffset
SimulS2S-LLM (k=5) 23.2 2533 3109 1722
SimulS2S-LLM (k=6) 24.8 2862 3484 1788
SimulS2S-LLM (k=7) 25.3 3140 3828 2055
SimulS2S-LLM (k=8) 26.3 3440 4191 2209
Boundary-unaware SimulS2S-LLM (k=10) 17.7 2649 3810 2885
Boundary-unaware SimulS2S-LLM (k=11) 19.7 2989 3811 2849
Boundary-unaware SimulS2S-LLM (k=13) 21.4 3442 4374 2904
Boundary-unaware SimulS2S-LLM (k=15) 23.0 3847 4879 3014

Table 4: Numerical results of SimulS2S-LLM on CVSS-C Es-En corresponding to Fig. 4.

Simul-S2ST Models ASR-BLEU ATD StartOffset EndOffset
SimulS2S-LLM (k=5) 22.5 2103 2659 1659
SimulS2S-LLM (k=6) 24.2 2296 2914 1763
SimulS2S-LLM (k=7) 25.9 2460 3136 1857
SimulS2S-LLM (k=8) 26.9 2677 3378 1914
Boundary-unaware SimulS2S-LLM (k=9) 18.8 2307 3025 2309
Boundary-unaware SimulS2S-LLM (k=11) 21.4 2597 3447 2363
Boundary-unaware SimulS2S-LLM (k=13) 23.1 2829 3770 2421
Boundary-unaware SimulS2S-LLM (k=15) 23.7 2987 4014 2518

Table 5: Numerical results of SimulS2S-LLM on CVSS-C Fr-En corresponding to Fig. 4.

CVSS-C Es-En
Train set train

-Duration 69.5 hours
-Sentences 79K

Test sets test dev
-Duration 12.4 hours 12.4 hours
-Sentences 13K 13K

CVSS-C Fr-En
Train set train

-Duration 174.0 hours
-Sentences 207K

Test sets test dev
-Duration 13.3 hours 13.0 hours
-Sentences 15K 15K

CVSS-C De-En
Train set train

-Duration 112.4 hours
-Sentences 128K

Test sets test dev
-Duration 12.1 hours 12.5 hours
-Sentences 14K 14K

Table 6: Statistics of datasets used in this paper

A Data Statistics

The training and test data statistics are summarised
in Table 6. Data pre-processing followed ESPnet-

ST recipes, including speed perturbation with fac-
tors of 0.9 and 1.1 during the first-stage training.
Model training was conducted on two NVIDIA
A100 GPUs, each with 80GB of memory. For
CVSS-C Es-En, each epoch of first-stage train-
ing required approximately 3 hours, while second-
stage training took about 20 minutes per epoch.
For CVSS-C Fr-En, the first-stage training required
around 9 hours per epoch, with the second stage
taking approximately 1 hour per epoch. For CVSS-
C De-En, the first-stage training required around
4 hours per epoch, with the second stage taking
approximately 30 minutes per epoch.

B Hyper-parameters

The hyper-parameters of the models we built are
as follows, with other hyper-parameters following
standard ESPnet-ST recipes. γ in Eq. 2 was set to
0.05. The beam size for LLM-based inference was
set to 5, while the speech token-based incremental
beam search used a beam size of 10. For SimulS2S-
LLM on the Simul-S2ST task, the wait-k policy
was configured with k ∈ {5, 6, 7, 8} on Es-En and
Fr-En. For Simul-S2ST De-En, the wait-k policy
was configured with k ∈ {11, 13, 15, 17}, because
Llama3-8B is English-centric, making German text
token sequences longer than English. Hence, the
learned CIF-based speech prompts become rela-
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Simul-S2ST Models ASR-BLEU ATD StartOffset EndOffset
SimulS2S-LLM (k=11) 18.4 2819 3855 2182
SimulS2S-LLM (k=13) 19.6 3161 4258 2435
SimulS2S-LLM (k=15) 20.7 3469 4621 2636
SimulS2S-LLM (k=17) 21.6 3684 4931 2838
Boundary-unaware SimulS2S-LLM (k=9) 12.4 2467 3176 2563
Boundary-unaware SimulS2S-LLM (k=11) 14.5 2889 3757 2660
Boundary-unaware SimulS2S-LLM (k=13) 15.7 3255 4270 2896
Boundary-unaware SimulS2S-LLM (k=15) 16.8 3563 4697 3043

Table 7: Numerical results of SimulS2S-LLM on CVSS-C De-En corresponding to Fig. 4.

Simul-S2ST Models ASR-BLEU ATD_CA StartOffset_CA EndOffset_CA
SimulS2S-LLM (k=5) 23.2 3114 3627 1722
SimulS2S-LLM (k=6) 24.8 3462 4055 1788
SimulS2S-LLM (k=7) 25.3 3816 4467 2055
SimulS2S-LLM (k=8) 26.3 4239 4945 2209
Boundary-unaware SimulS2S-LLM (k=10) 17.7 3416 4486 2885
Boundary-unaware SimulS2S-LLM (k=11) 19.7 3694 4292 2849
Boundary-unaware SimulS2S-LLM (k=13) 21.4 4195 4939 2904
Boundary-unaware SimulS2S-LLM (k=15) 23.0 4709 5573 3014

Table 8: Compution-aware results of SimulS2S-LLM on CVSS-C Es-En corresponding to Table 4.

Simul-S2ST Models ASR-BLEU ATD_CA StartOffset_CA EndOffset_CA
SimulS2S-LLM (k=5) 22.5 2751 3201 1659
SimulS2S-LLM (k=6) 24.2 2965 3502 1763
SimulS2S-LLM (k=7) 25.9 3178 3784 1857
SimulS2S-LLM (k=8) 26.9 3438 4077 1914
Boundary-unaware SimulS2S-LLM (k=9) 18.8 2993 3525 2309
Boundary-unaware SimulS2S-LLM (k=11) 21.4 3347 4031 2363
Boundary-unaware SimulS2S-LLM (k=13) 23.1 3652 4465 2421
Boundary-unaware SimulS2S-LLM (k=15) 23.7 3893 4804 2518

Table 9: Compution-aware results of SimulS2S-LLM on CVSS-C Fr-En corresponding to Table 5.

tively longer and require larger k values. For Simul-
S2TT, k was set to k ∈ {3, 4, 5, 7} on Es-En. Lmax

for SimulS2S-LLM simultaneous inference is set
to 0.15 times the length of the encoder output

C Numerical Values for Figure 4

The numerical values for Fig. 4 are provided in
Tables 4, 5, and 7. In addition to the ATD values
displayed in Fig. 4, the table includes the StartOff-
set and EndOffset metrics. StartOffset represents
the delay before generating the first frame of the
target speech, while EndOffset indicates the off-
set of the final frame of the target speech relative
to the completion of the source speech. No mat-
ter which latency metric is used, the conclusion
remains consistent.

D Compution-aware Latency Results

This section gives the latency results after consid-
ering the computation time, as shown in Table 8,
Table 9, and Table 10. Note that, as mentioned in
the Limitations section, the use of LLM will in-
crease the computational load, which is a common
challenge faced by the entire community. The re-
sults were tested using an A100 GPU, which will
likely be lower if a more powerful GPU, such as
the H100, is used.

Considering the actual computation time cer-
tainly increases latency. However, even with LLM
used, the computation-aware latency and trans-
lation quality trade-off remain promising. This
computation-aware latency result will evolve with
hardware advancements, and reducing LLM com-
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Simul-S2ST Models ASR-BLEU ATD_CA StartOffset_CA EndOffset_CA
SimulS2S-LLM (k=11) 18.4 3637 4589 2182
SimulS2S-LLM (k=13) 19.6 4073 5095 2435
SimulS2S-LLM (k=15) 20.7 4500 5575 2636
SimulS2S-LLM (k=17) 21.6 4832 5987 2838
Boundary-unaware SimulS2S-LLM (k=9) 12.4 3127 3635 2563
Boundary-unaware SimulS2S-LLM (k=11) 14.5 3528 4249 2660
Boundary-unaware SimulS2S-LLM (k=13) 15.7 4007 4879 2896
Boundary-unaware SimulS2S-LLM (k=15) 16.8 4432 5424 3043

Table 10: Compution-aware results of SimulS2S-LLM on CVSS-C De-En corresponding to Table 5.

putational load has been actively studied by the
community.

In addition, comparing the latency results with
and without considering the computation time, the
smaller k does not make the gap larger than the
larger k value. Smaller k-values will require more
frequent past key-value updates before LLM gen-
eration after new speech input, as mentioned in
Section 3.4, so it can be seen that this update does
not greatly increase the computation time as it is
calculated in parallel.

E Comparison with Foundation Models

Figure 7: Simul-S2ST results of different models on
CVSS-C Es-En. Note the comparison is not well-
controlled as the SeamlessStreaming (Barrault et al.,
2023) has been extensively trained as a translation foun-
dation model using about 9,300 hours of speech-to-
speech training data. Other models were trained on the
same dataset, i.e., CVSS-C, but only SimulS2S-LLM
can utilise the LLM.

This section further compares the proposed
SimulS2S-LLM with the foundation model Seam-
lessStreaming (Barrault et al., 2023), although they

are not directly comparable since SeamlessStream-
ing has been extensively trained on approximately
9,300 hours of speech-to-speech data. Addition-
ally, the results of applying wait-k to the UnitY (In-
aguma et al., 2023b) model, reproduced by Zhang
et al. (2024), are also included for comparison.

As shown in Fig. 7 and Fig. 8, StreamSpeech
greatly outperforms the UnitY model that uses the
Wait-k strategy on both the Simul-S2ST and Simul-
S2TT tasks, which is consistent with the findings
of Zhang et al. (2024), showing that StreamSpeech
is the existing state-of-the-art solution.

Figure 8: Simul-S2ST results of different models on
CVSS-C Es-En. Note the comparison is not well-
controlled as Fig. 7.

On the Simul-S2ST task, as shown in Fig. 7,
SeamlessStreaming unsurprisingly achieves the
best results, but performs poorly on Simul-S2TT
as shown in Fig. 8, consistent with the findings
of (Barrault et al., 2023). Therefore, in general,
the proposed SimulS2S-LLM achieves promising
results, and the gap with SeamlessStreaming on
Simul-S2ST is also acceptable considering that
SeamlessStreaming uses a much larger training
data size. If there is more speech-to-speech train-
ing data, the performance of SimulS2S-LLM can
be expected to be further greatly improved.
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Simul-S2TT Models BLEU LAAL(ms) AL(ms)
SimulS2S-LLM (k=3) 24.7 1384 1061
SimulS2S-LLM (k=4) 28.7 1764 1448
SimulS2S-LLM (k=5) 31.2 2170 1921
SimulS2S-LLM (k=7) 34.0 2805 2631
Boundary-unaware SimulS2S-LLM (k=5) 20.9 1343 1042
Boundary-unaware SimulS2S-LLM (k=7) 26.4 1761 1440
Boundary-unaware SimulS2S-LLM (k=9) 27.7 2317 2022
Boundary-unaware SimulS2S-LLM (k=11) 31.4 2902 2704

Table 11: Numerical Simul-S2TT results of SimulS2S-LLM on CVSS-C Es-En corresponding to Fig. 5.

F Numerical Values for Figure 5

The numerical values for Fig. 5 are provided in
Table 11. In addition to the AL values displayed
in Fig. 5, this table includes the alternative Length-
Adaptive Average Lagging (LAAL) (Papi et al.,
2022) latency metric results. The conclusion re-
mains consistent across different metrics.
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