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Abstract

Dense video captioning aims to localize events
within input videos and generate concise de-
scriptive texts for each event. Advanced end-
to-end methods require both tasks to share the
same intermediate features that serve as event
queries, thereby enabling the mutual promo-
tion of two tasks. However, relying on shared
queries limits the model’s ability to extract task-
specific information, as event semantic percep-
tion and localization demand distinct perspec-
tives on video understanding. To address this,
we propose a decomposed dense video cap-
tioning framework that derives localization and
captioning queries from event queries, enabling
task-specific representations while maintaining
inter-task collaboration. Considering the roles
of different queries, we design a contrastive
semantic optimization strategy that guides lo-
calization queries to focus on event-level vi-
sual features and captioning queries to align
with textual semantics. Besides, only local-
ization information is considered in existing
methods for label assignment, failing to en-
sure the relevance of the selected queries to
descriptions. We jointly consider localization
and captioning losses to achieve a semantically
balanced assignment process. Extensive exper-
iments on the YouCook2 and ActivityNet Cap-
tions datasets demonstrate that our framework
achieves state-of-the-art performance.

1 Introduction

Videos have been deeply integrated into various as-
pects of contemporary society, emerging as one of
the primary means of sharing information. Dense
video captioning (DVC) (Krishna et al., 2017; Shen
et al., 2017; Xu et al., 2019; Suin and Rajagopalan,
2020; Huang et al., 2020) is a fundamental task
in video understanding that requires the detection
of multiple events within a video, and the gen-
eration of temporally localized and semantically
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consistent textual descriptions. Unlike traditional
video captioning (Rohrbach et al., 2013; Gao et al.,
2017; Chen et al., 2017; Wang et al., 2018a; Pei
et al., 2019; Qi et al., 2020; Lin et al., 2022; Seo
et al., 2022), which summarizes an entire video
with a single caption, DVC demands precise event
localization and fine-grained captioning, making it
essential for applications such as video summariza-
tion, assistive technology, and multimedia retrieval.
This task remains especially challenging owing to
the complex temporal structure and diverse event
compositions in dense videos.

Traditional DVC methods primarily adopt a two-
stage architecture, which first localizes events and
then generates captions separately (Krishna et al.,
2017; Li et al., 2018; Wang et al., 2018b; Iashin
and Rahtu, 2020b). While these methods allow
for independent optimization of event localization
and captioning, they often suffer from the limited
interaction between the two tasks, leading to sub-
optimal performance and efficiency. Recent ad-
vancements have shifted towards end-to-end archi-
tectures (Wang et al., 2021a; Yang et al., 2023; Kim
et al., 2024), which jointly optimize event localiza-
tion and caption generation within a single frame-
work. By leveraging the shared event queries and
parallel decoding heads, these methods improve
task synergy between event localization and cap-
tion generation. Although those methods enhance
the interaction between tasks, the shared queries
across tasks fail to meet the differing information
requirements of each task, which hinders the per-
formance improvement of models. To elaborate:

• Event Localization operates as a temporal
regression task and focuses on precise tempo-
ral segmentation, which requires the model to
predict event boundaries accurately.

• Event Captioning functions as a sequence
generation task and demands a deeper under-
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standing of event semantics and linguistic flu-
ency to produce meaningful descriptions.

Using shared content for both tasks often leads
to task interference (Li et al., 2018; Kanakis et al.,
2020; Chen et al., 2023; Yan et al., 2024), since the
model struggles to balance fine-grained temporal
localization with contextually relevant caption gen-
eration. Additionally, previous end-to-end methods
guide label assignment using a localization loss,
binding the ground truth localization and descrip-
tion labels to queries by minimizing the localization
loss. Such assignment overlooks the possibility that
the assigned queries may lack sufficient semantic
capacity to generate descriptions, leading to seman-
tic imbalance in label assignment.

Toward the above issues, we propose decom-
posed dense video captioning (DDVC), a novel
framework that decomposes event queries to en-
able task-specific semantic representations. Instead
of relying on a shared representation for both tasks,
DDVC constructs separate localization and cap-
tioning queries from a shared source, allowing for
task-specific feature extraction while maintaining
synergy between these two tasks. Besides, a joint
supervision label assignment method is used to allo-
cate ground truth for queries. Our key contributions
are summarized as follows:

• Task-Specific Query Decomposition: We in-
troduce localization queries for event localiza-
tion and captioning queries for text generation.
This decomposition enables the extraction of
task-specific features, effectively mitigating
the conflict between precise temporal localiza-
tion and rich semantic caption generation.

• Contrastive Semantic Optimization for
Multimodal Alignment: A cross-modal con-
trastive learning strategy is designed to boost
the model for differentiating events. It makes
localization queries focus on event-level vi-
sual features, and captioning queries align
with textual semantics, resulting in improved
segmentation and caption quality.

• Label Assignment with Joint Supervision:
In contrast to previous works, we simultane-
ously consider both localization and descrip-
tion losses when assigning ground truth, eval-
uating the comprehensive potential of query
decoding into event boundaries and descrip-
tions to achieve reasonable label assignments.

• State-of-the-Art Performance: We conduct
extensive experiments on several benchmark
datasets, which demonstrates that our method
achieves state-of-the-art performance across
multiple metrics. Unlike recent methods that
depend on external retrieval mechanisms to
enhance performance, DDVC achieves com-
petitive results without such dependencies.

2 Related Work

Dense video captioning is inherently a multi-task
learning problem that involves both event local-
ization and description. Early methods adopted
a two-stage paradigm, where event detection and
caption generation were performed separately (Kr-
ishna et al., 2017; Wang et al., 2018b). To enhance
event representation within this framework, sub-
sequent works introduced hierarchical event mod-
eling (Wang et al., 2021b) and multimodal fusion
techniques (Iashin and Rahtu, 2020a,b), leading to
more accurate and informative captions. However,
these methods lacked explicit interaction between
localization and description tasks, often leading
to discrepancies between detected events and their
textual descriptions. To overcome this limitation,
pretrained methods such as Vid2seq (Yang et al.,
2023) and DIBS (Wu et al., 2024) unified both
tasks within a text generation framework, produc-
ing event timestamps and captions simultaneously
through a single decoding process. Their models
have also inspired dense captioning in online set-
tings (Zhou et al., 2024). Despite achieving strong
descriptive performance, they demonstrate limited
localization accuracy and impose computationally
demanding training requirements.

An alternative direction focuses on end-to-end
architectures that jointly optimize localization and
caption generation (Zhou et al., 2018b; Mun et al.,
2019; Wang et al., 2021a; Zhu et al., 2022; Kim
et al., 2024; Xie et al., 2025). PDVC (Wang et al.,
2021a) formulates dense video captioning as a
set prediction problem and employs shared event
queries for both tasks. Recent advances, CM2 (Kim
et al., 2024) and MCCL (Xie et al., 2025), em-
ployed retrieval-augmented frameworks with ex-
ternal memory banks to improve performance, but
they still struggle to effectively handle the issue
of inconsistent information requirements between
different tasks (Chen et al., 2023; Yan et al., 2024),
limiting the further development of end-to-end ap-
proaches. Furthermore, existing label assignment
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Figure 1: Overview of DDVC. (a) shows the structure of DDVC, where localization queries and generated captioning
queries interact with video features to capture different semantic information. Then, event boundaries and descriptive
text are predicted through task-specific heads. (b) shows the semantic alignment for localization queries, where the
feature sampler extracts video features within the ground-truth temporal boundaries corresponding to the localization
queries. The queries are then aligned with these video features. (c) shows the semantic alignment for captioning
queries, where captioning queries are aligned with the features of corresponding ground-truth event captions.

strategies prioritize localization loss minimization
when matching queries to ground truth, neglecting
semantic richness critical for description quality.
In comparison, the proposed framework decom-
poses event queries into localization and captioning
queries, enabling task-specific representations. Our
contrastive semantic optimization further shapes
the constructed queries to help the model extract
accurate localization and description features. We
also consider both localization and description ob-
jectives for label assignment, which guides ground
truth allocation to queries while ensuring semanti-
cally balanced optimization.

3 Methodology

Dense videos contain multiple sequential or over-
lapping events, and DVC needs to localize these
events while producing coherent textual descrip-
tions. Given a video V , the objective is to generate
a set of event proposals {t̂si , t̂ei , ĉi}N̂i=1, where t̂si , t̂ei ,

and ĉi denote the predicted starting time, ending
time, and caption of the i-th event, respectively. N̂
denotes the total number of events, which is also
predicted by the model.

3.1 Overall Framework

Our goal is to decompose shared event queries, typ-
ically adopted by end-to-end DVC for video feature
extraction, into localization and captioning queries,
allowing task-specific information extraction. As
exhibited in Figure 1(a), DDVC preserves the stan-
dard end-to-end pipeline, including a pretrained
visual encoder, a deformable transformer (Zhu
et al., 2021), a localization head, a captioning head,
and an event counter, but modifies only the query
construction. For an input video V , frame-level
features {fl}Tl=1 are extracted by the visual en-
coder, where T is the video temporal length. These
features are subsequently enriched via the trans-
former encoder as fE

l = Transe(fl) for temporal
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context modeling. Unlike existing methods (Kim
et al., 2024; Xie et al., 2025) that utilize shared
event queries {qoj}Kj=1 for localization and cap-
tioning, DDVC would decompose shared queries
into localization queries {qlocj }Kj=1 and captioning
queries {qcapj }Kj=1. In the transformer decoder,
these queries attend to {fl}Tl=1 to yield the task-
specific features q̃locj = Transd(q

loc
j , {fE

l }Tl=1)

and q̃capj = Transd(q
cap
j , {fE

l }Tl=1). Each q̃locj is
fed into the localization head to predict the tem-
poral boundaries t̂sj , t̂

e
j = Headloc(q̃

loc
j ), while the

event number N̂ = Headcount({q̃locj }Kj=1) is pre-
dicted by the event counter based on the set of all
localization features. The captioning head gener-
ates ĉj = Headcap(q̃

cap
j ) using q̃capj .

3.2 Query Decomposition
Rather than employing a single set of learnable
queries {qoj}Kj=1 for the feature extraction of both
tasks, our framework adopts a simple-yet-effective
decomposition strategy that yields task-specific fea-
tures while preserving inter-task synergy. Specif-
ically, we initialize localization queries {qlocj }Kj=1

directly using the learnable queries {qoj}Kj=1, and
derive the captioning queries from {qlocj }Kj=1 via a
lightweight transformation. This process could be
formulated as follows:

qlocj = qoj ,

qcapj = Generator(qlocj ),
(1)

where the Generator consists of three linear layers
followed by a ReLU activation function. Although
each task is equipped with its own queries, an ap-
propriate optimization is still necessary to guide
those queries to focus on task-specific information.

3.3 Joint Supervised Label Assignment
Before model optimization, ground-truth annota-
tions should be assigned to predicted events. Exist-
ing end-to-end methods consider only event local-
ization for label assignment, formulating the match-
ing between predicted localization and ground-
truth ones using the focal loss (Lin et al., 2017)
and IoU loss (Rezatofighi et al., 2019), since this
paradigm is directly derived from the object detec-
tion task, which does not involve textual semantics.
Ignoring text matching hinders accurate label as-
signment for DVC, thus we propose a joint supervi-
sion strategy for label assignment that incorporates
both localization and caption semantics. Specifi-
cally, we integrate both aspects into the cost compu-

tation to enable more accurate alignment between
predictions and ground-truth events.

In our framework, each query is responsible for
predicting a single event. We assign ground-truth
labels to queries via a one-to-one matching scheme
that minimizes a global cost function. Given a set
of ground-truth event labels {tsi , tei , ci}Ni=1, each
label ei corresponds to a ground-truth event anno-
tated by its start time, end time, and caption. For
each query pair qj ∈ {qlocj , qcapj }Kj=1 obtained from
our decomposition, we compute a matching cost
with respect to each ei. The objective is to establish
the optimal assignment by finding the minimum-
cost matching between queries and ground-truth
events, mathematically formulated as follows:

min
xij

N∑

i=1

K∑

j=1

cost(ei, qj)xij

s.t.
K∑

j=1

xij = 1, ∀ i ∈ (1, . . . , N),

N∑

i=1

xij ≤ 1, ∀ j ∈ (1, . . . ,K),

xij ∈ {0, 1}, ∀ i ∈ (1, . . . , N), j ∈ (1, . . . ,K),

(2)
where the first constraint ensures that each event
label is assigned to exactly one query pair, while
the second constraint ensures that each query pair
is assigned at most one event label. The cost(ei, qj)
includes the focal loss, localization loss, and cap-
tioning loss predicted by qj , defined as follows:

cost = λclsLcls + λgiouLgiou + λcapLcap, (3)

where Lcls is the focal loss between the predicted
classification score and the label, Lgiou denotes the
generalized IoU loss between predicted temporal
segments and ground-truth segments, and Lcap is
the captioning loss computed between the predicted
and ground-truth captions. The above optimization
problem could be solved by the Hungarian algo-
rithm (Kuhn, 1955), resulting in the matching set
M that assigns labels to predictions as follows:

M = {(i, j)|xij = 1}. (4)

Considering the matching of both localization and
captioning in label assignment promotes effective
collaboration between these two tasks.

3.4 Contrastive Semantic Alignment
To enhance the ability of localization and caption-
ing queries to capture their respective task-specific
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semantics, we introduce a contrastive learning strat-
egy. In detail, the localization queries are pulled
closer to the average visual features of their corre-
sponding video segments and pushed away from
those of other events. Meanwhile, the captioning
queries are aligned with the textual representations
of their matched ground-truth descriptions and con-
trasted against those of unrelated events.

Semantic Alignment for Localization. We em-
ploy the event duration provided in the annotations
as a key cue to guide the model in extracting vi-
sual semantics specific to each event, leveraging
event-independent visual features to enhance local-
ization quality, as illustrated in Figure 1(b). We uti-
lize a feature sampler to extract frame-level video
features within the ground-truth temporal bound-
aries corresponding to the matched localization
queries. Assuming that the ground truth ei matches
qloci∗ , where i∗ denotes the index of the optimally
matched query for ei and (i, i∗) ∈ M, we take the
mean video feature fi =

1
e−s+1

∑tei
j=tsi

fj within
the time range [tsi , t

e
i ] as the positive example and

all other queries as negative examples. Then, we
pull positive examples closer while pushing neg-
ative examples apart with the cosine distance to
measure similarity, which is defined as follows:

Lloc
contrast =

− 1

N

N∑

i=1

log
exp(sim(qloci∗ , fi)/τ)

exp(sim(qloci∗ , fi)/τ) +
∑

j ̸=i exp(sim(qloci , qlocj )/τ)
,

(5)
where N is the number of events, sim(·, ·) denotes
the cosine similarity, and τ is the temperature pa-
rameter. This contrastive loss draws localization
queries closer to the visual features of video frames
corresponding to their timestamps, which enables
localization queries to decode event-related visual
patterns more accurately, reduces background inter-
ference, and enhances localization precision. Mean-
while, it pushes apart the distributions of different
localization queries, helping the model distinguish
adjacent or similar events more effectively.

Semantic Alignment for Captioning. Rather
than using label captions solely to guide text de-
coding, we enhance the model’s ability to extract
descriptive semantics by pulling in the distribution
of captioning queries and corresponding event cap-
tions, which is illustrated in Figure 1(c). We em-
ploy a pretrained text encoder to extract the textual
features f c of the caption c for contrastive learning.
The query qcapi∗ and its corresponding description

feature f c
i form a positive example, while qcapi∗ and

all other description features form negative exam-
ples. This contrastive loss is computed as follows:

Lcap
contrast = − 1

N

N∑

i=1

log
exp(sim(qcapi∗ , f c

i )/τ)∑
j ̸=i exp(sim(qcapi∗ , f c

j )/τ)
.

(6)
The above loss aligns captioning queries with the
textual semantic space, ensuring that the generated
descriptions remain highly relevant to the target
text. By distancing caption queries from the text
representations of other events, the model improves
its ability to distinguish event semantics, thereby
reducing confusion between event descriptions.

The two contrastive losses λloc
contrast and λcap

contrast

explicitly constrain localization queries to focus on
video temporal dynamics and captioning queries to
linguistic information.

3.5 Prediction

Training. Our loss function comprises six terms,
and the overall function is defined as follows:

L = λclsLcls + λgiouLgiou + λcapLcap

+ λcountLcount + λloc
contrastLloc

contrast + λcap
contrastLcap

contrast,

(7)
where the Lcount represents the cross-entropy be-
tween the predicted count number distribution and
the ground truth number of events. In the above
loss, the first four terms follow the conventional
design of end-to-end DVC, whereas the final two
constitute our proposed contrastive learning.

Inference. During inference, DDVC processes
the input video features {fl}Tl=1 to generate a set
of candidates {t̂si , t̂ei , ĉi}Ki=1 along with a predicted
event count N̂ . Each candidate is assigned a rank-
ing score by combining its localization confidence
with the cumulative probability of its generated cap-
tion. Then, the top N̂ candidates with the highest
scores are selected as the final predictions.

4 Experiments

4.1 Experimental Settings

Datasets. Our experiments are conducted on two
widely used benchmark datasets, ActivityNet Cap-
tions (Krishna et al., 2017) and YouCook2 (Zhou
et al., 2018a). ActivityNet Captions consists of
approximately 20,000 untrimmed videos depicting
diverse human activities, with each video averaging
120 seconds and annotated with about 3.65 tempo-
rally localized sentences. We leverage the official
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Method
Event Captioning Event Localization

CIDEr(↑) METEOR(↑) BLEU-4(↑) SODA_c(↑) Recall(↑) Precision(↑) F1(↑)

Pretrain
Vid2seq 47.10 9.30 - 7.90 27.90 27.80 27.84
DIBS 44.44 7.51 - 6.39 26.24 39.18 31.43

without Pretrain
PDVC 29.69 5.56 1.40 4.92 22.89 32.37 26.81
CM2 31.66 6.08 1.63 5.34 24.76 33.38 28.43
MCCL 36.09 6.53 2.04 5.21 - - -
DDVC (Ours) 38.75 6.92 1.92 6.68 30.81 37.25 33.73

Table 1: Performance of event captioning and event localization on YouCook2. ↑ means higher is better. The best
result is in bold, and the second best result is underlined.

Method
Event Captioning Event Localization

CIDEr(↑) METEOR(↑) BLEU-4(↑) SODA_c(↑) Recall(↑) Precision(↑) F1(↑)

Pretrain
Vid2seq 30.10 8.50 - 5.80 52.70 53.90 53.29
DIBS 31.89 8.93 - 5.85 53.14 58.31 55.61

without Pretrain
PDVC 29.97 8.06 2.21 5.92 53.27 56.38 54.78
CM2 33.01 8.55 2.38 6.18 53.71 56.81 55.21
MCCL 34.92 9.05 2.68 6.16 53.19 57.36 55.23
DDVC (Ours) 35.48 8.62 2.44 6.55 54.77 57.54 56.12

Table 2: Performance of event captioning and event localization on ActivityNet Captions.

split of 10,009 videos for training, 4,925 for vali-
dation, and 5,044 for testing. YouCook2 contains
around 2,000 untrimmed cooking procedure videos,
each with an average duration of 320 seconds and
approximately 7.7 annotated sentences per video.
We follow the standard split with 1,333 videos for
training, 457 for validation, and 210 for testing.
Note that our experiments utilize about 7% fewer
videos than the original dataset due to relying on
accessible YouTube content (Kim et al., 2024).

Evaluation Metrics. We evaluate our method
from two aspects, including dense video captioning
and event localization, as in previous works (Kim
et al., 2024; Xie et al., 2025). For captioning, we
employ the official ActivityNet Challenge evalua-
tion tools to calculate the CIDEr (Vedantam et al.,
2015), BLEU-4 (Papineni et al., 2002), and ME-
TEOR (Banerjee and Lavie, 2005) scores, which
assess the quality of matched pairs between gener-
ated captions and ground truth at IoU thresholds
of 0.3, 0.5, 0.7, and 0.9. In addition, we measure
storytelling ability using the SODA_c (Fujita et al.,
2020) metric. For event localization, we calculate
average precision, average recall, and the F1 score

at the same IoU thresholds.

Implementation Details. In our experimental
setup, the video frames from both datasets are ex-
tracted at 1 frame per second. We utilize the pre-
trained CLIP ViT-L/14 (Radford et al., 2021) visual
encoder to extract 768-dimensional frame features,
while the corresponding CLIP text encoder gener-
ates 768-dimensional textual features. For event
detection, the number of event queries K is set to
10 for ActivityNet Captions and 50 for YouCook2.
The framework structure employs a deformable
transformer with two encoder layers and two de-
coder layers, integrating multi-scale deformable
attention across four feature levels. The localiza-
tion head is implemented as a multilayer perceptron
with three linear layers. The captioning head com-
prised two decoding modules, with each containing
a self-attention layer, a cross-attention layer, and
a feed-forward network. The event counter is de-
signed as a single linear layer. The balancing hyper-
parameters λcls, λgiou, λcap, λcount, λ

loc
contrast, and

λcap
contrast are set to 2, 4, 2, 0.5, 1, and 1, respectively.

Adam (Kingma and Ba, 2015) is used as the opti-
mizer with a learning rate of 5×10−5 and a weight
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QD JSLA CSA
Event Captioning Event Localization

CIDEr(↑) METEOR(↑) BLEU-4(↑) SODA_c(↑) Recall(↑) Precision(↑) F1(↑)

✘ ✘ ✘ 31.44 6.24 1.49 5.48 27.98 36.54 31.69
✔ ✘ ✘ 33.54 6.48 1.61 5.74 28.61 38.33 32.76
✘ ✔ ✘ 34.74 6.36 1.62 6.16 30.10 36.65 33.06
✔ ✔ ✘ 36.78 6.55 1.63 6.42 30.08 37.81 33.50
✔ ✘ ✔ 37.88 6.57 1.83 6.50 29.83 37.45 33.21
✔ ✔ ✔ 38.75 6.92 1.92 6.68 30.81 37.25 33.73

Table 3: The ablation result of the different components on YouCook2.

Method
Event Captioning Event Localization

CIDEr(↑) METEOR(↑) BLEU-4(↑) SODA_c(↑) Recall(↑) Precision(↑) F1(↑)

w/o CSA 36.78 6.55 1.63 6.42 30.08 37.81 33.50
CSA (Loc) 34.65 6.25 1.67 6.51 32.53 36.81 34.54
CSA (Cap) 38.50 6.73 2.04 6.67 29.81 35.87 32.56
DDVC 38.75 6.92 1.92 6.68 30.81 37.25 33.73

Table 4: The ablation result of the different query semantic alignment on YouCook2.

decay of 1×10−4. The temperature in our proposed
contrastive loss is set to 0.1. The code is available
at https://github.com/siplysagari/DDVC.

Baselines. We compare the performance of our
DDVC with state-of-the-art works, including end-
to-end methods with or without pretraining. The
pretrained methods contain Vid2Seq (Yang et al.,
2023) and DIBS (Wu et al., 2024). The methods
without pretraining include PDVC (Wang et al.,
2021a), CM2 (Kim et al., 2024), and MCCL (Xie
et al., 2025), where CM2 and MCCL build external
memory banks for retrieval augmentation.

4.2 Experimental Results
Event Captioning Performance. Table 1 shows
the experimental results of our proposed DDVC
on the YouCook2 dataset. Compared to the end-
to-end method PDVC, our DDVC achieves a sig-
nificant improvement, with increases of 9.06 in
CIDEr and 1.76 in SODA_c. Since our method and
PDVC both retain a standard end-to-end pipeline,
the proposed query decomposition and label assign-
ment are particularly beneficial for dense caption-
ing. While DDVC shows a slight disadvantage in
BLEU-4 compared to retrieval-augmented meth-
ods that leverage external corpora, it demonstrates
clear advantages in other metrics. Specifically, it
outperforms MCCL by 2.66 in CIDEr and 0.39 in
METEOR, and surpasses CM2 by 1.34 in SODA_c.
Our method avoids the burden of additional re-
trieval and leverages decomposed queries to fully
extract task-specific information from videos.

Table 2 reports the model performance of DDVC
on the ActivityNet Captions dataset. Our method
significantly outperforms PDVC. Compared to the
retrieval-augmented methods, DDVC surpasses
CM2 in all description metrics. Against MCCL,
DDVC achieves gains of 0.56 in CIDEr and 0.39 in
SODA_c but lags behind in METEOR and BLEU-
4. We attribute this disparity to the benefits of
retrieval augmentation, as METEOR and BLEU-4
emphasize surface-level textual matching, which
can be effectively leveraged from retrieved corpora.

Both Vid2seq and DIBS require substantial com-
putation for pretraining and finetuning. Their pre-
training datasets contain plenty of cooking videos,
with fewer human activities, which enhances cap-
tioning on YouCook2 but offers limited improve-
ment on ActivityNet Captions. This aligns with the
results in Tables 1 and 2. In contrast, our method
shows competitive results with a lightweight archi-
tecture and an efficient training process.

Event Localization Performance. As shown in
Table 1 and Table 2, our method leads in all metrics,
demonstrating superior event localization perfor-
mance across both the YouCook2 and ActivityNet
Captions datasets compared to state-of-the-art base-
lines. Note that the YouCook2 dataset features a
denser distribution of events, making precise lo-
calization more challenging than in ActivityNet
Captions. On YouCook2, DDVC significantly out-
performs Vid2Seq and PDVC and surpasses the
most advanced model, CM2, by 6.05 in recall, 3.87
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CM2

Ours

GT [47s-60s] Pick the ends off the 
verdalago.

[67s-89s]  Combine lemon juice sumac garlic salt and 
oil in a bowl.

[91s-98s] chop lettuce and place it 
in a bowl.

[64.37-89.26s] Add olive oil lemon juice 
worcestershire sauce garlic powder cayenne pepper 
and lemon juice to a bowl.

[89.34s-102.89s] Chop up the parsley 
finely and add it to a bowl.

[44.15s-56.64s] Cut the cucumber 
into small pieces and put them in 
a bowl.

[63.41s-97.63s] Mix some olive oil and salt and salt.[29.93s-61.12s] Peel and chop the 
parsley. [89.08s-96.45s] Chop the parsley 

into the pieces.

CM2

Ours

GT

Input
Video

Figure 2: Visualization of the prediction results from our method and CM2 on the YouCook2 dataset, along with the
corresponding ground truth (GT) for comparison.

in precision, and 5.3 in F1 score. Our method also
achieves superior performance on ActivityNet Cap-
tions which contains fewer events. For Vid2seq and
DIBS, since the pretraining datasets do not involve
event localization, they do not demonstrate strong
capabilities in locating events. Our framework pro-
duces localization queries to assist the model in
exploring required visual information, resulting in
more accurate localization results.

4.3 Ablation Studies

Effect of Different Components. We conduct
ablation experiments on the YouCook2 dataset to
evaluate the effectiveness of the components in
DDVC. A baseline model using task-shared queries
is constructed, and then we attach the three pro-
posed components to this baseline: 1) query de-
composition (QD), 2) joint supervision label as-
signment (JSLA), and 3) contrastive semantic opti-
mization (CSA). As shown in Table 3, the experi-
mental results demonstrate that each component
contributes to the improvement in performance.
Incorporating query decomposition into the base-
line model enables query decoupling, allowing the
model to flexibly capture task-specific semantics
and thereby enhancing performance. The joint su-
pervision label assignment method applies a global
optimal task allocation strategy, mitigating subop-
timal solutions in description tasks under localiza-

tion guidance. The result shows that, without using
our label assignment, the method with query de-
composition achieves the highest precision score of
38.33 in event localization, but the description per-
formance lags behind. The addition of contrastive
semantic optimization on top of query decomposi-
tion further enhances the model’s ability to capture
task-specific semantics, boosting results in both lo-
calization and description. DDVC combines these
components and achieves the best overall perfor-
mance. The above results validate the effectiveness
of each component and their compatibility.

Effect of Contrastive Semantic Alignment. To
further investigate the impact of contrastive seman-
tic augmentation (CSA) on DDVC, we conduct
an additional experiment on YouCook2, with re-
sults presented in Table 4. The CSA (Loc) variant
refers to applying semantic augmentation solely to
the localization query. Compared to the method
without semantic augmentation (w/o CSA), CSA
(Loc) significantly improves event localization per-
formance but may have reduced performance in
the descriptive task. Conversely, in the CSA (Cap)
setting, where only the caption query is augmented,
the opposite effect is observed. Given that both lo-
calization and captioning share the same input but
pursue different objectives, they are always com-
peting, since DVC is a multi-task learning problem.
Although our contrastive semantic alignment en-
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hances the model’s ability to extract task-specific
information, exclusively optimizing semantic fea-
tures for one task may hinder the learning of the
other. DDVC simultaneously employs two seman-
tic alignment methods to enhance the overall capa-
bility of dense video captioning.

4.4 Qualitative Evaluation

We visualize the prediction results from our method
and CM2 on the YouCook2 dataset, as shown in
Figure 2. The observations indicate that both meth-
ods accurately predict the number of events in this
case. Regarding event localization, CM2 exhibits
boundary definition errors in Event 2 (marked in
green), whereas our predictions demonstrate co-
herent boundaries with low redundancy that better
align with the ground truth distribution. For event
captioning, CM2 tends to generate overly concise
texts (e.g., Events 5 and 6, marked in brown and
gray, respectively) that inadequately summarize
event content, while our method produces more se-
mantically rich descriptions resembling human an-
notations. DDVC leverages query decomposition
and contrastive semantic alignment to empower the
model with task-aware information extraction. Our
joint supervised label assignment also promotes
collaboration between localization and captioning.

5 Conclusion

This paper presents a novel decomposed framework
for dense video captioning that addresses the limita-
tions stemming from shared query representations
in existing end-to-end paradigms. By decoupling
event queries into task-specific localization and cap-
tioning queries while preserving inter-task collabo-
ration, our method enhances both event boundary
detection and description generation. Contrastive
semantic optimization further refines query repre-
sentations by aligning localization with visual cues
and captioning with textual semantics, while our
joint label assignment provides semantically bal-
anced supervision. Extensive experiments demon-
strate that the proposed method achieves state-of-
the-art performance. Our work establishes a new
standard for dense video understanding through
its dual-path framework that respects task-specific
requirements while maintaining inter-task synergy.

Limitations

Our DDVC is built on an end-to-end model archi-
tecture, thereby inheriting the limitations of this

architecture. It restricts the number of queries and
requires the complete video content as input, which
limits the number of detectable events and renders
the model unsuitable for streaming video scenarios.
Regarding semantic disentanglement, our method
only decomposes the query representations with-
out addressing the structural disentanglement of
the model architecture. Sharing model parameters
to accommodate both types of query features may
lead to suboptimal performance due to potential in-
terference between tasks. In future work, we plan
to explore more profound disentanglement methods
to separate semantics tailored for different tasks.
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Method
Event Captioning Event Localization

CIDEr(↑) METEOR(↑) BLEU-4(↑) SODA_c(↑) Recall(↑) Precision(↑) F1(↑)

YouCook2

CM2 31.66 6.08 1.63 5.34 24.76 33.38 28.43
MCCL 36.09 6.53 2.04 5.21 - - -

DDVC 38.75 6.92 1.92 6.68 30.81 37.25 33.73
+RA (CM2) 39.50 6.98 2.05 6.52 30.38 37.08 33.40

ActivityNet Captions

CM2 33.01 8.55 2.38 6.18 53.71 56.81 55.21
MCCL 34.92 9.05 2.68 6.16 53.19 57.36 55.23

DDVC 35.48 8.62 2.44 6.55 54.77 57.54 56.12
+RA (CM2) 37.14 8.83 2.75 6.43 53.77 57.02 55.34

Table 5: The results of employing retrieval augmentation on DDVC.

A Computational Overhead

The experiments are conducted using one NVIDIA
GeForce RTX 3090 GPU. Our proposed DDVC
contains approximately 73 million parameters. On
the YouCook2 dataset, each training epoch takes
8.75 minutes, and with 15 epochs, the total training
cost amounts to approximately 2.19 GPU hours.
For the ActivityNet Captions dataset, each epoch
requires 42.35 minutes of training time. Follow-
ing the same 15-epoch training protocol, the total
computational cost reaches 10.59 GPU hours.

B Retrieval Augmentation on DDVC

To investigate the impact of retrieval-augmented
design, we apply the retrieval strategy of CM2 to
our DDVC framework. Specifically, we fuse the
retrieved textual features with video and query fea-
tures, denoted as “+RA (CM2)”, with the results
in Table 5. The results demonstrate that retrieval
augmentation improves text-only metrics such as
CIDEr, METEOR, and BLEU-4 on both YouCook2
and ActivityNet Captions, indicating its effective-
ness in enhancing surface-level textual alignment.
However, we observe that retrieval augmentation
does not lead to performance gains on localization-
related metrics such as SODA_c, Recall, Precision,
and F1. Note that SODA_c evaluates both localiza-
tion and captioning, and the degradation in event
boundary prediction would offset the gains in de-
scription quality. This suggests that the external
texts retrieved with visual content may contain use-
ful semantics for captioning but not for localization,
potentially interfering with boundary judgment.
Existing retrieval-augmented methods are not fully
compatible with our query decomposition. It is

worth exploring retrieval mechanisms that incorpo-
rate more fine-grained feature manipulation (e.g.,
decomposed feature fusion and modality-specific
alignment) to better leverage external knowledge
while maintaining localization precision.

C Additional Qualitative Examples

We provide additional qualitative examples from
the YouCook2 and ActivityNet Captions datasets
to demonstrate the effectiveness of our method. As
shown in Figure 3 and Figure 4, DDVC produces
more accurate temporal boundaries and semanti-
cally coherent captions compared to the baseline
CM2. In YouCook2, where videos often contain
many short-duration events, our method exhibits
better temporal alignment and produces more se-
mantically accurate descriptions. In ActivityNet
Captions, where its videos feature fewer but longer
events with rich semantics, our method captures
fine-grained actions and transition cues that are
frequently overlooked by CM2. These results high-
light the superiority of our model in handling the
videos with diverse event densities and complexi-
ties in real-world scenarios.

16535



GT [0s-5.21s] A gymnast is seen 
walking forward and raising 
his arms out to the side.

[2.13s-20.14s] He jumps up on 
a beam and begins performing 
a routine.

[20.14s-47.39s] He spins himself around continuously 
and ends by jumping down with his arms out.

Ours [5.08s-22.00s] He mounts the beam 
and begins to do a gymnastics routine. [20.89s-47.39s] He continues to spin around and ends 

with his arms up and down.

[0.05s-4.77s] A man is standing 
on a beam.

[0.33s-22.48s] A man is seen standing ready to a 
set of uneven bars and begins performing a 
gymnastics routine.

CM2 [0.00s-5.24s] A man is standing 
on a beam.

[19.59s-47.39s] He does a gymnastics 
routine on the mat.

Input
Video

Figure 3: Visualization of the prediction results from our method and CM2 on ActivityNet Captions.

Input
Video

CM2 [32.26s-41.30s] Preheat the 
onions in a pan.

[24.99s-29.42s] Bake 
the oven.

[42.64s-56.09s] Cut the bread 
into slices.

[58.91s-70.64s] Chop 
the onion into a pan.

Ours [32.06s-42.03s] Cut the 
onion into slices. [39.54s-58.15s] Cut the bread 

into slices.

[24.56s-28.47s] Preheat 
the oven.

[60.86s-83.99s] Add chopped 
onions and mix them well.

GT [24s-28s] Preheat oven 
to 350 f degree.

[36s-40s] Chop one large 
onion into pieces.

[43s-53s] Cut some slices 
of white bread into cubes.

[63s- 72s] Add the chopped 
onions to some meat loaf.

Input
Video

CM2 [77.86s-96.93s] Add some salt 
pepper and pepper to the bowl.

[102.39s-110.49s] Add 
the bread to the bread.

[113.26s-141.35s] Add the 
egg and cheese to the bread.

[132.81s-144.54s] Pour 
the meat in the meat.

Ours [75.30s-99.92s] Season 
the meat with salt and 
pepper.

[104.29s-116.07s] Crack an 
egg into a bowl and whisk.

[80.27s-101.93s] Mix the 
meat with the bread crumbs.

[133.59s-152.55s] mix butter worcestershire 
sauce mustard ketchup mustard and 
worcestershire sauce.

GT [73s-103s] Season with salt black 
pepper and garlic powder and mix 
them together.

[104s-110s] Add 
the cubed bread 
to the mixture.

[111s-120s] Pour some 
milk and one egg and 
mix them together.

[133s-146s] Add some 
yellow mustard and 
some ketchup.

Input
Video

GT [148s-161s] Mix the mixture 
and place into the pan.

[166s-199s] Add a little yellow mustard 
ketchup and brown sugar and stir to combine.

[200s-219s] Pour and 
spread the sauce.

[219s-229s] Bake the 
mixture in the oven.

[186.29s-199.15s] Mix the 
sauce and mix.CM2

[150.57s-184.78s] Pour the sauce 
into a bowl and mix the ingredients. [194.33s-215.54s] Pour the 

sauce on the meat and mix 
the sauce on the top.

[221.52s-227.80s] 
Cook the oven in 
the oven.

Ours [163.63s-197.35s] Mix ketchup brown 
sugar and worcestershire sauce.

[205.02s-219.41s] Pour 
the sauce on top of the 
meat loaf.

[153.42s-163.74s] Mix ketchup 
brown sugar and worcestershire 
sauce.

[220.23s-230.93s] 
Bake the dish in 
the oven.

Figure 4: Visualization of the prediction results from our method and CM2 on YouCook2.
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