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Abstract
We present Sparse Interpolated Mixture-of-
Experts (SIMoE) instruction-tuning, an end-
to-end algorithm designed to fine-tune a dense
pre-trained Large Language Model (LLM) into
a MoE-style model that possesses capabili-
ties in multiple specialized domains. During
instruction-tuning, SIMoE automatically iden-
tifies multiple specialized experts under a spec-
ified sparsity constraint, with each expert repre-
senting a structurally sparse subset of the seed
LLM’s parameters that correspond to domain-
specific knowledge within the data. SIMoE si-
multaneously learns an input-dependent expert
merging strategy via a router network, lever-
aging rich cross-expert knowledge for superior
downstream generalization that surpasses ex-
isting baselines. Empirically, SIMoE consis-
tently achieves state-of-the-art performance on
common instruction-tuning benchmarks while
maintaining an optimal performance-compute
trade-off compared to all baselines.

1 Introduction

The rapid advancement of large language models
(LLMs) (Meta, 2024; OpenAI, 2024) has revo-
lutionized natural language processing, cement-
ing their role as foundational tools across dis-
ciplines such as engineering (Hou et al., 2024),
mathematics (Romera-Paredes et al., 2023), hu-
manities (Ziems et al., 2024), and the life sci-
ences (Lin et al., 2022). While pre-trained LLMs
demonstrate impressive general-purpose capabili-
ties, their adaptation to specialized tasks often de-
mands extensive instruction-tuning (Zhang et al.,
2023). This process typically involves supervised
fine-tuning on domain-specific instruction datasets
to align outputs with task requirements. Recent
research highlights the critical interplay between
scaling instruction-tuning data diversity, volume,
and model capacity to achieve robust generaliza-
tion (Wei et al., 2022; Longpre et al., 2023; Meta,
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2024). However, balancing these dimensions effi-
ciently without incurring prohibitive computational
costs remains an open challenge.

This tension has spurred growing interest
in Sparse Mixture-of-Experts (SMoE) architec-
tures (Shazeer et al., 2017), which offers a promis-
ing pathway to flexible scaling of model capacity
while maintaining inference efficiency by dynami-
cally activating subsets of parameters per input for
both training and inference. Yet, practical adoption
of SMoEs in instruction fine-tuning is hindered by
two key barriers: (i) the scarcity of publicly avail-
able pre-trained SMoE checkpoints (Muennighoff
et al., 2025) and (ii) the immense computational
cost of (pre-)training them from scratch. To over-
come these challenges, researchers and practition-
ers are increasingly exploring a cost-effective al-
ternative known as upcycling (Komatsuzaki et al.,
2023), which expands pre-trained dense LLMs into
SMoE architectures by replacing subsets of their
feed-forward networks (FFN) with SMoE modules.
While cost-effective, existing upcycling methods re-
main fraught with limitations that undermine their
efficacy.

First, manual selection of pre-trained parameters
for upcycling: Existing methods upcycle FFN or
attention blocks in pre-trained LLMs, assuming
uniform utility across all upcycled layers. How-
ever, this fixed upcycling strategy fails to account
for critical factors: (1) model-specific dynamics –
layers and parameters within the same pre-trained
LLM can exhibit diverse properties and varying im-
portance to model functionality, and (2) the highly
domain-specific nature of instruction-tuning data,
which may require different parts of pre-trained
models to be upcycled and fine-tuned optimally.
This disconnect between the algorithm, model, and
data renders existing upcycling heuristics highly in-
flexible, preventing them from adaptively meeting
the needs of specific instruction-tuning scenarios.
As a result, existing upcycled approaches lead to

16703



3B 8B
0

20

40

60

80
Pe

ak
 G

PU
 m

em
or

y 
(G

)

27.8%
31.8%

SIMoE (Ours)
Upcyc.

3B 8B
0

10

20

30

Up
cy

cle
d 

m
od

el
 si

ze
 (B

)

42.7%

29.3%

SIMoE (Ours)
Upcyc. Total
Upcyc. Active

Figure 1: Compute cost in terms of (left) peak memory
per GPU during upcycling instruction-tuning of 3B and
8B pre-trained LLMs, and (right) number of model
parameters at inference.

suboptimal performance and diminish the general-
ization capabilities of upcycled LLMs. The bene-
fits of dynamically identifying rather than manu-
ally specifying components are well documented
(Von Oswald et al., 2021; Schwarz et al., 2021;
Chen et al., 2024, e.g.)

Second, a lack of systematic mechanisms to
encourage expert specialization and cooperation.
While Dai et al. (2024) propose an architectural ap-
proach to promote expert specialization by using a
fixed shared expert that is always active in addition
to the routed experts, recent work in Muennighoff
et al. (2025) report performance degradation with
this approach, possibly due to limited adaptability
with rigid expert partitions. Alternatively, some
upcycling approaches explicitly promote special-
ization by fine-tuning domain-specific experts in-
dependently and then merging them into a unified
SMoE architecture. However, these methods crit-
ically depend on high-quality domain labels and
optimal domain partition – requirements that are
not readily met in practice. Consequently, upcycled
experts often exhibit redundancy and fragmented
specialization, undermining their efficacy.

These shortcomings point to an urgent need
for an adaptive, automated framework that opti-
mizes where-to-upcycle and fosters expert special-
ization and synergy. To this end, we introduce
Sparse Interpolated Mixture-of-Experts (SIMoE),
a novel algorithm and MoE architecture designed
to address both challenges in upcycling instruction-
tuning (Fig. 3). During training, SIMoE auto-
matically identifies multiple experts for upcycling
through sparsity-constrained optimization. Each
expert represents a structurally sparse subset of the
base LLM’s parameters, corresponding to special-
ized knowledge within the training data (Fig. 2).
Crucially, SIMoE enables learnable, soft parameter
sharing between experts while imposing an orthog-
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Figure 2: Dendrogram illustrating task similarity de-
rived from learned expert activations, with prefixes indi-
cating domain categories.

onal penalty to encourage specialization, thereby
dynamically discovering a nuanced balance be-
tween synergy and specialization in the upcycled
experts through optimization (Fig. 5). Our comple-
mentary innovations lead to empirical superiority in
our method over strong baselines, delivering signif-
icant improvement over 1.6% in cross-task gener-
alization (Tab. 1) with approximately 30% savings
in training and inference memory costs (Fig. 1).

We summarize our main contributions as follows:

• We propose SIMoE, an effective and flexible
method that systematically determines where-
to-upcycle and fosters expert specialization
and synergy during instruction-tuning.

• We offer an effective solution that maintains
scalability, enabling its application to pre-
trained LLMs with billion-scale parameters.

• We empirically validate the efficacy of our
method, demonstrating superior cross-task
generalization performance on the Super-
NaturalInstruction benchmark, as well as out-
performing the recently open-sourced state-of-
the-art Tülu-v3-8B-SFT (Lambert et al., 2025)
on common LLM benchmarks.

2 Related Work

2.1 Sparse Mixture-of-Experts
Sparse Mixture-of-Experts (SMoE) architec-
tures (Jiang et al., 2024; Dai et al., 2024; Muen-
nighoff et al., 2025) have gained prominence in
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Figure 3: Overview of the proposed Sparse Interpolated Mixture-of-Experts (SIMoE) instruction-tuning approach.
SIMoE conceptually resembles the MoE principle in routing and combining specialized parameter components
through soft merging, while it differs in implementation from conventional MoE architectures by defining each
expert as a specific subset of sparse parameters within a shared network. Specifically, SIMoE upcycles a pre-trained
LLM into a MoE-style model characterized by M experts, consisting of a shared, trainable set of expert parameters
θδ and M distinct, trainable sets of expert masks {zm}Mm=1. In forward computation, (1-2) SIMoE merges
experts via a weighted-sum with coefficients αi generated via a router network hζ based on the input prompt x,
before combining with the frozen, pre-trained LLM. (3) During instruction-tuning, we enforce structured sparsity
and orthogonality on the trainable masks in addition to the usual NLL loss, determining where-to-upcycle and
encouraging expert specialization in a data-driven, fully automatic manner.

both LLM pre-training and post-training due to
their superior scalability compared to dense coun-
terparts. A standard SMoE architecture replaces
the FFN f : X → Y , which maps input to output,
in the Transformer block (Vaswani et al., 2017)
with a MoE module consisting of two components:
(1) a set of M experts {f1, f2, . . . , fM}, and (2)
a router function h : X → RM that outputs ex-
pert activation α = [α1, α2, . . . , αM ] for input x.
The SMoE output y is then given by a weighted
combination of expert outputs:

y =

M∑

i=1

αi · fi(x), where α = h(x). (1)

A defining feature of SMoE is its sparsity in ex-
pert activation: typically, only a subset of the most
relevant experts is activated per input using the
Top-K (Fedus et al., 2021) or Top-P (Huang et al.,
2024) routing schemes. Early work have explored
discrete expert-to-token routing – selecting only
the most activated subsets of experts for each token
in x (Shazeer et al., 2017; Riquelme et al., 2021;

Lepikhin et al., 2021; Fedus et al., 2021), while
later work introduced alternatives, such as token-
to-expert routing – choosing the top scored subsets
of tokens for each expert (Zhou et al., 2022), ran-
dom and hash-based routing (Roller et al., 2021;
Zuo et al., 2022). Advanced approaches further op-
timize routing stability and improve routing load-
balancing (Lewis et al., 2021; Liu et al., 2023).

However, discrete and sparse expert activations
often lead to training instability for gradient-based
optimization (Mustafa et al., 2022; Dai et al., 2022).
To address this, recent innovations propose soft,
continuos routing alternatives. For example, Soft-
MoE (Puigcerver et al., 2023) relaxes discrete as-
signments via continuous approximations, while
SoftMerging (Muqeeth et al., 2023) explore com-
bining experts through a weighted sum in the pa-
rameter space.

2.2 Upcycling Dense LLMs to SMoEs

Upcycling refers to the process of continual train-
ing pre-trained dense LLMs into SMoE architec-
tures. This approach allows for efficient scaling
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of model capacity without incurring the substan-
tial computational costs associated with training an
SMoE from scratch. The vanilla upcycling (Komat-
suzaki et al., 2023) approach involves two main
steps: 1) replacing specific modules within the
dense LLM with SMoE modules by replicating
the weights of pre-trained modules as experts and
randomly initializing the router networks, and 2)
continually training the resulting SMoE model until
convergence or the exhaustion of a target compute
budget.

Initially explored in pre-training to mitigate
the training instability and high costs of training
SMoE models from scratch (Komatsuzaki et al.,
2023; He et al., 2024), vanilla upcycling has also
adopted effectively in post-training scenarios, re-
sulting in SMoE models with improved generaliza-
tion performance (Jiang et al., 2025). Recent re-
search (Sukhbaatar et al., 2024; Zhang et al., 2024)
extends upcycling to multi-domain post-training,
where the post-training data are divided into well-
defined domain subsets. This enables parallel fine-
tuning of multiple independent and specialized
domain- (or task-) experts. These experts are then
merged into a unified SMoE model through uni-
form weight averaging at non-expert layers, fol-
lowed by a secondary fine-tuning stage to ensure
performance.

Despite the simplicity and effectiveness of
these approaches, the decision of where-to-upcycle
throughout upcycling remains heuristically de-
signed. Typically, this involves retaining the
FNN (Sukhbaatar et al., 2024) and/or attention
layers (Zhang et al., 2024) as SMoE modules
while merging the remaining non-expert param-
eters through simple unweighted averaging. Such
hand-picked strategy risks compromising perfor-
mance due to architectural biases and uniform av-
eraging divergent specializations (Li et al., 2022).

3 Sparse Interpolated MoE
Instruction-Tuning

As outlined in the Introduction, the primary ob-
stacles hindering effective upcycling instruction-
tuning of SMoE models revolve around two unre-
solved challenges: 1) where-to-upcycle: determin-
ing optimal layer positions in pre-trained models to
integrate experts, and 2) specialization-cooperation
trade-off : balancing expert specialization with
inter-expert synergy. Existing methods lack a sys-
tematic, data-driven framework to jointly address

these challenges. We propose a unified solution
grounded in learnable structured sparsity, enabling
the automatic discovery of upcycling locations in
the pre-trained seed LLM while intrinsically man-
aging the specialization-cooperation equilibrium
through end-to-end optimization. An overview of
our method is shown in Fig. 3.

3.1 Sparse Interpolated MoE Module

3.1.1 Learning where-to-upcycle with
Structured Sparsity

Current approaches to selecting layers for integrat-
ing MoE modules – such as targeting FNN layers or
prioritizing attention components – rely on architec-
tural heuristics or trial-and-error fine-tuning (Fedus
et al., 2021; Sukhbaatar et al., 2024). However,
emerging evidence (Zhang et al., 2024), along with
our own experiments (Tab. 4 (a)), indicates that
these fixed architectural biases can lead to subopti-
mal performance, potentially due to model-specific
layer dynamics and data dependencies (Pan et al.,
2024). This underscores the need for an adaptive,
data-driven method.

To address this challenge, we formulate deter-
mining where-to-upcycle as a sparse optimization
problem. Our key idea is to consider every pre-
trained linear layer in the LLM as a potential can-
didate for upcycling by integrating trainable per-
expert binary masks z ∈ {0, 1} and expert parame-
ters θδ

i into each layer. The linear layer now com-
putes1 y = fθ(x) = θ⊤x, θ =

∑M
i=1 αi ·zi⊙θδ

i ,
and M is the maximum number of experts allowed
to upcycle per mask position. During instruction-
tuning, we enforce L0-like sparsity on z, allow-
ing the optimization to automatically prune non-
essential experts, revealing the learned upcycling
strategy.

The design of trainable masks z involves a crit-
ical trade-off between granularity and computa-
tional overhead. While parameter-wise masks en-
able maximal expressiveness, they are prohibitively
compute-expensive for LLMs with billion-scale pa-
rameters2. To resolve this, we adopt structured
sparsity on the masks, where masks z ∈ {0, 1}X
gates input neurons in weight matrix θ ∈ RY×X .
This improve scalability while ensuring two key ad-
vantages: (a) Fine-grained upcycle control. Masks
modulate expert contributions at the granularity of
individual neurons, enabling more precise adapta-

1The bias term is omitted for neat presentation.
2For more details, see the ablation study in Appendix C.1
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tion than layer or FNN upcycling. (b) Hardware-
friendly sparsity: structured sparsity patterns align
with modern accelerator architectures, avoiding ir-
regular memory access penalties from parameter-
wise sparsity.

The implementation still risks overwriting pre-
trained knowledge and could incur training insta-
bility if all zi, at the same MoE layer, collapse to
zeros. As a solution, we anchor the MoEs to the
frozen pre-trained initialization, θpre, reparameter-
izing the output as

y = fθ(x), θ = θpre +

M∑

i=1

αi · zi ⊙ θδ
i (2)

This ensures updates remain sparse additions to–
rather than replacements of – pre-trained function-
ality, mitigating catastrophic forgetting while main-
taining the same model expressiveness.

One remaining challenge is ensuring differentia-
bility for gradient-based masks optimization. We
address this by drawing on the sparse reparam-
eterization method utilized in Schwarz and Teh
(2022). At a high-level, each scaler mask z is de-
rived from a latent variable s of a hard concrete
distribution (Louizos et al., 2018) following repa-
rameterization sampling and a transformation, i.e.,
z =min(1,max(0, s)), s ∼ qϕ(s). Sparsity in z is
then enforced via limiting its expected L0-norm in
probability, L̄0(z) = P (z ̸= 0), which translates
to a penalty on the CDF of qϕ as 1 − Qϕ(s ≤ 0)
that is both differentiable and analytical to compute.
This approach avoids non-differentiable threshold-
ing while allowing exact zeros in forward passes –
a critical advantage over soft masking. More details
are provided in Appendix A.1.

We enforce sparsity via solving a constrained
optimization problem in instruction-tuning, gaining
a precise control of the final sparsity in z hence the
upcycled experts. More details in Section 3.2.

3.1.2 Parameter-Shared Experts with
Mask-Driven Specialization

A fundamental challenge in SMoE upcycling lies in
achieving an optimal balance between expert spe-
cialization and cooperation. While specialization
is crucial for preventing model collapse, effective
cooperation among experts is essential for main-
taining stable training dynamics. We address this
inherent tension through two complementary inno-
vations, leading to our final SIMoE architecture, as
illustrated in Fig. 3.

First, to promote collaboration among experts,
we couple experts by sharing their trainable param-
eters in the MoE layer in Eqn. (2), i.e., θδ

i = θδ

for all i ∈ [M ], while maintaining distinct sparsity
masks. This design serves dual purposes: it facil-
itates knowledge transfer through shared parame-
ters and (training) gradients across experts, while
substantially reducing memory requirements com-
pared to traditional upcycling approaches that ne-
cessitate M separate copies of the original weights.

Second, to ensure expert specialization and pre-
vent model collapse due to potential excessive pa-
rameter sharing, we impose an orthogonal penalty
on the distinct masks, i.e., Lortho(Z) = ∥ZZ⊤ −
I∥2 enforcing complementary mask activation pat-
terns while allowing overlap for cooperation. The
expression softly penalizes deviation of the dot
products between different expert masks – the off-
diagonal terms in ZZ⊤ – from zero, thereby pro-
moting orthogonality.

The interplay between parameter sharing and
mask orthogonality enables our approach to dynam-
ically discover the optimal balance between expert
cooperation and specialization during instruction-
tuning.

3.1.3 Instance-level Expert Routing
Common practices for implementing the router
network hζ in SMoE systems encompass three
primary strategies: token-level, instance-level,
and task-level routing. Token-level routing al-
lows different experts to process individual tokens
within an input, while instance- and task-level rout-
ing maintain consistent expert activation patterns
across all tokens in an input or across all inputs
within a dataset (or task), respectively. SIMoE re-
mains compatible with all three strategies, as its
implementation modifies the configuration of ex-
perts only.

While task-level routing may incentivize task-
specific expert specialization, but its applicability
is limited by the frequent absence of task meta-
information during training and inference. Be-
tween token- and instance-level routing, we empir-
ically identify instance-level routing as the optimal
choice (Tab. 4 (d)). For the router implementation,
each input instruction prompt is processed through
the pre-trained LLM to generate token embeddings.
We extract the final token embedding as the in-
stance representation, which is then processed by
a MLP layer parameterized by ζ to produce rout-
ing logits. These logits are directly transformed
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through a Softmax function to obtain the expert
activations α – similar to the soft merge mecha-
nism proposed in Muqeeth et al. (2023), which
enhances training stability and eliminates the need
for auxiliary router losses (Dai et al., 2022).

3.2 Controlled Compute Cost via
Sparsity-constrained Optimization

While it is straightforward to solve where-to-
upcycle via a sparsity-regularized training objec-
tive, i.e., adding a sparsity regularization term with
a fixed coefficient, we instead resort to a more prac-
tically compelling approach: enforcing sparsity via
solving a sparsity-constrained optimization prob-
lem. The latter ensures precise control over the
final sparsity in z hence upcycled experts, conse-
quently governs the computational cost of the post-
trained LLM at inference – as expert parameters
with zero-valued masks can be safely pruned, elim-
inated from forward computations. To this end, we
consider optimizing the Lagrangian:

min
θδ ,ζ,ϕ

max
λ≥0

Ey,x

[
Lnll(y,x,θSIMoE)

]
+ βLortho(Z)

+ λ(τ − (1− L0(Z))), (3)

where the last term corresponds to the constraint
1 − L0(Z) ≥ τ that lower-bounds the spar-
sity (number of zeros) in masks, hence upcycled
experts, by a hyperparameter τ ∈ [0, 1). We adopt
simultaneous gradient descent and projected gradi-
ent ascent for optimizing the model parameters and
the Lagrangian multiplier λ, respectively. To avoid
over-penalizing the model capacity from surpass-
ing the sparsity constraint, we reset λ to zero once
the constraint is satisfied (Gallego-Posada et al.,
2022). More details are deferred to Appendix A.2.

4 Experiment

4.1 Experimental Setup

We validate SIMoE on two sets of main exper-
iments that vary in scales of instruction-tuning
dataset and model size. For our implementation,
we set the maximum number of experts to M = 8
and the target sparsity constraint to τ = 75% by
default. Thanks to our unique method design (Sec-
tion 3), we were able to consider upcycling (attach-
ing SIMoE layer) at every linear layer in the pre-
trained LLM, enabling us to optimize for where-to-
upcycle globally with minimum manual interven-
tion while still maintain compute feasibility.

We compare our results against two types of
baselines including: (a) full fine-tuning (Full FT),
and (b) sparse upcycling approaches, including
sparse upcycling (Komatsuzaki et al., 2023), and
the more empirically competitive BTX (Sukhbaatar
et al., 2024) which we use whenever domain labels
are available for training. Additional implementa-
tion for baselines can be found in Appendix B.1.
We strictly adhere to the official training and evalu-
ation setups of the benchmarks.

Super-NaturalInstructions SNI (Wang et al.,
2022) includes 1,616 instructed NLP tasks over 76
distinct task categories. We strictly follow the offi-
cial recommended recipe for benchmarking cross-
task generalization of instruction-tuned LLM on
SNI: training on 64 task categories while leaving
out 12 unseen categories covering 154 tasks for
evaluation only. We adopt ROUGE-L (Lin, 2004)
for reporting aggregated performance results.

Tülu-v3 The Tülu-v3 post-training recipe (Lam-
bert et al., 2025) provides a large scale instruction-
tuning dataset. We use the publicly available SFT
data mixture for training, which consists of a total
of 939,343 unique training instances from multiple
natural and synthetic sub-datasets, spanning a wide
range of domains; and the official Tülu-v3 evalua-
tion suite for testing and reporting performance.

4.2 Results

Cross-task generalization SIMoE consistently
achieves the strongest performance across all of our
experiments. As shown in Tab. 1, SIMoE excels
in cross-task generalization on the SNI benchmark,
outperforming baselines in at least 7 out of 12 un-
seen task categories. This results in overall average
gains of 2.5% and 1.6% over Full FT for the 3B
and 8B pre-trained models, respectively.

Scalability and flexibility In Tab. 2, SIMoE
demonstrates strong generalization performance
when transferring to a larger pre-trained model
and a relatively larger instruction fine-tuning
dataset,i.e., the Tülu-v3. SIMoE maintains its com-
petitive edge, surpassing all baseline methods on
average over 12 common LLM evaluation bench-
marks, with a noticeable improvement of 0.6% over
the official Tülu-v3-8B-SFT model – the recent
open-source state-of-the-art – while using only 1/3
of the model capacity (number of params) of the
BTX upcycled LLM (Tab. 3), demonstrating high
efficiency in parameter utilization of our SIMoE
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Seed LLM Method
TitleGen. Coref.

Res.
Text.
Entail.

Quest.
Rewrit.

Cause
Eff.
Class.

Dialog
Act
Recog.

Ans.
Class.

Keyword
Tag.

Data to
Text

Word
Analogy

Overlap
Extr.

Grammar
Corr. Avg. (↑)

Llama3.2 3B
Full FT 40.20 55.33 58.80 67.60 70.52 62.38 68.13 59.60 52.08 39.50 66.35 88.68 60.76
Upcyc. 41.25 57.54 62.28 67.97 68.82 66.14 67.23 63.61 51.21 46.17 62.05 87.86 61.84
SIMoE 41.14 57.67 63.17 68.08 69.54 68.31 67.59 67.87 51.40 48.50 68.27 87.64 63.26

Llama3 8B
Full FT 41.35 57.20 64.46 67.35 71.05 73.17 67.14 66.58 53.04 52.71 66.93 87.82 64.07
Upcyc. 41.95 62.24 64.45 68.49 73.40 69.06 66.93 66.61 52.30 55.55 72.05 87.59 65.05
SIMoE 43.04 64.37 66.49 68.86 76.40 70.70 68.92 67.79 51.73 52.79 72.06 85.38 65.71

Table 1: Performance on the SNI benchmark evaluated across 12 unseen task categories, measured in ROUGE-L.

Method MMLU PopQA Truthful
QA

BBH DROP MATH GSM8K Human
Eval

Human
Eval+

IFEval Alpaca
Eval 2

Safety Avg. (↑)

Tülu v2 8B SFT 61.8 23.3 49.4 57.1 61.7 14.0 60.4 66.9 63.1 42.3 8.9 70.7 48.3
RLHFlow v2 SFT 65.8 29.7 56.0 69.3 57.2 35.7 81.6 86.2 80.9 52.7 13.6 43.5 56.0
MAmmoTH2 8B 63.6 20.8 42.7 63.4 43.8 30.5 63.7 72.8 66.4 34.9 6.5 47.8 46.4
Tülu v3 8B SFT 65.9 29.3 46.8 67.9 61.3 31.5 76.2 86.2 81.4 72.8 12.4 93.1 60.4
BTX 64.5 30.9 48.9 69.0 58.9 33.0 80.9 85.2 80.9 73.1 11.7 93.4 60.9
SIMoE (Ours) 66.5 28.7 51.6 69.5 57.5 30.1 81.3 86.5 81.3 74.1 12.4 94.8 61.1

Table 2: Comparison of detailed evaluation results on the Tülu 3 eval suite (Lambert et al., 2025) between SOTA
instruction-tuned modes and ours. All models are instruction-tuned from the pre-trained Llama3.1 8B model.

module design.
Additionally, SIMoE exhibits strong compatibil-

ity with different pre-trained LLM architectures:
As shown by our earlier experimental results in
Tab. A10, SIMoE continues to outperform Full FT
by a significant margin of 2.3% when switching the
pre-trained backbone from Llama3 (Meta, 2024)
to T5 (Raffel et al., 2020), confirming the high
flexibility and versatility of our proposed method.

Safety and reliability Notably, SIMoE obtains
excellent safety evaluation metrics, outperforming
Tülu-v3-8B-SFT by 1.7% on Safety (Tab. 2), and
a remarkable 10% on the DoAnythingNow (Shen
et al., 2024) benchmark in particular (Tab. A9, de-
tailed safety results across sub-datasets). The re-
sults demonstrate SIMoE’s strong resilience against
potentially malicious instructions and jailbreak at-
tacks. The dual capability of combining perfor-
mance improvements with enhanced safety un-
derscores SIMoE’s unique potential to mitigate
the performance-safety trade-off observed in fine-
tuned LLMs (Qi et al., 2024).

Training and inference cost In Fig. 1 and
Tab. A8, we compare the training and inference
compute cost between: (1) SIMoE with a maxi-

SNI (Llama3.2 3B) SNI (Llama3 8B) Tülu v3 (Llama3.1 8B)

Method Params. (↓) Avg. (↑) Params. (↓) Avg. (↑) Params. (↓) Avg. (↑)
Upcyc. / BTX 11.67 61.84 30.58 65.05 30.58 60.90
SIMoE (Ours) 4.01 63.26 10.04 65.71 10.04 61.10

Table 3: Overview of average performance and upcycled
model capacity on the SNI and Tülu v3 benchmarks.

mum of M = 8 upcycled sparse interpolated ex-
perts at each linear layer, and (2) Sparse upcycling
with 4 experts at each FNN block and Top-2 expert
routing. Thanks to the proposed learnable, struc-
tured sparsity masks in combination with expert pa-
rameter sharing, our method significantly reduces
model size during training, immediately providing
a substantial reduction in peak GPU memory us-
age. Furthermore, by targeting a final sparsity of
τ = 75% in upcycled experts, our model achieves
an smaller inference size, with around∼30% fewer
parameters compared to only the number of active
parameters per forward-pass in a upcycled SMoE
model.

4.3 Additional Analysis

Importance of SIMoE components To assess
the effectiveness of each component in SIMoE, we
conducted an ablation study by systematically re-
moving individual components, resulting in four
distinct ablated variants: (a) Instead of Learning
where-to-Upcycle, we adopt the common practice
and upcycle only the FNN layers in the pre-trained
LLM for instruction-tuning. (b) We exclude the
Orthogonal Penalty on expert masks from our opti-

Model L.U. O.P. S.C. I.R. ROUGE-L(↑) Params.(↓) (B)

(a) ✓ ✓ ✓ 61.52 4.01
(b) ✓ ✓ ✓ 62.67 4.01
(c) ✓ ✓ 62.54 6.08
(d) ✓ ✓ ✓ 62.51 4.01

SIMoE ✓ ✓ ✓ ✓ 63.26 4.01

Table 4: Ablation results on the SNI benchmark.

16709



Ke
y
Va

lue
Que

ry
Lay

erN
Outp

ut Up
Gate

Dow
n

Lay
erN

0

0.1

0.2

0.3
Fr

ac
tio

n 
of

 n
on

-z
er

os Attention
FFN

Deeper Layer 
0

0.05

0.1

0.15

Fr
ac

tio
n 

of
 n

on
-z

er
os

Figure 4: Upcycled model capacity after instruction-
tuning (i.e., fraction of non-zero expert parameters)
grouped by (left): layer types, and (right): layer depth.
The bars represent the average over all experts, and the
error bars reflect variation among different experts.

mization objective. (c) We do not impose Sparsity
Constraints on the masks z, allowing them to be
freely optimized as standard trainable parameters
with values on the full real axis. Consequently, up-
cycling is almost always performed at all linear lay-
ers without pruning, hence also no L.U. (d) We re-
place Instance-level Routing with token-level rout-
ing in the SIMoE module. Other training procedure
and non-ablated components remain unchanged.

The variants are compared to the full SIMoE in
Table 4. The results clearly demonstrate that the
full SIMoE achieves the highest evaluation perfor-
mance, quantitatively confirming the effectiveness
of each proposed component. Notably, enforcing
structured sparsity in upcycling not only enhances
generalization performance compared to the non-
sparse variant (c) – a result we attribute to its reg-
ularization effect – but also leads to a significant
reduction in final model size – 4.01B vs 6.08B –
which is practically advantageous.

Learned sparse upcycling patterns In Fig. 4,
we visualize the distribution of non-zero ex-
perts in the upcycled LLM learned by SIMoE
from instruction-tuning. Several key observations
emerge. First, as shown in panel (right), upcycling
primarily occurs in the shallow and intermediate
Transformer layers, with significantly reduced ac-
tivity in deeper layers. Second, panel (left) reveals
that non-negligible upcycling manifests across all
layer types, though with distinct intensity: layer
normalization parameters exhibit the highest pro-
portion of upcycled (non-zero) expert parameters,
while the gate layer in the FNN demonstrates the
lowest. Key, value, and output matrices in the at-
tention block maintain a noticeably higher fraction
of non-zero parameters than query weights, align-
ing with prior work that identified these matrices
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Figure 5: Expert overlap ratios of upcycled LLMs post-
trained (left) without orthogonal penalty, and (right)
with orthogonal penalty.

as crucial for knowledge injection and model edit-
ing (Meng et al., 2022; Gandikota et al., 2024).

Notably, the learned upcycling pattern by
SIMoE, which achieves the best empirical perfor-
mance, diverges substantially from manually pre-
scribed strategies (e.g., upcycle FFN only), under-
scoring the critical advantage of data-driven ap-
proaches for determining where-to-upcycle.

Interpretable expert routing In Fig. 2, we vi-
sualize the average expert activation for different
tasks. We notice that all experts exhibit some uti-
lization across datasets, and hierarchical clustering
of activation similarities reveals a clear dendrogram
structure aligned with task and domain relation-
ships. This demonstrates that SIMoE upcycling
successfully induces both specialized experts and
semantically meaningful routing behaviour.

Specialized experts and orthogonality In Fig. 5,
we assess expert specialization through pairwise
mask overlap ratios, defined as |(zi∩zj) ̸=0|

|(zi∪zj) ̸=0| . We ob-
serve that experts exhibit higher overlap ratios with-
out the orthogonal penalty; Quantitively, having the
penalty can lead to a noticeable 0.5% improvement
on performance (Tab. 4) – Both observations vali-
date its effectiveness.

In Fig. 5 (right), we observe that experts gener-
ally have low overlaps – sharing a small amount of
parameters, though domain-similar experts (accord-
ing to grouping in Fig. 2) exhibit marginally higher
overlaps – for instances, maths- and code-domain
experts {2,6,7}; general- and safety-domain ex-
perts {3,4}. The results demonstrate that SIMoE
is capable of identifying a balanced shared and
expert-specific parameter partitions, enabling nu-
anced specialization while maintaining strong syn-
ergies between distinct experts.

Hyperparameter sensitivity We conduct a com-
prehensive analysis of the sensitivity of SIMoE to
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Orthogonality β 0 5e−6 5e−5 5e−4

Avg. ROUGE-L (↑) 65.56 65.71 65.77 65.31
Approx. Expert Overlap % 25 11 7 2

Sparsity τ 0 0.5 0.75 0.9
Avg. ROUGE-L (↑) 65.37 65.31 65.71 65.52

Table 5: Impact of key hyperparameters, τ and β, on the performance of SIMoE.

key hyperparameters, specifically the sparsity con-
straint τ and the orthogonality penalty coefficient
β. During our experiments, we vary β through
the values {0, 5e−6, 5e−5, 5e−4}, and τ through
{0, 0.5, 0.75, 0.9}, while keeping other hyperpa-
rameters constant at their optimal values. We evalu-
ate the trained models on the SNI benchmark using
the Llama3 8B model. The results are compared in
Tab. 5.

We observe that SIMoE consistently outper-
forms the best baseline score of 65.05 across all
evaluated hyperparameter settings, highlighting its
robustness and reliability. Optimal performance
is achieved with β ∈ [5e−6, 5e−5] and a τ of
0.75. These settings yield the best empirical re-
sults, suggesting that they strike a balance between
expert specialization and knowledge transfer. We
hypothesize that extreme values of β lead to subop-
timal outcomes due to excessive or minimal overlap
among experts, which either impedes specialization
or limits combinatorial generalization capabilities.
Similarly, both low and high extremes of τ result in
performance degradation, either through parameter
redundancy or excessive sparsity, which constrains
model capacity.

5 Conclusion

In this paper, we introduced Sparse Interpo-
lated Mixture-of-Experts (SIMoE) for upcycling
dense pre-trained LLMs into SMoEs within a sin-
gle instruction-tuning stage. By addressing the
dual challenges of where-to-upcycle and expert
specialization-cooperation trade-offs, SIMoE auto-
mates the discovery of structurally sparse experts
through sparsity-constrained optimization while
promoting synergistic yet specialized experts pa-
rameter partitions via unique architectural design
combined with a orthogonal penalty. Our methods
demonstrate empirical superiority and enhanced
memory savings compared to existing upcycling
instruction-tuning methods, showcasing the effi-
cacy of algorithm-model co-design in unlocking
the full potential of upcycling instruction-tuning.

Limitations

While SIMoE shows promising results, there are
two key limitations that warrant attention: (1) Our
study is focused solely on NLP tasks, leaving its
applicability to multimodal settings (e.g., vision-
language models) untested, which is an important
area for expanding the framework’s impact; (2) We
observe task interference in upcycling baselines
and SIMoE, which can negatively affect general-
ization performance and sometimes cause the MoE
models to slightly underperform compared to dense
baselines. Future improvements could focus on ad-
dressing both challenges.
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A Method Details

A.1 Differentiable Sparsity

Louizos et al. (2018) introduce the hard concrete
distribution for modeling sparse gates z ∈ [0, 1].
Using the default hyper-parameters from (Louizos
et al., 2018), γ = −0.1, ζ = 1.1, β = 2/3, and a
random variable U ∼ Unif(0, 1), the hard-concrete
distribution models the gate z through:

s ∼ qϕ(s) = Sigmoid
(
1

β
log

(
ϕU

1− U

))
, (4)

z =min(1,max(0, s)), (5)

where qϕ(s) is known as the concrete distribution,
and ϕ is the underlying parameter being optimized.

The stochastic nature of z results in a model that
is itself stochastic. Therefore, both its L0-norm
and predictions are random quantities. However,
as shown in (Gallego-Posada et al., 2022), z can be
replaced with its median z̄:

s̄ = Sigmoid
(
log ϕ

β

)
(ζ − γ) + γ), (6)

z̄ =min(1,max(0, s̄), (7)

which is a deterministic function of ϕ, thus remov-
ing the stochastic nature in the gates for training
and inference. The stretching and clamping allow
the medians to attain values of exactly 0, produc-
ing sparsity in our SIMoE experts when multiplied
with expert parameters θδ.

Furthermore, Louizos et al. (2018) show that the
expected L0-norm of mask z can be expressed in

closed-form as:

L̄0(z) = P (z ̸= 0) = 1−Qϕ(s ≤ 0)

= Sigmoid
(
log ϕ− β log

−γ
ζ

)
, (8)

where Qϕ is the CDF of qϕ. To this end, sparsity
in z is enforced by optimizing ϕ to limit L̄0(z),
enabling end-to-end gradient-based optimization
under the sparsity constraint in our framework.

A.2 SIMoE Training Objective Eqn. (3)
Recall our SIMoE module computes its parameters
for inference at each linear layer as:

θSIMoE = θpre +

M∑

i=1

αi · zi ⊙ θδ, (9)

where θpre is the frozen pre-trained parameters;
α = hζ(x) is the expert activation for input prompt
x computed by the router network hζ ; {zi}Mi=1 and
θδ are respectively the sets of distinct masks and
shared parameters that jointly define the M experts.

During instruction-tuning, SIMoE aims to un-
cover where-to-upcycle through solving the follow-
ing sparsity-constrained optimization problem:

min
θδ ,ζ,ϕ

Ey,x

[
Lnll(y,x,θSIMoE)

]
+ βLortho(Z),

s.t. 1− L0(Z) ≥ τ, (10)

where the goal is to find model parameters
{θδ, ζ, ϕ} that minimize a weighted objective be-
tween the standard negative log-likelihood loss on
the target output y and an orthogonal penalty on
the expert masks, while satisfying a constraint that
requires mask sparsity, 1− L0(Z), to be at least τ .

In practice, to enable gradient-based optimiza-
tion, we solve the Lagrangian associated with the
sparsity-constrained optimization problem above.
Let λ ≥ 0 be the Lagrangian multiplier associ-
ated with the sparsity constraint, the min-max La-
grangian problem is then:

min
θδ ,ζ,ϕ

max
λ≥0

Ey,x

[
Lnll(y,x,θSIMoE)

]
+ βLortho(Z)

+ λ(τ − (1− L0(Z))), (11)

which mirrors our training objective in Eqn. (3) and
we restate it here for completeness.

We employ simultaneous gradient descent on
model parameters {θδ, ζ, ϕ} and projected (to R+)
gradient ascent on λ, adjusting the strength of the
sparse penalty in Eqn. (3) dynamically throughout
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the optimization (Gallego-Posada et al., 2022). The
gradient updates in each optimization step are 3:

[θδ, ζ,ϕ]←
[θδ, ζ,ϕ]−∇[θδ ,ζ,ϕ]

[
Ey,x

[
Lnll(y,x,θSIMoE)

+ βLortho(Z)− λ(1− L0(Z))
]
, (12)

[λ]← max
(
0, [λ]+(τ − (1− L0(Z)))

)
. (13)

The sparsity (1−L0(Z)) in Eqn. (12) remains non-
differentiable w.r.t. ϕ, the parameters of the hard-
concrete distribution producing masks Z. Thus, we
compute the expected sparsity (1− L̄0(Z)), which
is differentiable w.r.t. ϕ (see Appendix A.1).

Overall, λ continues to increase, progressively
emphasizing the sparsity penalty (1− L̄0(Z)) until
the constraint is satisfied during optimization.

B Experiment Details

B.1 Implementation

For our method, we set the maximum number
of experts to M = 8 and the target sparsity con-
straint to τ = 75% by default, unless stated oth-
erwise. We initialize the trainable parameters so
that the SIMoE model θSIMoE in Eqn. (9) behaves
identically the pre-trained LLM θpre at the start of
instruction-tuning. Specifically, we initialize the
shared expert parameters, θδ, to zero, and the mask
parameters ϕ from a Gaussian distribution with a
mean that results in an initial expected sparsity of
0.05 in each mask, i.e., P (z = 0) = Qϕ(s ≤ 0) =
0.05, ∀z ∈ Z. Thanks to our unique method de-
sign (Section 3), we are able to consider upcycling
(attaching SIMoE layer) at every linear layer in
the pre-trained LLM. This enables us to optimize
where-to-upcycle globally with minimal manual
intervention while still maintaining compute fea-
sibility. The detailed training hyperparameters for
our method can be found in Tab. 6 below.

For the baseline sparse upcycling and BTX,
following the original implementation described
in (Sukhbaatar et al., 2024), we upcycle FNN ex-
perts in the pre-trained dense LLM, and use a
default Top-2 routing function. We use a load-
balancing loss with coefficient 1e − 2 (Shazeer
et al., 2017; Fedus et al., 2021) and a router-z loss
with strength 1e− 3 to stabilize training (Dai et al.,
2022). We note that both methods can eventually

3We use vanilla SGD for illustration and omit the learning
rates for clarity

Hyperparameter SNI Tülu-v3

Learning rate 2e-5 2e-5
Learning rate scheduler constant linear
Batch size 16 128
Optimizer Adam Adam
Sparsity (τ ) 0.75 0.75
Orthogonality (β) 5e-6 5e-6
Experts (M ) 8 8

Table 6: Training hyperparameters used for SIMoE in
SNI and Tülu-v3 experiments.

produce an SMoE model with the same architec-
ture and model size, given the same number of
upcycled experts and the same seed LLM as fixed
hyperparameters.

On the Super-NaturalInstruction benchmark, we
set the number of upcycling experts to 4, which
already yields a model size approximately equals
to 4 times that of the original LLM. For Tulu-v3
experiment with BTX (Sukhbaatar et al., 2024),
we initialize experts with FNN from independently
trained domain experts on pre-defined domains in
the Tulu-v3 training data mixture, including: math,
code, safety, instruction following, multilingual,
knowledge recall and general. We also include the
pre-trained checkpoint as an additional expert as
done in Sukhbaatar et al. (2024).

C Additional Results

C.1 Full Granular vs. Structured Sparsity
Masks

We explore the impact of mask granularity on the
trade-off between model performance and compu-
tational efficiency, focusing on SIMoE models.

Full granular masks, while potentially enhancing
model expressiveness by applying distinct masks
to each parameter, present significant challenges.
For models scaled to a billion parameters with M
experts, these masks can demand up to M times
the original model size, making them less scalable
with larger models. Additionally, training with
parameter-wise sparse, stochastic masks can lead
to optimization difficulties, such as training insta-
bility and an increased risk of overfitting.

To assess these effects, we conducted experi-
ments with the Llama3.2 1B model on the SNI
benchmark. As shown in Table 7, the results
demonstrate that structured sparsity masks not only
achieve superior performance but also offer bet-
ter computational efficiency. This highlights the
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advantages of adopting structured sparsity in large-
scale models.

Mask Type Rouge-L (↑) Param.(↓)
Full granular 59.36 3.42B
Structured 59.94 1.45B

Table 7: Comparison of SIMoE with full granular masks
and structured sparsity masks.

C.2 Activated Parameter Counts in Masked
Models

Tab. 8 presents a detailed comparison of acti-
vated versus total parameter counts for SMoE (Up-
cyc/BTX) and our proposed SIMoE model. Please
refer to Fig. 1 for a qualitative visualization of these
results.

Method 3B Seed 8B Seed
Upcyc/BTX 7 / 11.67B 13.64 / 30.58B
SIMoE (Ours) 4.01 / 4.01B 10.4 / 10.4B

Table 8: Comparison of activated versus total parameter
counts for SMoE and SIMoE models.

C.3 Detailed Tülu-v3 Safety Evaluation
Results

Benchmark Tulu 3 8B SFT Ours

HarmBench 98.4 97.5
XSTest 90.4 90.4
WildGuardTest 99.2 99.5
Jailbreaktrigger 95.8 95.8
DoAnythingNow 88.3 98.0
WildjailbreakTest 86.7 87.7

Average (↑) 93.1 94.8

Table 9: Breakdown of safety scores by benchmark of
ours compared with the open-source state-of-the-art,
Tulu 3 8B SFT (Lambert et al., 2025).

Tab. 9 presents a comparison of safety scores
between SIMoE and the Tulu 3 8B SFT (Lambert
et al., 2025), across various benchmarks. While
Tulu 3 8B SFT outperforms in HarmBench, our
model maintains a competitive edge overall, with
an average score of 94.8 compared to Tulu’s 93.1.
This highlights the potential of our approach in
safety-critical evaluations.

Tasks Tk-Instruct 3B Ours

Average (↑) 56.72 59.21

Table 10: Performance of Tk-instruct (Wang et al., 2022)
and our method on the SNI benchmark. Both models
start from pre-trained T5-XL (Raffel et al., 2020).

C.4 Instruction-tuned T5-XL on
Super-NaturalInstruction

C.5 Detailed Tülu-v3 and SNI Evaluation
Results

We present detailed evaluation results, including
parameter counts, comparing SIMoE with previ-
ous sparse upcycling methods in Tables 11 and 12
below.
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Method
Params.
(B) (↓)

Title
Gen.

Coref.
Res.

Text.
Entail.

Quest.
Rewrit.

Cause
Eff.
Class.

Dialog
Act
Recog.

Ans.
Class.

Keyword
Tag.

Data to
Text

Word
Analogy

Overlap
Extr.

Grammar
Corr. Avg. (↑)

Upcycling (3B) 11.67 41.25 57.54 62.28 67.97 68.82 66.14 67.23 63.61 51.21 46.17 62.05 87.86 61.84
SIMoE (3B) 4.01 41.14 57.67 63.17 68.08 69.54 68.31 67.59 67.87 51.40 48.50 68.27 87.64 63.26

Upcycling (8B) 30.58 41.95 62.24 64.45 68.49 73.40 69.06 66.93 66.61 52.30 55.55 72.05 87.59 65.05
SIMoE (8B) 10.04 43.04 64.37 66.49 68.86 76.40 70.70 68.92 67.79 51.73 52.79 72.06 85.38 65.71

Table 11: Performance on the SNI benchmark evaluated across 12 unseen task categories, measured in ROUGE-L.
The top and bottom sections respectively show results for the Llama3.2-3B and the Llama3-8B pre-trained models.

Method Params.
(B) (↓)

MMLU PopQA Truthful
QA

BBH DROP MATH GSM8K Human
Eval

Human
Eval+

IFEval Alpaca
Eval 2

Safety Avg. (↑)

BTX 30.58 64.5 30.9 48.9 69.0 58.9 33.0 80.9 85.2 80.9 73.1 11.7 93.4 60.9
SIMoE 10.04 66.5 28.7 51.6 69.5 57.5 30.1 81.3 86.5 81.3 74.1 12.4 94.8 61.1

Table 12: Overview of results on the Tülu 3 eval suite (Lambert et al., 2025). All models are instruction-tuned from
the pre-trained Llama3.1 8B model.
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