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Abstract

The rise of large language models (LLMs) of-
fers new opportunities for automatic error de-
tection in education, particularly for math word
problems (MWPs). While prior studies demon-
strate the promise of LLMs as error detectors,
they overlook the presence of multiple valid
solutions for a single MWP. Our preliminary
analysis reveals a significant performance gap
between conventional and alternative solutions
in MWPs, a phenomenon we term conformity
bias in this work. To mitigate this bias, we in-
troduce the Ask-Before-Detect (AskBD) frame-
work, which generates adaptive reference so-
lutions using LLMs to enhance error detec-
tion. Experiments on 200 examples of GSM8K
show that AskBD effectively mitigates bias and
improves performance, especially when com-
bined with reasoning-enhancing techniques
like chain-of-thought prompting. The code and
data are available at https://github.com/
dse-ai-edu/AskBD.

1 Introduction

Automatic Error Detection (AED) has been a
prominent research topic in education over the past
few decades (Leacock et al., 2014). Supported by
rapid advancements in natural language processing
(NLP) technologies, particularly in language mod-
eling (Min et al., 2023), AED research has achieved
notable success in language education (Huang et al.,
2023). The recent emergence of large language
models (LLMs) presents new opportunities for
AED studies. Leveraging their exceptional capabil-
ities in logical reasoning (Pan et al., 2023), LLMs
have become promising tools helping the quick
development of AED in more challenging scenar-
i0s including programming (Messer et al., 2024)
and mathematics learning (Jiang et al., 2024; Yen
and Hsu, 2023). Recent studies have introduced
benchmark datasets to demonstrate the potential of
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LLMs in AED across diverse domains (Yan et al.,
2024). Moreover, due to the reasoning-intensive
nature of error detection in mathematical problems,
recent research has employed AED tasks on math
word problems (MWPs) to evaluate the compara-
tive reasoning capabilities of LLMs (Li et al., 2024).
Studies (Zhou et al., 2024) have indicated that iden-
tifying errors in MWPs, rather than generating cor-
rect solutions, serves as a more effective metric
for assessing differences in the reasoning capabil-
ities of LLMs. In this paper, we explore AED for
MWPs. Specifically, building on prior studies, we
define the AED task as identifying both the erro-
neous step and its error category from a given input
pair consisting of a question and its solution. It
is important to note that a correct result requires
accurate identification of both the error step and
the error category.

While previous studies (Li et al., 2024; Zhou
et al., 2024) have explored various methods for
evaluating the error detection capabilities of LLMs
on MWPs, these approaches predominantly focus
on generating erroneous solutions based solely on
the conventional solutions provided in the dataset.
In practice, however, a single MWP can have mul-
tiple valid solutions, leaving the performance of
LLMs on alternative solutions largely unexplored.
In Figure 1, we present an illustrative example
where both the conventional and alternative solu-
tions are submitted to an LLM-powered error de-
tector, yet only the conventional solution receives
the correct detection result. Motivated by this ob-
servation, we propose an automatic method for
generating alternative solutions and evaluate the
behavior of LLM-powered error detectors on 200
pairs of conventional and alternative solutions. Our
preliminary results in section 2.3.1 reveal an av-
erage 7% detecting accuracy performance gap be-
tween conventional and alternative solutions, with
even advanced closed-source models exhibiting the
same limitation. These findings suggest that current
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<Instruction> Given the
<question>, please judge whether
each step in <solution> is correct.
During the judging process, you
should know that the <question>

'

( )
<Solution A> Step 1. If he purchases jewelry, he will make a profit of 2.5% which is
$5000*(2.5/100)= $125. Step 2. If he purchases electronic gadgets, he will make a profit of 1.2%
which is $8000*(1.2/100) = $96. Step 3. If he wants to maximize profit, since $125 > $96, he will
choose to purchase jewelry, thereby making a profit of $125

does not always have only one S J
standard solution, and any reasonable
<solution> should be accepted ... In ( )
cach step, if no errors are found, GPT-4o: Step 1: <Correct>\nStep 2: <Correct>\nStep 3: <Correct>. o
respond with Step X: <Correct>. If .
you find errors in the step, please Qwen2.5-7B: Step 1: <Correct>\nStep 2: <Correct>\nStep 3: <Correct>. 0
classify them based on the following \ J
crror Categorles e and reSpond Wlth --------------------------------------------------------------------------------------------------------------
Step X: <[Error Category]>.

( )

<Question> A merchant wants to
make a choice of purchase between 2
purchase plans: jewelry worth $5,000
or electronic gadgets worth $8,000.
His financial advisor speculates that

<Solution B> Step 1. Jewelry worth $5,000 and its profit rate 2.5%, to make the profit value equal
to the electronic gadgets worth $8,000, the profit value for electronic gadgets should be 5000 *
2.5% /8000 = 1.56% Step 2. Since 1.56% > 1.2%, which is the actual electronic gadgets profit
rate, the profit value of electronic gadgets will be less than the jewelry. Step 3. Choose Jewelry

©
|
0

the jewelry market will go up 2.5%
while the electronic gadgets market .

will maximize profit at the end of this month and the profit will be $5000 * 2.5% = $125.

month. If the merchant is looking to
maximize profit at the end of this
month by making a choice, how
much profit would this be?

will rise 1.2% within the same
e
v
—p

J U J

GPT-4o0: Step 1: <Calculation Error>\nStep 2: <Calculation Error>\nStep 3: <Correct>. 0

Qwen2.5-7B: Step 1: <Reference Error>\nStep 2: <Hallucination>\nStep 3: <Correct>. °

J/

Instruction / Question LLMs

Solution / Response

Figure 1: An illustration of error detection in MWP solutions: <Solution A> represents the conventional solution,
which achieves accurate error detection with LLM-powered error detectors. In contrast, <Solution B>, while also
correct, encounters erroneous error detection results across all LLM-powered error detectors.

LLM-based error detectors display a pronounced
conformity bias, favoring a specific solution for-
mat while rejecting others. This bias is particu-
larly concerning in educational contexts, as it dis-
courages students from exploring diverse problem-
solving approaches and stifles creativity.

To investigate the underlying causes of confor-
mity bias and develop effective strategies to mit-
igate it, we conduct further preliminary studies
in Section 2.3, which examines the common pat-
terns in the behavior of LLM-powered error detec-
tors when evaluating diverse solutions. Our find-
ings reveal that error detection accuracy is closely
correlated with the likelihood scores assigned by
LLMs to solutions, with higher likelihood scores
corresponding to improved detection performance.
Since alternative solutions typically receive lower
likelihood scores compared to conventional ones,
conformity bias naturally emerges. This observa-
tion points to a potential remedy: adjusting the like-
lihood scores of solutions. However, this approach
faces two significant challenges. First, fine-tuning
advanced models requires high-quality datasets and
incurs substantial costs. Second, while fine-tuning
may improve likelihood scores for samples within
the training dataset, its generalizability to novel
solutions remains uncertain. During our investi-
gation into the impact of introducing a reference
answer during error detection, we observed that

conformity bias is significantly reduced across all
LLMs. This finding inspires us to leverage refer-
ence answers as a viable strategy for mitigating
bias. However, uniformly providing a standard
reference answer for every solution is suboptimal
in practice. Misalignment between the reasoning
behind different solutions and the reference an-
swer can sometimes degrade final detection per-
formance. To address this, we propose the Ask-
Before-Detection (AskBD) framework, which gen-
erates adaptive reference answers through step-by-
step question-answering techniques. By leveraging
the strong problem-solving capabilities of LLMs
and employing a decomposed, question-guided ap-
proach, the reference answers can be generated
with high accuracy, even using less capable mod-
els. Incorporating these generated reference so-
lutions significantly mitigates conformity bias in
LLM-powered error detectors for MWP solutions.
Furthermore, the adaptability of the generated ref-
erences enhances the overall performance of LLM-
powered error detector across both conventional
and alternative solutions.

2 Preliminary Study

In this section, we present our preliminary studies
aimed at identifying and understanding the pres-
ence of conformity bias in LLM-powered error
detectors. Specifically, we begin by describing our
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50% more than candidate A, which is

<Alternative Expression>: 100 x (1 - (0.2 + (0.2 x (1+ 0.5))))

2. Calculate the fraction of total votes Candidate B received:

number of votes Candidate C received: 100 x 0.5 = 50 votes.
\_

<Conventional Solution>: Step 1. Candidate A received 20% of 100 voters, so 100 x 20/100 = 20 votes. Step 2. Candidate B received
more votes. Step 3. Therefore, candidate B received 20 (votes from A) + 10
(additional votes) = 30 votes. Step 4. Together, candidate A and B got 20 + 30 = 50 votes. Step 5. Candidate C received the remaining
votes, which is 100 (total voters) - 50 (votes from A and B) = 50 votes.

<Conventional Expression>: 100 - ((100 x 0.2) + ((100 x 0.2) + (100 x 0.2) x 0.5)))

<Alternative Solution>: Step 1. Calculate the ratio of the votes Candidate B received to those Candidate A received: 1 + 0.5 =1.5. Step

Candidates A and B: 0.2 + 0.3 = 0.5. Step 4. Calculate the fraction of total votes Candidate C received: 1 - 0.5 = 0.5. Step 5. Calculate the

N

. Step 3. Calculate the combined fraction of votes received by

J

Figure 2: The ASP pipeline to generate permuted solution. The corresponding relationships between the calculations
in each step and the parts enclosed by different parentheses in expression are highlighted using matching colors.

automated method for preparing an error detection
dataset featured with paired conventional and alter-
native solutions. Then, we analyze the relationship
between likelihood scores and the behavior pat-
terns of LLM-powered error detectors. Finally, we
present our observations on how incorporating ref-
erence solution text influences the performance and
behavior of error detectors.

2.1 Automatic Solution Permutation

Building a high-quality alternative solution dataset
is critical to our preliminary study, as low-quality
alternatives, such as simple semantic paraphrases
of conventional solutions, fail to effectively expose
the "conformity bias" in LLM-powered error detec-
tors. During our initial exploration, we observed
that directly using simple prompts to query LLMs
for automatically generating alternative solutions
presents significant challenges. Specifically, LLMs
often produce paraphrased versions of conventional
solutions unless detailed and specific instructions
about the solving strategy are provided during the
generation process. To address this, we propose
the Automatic Solution Permutation (ASP) method,
which leverages the correspondence between con-
ventional solutions and their solving expressions.
Using these expressions as specific instructions
helps LLMs move beyond paraphrasing behavior,
enabling the generation of high-quality alternative
solutions.

The ASP method operates in three stages: Ex-
tract, Permute, and Explain. At each stage, LLMs
are prompted to execute specific tasks indepen-

dently. In the Extract stage, ASP encapsulates the
steps of a conventional solution into a single math-
ematical expression. To ensure accuracy, these
expressions are executed, and any that fail to pro-
duce correct answer values are discarded. In the
Permute stage, ASP generates new expressions by
applying operations such as factorization, distribu-
tion, and order rearrangement, which transform the
expressions while preserving their mathematical
equivalence. A similar filtering process is applied
to these permuted expressions to ensure correctness.
Finally, in the Explain stage, the permuted expres-
sions are provided to LLMs to guide the generation
of high-quality alternative solutions. By instruct-
ing the LLMs to interpret the brackets within each
expression as distinct steps, the ASP method pro-
duces detailed, step-by-step alternative solutions.
Figure 2 illustrates the ASP pipeline and provides
an example of paired conventional and alternative
solutions alongside their corresponding solving ex-
pressions.

In our study, we use GPT-40 as the backbone
LLM for each stage of the ASP method. To be-
gin, we randomly sample 200 question-and-answer
pairs from the test split of GSM8K (Cobbe et al.,
2021) and use them to construct our conventional
dataset, D. For each sample in D, we apply ASP
three times to generate three candidate permuted
solutions for each conventional solution. Subse-
quently, a graduate student from the education de-
partment reviews the quality of all the generated
alternative solutions and selects the highest-quality
alternative solution for each convention solution.
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These selected solutions are then compiled to form
the alternative dataset, D’.

2.2 Erroneous Solution Generation

After preparing the alternative solution dataset,
the next step is to generate erroneous solutions.
Building on prior work (Li et al., 2024), which
categorize common errors in solutions to MWPs
into categories, we choose four representative er-
ror types that commonly encountered in real-world
error grading scenarios: calculation errors (£¢),
reference errors (€r), missing steps (£,7), and hal-
lucinations (£x), for our study. It is worth noting
that this study specifically aims to explore con-
formity bias, and therefore, we do not include all
possible error types. To minimize the risk of exper-
imental noise caused by ambiguous definitions, we
defined these error types in a straightforward and
easily distinguishable manner. Detailed descrip-
tions of each error type are provided in Table 8 in
Appendix C. To simulate erroneous solutions, we
injected these errors into correct solutions using
a generation strategy inspired by prior work (Li
et al., 2024). During the injection process, the er-
ror type was controlled through a hyper-parameter,
while the specific error location (error step number)
was determined randomly. This approach enables
controlled testing of the AED’s ability to handle
and identify various error scenarios effectively. For
each example in D and D’, we generated four corre-
sponding erroneous solutions, each associated with
one of the four error types. This process yielded a
total of 2,000 examples, which were prepared for
subsequent analysis.

2.3 Analysis and Findings

Before delving into the details about our analy-
sis and findings, we first introduce the evaluation
metric used for our following analyses. Specifi-
cally, since the locations and categories of injected
errors are automatically labeled during the error
injection process for each solution, we task the
LLM-powered error detector with identifying both
the error locations and their types. The evaluation
metric is the identification accuracy across both
correct and erroneous solutions.

2.3.1 Conformity Bias Identification

To identify conformity bias, we employ a widely-
used LLM-powered error detection approach, lever-
aging prompt engineering techniques outlined in
previous studies (Li et al., 2024). In addition, the in-
struction text informs the LLMs that alternative so-

Table 1: Error detection performance on ordinary (D)
and alternative (D’) solutions. The performance gap is
calculated as A = |D’ — D|. Results marked with *
indicate statistical significance based on student’s t-test.

Model | Small | Large

D D A | D D A
GPT-4o |272 184 88*|529 43495
Claude-3.5 | 382 34.7 | 3.5* | 59.9 52.7 | 7.2%
Gemini-1.5 | 464 39.5 | 6.9 | 652 55.6 | 9.6*
Llama-3.1 | 202 209 | 0.7 | 443 372 | 7.2*
Qwen-2.5 | 247 163 | 8.4* | 463 388 | 7.5¢

lutions to the given question exist and emphasizes
that all reasonable solutions should be accepted. To
minimize variability in performance due to ambi-
guity in error categories, we provide explicit defini-
tions for each error category within the prompt text,
ensuring clarity for the LLMs. The prompt used
for the error detection task is illustrated in Figure 5
in Appendix D.

To comprehensively analyze the conformity bias
exhibited by various LLMs, we conducted exper-
iments with 10 representative models. These in-
clude three closed-source series with their large
(small) versions (e.g., GPT-40 (Mini) (Bubeck
et al., 2023), Gemini-1.5-Pro (Flash) (Team et al.,
2023), Claude-3.5-Sonnet (Haiku) (Anthropic,
2024)) and two open-source series with their
large (small) counterparts (e.g., Llama-3.1-70B
(8B) (Touvron et al., 2023) and Qwen-2.5-72B
(7B) (Yang et al., 2024)). Table 1 presents a com-
parison of the average error detection accuracy
across both the conventional solution D and the
alternative solution D’ dataset. The results clearly
demonstrate a consistent performance gap between
the two datasets, confirming the presence of con-
formity bias in LLM-based error detection tasks.

2.3.2 Solution Likelihood Score Analysis

To investigate the underlying causes of conformity
bias, we first chose to use the log-likelihood score,
denoted as log Lg(s|q), returned by the LLM for
a given solution text s to the question text g, as
an indicator. This likelihood score is utilized as it
reflects the LLM’s confidence in the solution text
relative to the question text. If a solution known
to be correct receives a low confidence score from
the LLM, it suggests that the LLLM does not fully
understand the solution. Conversely, if the correct
solution receives a high score, it indicates that the
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Figure 3: Average error detection accuracy across samples grouped by the 25th, 50th, and 75th percentiles of I,.

LLM is proficient with the solution. The detailed
calculation method is presented below:

|s|

log Lg(slq) = > _log Lg(sillq, si.i—1))) (1)
=1

where 6 represents the parameters of the LLM, [-, -]
is text concatenation, s; is the i-th token of the
solution text. However, directly comparing the
likelihood scores calculated by Equation 1 for so-
lutions of varying lengths is still problematic, as
the likelihood score is inversely proportional to the
length of s. In other words, shorter solutions with
fewer tokens tend to have higher scores than longer
ones. To address this issue, we finally adopt the
average token log-likelihood score for our analysis
in subsequent studies.

log Ly(s|q)
|s]

log Ly(slq) = 2)

In Figure 3b and Figure 3a, we present the aver-
age error detection accuracy across different like-
lihood score groups. Specifically, given the likeli-
hood score to both convention and alternative so-
lutions, we group them based on their likelihood
score percentiles. For simplicity, we use the four
quarters in our experiment. It is important to note
that, since the likelihood scores of closed-source
models are unavailable, we use the average scores
of all open-source LLMs as a pseudo-indicator for
this analysis. From the figure, we observe that
the larger quarter groups with higher indicator val-
ues exhibit a clear advantage over those with the
smaller quarter ones. In addition, we plot the likeli-
hood score distribution comparisons between the
solution from D and D’ in Figure 3c. From these
plot, we can draw a clear conclusion that the con-
formity bias in current LLM to error detection tasks

is caused by its decreased understanding to those
alternative solution.

2.3.3 Reference-based Detection Findings

Directly improving the likelihood scores of alter-
native solutions poses inherent challenges. Strate-
gies like fine-tuning large language models (LLMs)
primarily improve likelihood scores for training
samples, but their effectiveness on unseen alterna-
tive solutions remains unpredictable. Building on
prior work (Daheim et al., 2024), which demon-
strated that introducing reference answers during
error detection enhances performance on conven-
tional solutions, we extend this approach to alter-
native solutions. It is important to note that, in real-
world error detection scenarios, reference answers
are not always available. Even when they are, con-
ventional solutions are more commonly provided.
Take this into consideration, we conducted exper-
iments comparing two reference-based detection
setups: (1) uniformly using conventional solutions
as references and (2) adaptively using correspond-
ing solutions as references. The detailed results are
presented in Table 3 and Table 2, respectively.

Table 2: Error detection performance w/ using corre-
sponding solution as reference solution for both ordinary
(D) and alternative (D’) solutions. The performance gap
is calculated by A = |D’ — D|. Results marked with *
indicate statistical significance based on student’s t-test.

Model ‘ Small Large

D D A | D D A
GPT-40 60.0 56.5 |3.5% | 755 738 | 1.7*
Claude-3.5 | 60.4 579 | 2.5* | 84.0 81.6 | 2.4*
Gemini-1.5 | 69.7 66.7 | 3.0 | 853 83.7 | 1.6"
Llama-3.1 | 34.6 33.7 | 09 | 775 794 | 19*
Qwen-2.5 | 544 512 |32* | 593 608 | 1.5*
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Table 3: Error detection performance w/ using con-
vention solution as reference for both ordinary (D) and
alternative (D") solutions. The performance gap is calcu-
lated by A = |D’ — D|. Results marked with * indicate
statistical significance based on student’s t-test.

Model ‘ Small ‘ Large
D D A | D D A
GPT-40 60.0 32.0 | 28.0" | 75.5 53.3 | 22.2*
Claude-3.5 | 60.4 389 | 21.5* | 84.0 59.4 | 24.6*
Gemini-1.5 | 69.7 50.8 | 18.9* | 853 67.7 | 17.6*
Llama-3.1 | 34.6 20.5 | 14.1* | 77.5 48.8 | 28.7*
Qwen-2.5 | 544 222 | 322" | 593 435 | 15.8*

By analyzing the results across Table 1, Table 3,
and Table 2, it is evident that introducing refer-
ence solutions improves error detection accuracy
for both datasets, D and D’. However, the choice
of reference solution significantly impacts perfor-
mance. While introducing corresponding reference
solutions effectively mitigates bias, uniformly us-
ing conventional solutions tends to amplify it. This
contrast highlights the critical importance of select-
ing appropriate reference solutions to enhance error
detection in alternative scenarios.

3 Method

The findings in Section 2.3.3 suggest that incor-
porating a reference solution during the detection
process is an effective approach to addressing con-
formity bias. However, the choice of the refer-
ence solution plays a critical role. Building on
this insight, we propose the Ask-Before-Detection
(AskBD) framework, which leverages the genera-
tive capabilities of large language models (LLMs)
to create adaptive reference solutions tailored to
each provided solution during the grading process.
The AskBD offers several advantages. First, it uti-
lizes the inherent problem-solving capabilities of
LLMs rather than relying on fine-tuning, which
makes AskBD easily extendable to various solu-
tions. Second, by adaptively generating reference
solutions, the framework ensures that these ref-
erences are well-aligned with the given answers,
significantly reducing the risk of mismatches that
could amplify bias. Furthermore, the AskBD is
orthogonal to other reasoning techniques, such as
chain-of-thought (CoT) (Wei et al., 2022a), mean-
ing that it can complement and enhance their per-
formance. By integrating AskBD with these algo-
rithms, the error detection capabilities of LLMs

can be further improved. The overall structure of
the AskBD is illustrated in Figure 4.

Algorithm 1: Ask-Before-Detection
Input: Question text ¢, solution text s, large
lanauge model fy, prompt text for
each component P

1 Condition and question extractor (CQE):
Extract condition information ¢. and
inquiry text ¢; from the question text gq.
(QCv Qi) = f@([chea QD;

2 Solution Step Inquirer (SSI): Convert
solution text s into step-wise question list
text () and append inquiry text ¢; at the
end. @ = [fo([Pssi> s]), ail;

3 Step Question Responder (SQR): Generate
reference solution r by summarizing the
answers to each question in () using
condition text g.. r = fo([Psqr, ¢e, Q));

4 Reference-Enhanced Grader (REG):
Generate the error detection result (error
location ys,, error type y.) based on the
input (¢, s, 7). y = f@([pregy q,S, 7’]);

5 return yg, Ye

AskBD consists of four components, executed
sequentially to generate an adaptive reference an-
swer tailored to the input solution. First, the Condi-
tion and Question Extractor (CQE) processes the
input question text, g, by extracting two key ele-
ments from the original question stem: condition
information and inquiry text. The condition infor-
mation, q., represents the known facts or context
provided in the question, while the inquiry text, g;,
specifies the task or problem posed by the question.
Then, the Solution Step Inquirer (SSI) focuses on
generating step-specific questions based on the con-
clusions of each step in the provided solution, s. To
improve the stability of the generated results, the
SSI first summarizes the conclusion of each step
before formulating corresponding questions. These
step-specific questions are compiled into a question
list, Q, with the inquiry text g; always appended to
the end of the list to ensure that the original ques-
tion’s task is addressed in the generated reference
answer. Next, after both the condition text ¢g. and
the question list () are prepared, the Step Ques-
tion Responder (SQR) generates responses to each
question in () and reorganizes them into a refer-
enced solution, r. Finally, the Reference-Enhanced
Grader (REG) uses the referenced solution r along
with the inputs ¢ and s to produce the final grading
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<Question> (Input)

votes while candidate B got 50% more than candidate A's
votes. The rest of the votes was given to candidate C. If
there were 100 voters, how many votes did candidate C get?

In a student council election, candidate A got 20% of the

<Condition Information> (CQE)

In a student council election, candidate A got 20% of the votes while candidate B
got 50% more than candidate A's votes. The rest of the votes was given to
candidate C. There were 100 voters.

<Inquiry Text> How many votes did candidate C get?

Step 2. Candidate B received 50% more
than candidate A, which is 20 x 50/100
=10 more votes.

Step 3. ... Step 3. ...

Step 2. How many more
votes did candidate B get
compared to candidate A?

<Solution> (Input) <Step Question> (SSI) ...... » | <Reference Answer> (SQR)
Step 1. Candidate A received 20% of Step 1. How many votes Step 1. The ratio of the votes Candidate B received to those
100 voters, so 100 x 20/100 = 20 votes. did candidate A get? Candidate A received is 30 votes to 20 votes, which simplifies to

30/20=3/2.

of the total votes Candidate B received is 30/100 = 0.3 or 30%.

Step 2. Candidate B received 30 votes out of 100, so the fraction

y

Q

i..p | <Judgment> (REG)
Step 1. <Correct> Step 2. <Correct> Step 3. ...

L

Figure 4: An overview of AskBG framework where steps are marked with colors. <Question> and <Solution> are
the inputs and <Reference Answer> is generated by the framework, which used to generate the final response.

results. More details can be found in Algorithm 1.

4 Experiment

In this section, we present experiments to validate
the effectiveness of AskBD. Experiments are de-
signed to address the following research questions:

* RQ1: Does AskBD help mitigate conformity
bias in error detection?

* RQ2: What additional performance advantages
does AskBD provide?

* RQ3: How compatible is AskBD with other rea-
soning techniques, such as chain-of-thought?

4.1 Experimental Settings

To answer above research questions, we use dataset
generated during the preliminary study introduced
in Section 2. The detailed statistics of the dataset
are shown as Table 6 in Appendix A. To evaluate
the generalizability of AskBD, we implement it us-
ing the same 10 LLMs described in Section 2, along
with two math-specific models, including Qwen2.5-
Math. Detailed information about each model is
provided in Table 7 in Appendix B. Additionally,
we incorporate the CoT reasoning approach into
the prompts to assess its compatibility with AskBD,
the prompt is shown as Figure 6 in Appendix E.
Each experiment is conducted using three different
random seeds, and we report the mean error detec-
tion accuracy in the results. As this is the first study
to systematically examine the occurrence of con-
formity bias in LLM-powered error detection for
MWP solutions, the results from the preliminary
study sections serve as one baseline. Furthermore,

CoT, being an orthogonal method to AskBD, is
treated as another baseline for comparison.

4.2 Result and Discussion

In Table 4, we present the comparison between
baseline methods and AskDB over both the con-
ventional solutions D and alternative solution D’.
To address RQ1, we analyze the values in the A
columns between Mo and M. The table clearly
demonstrates that AskDB is effective in mitigat-
ing conformity bias in error detection results for
advanced versions of LLMs. However, for base
LLMs, the benefits of naively applying AskDB are
less evident. Among the five LLM frameworks,
only Gemini exhibits a reduced performance gap
between D and D’. We attribute this to the rela-
tively weaker reasoning capabilities of base mod-
els. With the naive instruction prompt, these mod-
els fail to fully leverage the valuable information
provided by the reference solutions, thereby lim-
iting the effectiveness of AskDB in these cases.
Comparing M with M5, we observe that the CoT
prompt strategy also helps mitigate conformity bias
in LLM-powered error detectors. Nevertheless, in
most advanced models, AskDB consistently out-
performs CoT in narrowing the gap between con-
ventional and alternative solutions.

To answer RQ2, we compare My with M in
the D and D’ columns. The results indicate a con-
sistent improvement in error detection accuracy af-
ter adopting the AskDB framework. This suggests
that AskDB not only helps reduce the performance
gap between conventional and alternative solutions
but also enhances overall detection performance.
Comparing M7 with My, we find that AskDB and
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Table 4: Error detection performance w/ different baseline methods (M: Naive prompt, M1:CoT prompt, Mo:
Naive prompt + AskBD, M3: CoT prompt + AskBD) on ordinary solutions (D) and alternative solutions (D’). The
performance gap is calculated by A = |D — D’|. The best performed results in each group is marked with underline.

/
Model ‘ b1 ‘ Ll ‘ Al

| Mo My My Mg | My My My Mz | My My My Ms

Small
GPT-4o 272 477 488 59.1 | 184 367 378 485 | 88 11.0 110 10.6
Claude-3.5 382 511 507 566 | 347 485 440 518 | 35 26 67 48
Gemini-1.5 464 542 617 624 | 395 495 555 595 6.9 4.7 6.2 29
Llama-3.1 202 346 235 379 | 209 310 236 324 | 07 36 01 54
Qwen-2.5 2477 403 344 443 163 353 250 383 8.4 5.0 9.5 6.0
Qwen-2.5-Math | 242 233 234 238 | 207 23.0 222 237 | 35 03 12 01

Large
GPT-40 529 634 671 663 | 434 593 580 614 9.5 4.1 9.1 49
Claude-3.5 59.0 617 725 73.1 527 570 674 695 6.3 4.7 5.2 3.6
Gemini-1.5 652 656 760 718 | 556 581 722 688 | 96 75 38 3.0
Llama-3.1 443 640 634 719 | 372 564 571 679 72 7.6 6.3 4.0
Qwen-2.5 463 574 454 602 | 388 506 430 582 | 75 68 24 20
Qwen-2.5-Math | 435 412 49.6 482 | 399 400 477 469 3.6 1.2 1.9 1.3

CoT prompts enable different LLMs to achieve bet-
ter results. In summary, AskDB is more compatible
with advanced models, while CoT demonstrates
greater efficacy with base-sized models.

To address RQ3, we compare Mg with Mj.
The results reveal that AskDB is highly compatible
with other reasoning-enhancing techniques such as
CoT prompts in the context of error detection. For
advanced model of Llama-3.1 and base model of
Gemini-1.5, combining AskDB with CoT yields
significant performance improvements compared
to using either method independently. These find-
ings confirm that AskDB is a robust approach for
mitigating conformity bias. Moreover, its com-
patibility with other reasoning-enhancement tech-
niques achieves the best overall performance in
error detection tasks.

4.3 Further Studies

It is valuable to explore AskBD’s performance
when faced with multiple errors, as successful de-
tection of these errors could offer a comprehensive
view of the student’s problems in a single instance.
To explore this, we sampled 100 solutions each
from the original and alternative solutions, intro-
ducing two sequential errors into them. To evaluate
performance, we used two metrics: (1) first error
detection accuracy and (2) overall error detection
accuracy. The results are shown in the Table 5.
From the table, we can confirm that our AskBD

Table 5: Error detection performance w/ different base-
line methods (Mj: Naive prompt, M;:CoT prompt,
Msy: Naive prompt + AskBD, Mjs: CoT prompt +
AskBD) on solutions with multiple errors.

Overall
M1 My

‘ First ‘
| Mo M1 My My | My
Small

Mode

Ms

GPT-40
Claude-3.5
Gemini-1.5

18.8
19.0
20.5

359
56.5
38.2

38.6
38.3
63.5

65.8
59.5
69.5

18.8
18.1
16.3

359
40.6
26.7

38.6
29.0
38.8

45.2
40.3
44.8

Large

GPT-40
Claude-3.5
Gemini-1.5

41.7
31.3
57.3

62.0
57.3
65.0

69.0
62.2
80.2

722
71.7
80.0

31.9
293
44.1

41.0
48.9
45.8

47.4
45.6
61.2

473
54.6
57.1

(M3) demonstrates robust performance in detect-
ing the first error, even when multiple errors are
present in the solution. Although the overall er-
ror detection accuracy is lower than the first er-
ror detection accuracy, we can still confirm that
the reference-based strategy introduced in AskBD
helps LLMs achieve better performance compared
to the baselines.

5 Related Work

5.1 Automatic Error Detection

Automatic error detection (AED) is a widely stud-
ied research task in the field of education (Zamora
et al., 2018). Since the advent of pre-trained lan-
guage models (PLMs) such as BERT (Kenton
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and Toutanova, 2019), AED algorithms in lan-
guage education have achieved significant advance-
ments (Bryant et al., 2023). Applications like gram-
mar error detection have been widely implemented
in the teaching of languages (He, 2021). More-
over, by integrating PLMs with acoustic models,
AED has also shown promising results in detecting
pronunciation errors (Wei et al., 2022b). The re-
cent emergence of large language models (LLMs)
has further expanded the scope of AED research
beyond language education. Leveraging their ad-
vanced capabilities in mathematical reasoning (Ahn
et al., 2024), task planning (Huang et al., 2024),
and even programming (Nam et al., 2024), LLMs
have been increasingly adopted in recent studies
to develop AED solutions for complex educational
subjects, such as programming (Gabbay and Cohen,
2024) and mathematics (Yan et al., 2024).

5.2 Math Reasoning in LLMs

Reasoning capability is one of the most attrac-
tive features reported among the emergent capa-
bilities of large language models (LLMs). Build-
ing on approaches such as chain-of-thought (Wei
et al., 2022a), LLMs have demonstrated impres-
sive performance in solving complex logical rea-
soning problems. However, recent studies (Prab-
hakar et al., 2024) have raised skepticism about
these reasoning capabilities, suggesting they may
primarily originate from memorization rather than
genuine reasoning ability. To address these con-
cerns, numerous new reasoning tasks and bench-
mark datasets have been introduced (Srivastava
et al.,, 2024). Among these, approaches that in-
volve error detection and correction of flawed so-
lutions have gained popularity in the community
as a means to evaluate true mathematical reason-
ing capabilities, aided by the availability of exten-
sive benchmark datasets (Zhou et al., 2024). To
reduce the burden of tedious human annotation,
many recent works have proposed algorithms to
automatically generate inputs for these tasks based
on existing datasets (Li et al., 2024). Through
extensive experiments on these newly introduced
mathematical reasoning tasks, the reasoning capa-
bilities of LLMs have been rigorously evaluated
and significantly validated. Moreover, with the
rapid advancements in multi-modal large language
models, investigating the multimodal mathematical
reasoning capabilities of current vision-language
LLMs is becoming an increasingly prominent area
of research (Yan et al., 2024).

6 Conclusion

In this work, we investigate the behavior of LLM-
powered error detectors when encountering alterna-
tive solutions commonly found in real-world math
word problems. Through a preliminary study on an
alternative solution error detection dataset, we iden-
tify and confirm the presence of conformity bias
in LLMs during error detection. Motivated by our
findings on the impact of incorporating reference
solutions, we propose the Ask-Before-Detection
(AskBD) framework, which enhances error detec-
tion by adaptively generating reference solutions.
Comprehensive experiments on 200 examples from
GSMSK demonstrate the effectiveness of AskBD
in mitigating conformity bias. Furthermore, when
combined with reasoning enhancement techniques
like chain-of-thought (CoT) prompting, AskBD
achieves significant improvements in both bias mit-
igation and overall performance.

Limitation

In this work, we identify conformity bias in LLM-
powered error detectors for math word problem
(MWP) solutions using 200 seed samples from the
GSMSK dataset. During the data preparation pro-
cess, we selected four common error types in stu-
dent solutions as targets to simulate real-world er-
ror detection scenarios. However, this approach has
limitations, as it overlooks the occurrence of rarer
but potentially more challenging error types in stu-
dent solutions. To address this, we plan to collect
samples from real-world student responses in fu-
ture iterations of our study. Additionally, this work
focuses exclusively on alternative solutions for
math word problems. The phenomenon of multiple
valid solutions to a single problem is widespread
across other subjects in education. In future re-
search, we aim to extend our analysis of conformity
bias to these subjects, contributing to the develop-
ment of LLM-powered detectors as more effective
tools in educational contexts.
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A Dataset Statistics

Table 6: Statistics on conventional solutions (D) and al-
ternative solutions (D) across different error categories.

Solution Correct Error
gc £ R £ M 5H
D 200 200 200 200 200
D’ 200 200 200 200 200

B LLM Details

Table 7: Details about LLM implementation in this
paper and source file links.

LLM Name Model ID
Small
GPT-40 gpt-40-mini-2024-07-18
Claude-3.5 claude-3-5-haiku-20241022
Gemini-1.5 Gemini-1.5-Flash-002
Llama-3.1 Llama-3.1-8B-Instruct
Qwen-2.5 Qwen2.5-7B-Instruct
Qwen-2.5-Math  Qwen2.5-Math-7B-Instruct
Large
GPT-40 gpt-40-2024-08-06
Claude-3.5 claude-3-5-sonnet-20240620
Gemini-1.5 Gemini-1.5-Pro-002
Llama-3.1 Llama-3.1-70B-Instruct
Qwen-2.5 Qwen2.5-72B-Instruct

Qwen-2.5-Math  Qwen2.5-Math-72B-Instruct

C Error Definitions
D Naive Instruction Prompt

E COT Instruction Prompt
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Table 8: Detailed definition to each error. The error location for each example is marked with the red color. The
original solution is presented at the top of the table for reference.

Error ‘ Definition ‘ Example

- Correct solution. Step 1. Each gust blows the leaf forward 5 feet, so 11 gusts will blow it forward
5 x 11 = 55 feet. Step 2. Each swirl after a gust blows it back 2 feet, so 11
swirls will blow it back 2 x 11 = 22 feet. Step 3. After 11 gusts, the leaf has
traveled 55 — 22 = 33 feet down the sidewalk.

Eo Operands in expressions are cor- | Step 1. Each gust blows the leaf forward 5 feet, so 11 gusts will blow it forward
rect but an error occurs in the | 5 x 11 = 50 feet. Step 2. Each swirl after a gust blows it back 2 feet, so 11
calculated results. swirls will blow it back 2 x 11 = 22 feet. Step 3. After 11 gusts, the leaf has

traveled 55 — 22 = 33 feet down the sidewalk.

Er Expression are incorrectly refer- | Step 1. Each gust blows the leaf forward 5 feet, so 10 gusts will blow it forward
encing the question conditions | 5 x 10 = 50 feet. Step 2. Each swirl after a gust blows it back 2 feet, so 11
or the results from prior steps. | swirls will blow it back 2 x 11 = 22 feet. Step 3. After 11 gusts, the leaf has

traveled 55 — 22 = 33 feet down the sidewalk.

Em Operands or expressions in the | Step 1. Each swirl after a gust blows it back 2 feet, so 11 swirls will blow it back
step that lack of references or | 2 x 11 = 22 feet. Step 2. After 11 gusts, the leaf has traveled 55 — 22 = 33
support from the question con- | feet down the sidewalk.
ditions or prior steps.

& Statements or operands in the | Step 1. Each gust blows the leaf forward 5 feet, so 11 gusts will blow it forward
listed expression are fabricated | 5 x 11 = 55 feet. Step 2. Each swirl after a gust blows it back 2 feet, so 11
or inconsistent with the ques- | swirls will blow it back 2 x 11 = 22 feet. Step 3. After 11 gusts, the leaf has
tion’s conditions. traveled 55 — 22 = 33 feet down the sidewalk. Finally, a wind blew the leaf 10

feet forward, and the leaf traveled 33 + 10 = 43 feet.

Given the <question>, please judge whether each step in <solution> is correct. During the
judging process,you should know that the <question> does not always have only one
standard solution, and any reasonable <solution> should be accepted. You should pay
attention to both the expressions and the statements in each step, and take care about
the logic consistency between different steps. Additionally, consider arithmetic expression
equivalency and avoid rejecting solutions solely because they use equivalent expressions.

In each step, if no errors are found, respond with Step X: <correct>. If you find that the
operands in the listed expressions are correct but an error occurs in the calculated result,
respond with Step X: <calculation error>. If you find statements or operands in the listed
expression are incorrectly referencing the question conditions or the results from prior steps,
respond with Step X: <reference error>. If you find operands or expressions in the step that

is lack of references or support from the question conditions or prior steps, respond with Step
X: <missing step>. If you find statements or operands in the listed expression are fabricated or
inconsistent with the question’s conditions, respond with: Step X: <hallucination>. If an error
is a follow-on issue due to mistakes in previous steps rather than an independent error, respond
with: Step X: <secondary error>.

<question> [Question Text] <solution> [Solution Text]
Now, please start to respond.

Figure 5: The example prompt we used to implement the error detector with LLMs includes specific formatting for
clarity. Instruction text guiding the LLMs to accept alternative solutions is highlighted in bold, while the definitions
of error categories are emphasized in italic. Text enclosed in square brackets serves as placeholders for the input
question and solution text, respectively.
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Given the <question>, please judge whether each step in <solution> is correct. During the
judging process,you should know that the <question> does not always have only one
standard solution, and any reasonable <solution> should be accepted. You should pay
attention to both the expressions and the statements in each step, and take care about
the logic consistency between different steps. Additionally, consider arithmetic expression
equivalency and avoid rejecting solutions solely because they use equivalent expressions.

In each step, if no errors are found, respond with Step X: <correct>. If you find that the
operands in the listed expressions are correct but an error occurs in the calculated result,
respond with Step X: <calculation error>. If you find statements or operands in the listed
expression are incorrectly referencing the question conditions or the results from prior steps,
respond with Step X: <reference error>. If you find operands or expressions in the step that
is lack of references or support from the question conditions or prior steps, respond with Step
X: <missing step>. If you find statements or operands in the listed expression are fabricated or
inconsistent with the question’s conditions, respond with: Step X: <hallucination>. If an error
is a follow-on issue due to mistakes in previous steps rather than an independent error, respond
with: Step X: <secondary error>.

Before the <response>, you should provide your step-by-step <thinking> about your judging
process.

<question> [Question Text] <solution> [Solution Text]
Now, please start to think first and then respond.

Figure 6: The example CoT prompt we used to implement the error detector with LLMs includes specific formatting
for clarity. Instruction text guiding the LLMs to accept alternative solutions is highlighted in bold, while the
definitions of error categories are emphasized in ifalic. Text enclosed in square brackets serves as placeholders for
the input question and solution text, respectively.
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