
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 16285–16298
July 27 - August 1, 2025 ©2025 Association for Computational Linguistics

Mutual-Taught for Co-adapting Policy and Reward Models

Tianyuan Shi1, Canbin Huang1, Fanqi Wan1, Longguang Zhong1, Ziyi Yang1

Weizhou Shen2, Xiaojun Quan1*, Ming Yan2

1School of Computer Science and Engineering, Sun Yat-sen University, China
2Alibaba Group

{shity6, huangcb3, wanfq, zhonglg5, yangzy39}@mail2.sysu.edu.cn
quanxj3@mail.sysu.edu.cn, {shenweizhou.swz, ym119608}@alibaba-inc.com

Abstract

During the preference optimization of large lan-
guage models (LLMs), distribution shifts may
arise between newly generated model samples
and the data used to train the reward model
(RM). This shift reduces the efficacy of the
RM, which in turn negatively impacts the per-
formance of the policy model (PM). To address
this challenge, we propose Mutual-Taught, a
self-training method that iteratively improves
both the PM and RM without requiring addi-
tional human annotation. Our approach mir-
rors the expectation-maximization (EM) algo-
rithm. In the E-step, the PM is updated us-
ing feedback from the current RM, guiding the
PM toward a better approximation of the la-
tent optimal preference distribution. In the
M-step, we update the RM by constructing
training data from the outputs of the PM be-
fore and after the E-step update. This pro-
cess ensures that the RM adapts to the evolv-
ing policy distribution. Experimental results
demonstrate that this iterative approach leads
to consistent improvements in both models.
Specifically, our 8B policy model, Llama-3-8B-
Instruct-MT, achieves a length-controlled win
rate of 54.1% on AlpacaEval-2, while our 8B
reward model, FsfairX-Llama3-RM-MT, per-
forms on par with GPT-4o-2024-08-06 on Re-
wardBench. Our code is available at https:
//github.com/Stycoo/Mutual-Taught.

1 Introduction

As large language models (LLMs) are fine-tuned
to align with human preferences using techniques
like reinforcement learning from human feedback
(RLHF) (Ouyang et al., 2022) and Direct Prefer-
ence Optimization (DPO) (Rafailov et al., 2023),
the distribution of outputs generated by the evolv-
ing policy model may diverge from that of the pref-
erence data used to train the reward model. This
distribution shift leads to a phenomenon known

* Corresponding authors.

𝑟0

𝑟1

Response

Response

P
ro

b
ab

il
it
y

M
as

s
R

ew
ar

d

𝜋0

𝜋1

𝑟∗

𝜋∗

Figure 1: An illustration of the Mutual-Taught intuition.
The top represents the evolving policy model distribu-
tion πi, and the bottom shows the reward model’s prefer-
ence estimates ri. After the policy update (E-step), the
refined policy model π1 exhibits a higher probability of
generating high-reward responses compared to the previ-
ous policy π0, as indicated by the shaded region. These
improvements are used to enhance the reward model’s
ability (M-step) to provide more reliable feedback in
high-reward regions. Over iterative E-step and M-step,
both the policy and reward models progressively adapt
and approach their optimal distributions (π∗, r∗).

as reward hacking (Gao et al., 2023; Zheng et al.,
2024): as the model adapts, it generates outputs
that score well under the current reward model but
fail to reflect true human preferences, ultimately
compromising alignment reliability.

To address this issue, one potential solution is to
continuously gather new human preference annota-
tions for recently generated samples and update the
reward model accordingly (Touvron et al., 2023).
However, this approach is not scalable due to its
heavy reliance on human labor. An alternative strat-
egy leverages LLM-as-a-Judge prompting (Yuan
et al., 2024; Wu et al., 2024), where the LLM eval-
uates the quality of its own generated outputs and

16285

https://github.com/Stycoo/Mutual-Taught
https://github.com/Stycoo/Mutual-Taught

iteratively undergoes DPO training. While this
method enhances both the instruction-following
and judgment capabilities of the LLM, it requires
strong base models or pre-training on judgment-
related datasets to develop reliable judgment skills.

In this paper, we explore methods to mutually
improve both the policy and reward models during
LLM alignment without relying on external super-
vision. Our primary research question is: How
can we automatically generate high-quality feed-
back from LLM alignment to update the reward
model, ensuring that its distribution remains con-
sistent with the policy model’s distribution? To
address this question, we introduce a self-training
framework, termed Mutual-Taught, which is anal-
ogous to the expectation-maximization (EM) algo-
rithm, as illustrated in Figure 1. Specifically, the
E-step focuses on optimizing the policy model to
achieve better preference alignment with human
preferences using the current reward model. In the
M-step, the reward model is updated using com-
parison data derived from the policy’s outputs be-
fore and after the E-step update. These pseudo-
preference pairs naturally emerge from the evolv-
ing policy distribution, which eliminates the need
for external feedback to update the reward model.

In our experiments, Mutual-Taught leverages
Llama-3-8B-Instruct (Dubey et al., 2024) as the
base policy model (PM) and FsfairX-Llama3-RM-
v0.1 (Xiong et al., 2024) as the base reward model
(RM). Experimental results demonstrate that iter-
ative training on the UltraFeedback dataset (Cui
et al., 2024) leads to substantial improvements in
both the PM and RM. For the PM, it achieves a
+31.0 LC win rate on AlpacaEval-2 (Li et al., 2023)
and a +17.8 win rate on Arena-Hard (Li et al., 2024)
over the base model. For the RM, it elevates perfor-
mance to match GPT-4o-2024-08-06 on Reward-
Bench (Lambert et al., 2024). Moreover, Mutual-
Taught surpasses advanced baselines such as Iter-
ative DPO (Dong et al., 2024), Meta-Rewarding
(Wu et al., 2024), and SPPO (Wu et al., 2025), em-
phasizing the critical role of reward model updates
during policy optimization. Overall, these results
confirm that mitigating the distributional shift be-
tween the reward model and the evolving policy
model enhances preference optimization.

2 Related Work
Offline preference optimization Reinforcement
learning from human feedback (RLHF) (Ouyang
et al., 2022) has emerged as a pivotal approach of

preference optimization. However, it depends on
reinforcement learning techniques such as proxi-
mal policy optimization (PPO) (Schulman et al.,
2017), which are challenging to implement and
often unstable during training. To address these
limitations, Direct Preference Optimization (DPO)
(Rafailov et al., 2023) reparameterizes the reward
function in RLHF to directly learn a policy model
from preference data, eliminating the need for an
explicit reward model and simplifying the training
process. Besides DPO, various preference opti-
mization objectives have been proposed to improve
performance and simplify training, including IPO
(Azar et al., 2024), KTO (Ethayarajh et al., 2024),
and SimPO (Meng et al., 2024). However, with-
out an external reward model, these methods may
face challenges in generalization, scalability, and
adaptability, increasing the risk of overfitting and
misalignment with human preferences.

Iterative preference optimization To enable the
policy to learn from data generated by the evolv-
ing policy, recent studies have extended prefer-
ence optimization to an iterative training frame-
work. This approach continuously updates the
reference model, either by incorporating the most
recent policy model or by generating preference
pairs scored and selected by the evolving policy
model. For instance, Xu et al. (2023) propose it-
erative preference optimization using the Pairwise
Cringe Loss (PCO) and generalize DPO to itera-
tive DPO. Analogous to our work, ReSTEM (Singh
et al., 2024) also introduces a self-training method
based on expectation-maximization (EM). How-
ever, ReSTEM primarily focuses on iteratively opti-
mizing the policy model by generating improved re-
sponses for fine-tuning, whereas our method aims
to mutually improve both the policy and reward
models to address the distribution shift problem.
Other approaches, such as SELM (Zhang et al.,
2024b) and XPO (Xie et al., 2025), enhance the
DPO objective with an optimism-driven explo-
ration term, enabling the model to maintain the
ability to explore potentially high-reward policy
space during online alignment. SPIN (Chen et al.,
2024), DNO (Rosset et al., 2024), and SPPO (Wu
et al., 2025) employ a self-play mechanism to refine
the policy model using self-generated responses,
bypassing the need for human annotation.

However, these approaches overlook distribution
shifts, which can limit the effectiveness of pref-
erence alignment. To address distribution shifts,

16286

Ouyang et al. (2022) collect new responses from
the current best policy. These responses are anno-
tated by humans and subsequently used to train a
new reward model. While effective, this process
incurs significant annotation costs. ReST-MCTS*
(Zhang et al., 2024a) leverages a modified Monte
Carlo Tree Search to generate solutions using the
policy and evaluates them against ground truth
for reward model training. However, its depen-
dence on ground truth restricts its applicability to
only a limited set of scenarios. In contrast, Self-
Rewarding (Yuan et al., 2024) and Meta-Rewarding
(Wu et al., 2024) adopt an LLM-as-a-Judge mecha-
nism (Zheng et al., 2023), where the policy model
evaluates its own responses, obviating the need
for a separate reward model. However, while this
approach simultaneously improves both response
generation and evaluation capabilities of the LLM
through iterative updates, it relies heavily on strong
base models or pretraining on judgment-specific
datasets to ensure reliable judgment skills.

3 Preliminaries
3.1 Reward Modeling
In reinforcement learning from human feedback
(RLHF) (Ouyang et al., 2022), a reward model
r(y;x) is first trained to predict a human prefer-
ence score for a response y given a prompt x. This
reward model is typically trained using human-
annotated preference pairs (x, yw, yl), where yw
is preferred over yl for the given prompt x. The
Bradley-Terry model (Bradley and Terry, 1952) is
widely used to estimate the probability that one re-
sponse is preferred over another in scenarios where
pairwise comparisons are involved:

P (yw ≻ yl | x) = σ(r(yw;x)− r(yl;x))

=
exp(r(yw;x))

exp(r(yw;x)) + exp(r(yl;x))

(1)

where σ is the sigmoid function. The reward model
is trained by maximizing the log-likelihood of ob-
served preferences based on the given equation.

3.2 Direct Preference Optimization
Direct Preference Optimization (DPO) (Rafailov
et al., 2023) simplifies the training process by re-
placing the two-step procedure of RLHF with a
single unified objective that directly leverages pref-
erence data. Specifically, DPO derives its objective
by reinterpreting preference comparisons with a
probabilistic model. This results in a closed-form
expression for the optimization objective, where

the loss function encourages the model to assign
higher probabilities to preferred outputs relative to
less-preferred ones, without the need for explicit
reward modeling or reinforcement learning:

LDPO =

− log σ

(
β log

πθ(yw |x)
πref(yw |x) − β log

πθ(yl |x)
πref(yl |x)

)
.

(2)

However, while DPO offers enhanced stability
and ease of optimization by directly leveraging
preference data, its offline nature and the absence
of an explicit reward model limit its ability to dy-
namically adapt to changes in the evolving policy
distribution. Instead, this work adopts an iterative
DPO setup with on-policy sampling and an external
reward model for preference annotation.

4 Mutual-Taught
Current on-policy preference optimization methods
often assume that the reward model functions as a
fixed oracle encoding an “optimal” preference dis-
tribution. However, this assumption fails in prac-
tice as the policy evolves through optimization,
causing its output distribution to shift (Touvron
et al., 2023; Cheng et al., 2024). In such cases, a
static reward model trained on outdated data may
no longer accurately reflect the optimality. This
misalignment results in feedback that increasingly
strays from the policy’s true performance.

4.1 Overview
To tackle this challenge, we propose a self-training
framework, Mutual-Taught, that co-optimizes
both the policy and the reward model. Inspired
by the expectation-maximization (EM) algorithm,
Mutual-Taught models the latent optimal prefer-
ence distribution as a hidden variable that evolves
over time. The framework iteratively refines both
models to approximate and align with this latent
distribution in two key phases. E-Step: The pol-
icy is optimized to better approximate the latent
optimal preference distribution, guided by the re-
ward model’s current representation of preferences.
M-Step: The reward model is updated to reflect
the policy’s improved outputs, ensuring it remains
aligned with the policy’s evolving distribution.

As illustrated in Figure 2, this co-evolving pro-
cess enables the policy to progressively generate
higher-quality responses while the reward model
refines its evaluation criteria accordingly. Conse-
quently, Mutual-Taught can adapt to distributional
shifts between the policy and the reward model
without requiring additional human annotations.

16287

E-step

Policy Model

𝜋0

Reward Model

𝑟0
{𝑥𝑖} {𝑥𝑖, 𝑦𝑖

𝑤, 𝑦𝑖
𝑙}

DPO
Training

Responses

Rank

M-step

{𝑥𝑖}

Policy Model

𝜋1
Reward Model

𝑟0

Reward Model

𝑟1Policy Model

𝜋0

Response
Comparison

BT
Modeling

Preference Data

Data Collection Model Update

{ 𝑥𝑖, 𝑦𝑖
𝑤, 𝑦𝑖

𝑙 }

Preference Data

{𝑥𝑖, 𝑦𝑖
1, 𝑦𝑖

0}
Data Filtering

𝑦𝑖
1

⋮
𝑦𝑖

𝑀

Policy Model

𝜋0

Policy Model

𝜋1

Figure 2: Overview of the Mutual-Taught framework, which alternates between policy model updates (E-step) and
reward model updates (M-step). The policy is fine-tuned using reward model feedback (E-step), while the reward
model adapts via contrastive comparisons of policy outputs (M-step), requiring no additional human annotations.

4.2 Objective of Mutual-Taught
Let D be a dataset of prompts. For each prompt
x ∈ D, we assume there exists a latent “optimal”
response distribution π∗(y |x), which best reflects
true human preferences but is unknown in practice.
Our objectives are twofold: first, to learn a pol-
icy model πθ(y |x) that approximates the optimal
distribution π∗(y |x) through preference learning,
guided by a reward model r(y;x); and second, to
optimize the reward model r(y;x), ensuring that it
evaluates responses y in alignment with π∗(y |x)
by leveraging feedback from policy updates. We
frame this as maximizing the expected reward un-
der the latent optimal distribution:

max
π,r

Ex∼D,y∼π∗(·|x)[r(y;x)]. (3)

Since π∗(y | x) is unknown, we regard it as a la-
tent distribution and approximate it by updating
both the policy and the reward model. In the EM
framework, this involves alternating between up-
dating πθ(y | x) (E-step) and r(y;x) (M-step) to
progressively align the policy with π∗(y |x).

E-step: This step can be implemented using vari-
ous preference optimization methods such as RLHF
(Ouyang et al., 2022) and DPO (Rafailov et al.,
2023). In this work, we illustrate this using DPO
for its simplicity and effectiveness. Assuming the
reward model in iteration t is rt−1, the E-step up-
dates the policy πt−1 to πt by solving:

πt = argmax
π

Ex∼Dt

[
log σ

(
β log

πθ(yw |x)
πt−1(yw |x) − β log

πθ(yl |x)
πt−1(yl |x)

)]
,

(4)

where πt−1 acts as the reference model, yw and yl

represent chosen and rejected responses, respec-
tively, both sampled from πt−1 and ranked by rt−1.

M-step: After obtaining πt, we fix it and update
the reward model rt−1 to rt. For a given prompt
x, let yt−1 and yt be the responses generated by
πt−1 and πt, respectively. Since πt is optimized
with respect to rt−1, we treat yt as the preferred re-
sponse relative to yt−1. We then construct pseudo-
preference pairs (yt, yt−1) and update rt−1 by max-
imizing the Bradley-Terry log-likelihood:

rt = argmax
r

Ex∼DR [logPr(yt ≻ yt−1 | x)] (5)

The M-step ensures the reward model remains ac-
curate in distinguishing responses generated by πt.

4.3 Two-Stage Stabilization

While the EM framework provides theoretical con-
vergence guarantees under certain conditions (see
Appendix D), practical implementations face two
challenges in the iterative learning process: (1) Pol-
icy degradation risk due to over-optimization in
the E-step, and (2) Reward distortion arising from
noisy pseudo-labels in the M-step. To address these
challenges, we propose a two-stage stabilization.

Model selection for E-step To prevent potential
policy degradation in the E-step, we implement a
validation-based model selection strategy. Specif-
ically, we evaluate the policy checkpoints {πk

t }
saved in the t-th iteration against πt−1 from the
previous iteration on a fixed validation set DMS.
The win rate for each checkpoint is computed as:

wk
t = 1

|DMS|
∑

x∈DMS
I
(
ykt ≻ yt−1 | x

)
(6)

16288

where yt−1 ∼ πt−1(·|x), ykt ∼ πk
t (·|x), and I(·) is

an indicator function defined as:

I
(
ykt ≻ yt−1 | x

)
=

{
1 if rt−1(y

k
t ;x) > rt−1(yt−1;x),

0 otherwise.

Only the checkpoint that demonstrates maximum
improvement over the previous policy is selected,
thereby ensuring monotonic policy enhancement:

πt = argmax
πk
t

wk
t . (7)

If no candidate in this iteration demonstrates suf-
ficient improvement (maxk w

k
t < τ), the iteration

halts, and the previous model is preserved.

Data filtering for M-step To mitigate the impact
of unreliable preference pairs that could distort
reward learning, we implement dynamic data fil-
tering in the M-step to remove noisy pseudo-labels
(Huang et al., 2022). We first compute the reward
margin for each pseudo-pair (yt, yt−1) as follows:

∆r(x) = rt−1(yt ; x)− rt−1(yt−1 ; x) (8)

To adaptively filter noisy comparisons, we
establish a variance-aware threshold ϵt =√
Vx∼DR

[rt−1(yt−1;x)] that automatically adjusts
to the reward model’s uncertainty level (Pace et al.,
2024). Only pairs satisfying |∆r(x)| ≥ ϵt are
considered high-confidence pseudo-labels. Our fil-
tering strategy removes pairs with ∆r(x) ≤ −ϵt,
as they are confidently identified as noisy samples.

Particularly, when ∆r(x) > ϵt, this strategy
selects high-confidence and high-quality samples,
which reinforce the RM’s capabilities through self-
training. When −ϵt < ∆r(x) < 0, these slightly
noisy pairs serve as regularization that prevents
the RM from overfitting to the policy’s distribu-
tion. Experimental results show that this data filter-
ing strategy improves both the RM and the policy
model. For more details, see Appendix F.

5 Experiments
5.1 Experimental Setup
Base models and training dataset We use
Llama3-8B-Instruct (Dubey et al., 2024) as our
base policy model and FsfairX-Llama3-RM-v0.1
(Xiong et al., 2024) as the initial reward model.
FsfairX-Llama3-RM is one of the top-performing
8B models on RewardBench (Lambert et al., 2024)
and offers open-source code that facilitates contin-
uous training. Following previous work, we use

the UltraFeedback dataset (Cui et al., 2024) for
training, which comprises approximately 60,000
prompts from diverse sources. We partition the
dataset into three subsets: one for initial policy
training, one for reward model updates, and one for
policy re-updates. Thus, there are two policy itera-
tions and one reward model iteration in a full round
of the dataset. In our practical implementation, we
utilize the mixed preference data from the first and
third partitions to train the reward model. Refer to
Section 5.3 and Appendix B for more details.

Evaluation benchmarks In order to investigate
whether the policy model and the reward model can
mutually enhance each other through our Mutual-
Taught, we conduct separate evaluations of each
model. For policy evaluation, we utilize two
widely recognized automatic evaluation bench-
marks, AlpacaEval-2 (Li et al., 2023) and Arena-
Hard (Li et al., 2024), with GPT-41 serving as
the judge. Each benchmark targets different as-
pects of model performance. AlpacaEval-2 as-
sesses chat capabilities using 805 instructions span-
ning a wide range of prompts, evaluated through
length-controlled (LC) win rate and raw win rate
(WR) metrics. Arena-Hard presents more chal-
lenging tasks, including 500 well-defined technical
problem-solving queries. For reward model evalua-
tion, we assess the reward model’s accuracy using
RewardBench (Lambert et al., 2024), which mea-
sures performance across four categories: Chat,
Chat-Hard, Safety, and Reasoning.

Baselines We evaluate our method against a vari-
ety of baselines, including offline preference op-
timization and iterative preference optimization
methods. Refer to Appendix A for more details.

5.2 Main Results

Iterative performance improvement on policy
In Table 1, we report the performance of Mutual-
Taught and baseline methods on the instruction-
following benchmarks, AlpacaEval-2 and Arena-
Hard. Mutual-Taught shows substantial improve-
ments to the Llama-3-8B-Instruct model, achieving
a 31.0-point increase in length-controlled (LC) win
rate on AlpacaEval-2 and a 17.8-point increase in
win rate on Arena-Hard, respectively. Compared to
baseline methods, our method demonstrates clear
superiority on both AlpacaEval-2 and Arena-Hard.

1In AlpacaEval-2, GPT-4-Preview-1106 serves as both the
baseline and the judge. In Arena-Hard, GPT-4-0314 serves as
the baseline, while GPT-4-Preview-1106 acts as the judge.

16289

Model AlpacaEval-2 Arena-Hard
LC Win Rate Win Rate Avg. Len Win Rate Avg. Len

Base Policy Model
Llama-3-8B-Instruct 23.1 23.1 1899 20.6 585

Offline Preference Optimization Methods
SimPO 47.9 46.3 1934 32.5 552
IPO 43.7 42.1 1899 34.5 569
DPO 44.3 42.7 1945 33.1 557

Iterative Preference Optimization Methods
Meta-Rewarding Iter1 34.2 32.6 1893 27.7 531
Meta-Rewarding Iter2 36.4 34.5 1876 27.0 530
Meta-Rewarding Iter3 37.5 (↑ 14.4) 35.2 (↑ 12.1) 1868 27.9 (↑ 7.3) 530
SPPO Iter1 39.4 39.5 2021 30.6 570
SPPO Iter2 41.0 44.4 2396 34.4 653
SPPO Iter3 46.4 (↑ 23.3) 48.5 (↑ 25.4) 2128 33.6 (↑ 13.0) 542
DPO Iter1 33.6 33.8 1989 30.3 559
DPO Iter2 43.4 42.3 1961 33.3 587
DPO Iter3 47.2 (↑ 24.1) 48.7 (↑ 25.6) 1930 34.7 (↑ 14.1) 571

Our Methods
Mutual-Taught Iter1 38.4 37.3 1943 33.9 549
Mutual-Taught Iter2 54.1 (↑ 31.0) 55.9 (↑ 32.8) 2177 38.4 (↑ 17.8) 682

Table 1: Overall results of our proposed Mutual-Taught method with Llama-3-8B-Instruct as the policy model,
compared against various baseline methods on AlpacaEval-2 and Arena-Hard. Text in bold indicates the best
performance. The numbers in brackets represent the degree of improvement relative to Llama-3-8B-Instruct.

0% 25% 50% 75% 100%

Iter2
vs

Iter1

Iter2
vs

Base

Iter1
vs

Base

57.1%

67.3%

60.7%

35.5%

20.5%

27.6%

7.4%

12.2%

11.7%

Win Tie Lose

Figure 3: Results of in-distribution (ID) evaluation of
reward models obtained through Mutual-Taught. We
compare reward models from different iterations, pre-
senting the pairwise win, tie, and lose rates.

Note that our method employs only two-thirds
of the available datasets for updating the policy
model, reserving the remaining for updating the
reward model. Despite using less data for policy
model iterations compared to other iterative base-
lines, we achieve notably better performance on
AlpacaEval-2 and Arena-Hard. This result high-
lights the importance of iteratively updating both
the policy and reward models during the training
process. Moreover, it also suggests that improving
the reward model offers greater benefits than just
increasing training data for the policy model.

Iterative performance improvement on reward
model To evaluate the effectiveness of Mutual-
Taught in enhancing the reward model (RM), we
analyze its performance across two scenarios.

In-distribution (ID): We first assess the RM’s per-
formance under ID conditions. Specifically, we use
the policy model after two iterations to generate re-
sponses for 2000 randomly sampled prompts from
the Ultrafeedback test set. The base RM and itera-
tively updated RMs (from Mutual-Taught) are then
tasked with selecting the optimal response, with
GPT-4-Preview-1106 serving as the judge for pair-
wise comparisons. As shown in Figure 3, the iter-
atively updated RMs achieve progressively higher
win rates against the base RM, demonstrating their
improved ability to identify high-quality responses.
This enhancement ensures more reliable training
data for subsequent policy iterations.

Out-of-distribution (OOD): We further evaluate
the RM’s generalization capability using Reward-
Bench. As shown in Table 2, the RM exhibits
consistent improvement after each iteration, with
an average score increase of 2.3 points after two
iterations, approaching the performance of GPT-4o-
2024-08-06. Notably, in the reasoning dimension,
the RM achieves a clear performance boost after
the first iteration, ultimately attaining a 9.3-point
improvement. In other dimensions, the RM ini-

16290

Model Chat Chat Hard Safety Reasoning Average
GPT-4o-2024-08-06 96.1 76.1 88.1 86.6 86.7
FsfairX-Llama3-RM-v0.1 99.4 65.1 87.8 86.4 84.7
Mutual-Taught Iter1 98.3 63.9 85.1 95.8 85.8
Mutual-Taught Iter2 98.2 66.3 87.8 95.7 87.0

Table 2: Out-of-distribution (OOD) evaluation results of reward models on RewardBench.

tially declines but recovers and stabilizes at the base
RM level. This behavior is attributed to the vary-
ing initial performance of the policy model (PM)
across dimensions, which influences the quality
of training data generated by comparing the PM’s
outputs before and after each iteration. Specifi-
cally, in the reasoning dimension, where the PM
has stronger initial performance, the RM receives
higher-quality training data, leading to substan-
tial improvements. In other dimensions, the PM’s
weaker initial performance results in lower-quality
training data, causing a temporary decline in RM
performance. However, as the PM evolves through
iterations, the RM benefits from better-quality data
and ultimately leads to improved performance.

5.3 Further Analysis

Impact of reward model training data type
Our data construction strategy is designed to meet
two critical requirements for effective iterative
alignment: (1) enabling the reward model to track
policy model distribution shifts across iterations,
and (2) maintaining stable learning signals through-
out policy optimization. While previous work (Pace
et al., 2024) shows that on-policy sampling data an-
notated by the reward model can enhance its robust-
ness through iterative self-supervision, we argue
that explicitly capturing policy evolution via our
comparison strategy offers crucial dynamic align-
ment signals for updating the reward model. To
explore this effect, we conduct experiments using
three distinct data types to train the reward model:
self-training, policy-comparison, and mixed.

The self-training data comprises preference data
used in the first iteration of policy model opti-
mization, with labels derived from the base re-
ward model. This preference data reflects the ini-
tial capabilities of the reward model. The policy-
comparison data is constructed from responses gen-
erated by the policy both before and after itera-
tion, capturing shifts in the policy distribution. The
mixed data type, which combines both self-training
and policy-comparison preference data, aims to
leverage the unique strengths of each approach.

−4.8

−6.3
−3.5

−2.6

−1.1

−0.8

Figure 4: Impact of different reward model training
data types on the performance of Mutual-Taught. For
brevity, policy-comparison data and self-training data
are abbreviated as PC and ST, respectively.

As shown in Figure 4, the policy model’s per-
formance declines when using either self-training
or policy-comparison data in isolation, compared
to the mixed preference data. Specifically, when
only self-training data is used, the policy model’s
performance drops by 6.3 and 3.5 points, respec-
tively, on AlpacaEval and ArenaHard, while the
reward model’s performance shows no significant
decline. In contrast, when only policy-comparison
data is used, the reward model performance slightly
deteriorates, but the policy model’s performance
is less affected. We hypothesize that self-training
data, which reflects the reward model’s initial dis-
tribution, helps prevent catastrophic forgetting but
is less effective at capturing improved preference
distributions. This limits its ability to guide the
policy model in subsequent iterations. On the other
hand, policy-comparison data, which compares the
updated and previous policy models, aligns more
closely with the iterative optimization goal, en-
abling the reward model to better approximate the
improved preference distribution and offer more
effective feedback for policy updates. The integra-
tion of both data types in Mutual-Taught strikes a
balance between preventing knowledge forgetting
and modeling improved preference distributions.
As a result, Mutual-Taught achieves superior per-
formance compared to using either data type alone.

16291

Base R1-U1 R1-U2 R2-U1 R2-U2

20

30

40

50

60
W

in
 R

at
e

(%
)

AlpacaEval-2
Arena-Hard

Base R1 R2
83

84

85

86

87

88

89

Av
g

Sc
or

e

GPT-4o
RewardBench

Figure 5: Performance of the policy (left) and the reward
(right) models across two rounds. Each round includes
two policy updates and one reward model update. For
brevity, each policy update is abbreviated (e.g., the first
update in Round 1 is denoted as R1–U1).

Performance of Mutual-Taught with additional
rounds To investigate the effect of extending
Mutual-Taught beyond the main experimental
setup, we conduct an additional round of training
using the same dataset and hyperparameters. Each
round consists of two policy model updates and one
reward model update. Crucially, to mitigate over-
fitting from repeated training on the same data, the
policy and reward models from the previous round
are not directly fine-tuned further. Instead, they
are used solely to generate higher-quality training
data for the next iteration, with the new iteration’s
models starting from the base models.

As shown in Figure 5, both the policy and reward
models continue to improve in the second round
relative to the first. Notably, the final reward model
outperforms GPT-4o-2024-08-06 on RewardBench,
demonstrating that Mutual-Taught achieves even
better performance with an additional round. More
specifically, in the second iteration, both the policy
and reward models utilize preference data gener-
ated by their respective fine-tuned predecessors.
These higher-quality outputs strengthen the foun-
dation for the E-step (policy updates) and M-step
(reward model updates) and result in better align-
ment between the policy and reward models and
enhanced results.

Generalization of the iterated reward model In
our experiments, the improvement of the reward
model depends on training data provided by the pol-
icy model (Llama-3-8B-Instruct). Although the fi-
nal iterated reward model shows performance gains
in both in-distribution (ID) and out-of-distribution
(OOD) scenarios, it remains unclear whether these
improvements can generalize effectively to opti-
mize other policy models. To investigate this,

Model AlpacaEval-2
LC Win Rate Win Rate

Mistral-7B-Instruct-v0.2 19.4 15.8
w/ RM-Base 42.0 42.8
w/ RM-Iter1 45.5 45.0
w/ RM-Iter2 46.8 51.0

Table 3: Effect of the generalization of reward mod-
els obtained from Mutual-Taught’s iterative process on
guiding the DPO training of Mistral-7B-Instruct-v0.2.

we apply the reward models obtained through the
Mutual-Taught iterative process, as reported in the
main experiment, to train a different policy model,
Mistral-7B-Instruct-v0.2 (Jiang et al., 2023), using
a single iteration of DPO on UltraFeedback.

As shown in Table 3, using the iterated reward
models boosts the policy model’s performance on
AlpacaEval-2 by up to 4.8 points compared to the
base reward model. This demonstrates that the
improved reward models, fine-tuned by a specific
policy model during the Mutual-Taught iterative
process, are not limited to that policy model but
can generalize to others. The effectiveness of this
generalization stems from the fact that the iterated
reward models, fine-tuned with improved prefer-
ence data generated by the evolving policy model,
learn a more robust understanding of what consti-
tutes an optimal response. This enhanced capability
allows them to provide valuable feedback not only
for the policy model they were originally trained
with but also for other models on the same task.

6 Conclusion

This paper introduces Mutual-Taught, a novel co-
evolving framework designed to address the dis-
tributional shift challenge in preference learning.
Mutual-Taught enables the collaborative improve-
ment of both policy and reward models through an
expectation-maximization (EM)-inspired approach,
with a dynamic feedback loop between policy opti-
mization (E-step) and reward calibration (M-step).
Empirical results show that this iterative process
consistently enhances both the policy and reward
models. The resulting policy model outperforms
existing methods, such as DPO, SPPO, and Meta-
Rewarding, across multiple benchmarks, including
AlpacaEval-2 and Arena-Hard. Furthermore, the
iterated reward model performs on par with GPT-
4o-2024-08-06 on RewardBench. These findings
confirm that addressing the distributional shift be-
tween the reward model and the evolving policy
model facilitates further preference optimization.

16292

Limitations

Mutual-Taught relies on iterative optimization and
feedback during the training of a policy model.
However, when applied to tasks involving com-
plex logical reasoning and long-term dependencies,
it may face challenges such as slow convergence.
Moreover, over-optimization may occur if itera-
tions are allowed to continue without limit.

Ethics Statement

All the experiments in this study were conducted
using publicly available datasets that do not con-
tain any private or offensive information. Our work
does not involve the analysis or utilization of iden-
tity characteristics, nor does it engage in any form
of gender, racial, or other discrimination.

Acknowledgements

This work was supported by the National Natural
Science Foundation of China (No. 62176270) and
the Guangdong Basic and Applied Basic Research
Foundation (No. 2023A1515012832).

References
Mohammad Gheshlaghi Azar, Zhaohan Daniel Guo, Bi-

lal Piot, Remi Munos, Mark Rowland, Michal Valko,
and Daniele Calandriello. 2024. A general theoret-
ical paradigm to understand learning from human
preferences. In International Conference on Artifi-
cial Intelligence and Statistics.

Edward Beeching, Clémentine Fourrier, Nathan Habib,
Sheon Han, Nathan Lambert, Nazneen Rajani, Omar
Sanseviero, Lewis Tunstall, and Thomas Wolf. 2023.
Open LLM leaderboard.

Ralph Allan Bradley and Milton E. Terry. 1952. Rank
analysis of incomplete block designs: I. the method
of paired comparisons. Biometrika, 39:324.

Zixiang Chen, Yihe Deng, Huizhuo Yuan, Kaixuan Ji,
and Quanquan Gu. 2024. Self-play fine-tuning con-
verts weak language models to strong language mod-
els. In International Conference on Machine Learn-
ing.

Pengyu Cheng, Yifan Yang, Jian Li, Yong Dai, Tianhao
Hu, Peixin Cao, Nan Du, and Xiaolong Li. 2024. Ad-
versarial preference optimization: Enhancing your
alignment via rm-llm game. In Findings of the As-
sociation for Computational Linguistics ACL 2024,
pages 3705–3716.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, Christopher Hesse, and John Schulman.

2021. Training verifiers to solve math word prob-
lems. arXiv preprint arXiv:2110.14168.

Ganqu Cui, Lifan Yuan, Ning Ding, Guanming Yao,
Wei Zhu, Yuan Ni, Guotong Xie, Zhiyuan Liu, and
Maosong Sun. 2024. UltraFeedback: Boosting lan-
guage models with high-quality feedback. In Inter-
national Conference on Machine Learning.

Hanze Dong, Wei Xiong, Bo Pang, Haoxiang Wang,
Han Zhao, Yingbo Zhou, Nan Jiang, Doyen Sahoo,
Caiming Xiong, and Tong Zhang. 2024. RLHF work-
flow: From reward modeling to online RLHF. Trans-
actions on Machine Learning Research.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela
Fan, et al. 2024. The llama 3 herd of models. arXiv
preprint arXiv:2407.21783.

Kawin Ethayarajh, Winnie Xu, Niklas Muennighoff,
Dan Jurafsky, and Douwe Kiela. 2024. KTO: Model
alignment as prospect theoretic optimization. In In-
ternational Conference on Machine Learning.

Leo Gao, John Schulman, and Jacob Hilton. 2023. Scal-
ing laws for reward model overoptimization. In In-
ternational Conference on Machine Learning.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou,
Mantas Mazeika, Dawn Song, and Jacob Steinhardt.
2021. Measuring massive multitask language under-
standing. In International Conference on Learning
Representations.

Tony Huang, Jack Chu, and Fangyun Wei. 2022. Unsu-
pervised prompt learning for vision-language models.
arXiv preprint arXiv:2204.03649.

AQ Jiang, A Sablayrolles, A Mensch, C Bamford,
DS Chaplot, D de las Casas, F Bressand, G Lengyel,
G Lample, L Saulnier, et al. 2023. Mistral 7b. arXiv
preprint arXiv:2310.06825.

Andreas Köpf, Yannic Kilcher, Dimitri von Rütte Sotiris
Anagnostidis Zhi Rui Tam, et al. 2023. Openassis-
tant conversations - democratizing large language
model alignment. In Thirty-seventh Conference on
Neural Information Processing Systems Datasets and
Benchmarks Track.

Nathan Lambert, Valentina Pyatkin, Jacob Morrison,
LJ Miranda, Bill Yuchen Lin, Khyathi Chandu,
Nouha Dziri, Sachin Kumar, Tom Zick, Yejin Choi,
et al. 2024. Rewardbench: Evaluating reward
models for language modeling. arXiv preprint
arXiv:2403.13787.

Tianle Li, Wei-Lin Chiang, Evan Frick, Lisa Dunlap,
Tianhao Wu, Banghua Zhu, Joseph E Gonzalez, and
Ion Stoica. 2024. From crowdsourced data to high-
quality benchmarks: Arena-hard and benchbuilder
pipeline. arXiv preprint arXiv:2406.11939.

16293

Xuechen Li, Tianyi Zhang, Yann Dubois, Rohan Taori,
Ishaan Gulrajani, Carlos Guestrin, Percy Liang, and
Tatsunori B. Hashimoto. 2023. Alpacaeval: An au-
tomatic evaluator of instruction-following models.
https://github.com/tatsu-lab/alpaca_eval.

Stephanie Lin, Jacob Hilton, and Owain Evans. 2022.
TruthfulQA: Measuring how models mimic human
falsehoods. In Proceedings of the 60th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 3214–3252.

Yu Meng, Mengzhou Xia, and Danqi Chen. 2024.
SimPO: Simple preference optimization with a
reference-free reward. In Advances in Neural In-
formation Processing Systems.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, et al.
2022. Training language models to follow instruc-
tions with human feedback. Advances in Neural
Information Processing Systems.

Alizée Pace, Jonathan Mallinson, Eric Malmi, Sebastian
Krause, and Aliaksei Severyn. 2024. West-of-n: Syn-
thetic preferences for self-improving reward models.
arXiv preprint arXiv:2401.12086.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christo-
pher D Manning, Stefano Ermon, and Chelsea Finn.
2023. Direct preference optimization: Your language
model is secretly a reward model. Advances in Neu-
ral Information Processing Systems.

Corby Rosset, Ching-An Cheng, Arindam Mi-
tra, Michael Santacroce, Ahmed Awadallah, and
Tengyang Xie. 2024. Direct nash optimization:
Teaching language models to self-improve with gen-
eral preferences. arXiv preprint arXiv:2404.03715.

John Schulman, Filip Wolski, Prafulla Dhariwal,
Alec Radford, and Oleg Klimov. 2017. Proxi-
mal policy optimization algorithms. arXiv preprint
arXiv:1707.06347.

Avi Singh, John D Co-Reyes, Rishabh Agarwal, Ankesh
Anand, Piyush Patil, Peter J Liu, James Harrison, Jae-
hoon Lee, Kelvin Xu, Aaron Parisi, et al. 2024. Be-
yond human data: Scaling self-training for problem-
solving with language models. Transactions on Ma-
chine Learning Research.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

Tianhao Wu, Weizhe Yuan, Olga Golovneva, Jing Xu,
Yuandong Tian, Jiantao Jiao, Jason Weston, and Sain-
bayar Sukhbaatar. 2024. Meta-rewarding language
models: Self-improving alignment with llm-as-a-
meta-judge. arXiv preprint arXiv:2407.19594.

Yue Wu, Zhiqing Sun, Huizhuo Yuan, Kaixuan Ji, Yim-
ing Yang, and Quanquan Gu. 2025. Self-play prefer-
ence optimization for language model alignment. In
The Thirteenth International Conference on Learning
Representations.

Tengyang Xie, Dylan J Foster, Akshay Krishnamurthy,
Corby Rosset, Ahmed Hassan Awadallah, and
Alexander Rakhlin. 2025. Exploratory preference
optimization: Provably sample-efficient exploration
in RLHF with general function approximation. In
The Thirteenth International Conference on Learning
Representations.

Wei Xiong, Hanze Dong, Chenlu Ye, Ziqi Wang,
Han Zhong, Heng Ji, Nan Jiang, and Tong Zhang.
2024. Iterative preference learning from human feed-
back: Bridging theory and practice for rlhf under
kl-constraint. In International Conference on Ma-
chine Learning.

Jing Xu, Andrew Lee, Sainbayar Sukhbaatar, and Jason
Weston. 2023. Some things are more cringe than
others: Preference optimization with the pairwise
cringe loss. arXiv preprint arXiv:2312.16682.

Weizhe Yuan, Richard Yuanzhe Pang, Kyunghyun Cho,
Xian Li, Sainbayar Sukhbaatar, Jing Xu, and Jason E
Weston. 2024. Self-rewarding language models. In
International Conference on Machine Learning.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali
Farhadi, and Yejin Choi. 2019. HellaSwag: Can
a machine really finish your sentence? In Proceed-
ings of the 57th Annual Meeting of the Association
for Computational Linguistics, pages 4791–4800.

Dan Zhang, Sining Zhoubian, Ziniu Hu, Yisong Yue,
Yuxiao Dong, and Jie Tang. 2024a. ReST-MCTS*:
LLM self-training via process reward guided tree
search. In Advances in Neural Information Process-
ing Systems.

Shenao Zhang, Donghan Yu, Hiteshi Sharma, Ziyi Yang,
Shuohang Wang, Hany Hassan, and Zhaoran Wang.
2024b. Self-exploring language models: Active
preference elicitation for online alignment. arXiv
preprint arXiv:2405.19332.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin,
Zhuohan Li, Dacheng Li, Eric Xing, et al. 2023.
Judging llm-as-a-judge with mt-bench and chatbot
arena. Advances in Neural Information Processing
Systems.

Rui Zheng, Wei Shen, Yuan Hua, Wenbin Lai, Shihan
Dou, Yuhao Zhou, Zhiheng Xi, Xiao Wang, Haoran
Huang, Tao Gui, Qi Zhang, and Xuanjing Huang.
2024. Improving generalization of alignment with
human preferences through group invariant learning.
In The Twelfth International Conference on Learning
Representations.

16294

https://github.com/tatsu-lab/alpaca_eval

A Baselines

We compare our approach against the follow-
ing baseline methods. Offline preference optimiza-
tion methods: For this category, we implement
DPO (Rafailov et al., 2023), IPO (Azar et al., 2024)
and SimPO (Meng et al., 2024). Preference pairs
are derived from multiple responses generated by
the base policy model, with scores provided by the
base reward model. Iterative preference optimiza-
tion methods: For this category, we implement iter-
ative DPO (Xu et al., 2023), SPPO (Wu et al., 2025)
and Meta-Rewarding (Wu et al., 2024). Since these
methods do not update the reward model, we use
all three portions of the dataset for policy model
training and run three iterations for iterative meth-
ods, i.e., SPPO and Meta-Rewarding. To ensure a
fair comparison, the sampling settings used in these
experiments match those applied in Mutual-Taught.

B Training Details

In our experiments, we use the Alignment Hand-
book framework2 for policy model updates and the
RLHF-Reward-Modeling3 framework for reward
model updates.

Mutual-Taught We conduct Mutual-Taught be-
tween the policy and reward models for two iter-
ations. In each iteration, both models are trained
for one epoch using a cosine learning rate sched-
ule with a warmup ratio of 0.1. All experiments
are conducted on 8 NVIDIA A100 GPUs. We
follow SimPO (Meng et al., 2024) to set the pol-
icy sampling and training parameters. Specifically,
for policy sampling: the temperature is set to 0.8,
M = 5, and top-p to 0.95. For each policy model
iteration, we initialize the model from the previ-
ous round and generate responses using the current
policy. Preference data is then derived using the
reward model at the current iteration. The policy
model is optimized via DPO with a beta of 0.01,
a batch size of 128, a maximum sequence length
of 2,048 tokens, and a learning rate of 7 × 10−7.
A checkpoint is saved every 50 steps for subse-
quent model selection. For model selection, a fixed
evaluation set is constructed prior to the start of
the iterations by randomly sampling 2,000 prompts
from the UltraFeedback dataset. Among the saved

2Alignment Handbook at https://github.com/
huggingface/alignment-handbook

3RLHF-Reward-Modeling at https://github.com/
RLHFlow/RLHF-Reward-Modeling

checkpoints, the one with the highest win-rate rel-
ative to the initial policy of the current iteration is
selected to construct the pseudo-labels. The itera-
tion is terminated if the highest win-rate wk

t is less
than 60%. For data filtering, the margin threshold
is set based on the standard deviation of the reward
model scores in the current iteration.

To mitigate the risk of overfitting on the same
prompts across iterations, each reward model itera-
tion starts from the base reward model. The reward
model is trained on preference pairs consisting of
chosen and rejected responses sampled from the
current and preceding policy models. We use a
batch size of 512, a maximum sequence length of
2,048, and a learning rate of 2× 10−6.

Baselines In offline preference optimization
methods, we maintain the same sampling and train-
ing parameters as Mutual-Taught. For iterative
preference optimization methods, in iterative DPO,
we observed performance degradation in the final
iteration with a large learning rate, so we lowered it
to 5× 10−7. For SPPO, we use the default training
parameters provided by the method. For Meta-
Rewarding, we first build Evaluation Fine-Tuning
(EFT) data from the Open Assistant (Köpf et al.,
2023) dataset to boost the initial judgment ability
of the model before self-training iterations. During
the construction of EFT data, we prompt GPT-4o
to generate judgments with high quality instead of
the SFT baseline in Yuan et al. (2024). During
self-training iterations, we use prompts from the
UltraFeedback dataset instead of those generated
by Llama2-70B-Chat to align with Mutual-Taught.

Length control To prevent length explosion, we
implement a length-control mechanism for select-
ing preference data. For each prompt, we first se-
lect responses with above-average reward scores,
and then choose the shortest one as the chosen
response. The response with the lowest score is
selected as the rejected one. This length control
mechanism is applied to all experiments except for
Meta-Rewarding, where we use the length control
mechanism proposed by the original method.

C Algorithmic Overview

Algorithm 1 outlines the complete Mutual-Taught
procedure. In classical EM, both the variational
approximation of the latent variable and the model
parameters are iteratively refined. Analogously, we
treat π∗ as the latent variable and the policy πt as

16295

https://github.com/huggingface/alignment-handbook
https://github.com/huggingface/alignment-handbook
https://github.com/RLHFlow/RLHF-Reward-Modeling
https://github.com/RLHFlow/RLHF-Reward-Modeling

an evolving surrogate. By refining the policy in
the E-step and adjusting the reward model in the
M-step, both models progressively align with the
latent optimal distribution π∗.

Algorithm 1 Mutual-Taught

1: Input: Initial policy π0, initial reward model
r0, dataset D, fixed validation set DMS, num-
ber of iterations T .

2: Partition D into subsets D1, . . . ,DT ,DR,
where D1 to DT are used for policy model
updates, and DR is utilized for reward model
updates. Additionally, DMS is designated for
model selection.

3: for each iteration t = 1, . . . , T do
4: E-step: Obtain policy checkpoints {π′

t} by
sampling responses from πt−1 for x ∼ Dt,
evaluating them with rt−1, and updating
πt−1 according to Eq. (4).

5: Model selection: Select the best policy πt
via Eq. (7).

6: Pseudo-pair construction: For each
prompt x ∼ DR, construct the pseudo-pair
(yt, yt−1) by generating yt ∼ πt(x) as the
preferred response and yt−1 ∼ πt−1(x) as
the dispreferred response.

7: Data filtering: Discard the pseudo-pair if it
does not satisfy the margin threshold ϵt.

8: M-step: Update rt−1 using the filtered
pseudo-pairs according to Eq. (5).

9: end for
10: Output: Policy πT and reward model rT .

D Theoretical Convergence Analysis

The Mutual-Taught algorithm draws theoreti-
cal inspiration from the classical Expectation-
Maximization (EM) framework while introducing
novel components. Under standard regularity con-
ditions, we establish its convergence properties
through the following formal analysis.

D.1 Objective Formulation
Let the expected reward under the latent optimal
distribution be defined as:

R(π∗, r) = Ex∼D, y∼π∗(·|x)
[
r(y;x)

]
,

where π∗ represents the ground-truth distribution
of optimal responses. Our convergence analysis
focuses on the sequence {(πt, rt)}Tt=1 generated by
alternating optimization steps.

D.2 Convergence Theorem
Theorem 1 (Monotonic Improvement). Under the
assumptions that:

1. Exact optimization in E-step and M-step.

2. Unbiased estimation in pseudo-labeling:
E[π̂(y|x)] = π∗(y|x).

The Mutual-Taught sequence satisfies:

R(πt, rt) ≥ R(πt−1, rt−1) ∀t ≥ 0,

with equality holding if and only if (πt, rt) =
(πt−1, rt−1). Thus, the algorithm converges to a
stationary point of R(π, r), ensuring asymptotic
convergence to a solution where no further improve-
ment is possible.

D.3 Proof Sketch
The convergence follows from alternating maxi-
mization principles, with two key enhancements:

1. E-step: Progressive policy improvement via
model selection

The policy update maximizes the auxiliary
lower bound:

R(π, rt−1) ≥ E [log π(y|x)rt−1(y;x)] .

Model selection ensures non-degeneracy: By
monitoring validation set performance, we en-
sure that the new policy update satisfies:

R(πt, rt−1) ≥ R(πt−1, rt−1).

2. M-step: Progressive reward model enhance-
ment with data filtering

The reward model is updated by maximizing
the pairwise preference likelihood as follows:

max
r

E(yw,yl)∼π̂ log σ(r(yw;x)− r(yl;x)).

Margin-based filtering enforces quality con-
trol: since low-quality pairs are discarded, we
ensure that the new reward model satisfies:

R(πt, rt) ≥ R(πt, rt−1).

The joint effect of these steps can be captured by
the chained inequalities:

R(πt, rt)
M-step
≥ R(πt, rt−1)

E-step
≥ R(πt−1, rt−1).

16296

The two-stage stabilization strategy with model
selection and data filtering essentially converts the
original non-convex problem into a sequence of
convex subproblems with progressively tightened
constraints. This approach distinguishes Mutual-
Taught from vanilla EM implementations, enabling
more reliable convergence while preserving the
original framework’s theoretical benefits.

−0.4

−1.9

−2.1

−0.1 −0.1

−0.2

Figure 6: Ablation study on the two-stage strategy. For
brevity, Mutual-Taught, model selection and data filter-
ing are abbreviated as MT, MS and DF, respectively.

E Ablation Studies of Two-Stage
Stabilization

To demonstrate the effectiveness of the proposed
two-stage stabilization strategy, we conduct an ab-
lation study. As shown in Figure 6, we draw two
key observations:

• Both model selection and data filtering indi-
vidually improve performance over the base-
line without the two-stage strategy (i.e., “w/o
Both”), indicating that each component effec-
tively enhances pseudo-label quality.

• While model selection and data filtering con-
fer similar benefits to the reward model, model
selection provides a greater advantage for pol-
icy model optimization. This is because the
policy selected according to Eq. (4) not only
yields more reliable pseudo-labels for the M-
step but also serves as a better initialization
for the next policy update.

F Pseudo-Label Filtering Methods

As demonstrated in Appendix E, the performance
of Mutual-Taught critically depends on the quality
of its pseudo-labels. To reduce noise in the gen-
erated preference pairs, we systematically analyze
three curation strategies:

• Low-Quality Data Filtering (LQF): Eliminate
pseudo-pairs where the preferred response yt
scores lower than the dispreferred response
yt−1 by a margin: ∆r(x) < −ϵt.

• High-Quality Data Selection (HQS): Retain
only pseudo-pairs in which the preferred re-
sponse yt scores higher than the dispreferred
response yt−1 by a margin: ∆r(x) ≥ ϵt.

• Direct Self-Training (DST): Directly com-
pare reward model scores of the pre- and
post-update policy responses, designating the
higher-scoring response as preferred.

Figure 7 shows that while LQF (our adopted
approach in the final method) delivers superior per-
formance on AlpacaEval-2, HQS and DST slightly
outperform it on RewardBench. By analyzing their
underlying mechanisms, we observe:

• Both HQS and DST are essentially self-
training approaches. While self-training can
alleviate catastrophic forgetting (Section 5.3),
it effectively enhances the existing capabili-
ties of the reward model. However, for sam-
ples where the reward model fails to correctly
recognize due to policy distribution shift, self-
training alone may not provide the necessary
calibration signals. In contrast, LQF filters out
only the high-confidence low-quality samples,
retaining data containing calibration informa-
tion based on the comparison between pre-
and post-update policies. This enables the
reward model to provide more accurate feed-
back for subsequent policy improvements.

• HQS can be viewed as a special case of DST,
where only responses that are strictly better
under the updated policy are retained. In con-
trast, DST uses all pseudo-labeled data, which
leverages the reward model’s strong initial ca-
pacity. However, when the reward model’s
initial capability is weaker, relying solely on
self-training may lead to suboptimal behavior.
In our case, since FsfairX-Llama3-RM-v0.1
has a strong initialization, DST achieves better
performance on the reward model.

G Evaluation on Additional Benchmarks

To further assess the effectiveness of Mutual-
Taught across diverse downstream tasks and eval-
uation metrics, we conducted additional experi-
ments on four benchmarks from the HuggingFace

16297

HQS DST

0.6

0.4

0.2

0.0

0.2

D
iff

er
en

ce
 R

el
at

iv
e

to
 L

Q
F

-0.7

-0.5

+0.1

+0.3
AlpacaEval-2
RewardBench

Figure 7: Comparison of different data filtering methods.
The vertical axis displays the performance differences
of High-Quality Data Selection (HQS) and Direct Self-
Training (DST) relative to Low-Quality Data Filtering
(LQF) on two benchmarks.

Open LLM Leaderboard (Beeching et al., 2023):
GSM8K (Cobbe et al., 2021), MMLU (Hendrycks
et al., 2021), HellaSwag (Zellers et al., 2019), and
TruthfulQA (Lin et al., 2022). The results are sum-
marized in Table 4.

Model GSM8K MMLU HellaSwag TruthfulQA Avg.

Base 75.21 65.71 78.48 51.64 67.76
+ IterDPO 69.71 65.19 80.83 52.91 67.16
+ MT 70.67 64.13 81.37 55.21 67.85

Table 4: Accuracy (%) on additional benchmarks from
the HuggingFace Open LLM Leaderboard. Base refers
to Llama-3-8B-Instruct; + IterDPO and + MT indi-
cate models fine-tuned with Iterative DPO and Mutual-
Taught, respectively.

As shown in Table 4, all preference optimization
methods show performance drops on MMLU and
GSM8K—likely due to the UltraFeedback dataset’s
emphasis on alignment over general knowledge and
mathematics. In contrast, there is a consistent im-
provement on HellaSwag and TruthfulQA. These
results suggest that the UltraFeedback dataset is
more aligned with tasks requiring commonsense
reasoning and truthfulness, and that Mutual-Taught
is particularly beneficial in these areas.

H Threshold Selection for τ in the E-Step

During early training, the policy model (PM) typ-
ically improves markedly after each E-step, re-
flected by validation win rates well above 50%. In
this regime, the updated response yt almost always
surpasses its predecessor yt−1. Meanwhile, the
data-filtering procedure in the M-step discards un-
reliable preference pairs, keeping the reward model

(RM) aligned with the evolving PM distribution.
As optimization advances, incremental gains taper
off and the win rate converges toward 50%. Distin-
guishing successive policies then becomes difficult,
and marginally noisy pairs may impair the RM. To
prevent over-optimization while preserving mean-
ingful updates, we introduce a win-rate threshold τ :
Above 50% to prevent over optimization, while not
excessively high to ensure continued meaningful
optimization.

To further evaluate τ ’s effectiveness in triggering
timely early stopping during performance degra-
dation, we extended our experiment by dividing
the original set of 40,000 prompts (previously used
in two iterations) into four subsets and conduct-
ing four iterations of PM training. The results are
summarized in Table 5.

Iter. MS Win (%) ES AlpacaEval-2 LC (%)

1 63.5 No 34.7
2 67.3 No 41.0
3 65.1 No 44.9
4 57.7 ✓ 40.3

Table 5: Impact of early-stop threshold τ across itera-
tions. "MS Win" denotes the win rate (%) of the selected
model in model selection (MS), "ES" indicates whether
early stopping (ES) was applied during the iteration.

As shown in the Table 5, the PM exhibits perfor-
mance degradation in the fourth iteration. By set-
ting τ = 60%, based on the win rate (63.5%) from
the first PM iteration, early stopping was success-
fully triggered in the fourth iteration. Consequently,
the model from the third EM iteration was selected
as the final model. This demonstrates how τ ef-
fectively ensures early stopping at the appropriate
point when performance degradation is detected.

16298

