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Abstract

Minimum Bayes Risk (MBR) decoding opti-
mizes output selection by maximizing the ex-
pected utility value of an underlying human
distribution. While prior work has shown the
effectiveness of MBR decoding through empir-
ical evaluation, few studies have analytically
investigated why the method is effective. As a
result of our analysis, we show that, given the
size n of the reference hypothesis set used in
computation, MBR decoding approaches the
optimal solution with high probability at a rate
of O

(
n− 1

2

)
, under certain assumptions, even

though the language space Y is significantly
larger |Y| ≫ n. This result helps to theoreti-
cally explain the strong performance observed
in several prior empirical studies on MBR de-
coding. In addition, we provide the perfor-
mance gap for maximum-a-posteriori (MAP)
decoding and compare it to MBR decoding.
The result of this paper indicates that MBR de-
coding tends to converge to the optimal solution
faster than MAP decoding in several cases.

1 Introduction

Minimum Bayes Risk (MBR) decoding (Kumar
and Byrne, 2002, 2004) is a decision rule used
to generate sequences from autoregressive proba-
bility models (e.g., LLMs). MBR decoding has
been shown to produce high-quality texts in var-
ious directed text generation tasks, such as ma-
chine translation (Tromble et al., 2008; de Gispert
et al., 2009; Stahlberg et al., 2017), text summa-
rization (Rush et al., 2015; Narayan et al., 2018),
text simplification (Heineman et al., 2024), im-
age captioning (Borgeaud and Emerson, 2020),
instruction-following (Wu et al., 2025), and many
of the systems submitted to the WMT competition1

adopt MBR decoding. Numerous experiments
have reported the advantages of MBR decoding
over maximum-a-posteriori (MAP) decoding (e.g.,

1https://machinetranslate.org/wmt

beam search) (Ehling et al., 2007; Eikema and Aziz,
2020; Müller and Sennrich, 2021; Eikema and Aziz,
2022; Bertsch et al., 2023).

Experimental results confirm that the larger the
number of candidates and hypothesis sets collected,
the better performance (Eikema and Aziz, 2022;
Freitag et al., 2022). However, there is no the-
oretical explanation for the convergence rate of
approaching optimal output. The answers to this
question are the number of elements in the can-
didate and the hypothesis set in this paper. Our
results show the following theorem.

Theorem. (Convergence Rate of MBR De-
coding; Informal) Under certain assump-
tions, MBR decoding approaches the opti-
mal solution with high probability at a rate
of O

(
n− 1

2

)
for the size n of the reference

hypothesis set.

This theoretical result is consistent with the empir-
ical results of previous studies (Eikema and Aziz,
2022; Freitag et al., 2022). We also confirm that if
the human distribution is similar to the model dis-
tribution, the performance of MBR decoding can
be improved, as indicated by Ohashi et al. (2024).
In addition, we derive the convergence rate of the
optimal output for MAP decoding and compare it
to MBR decoding. Our results show that MBR de-
coding tends to converge faster than MAP decoding
in several cases.

Specifically, our main contributions are that we
provide high probability and expected regret’s up-
per bounds by MBR decoding in several cases (The-
orem 1, Theorem 2, and Corollary 1) and we com-
pare the performance gap and convergence rate
of MBR decoding and MAP decoding within the
same framework of the upper bound we derived in
Section 5.

In summary, there are few theoretical analyses

16262

https://machinetranslate.org/wmt


of MBR decoding, and thus a comprehensive the-
oretical framework has yet to be fully established.
Through these contributions, we believe that this
study offers new perspectives that advance the un-
derstanding of MBR decoding.

Moreover, our theoretical results on MBR decod-
ing have broad practical relevance. For example,
even if advanced models such as GPT-8 emerge
or if we encounter challenging tasks like ancient
Japanese language generation, our work demon-
strates that MBR decoding remains a viable op-
tion. This finding is practically beneficial, as it
confirms that MBR decoding is not only theoreti-
cally grounded with convergence rate guarantees
but also adaptable to a wide range of applications.

2 Background and Notations

Text generation involves producing an output se-
quence based on an input sequence, the set of input
sequences is defined by X . Probabilistic text gen-
erators define a probability distribution over the
output space of hypotheses Y . The set of complete
hypotheses Y is:

Y := {BOS ◦ v ◦ EOS|v ∈ V∗}.

where ◦ is a string concatenation and V∗ is the
Kleene closure of a set of vocabulary V . The goal
of decoding is to find the best hypothesis for a given
input. For simplicity we write MX

Y to denote a set
of conditional probability distributions over a finite
set Y , given X as context sets. and O(n) is Big O
notation.

2.1 MBR Decoding
Let X denote the input space and Y the output
space. Given an input x ∈ X , a probabilistic model
defines a distribution p ∈ MX

Y over possible out-
puts y′ ∈ Y . The goal of Bayes Risk minimization
in structured prediction and sequence generation
tasks is to select an output that minimizes the ex-
pected loss relative to the true distribution (Bach,
2024).

For a loss function ℓ : Y × Y → R, the Bayes
Risk is defined as:

R(y | x) = Ep

[
ℓ(y′, y)

]
.

y∗ = argmin
y∈Y

R(y | x)

If the goal is to maximize some utility function
u rather than to minimize a loss, it can also be
interpreted as a performance metric ℓ = −u.

The objective of MBR decoding is similar to
the Bayes Risk, finding the output that maximizes
the expected utility, thereby effectively minimizing
risk (Kumar and Byrne, 2002, 2004).

The procedure consists of two key components:
the human distribution Phuman ∈ MX

Y given input
x ∈ X and a utility function. For simplicity, let
P (y | x) = P (y), since x is fixed in this paper.
The utility function evaluates the quality of a can-
didate output H ⊆ Y with respect to a reference
output Y . In this paper, we assume that the can-
didate hypotheses H are identical to the reference
outputs Y . Ideally, MBR decoding selects the opti-
mal hypothesis by maximizing its expected utility
over the distribution of human references:

uh(y) =
∑

y′∈Y
u(y, y′) · Phuman(y

′). (1)

y∗ = argmax
y∈Y

uh(y). (2)

where utility function u: Y × Y → [0, Umax],
Umax ∈ [0, 1] denotes the maximum utility value.

Since Phuman is unknown, MBR decoding in-
stead uses Pmodel ∈ MX

Y to approximate Phuman.

um(y) =
∑

y′∈Y
u(y, y′) · Pmodel(y

′). (3)

ym = argmax
y∈Y

um(y). (4)

However, summation over Y is computationally
intractable, so Eq. (4) is approximated by a Monte
Carlo estimation (Eikema and Aziz, 2022; Farin-
has et al., 2023) using a collection of reference
hypotheses Yn

ref sampled from the model Pmodel.

ûm(y) =
1

|Yn
ref |

∑

y′∈Yn
ref

u(y, y′). (5)

ŷm = argmax
y∈Yn

ref

ûm(y). (6)

We denote the number of samples used for the
Monte Carlo estimate of the MBR decoding as
n := |Yn

ref |.
Therefore, to derive a practical application equa-

tion (Eq. 6), two approximation operations are per-
formed from the objective equation for true MBR
decoding (Eq. 2).

2.2 MAP Decoding
The most intuitive decoding method is MAP decod-
ing, which selects a mode based on the human dis-
tribution Phuman. MAP decoding is also a special

16263



case in which the utility function of MBR decod-
ing is used as the indicator function. The objective
function of MAP decoding is defined by:

y∗MAP = argmax
y∈Y

Phuman(y). (7)

The objective equation using the model probability
Pmodel is similar to the MBR decoding:

ymMAP = argmax
y∈Y

Pmodel(y). (8)

In addition, the objective equation for the Monte
Carlo estimation of the MAP decoding is defined
as:

P̂ (y) =

∑
y′∈Yn

ref
I (y = y′)

∣∣Yn
ref

∣∣ . (9)

where Yn
ref collected n samples from Pmodel.

We reformulate the practical objective function
of MAP decoding using Eq. (9):

ŷmMAP = argmax
y∈Yn

ref

P̂ (y). (10)

Eq. (10) shows the computationally feasible ap-
proximation of the MAP decoding. While beam
search is the most common sampling strategy to
approximate MAP decoding.

We focus on the analysis of MAP decoding and
MBR decoding with random sampling in this paper,
the case of considering temperature sampling for
MBR decoding in Appendix G. The goal of the
study is to investigate the statistics of the MBR and
MAP objectives.

3 Analysis of MBR decoding

In this section, we evaluate the performance of
MBR decoding (Eq. 6) compared to the ideal MBR
solution (Eq. 2) under various assumptions.

3.1 Problem Setting
The optimal MBR decoding output is y∗ (Eq. 2).
However, as mentioned earlier, due to practical lim-
itations, only a Monte Carlo solution ŷm (Eq. 6)
can be obtained in practice. On the other hand,
since this ŷm is ultimately evaluated under the
human distribution Phuman, the following perfor-
mance difference arises:

Regretn := uh(y
∗)− uh(ŷ

m). (11)

We refer to this quantity Regretn as regret. The
goal of this study is to obtain an upper bound of re-
gret theoretically. Suppose we can show this upper

bound on the order of the number of elements in
candidate and hypothesis sets. In that case, we can
provide a theoretical guarantee for the performance
of MBR decoding using the Monte Carlo method.

3.2 The Analysis of Regretn
We define the following notation:

∆(up, uq, y) := up(y)− uq(y). (12)

This expresses the residual of the utility of y as-
suming q as the probability distribution when the
target probability distribution is p. Using Eq. (12),
we divide the regret Regretn into four terms:

Regretn ≤ ∆(uh, um, y∗) + ∆(um, ûm, y∗)

+ ∆(ûm, um, ŷm) + ∆(um, uh, ŷ
m).
(13)

In the following analysis, we first derive an upper
bound for each ∆ in Eq. (13). Then, using the
upper bounds derived for each ∆, we derive an
upper bound for Regretn.

Analysis of um and ûm. First, we derive an up-
per bound for the terms involving um (marginal-
ization under Pmodel), ûm (marginalization under
Monte Carlo sampling from Pmodel). We consider
the following assumption about the utility function.

Assumption 1 (Inner Product Representa-
tion of the Utility Function). Let α(y) ∈
Rd be an embedding for each y ∈ Y . We
assume that max ∥α∥ = Umax and the util-
ity function u(y, y′) is given by the inner
product of the embeddings, i.e.,

u(y, y′) = α(y)⊤α(y′).

There are examples of utility functions that sat-
isfy these properties such as the F1 measure of
the BERTScore and the inner product of the em-
bedding functions (Zhang et al., 2020; Reimers
and Gurevych, 2019; Meng et al., 2024). Note
that several state-of-the-art utility functions for ma-
chine translation do not satisfy this assumption
(e.g., COMET and Metric-X; Rei et al. 2020; Guer-
reiro et al. 2024; Juraska et al. 2024), since they
are trained to do the computation of the utility and
the quality estimation at the same time.

By applying Hoeffding’s Inequality (Lemma 5)
and Uniform Concentration Inequality (Lemma 6),
see Appendix B, along with Assumption 1, the
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following lemma about the terms involving um, ûm
is established.

Lemma 1 (Upper Bound for the terms in-
volving um, ûm). Under Assumption 1 and
assuming d ≥ 4, the following bound holds
for any δ ∈ (0, 1), with probability at least
1− δ:

∆(um, ûm, y∗) + ∆(ûm, um, ŷm)

≤ 3

√
1

n
log

1

δ
+

36

n

√
d log d.

The proof can be found in Appendix C. Since the
dimensions of the embedding models are usually
larger than 4, we assume them in this study and
proceed with our analysis under this assumption.2

Lemma 1 shows that the upper bound of regret
with um, ûm terms depends only on the number of
samples n and decreases at a rate of O

(
n− 1

2

)
. No-

tably, this result can also be interpreted as a regret
bound, specifically Regretn, under the condition
that Phuman and Pmodel are identical (Appendix D).

Our current analysis relies on the inner prod-
uct representation assumption for the utility func-
tion in order to derive the tight upper bounds pre-
sented in our work. In particular, when bound-
ing ∆(ûm, um, ŷm) in Lemma 1, we utilize results
from Shalev-Shwartz and Ben-David (2014), which
allows us to maintain an O

(
n−1

)
convergence rate.

This result is used in the following analysis (Theo-
rem 1 and Theorem 2).

Note. Metrics based on neural architectures do
not satisfy Assumption 1. Therefore, we introduce
a new assumption about the utility function under
which these metrics comply.

Assumption 2. We assume that the utility
function is a positive-definite kernel.

A utility function u is a positive-definite kernel
if and only if all kernel matrices resulting from this
kernel function are symmetric positive semidefinite
(Definition 7.1 Bach (2024)). Under Assumption 2,
we can get the following lemma related to the upper
bound for the terms involving um, ûm.

2For readers interested in the case d < 4, see Appendix C.

Lemma 2 (Upper Bound for the terms in-
volving um, ûm). Under Assumption 2, the
following bound holds for any δ ∈ (0, 1),
with probability at least 1− δ:

∆(um, ûm, y∗) + ∆(ûm, um, ŷm)

≤ 3

√
1

n
log

1

δ
+

2√
n
.

The proof of Lemma 2 is in Appendix L.
Assumption 2 may not be applicable in the real

world. There are cases in which the utility func-
tion u does not satisfy semi-positive definiteness
and symmetry (e.g., COMET). In these cases, we
perform an operation to make the following lemma
applicable. First, we convert the asymmetry into
symmetry.

u′(y, y′) =
u(y, y′) + u(y′, y)

2
.

Next, we use Multidimensional Scaling (Section
3.1 Groenen and Borg (2013)) so that u′ satisfies
semi-positive definiteness, we can finally apply
Lemma 2. From here on, the main section proceeds
under Assumption 1, although the corresponding
results under Assumption 2 follow immediately.

Analysis of uh and um. Next, we analyze the
uh (marginalization under Phuman),um (marginal-
ization under Pmodel) terms involved, but before
doing so, we consider the following assumptions.

Assumption 3 (Utility Function Smooth-
ness). For all y, y′, y′′ ∈ Y , we assume
the utility function satisfies the following
inequality:

|u(y, y′)− u(y, y′′)| ≤ C(y′, y′′)

where C ∈ RY×Y is a cost function.

The assumption is not a restrictive assumption.
For any utility functions bounded by [0, Umax],
C(y′, y′′) = Umax satisfies the assumption. Note
also that Assumption 1 entails Assumption 3. The
assumption is known as the Lipschitz condition
(Jeffreys and Jeffreys, 1988). It claims that the
value of the utility function is smooth under the
cost function C: the difference in the utility be-
tween an output y and other outputs y′ and y′′ can
be bounded by some “distance” C between the y′
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and y′′. Intuitively, if y′ and y′′ are similar, then
C wants to be small, and otherwise large. Many
of the utility functions are designed to be so by
minimizing the prediction error from the human
evaluation (e.g., MQM score) (Rei et al., 2020;
Juraska et al., 2024). Under the Assumption 3, the
following lemma holds:

Lemma 3 (Upper Bound for the terms in-
volving uh, um). Under Assumption 3, the
following bound can be derived:

∆(uh, um, y∗) + ∆(um, uh, ŷ
m)

≤ 2WD(Phuman, Pmodel),

where WD is Wasseratein distance with C
being the cost function.

The definition of Wasserstein distance (Wang,
2012) is described in Appendix B. The proof can
be found in Appendix E. Lemma 3 implies that
minimizing the terms involving uh, um requires
choosing Pmodel that closely approximates Phuman.

Upper bound of Regretn. Using Lemma 1 and
Lemma 3, we can derive an upper bound for
Regretn.

Theorem 1 (Regret Bound for MBR decod-
ing). Under Assumption 1, Assumption 3,
and assuming d ≥ 4, the regret upper
bound of the MBR decoding holds for any
δ ∈ (0, 1), with probability at least 1− δ:

Regretn ≤ 3

√
1

n
log

1

δ
+

36

n

√
d log d

+ 2WD(Phuman, Pmodel).

Theorem 1 can be interpreted as follows. First,
the upper bound decreases with a larger number of
samples from Pmodel with the convergence speed
of O

(
n− 1

2

)
. This implies that you can reduce

the upper bound by 30% by doubling the number
of samples 2n, you are probably to need at least
four times more samples 4n to reduce the initial
error by 50%. The other insight is that the error
is inherently limited by the Wasserstein distance
between Phuman and Pmodel, which means that,
as expected, the accuracy of Pmodel is desirable.
This observation is consistent with the finding that
Ohashi et al. (2024) indicates that MBR decoding

performance is improved when Phuman and Pmodel

are similar.

3.3 On the Effect of the Training Dataset Size
In practice, we cannot compute the exact value of
the Wasserstein distance as it requires enumera-
tion over all possible sentences. To derive a more
digestible bound, we consider the simplest exam-
ple where Pmodel is an empirical distribution of
Phuman. Formally, we consider the following as-
sumption:

Assumption 4 (Pmodel as an Empirical
Distribution Sampled the Size of Training
Dataset |D| from Phuman.). Let Pmodel be
the empirical distribution of |D| samples
obtained from Phuman. Pmodel has the fol-
lowing expression:

Pmodel(y) =
1

|D|
∑

y′∈D
I(y = y′).

D ∼ Phuman(·)

where I is an indicator function.

Assumption 4 is not intended to be an assump-
tion that is directly applicable to real-world scenar-
ios. In a real-world scenario, Pmodel is almost al-
ways represented by function approximation mod-
els (e.g., neural networks) for text generation tasks.
They are often pretrained by unsupervised learn-
ing using a language model objective, then fine-
tuned by supervised learning and preference learn-
ing (Radford et al., 2018; Stiennon et al., 2020;
Ouyang et al., 2022).

Given the diversity and complexity of models
used in practice, we instead analyze a simple model
where it has no function approximation, pretraining,
or post-training processes. Such a simple model
is likely to be worse than models used in practice.
Therefore, the bounds we derive from this simple
model serve as informal worst-case bounds for the
state-of-the-art models.

The size of the training dataset is usually much
larger than the number of samples for MBR decod-
ing: |D| ≫ n.

Analysis of um and ûm with the training dataset
size |D|. Under Assumption 4, we derive the anal-
ysis on the terms in uh, um, using the Hoeffding’s
Inequality (Lemma 5, see Appendix B), we can get
the following the upper bound.
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Lemma 4 (Upper Bound for the terms in-
volving uh, um with the Size of Training
Dataset |D|). Under Assumption 4, the fol-
lowing bound holds for any δ ∈ (0, 1), with
probability at least 1− δ:

∆(uh, um, y∗) + ∆(um, uh, ŷ
m)

≤ 3

√
1

|D| log
1

δ
.

The proof can be found in Appendix F. This
shows that the upper bounds for the uh, um terms
vary only with the size of the training dataset
|D| and that the upper bound decays at a rate of
O
(
|D|− 1

2

)
with its size.

Under Assumption 4, regret depends on both
samples n and |D|. For clarity, we define a regret
under Assumption 4 as follows:

Regretn,D := uh(y
∗)− uh(ŷ

m). (14)

Upper bound of Regretn,D. We can immedi-
ately derive the upper bound for Regretn,D from
Lemma 1 and Lemma 4 as follows:

Theorem 2 (Regret Bound for MBR decod-
ing with the Size of Training Dataset |D|).
Under Assumption 1, Assumption 4, and as-
suming d ≥ 4, the regret upper bound of
the MBR decoding holds for any δ ∈ (0, 1),
with probability at least 1− δ:

Regretn,D ≤ 4

√
1

n
log

1

δ
+ 4

√
1

|D| log
1

δ

+
36

n

√
d log d.

Theorem 2 shows that MBR decoding ap-
proaches the optimal output with a convergence
rate related to the size of the reference hypothesis
set n and the size of the training dataset |D|, sug-
gesting why MBR decoding has good experimental
performance.

This implies that even if in the future language
models are trained on 1000 times more training
data than those today, MBR decoding is likely to
be a valid option, given that it scales with the qual-
ity of the language model. It also scales with the
advancement of hardware accelerators - if we can
generate more samples at a time, it will make MBR

decoding more effective. MBR decoding is not an
algorithm that happens to be useful under current
situations of language models and machine trans-
lation tasks. It is likely to be a valid option in the
future with more sophisticated language models
and hardware.

3.4 Extended Analysis of MBR Decoding
Expected regret bounds. So far, we have found
that we can obtain upper bounds that occur with
high probability, and from these upper bounds, we
can immediately determine the expected regret up-
per bound for Theorem 1 and Theorem 2.

Corollary 1 (Expected Regret Upper Bound
of MBR decoding). The expected re-
gret upper bounds Regretn,Regretn,D are
bounded as follows for any δ ∈ (0, 1) under
assuming d ≥ 4:

E [Regretn] ≤ 3

√
1

n
log

1

δ
+

36

n

√
d log d

+ 2WD(Phuman, Pmodel) + δ

E
[
Regretn,D

]
≤ 4

√
1

n
log

1

δ
+

36

n

√
d log d

+ 4

√
1

|D| log
1

δ
+ δ

The proof is in Appendix H. Corollary 1 can be
used to estimate how large the regret will be, on
average.

On the effect of errors in the utility function.
In the real world, we cannot always have access to
the true utility function u, instead, we assume that
the proxy utility function is only available u′, and
we explain the bound of the difference in the utility
function. We focus exclusively on the conditions
outlined in Theorem 2.

We define the following expression:

u′(y) =
1

|Yn
ref |

∑

y′∈Yn
ref

u′(y, y′).

y′ = argmax
y∈Yn

ref

u′(y).

We want to find the upper bound of uh(y∗)−uh(y
′).

Our new objective function in this paragraph is
defined as:

Regretun,D := uh(y
∗)− uh(y

′). (15)
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Under Assumption 1 and Assumption 4, an up-
per bound of Regretun,D is derived using the Ho-
effding’s inequality (Lemma 5). Let αerr :=
maxy,y′∈Yn

ref
||α(y)−α′(y′)||.

Corollary 2 (Regret Bound for MBR de-
coding with utility function error). Under
Assumption 1 and Assumption 4, the regret
upper bound of the MBR decoding with util-
ity function error holds for any δ ∈ (0, 1),
with probability at least 1− δ:

Regretun,D ≤ 4

√
1

|D| log
1

δ
+ 4

√
1

n
log

1

δ

+ 2dαerr.

The proof can be found in Appendix I. In Corol-
lary 2, the upper bound decreases as the number
of samples n and the size of training dataset |D|
increases. However, it does not ultimately converge
to zero, as the term αerr remains.

4 Analysis of MAP Decoding

In this section, we derive the regret of MAP decod-
ing between the optimal value and the Monte Carlo
estimated value, expressed as Phuman(y

∗
MAP) −

Phuman(ŷ
m
MAP).

We define the regret of the MAP decoding as
follows:

RegretMAP
n = Phuman(y

∗
MAP)− Phuman(ŷ

m
MAP).

(16)
We refer to RegretMAP

n as MAP regret. Under
the conditions of Theorem 1, the upper bound
of RegretMAP

n is given by the following re-
sult using Dvoretzky–Kiefer–Wolfowitz inequality
(Lemma 7, see in Appendix B).

Theorem 3 (Regret Bound for MAP decod-
ing). Under the conditions of Theorem 1,
the MAP regret upper bound of the MAP de-
coding holds for any δ ∈ (0, 1), with proba-
bility at least 1− δ:

RegretMAP
n ≤ 6

√
1

n
log

1

δ

+ 2WD(Phuman, Pmodel).

Furthermore, under the conditions of Theorem 2,
MAP regret depends on the number of samples n

and the size of the training dataset |D|.
Our new objective formulation is defined as:

RegretMAP
n,D = Phuman(y

∗
MAP)− Phuman(ŷ

m
MAP)

(17)
The upper bound of RegretMAP

n,D is also immedi-
ately obtained by Lemma 7 as follows.

Theorem 4 (Regret Bound for MAP de-
coding with the Size of Training Dataset
|D|). Under the conditions of Theorem 2,
the MAP regret upper bound of the MAP de-
coding holds for any δ ∈ (0, 1), with proba-
bility at least 1− δ:

RegretMAP
n,D ≤ 8

√
1

n
log

1

δ
+ 8

√
1

|D| log
1

δ
.

The proof is in Appendix J. Note that Theorem 3
and Theorem 4 decrease in the same order as Theo-
rem 1 and Theorem 2 respectively. In other words,
if we compare the difference between these bounds
more clearly, we focus on the constant term.

5 Performance Comparison

So far, we have analyzed MBR decoding and MAP
decoding independently. In this section, we com-
pare the performance of MBR decoding and MAP
decoding within the same framework, in terms of
the upper bound and we focus exclusively on the
conditions outlined in Theorem 2, Theorem 4.

Difference between MBR and MAP Decoding
target values. First, we aim to analyze the differ-
ence uh(y

∗)− uh(ŷ
m
MAP), where y∗ is the optimal

output and ŷmMAP is a suboptimal output. We can
analyze this error bound to see how the optimal so-
lution in MAP decoding behaves in an ideal MBR
decoding environment.

Observation 1 (Error between y∗ and
ŷmMAP with uh). Error bound between y∗

and ŷmMAP with uh satisfies for any δ ∈(
0, 25
)
, with probability at least 1− 5

2δ:

uh(y
∗)− uh(ŷ

m
MAP) ≤ um(ŷm)− um(ŷmMAP)

+O
(
max

(
n− 1

2 , |D|− 1
2

))
.

The detail is in Appendix K.1. This observation
confirms that MAP decoding and MBR decoding
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theoretically have different objectives under certain
conditions. We provide the analysis of the MAP
regret RegretMAP

n,D of the two decoding algorithms
in Appendix K.1.

Convergence speed of upper bound of Regretn,D
and RegretMAP

n,D . Next, we compare the upper
bounds of the convergence rate between MBR de-
coding and MAP decoding presented in this study.

Observation 2 (Comparison of the Con-
vergence Speed). We compare the upper
bounds of Regretn,D and RegretMAP

n,D un-
der three different scenarios:

1. n → ∞ and |D| is finite. The upper
bound of Regretn,D is strictly smaller than
the upper bound of RegretMAP

n,D .

2. D → ∞ and n is finite. For number
of samples n and utility d such that the fol-
lowing inequality holds, the upper bound of
Regretn,D is smaller than the upper bound
of RegretMAP

n,D .

1

9

√
n log

1

δ
≥
√
d log d.

3. Both D and n are finite. For the num-
ber of samples n, utility d, and the size of
training dataset |D| such that the follow-
ing inequality holds, the upper bound of
Regretn,D is smaller than the upper bound
of RegretMAP

n,D .

n

9

(√
1

n
log

1

δ
+

√
1

|D| log
1

δ

)
≥
√
d log d.

The proofs are given in Appendix K.2, and Fig. 2
shows that the upper bound of MBR decoding is
less than the upper bound of MAP decoding at the
number of samples described in Observation 2’s 3.

As can be seen by comparing Regretn,D and
RegretMAP

n,D in cases 2 and 3 of Observation 2,
as the number of samples n increases, the up-
per bound on Regretn,D converges more faster
(Fig. 1).

The analysis shows that, for any model, there
exists a large enough n such that the upper bound of
the regret of MBR decoding is smaller than that of
MAP decoding. This observation may help explain
why the empirical performance of MBR decoding
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MAP Regret is better.

MBR Regret is better.

Figure 1: Conceptual visualization of Observation 2.
The convergence rates of the upper bound of Regretn,D
and RegretMAP

n,D with the number of samples n and train-
ing dataset size |D| are compared. For n and |D| on the
right side of this line plot, it means that the upper bound
of Regretn,D is smaller.
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Figure 2: Numerical Experiment for Observation 2’s 3

can exceed that of MAP decoding.

6 Numerical Simulation

In this section, we computationally evaluate the up-
per bounds of Regretn and Regretn,D. It is impor-
tant to emphasize that the experiments conducted
in this paper are not intended to show the tightness
of the results in the practical NLP tasks. Rather,
they are intended to provide a visual representation
of the theoretical results presented in this paper.

For the performance of MBR decoding in real-
world NLP tasks, we refer to previous work (Fre-
itag et al., 2023; Bertsch et al., 2023; Heineman
et al., 2024; Wu et al., 2025).

We consider Y = 10,000 hypotheses yi (i =
1, . . . ,H) with the dataset size of |D| and the num-
ber of samples n model samples to study regret and
bound behavior. We test δ ∈ {0.01, 0.1}, and set
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Figure 3: The upper bound (δ = {0.01, 0.1}) of
the Regretn derived by Theorem 1 and the value of
Regretnin the simulation. The number of samples n
is fixed to 500 and the training dataset size is |D| =
[0, 1000]
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Figure 4: The upper bound (δ = {0.01, 0.1}) of the
Regretn,D derived by Theorem 2 and the value of
Regretn,Din the simulation. The training dataset size
|D| is fixed to 5000 and the number of samples for MBR
decoding is n = [0, 500].

d = 4. The details of the experimental setup are
given in Appendix M.

6.1 Results

Fig. 3 clearly demonstrates that our theoretical up-
per bound on Regretn is tight when compared to
the actual regret observed. This close correspon-
dence indicates that the assumptions and inequal-
ities used in deriving the bound are well-justified,
providing evidence in the numerical experiment.

The results of Fig. 4 and Fig. 5 show that the
obtained upper bound converges to Regretn,D as
the number of samples increases. This behavior
suggests the theoretical validity of the bound in-
dicating that the looseness of the upper bound is
gradually eliminated as the number of samples in-
creases, improving the ability to accurately capture
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Figure 5: The upper bound (δ = {0.01, 0.1}) of the
Regretn,D derived by Theorem 2 and the value of
Regretn,D in simulation. The number of samples n
is fixed to 500 and the training dataset size is |D| =
[0, 10000]

the true performance difference accurately.

7 Conclusions

This paper presents a theoretical analysis of MBR
decoding and shows that, under reasonable assump-
tions, it converges with high probability to the opti-
mal solution at a rate of O

(
n− 1

2

)
, even when the

total language space Y is large. In addition, we
compare MBR and MAP decoding about the per-
formance difference and the convergence speed to
the optimal solution. As a result, we confirm MAP
decoding and MBR decoding theoretically have dif-
ferent objectives, and from the upper bound, MBR
decoding is more efficient than MAP decoding in
approaching the optimal output under certain con-
ditions.

8 Limitations

This study provides the first theoretical bounds on
MBR decoding. As it is one of the first analy-
ses on MBR decoding, it has several limitations,
particularly regarding its alignment with practical
implementations.

Assumptions. Our analysis assumes that the set
of candidate hypotheses H is identical to the set of
reference outputs Y . However, in practice, using a
small number of high-quality but biased candidates
alongside a larger set of unbiased references has
been found to be more effective.

We have considered three assumptions for the
analysis. The assumptions do not cover all the situ-
ations of text generation applications. For example,
the state-of-the-art utility functions for machine
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translation (COMET and Metric-X; Rei et al. 2020;
Guerreiro et al. 2024; Juraska et al. 2024) are not
linear function (Assumption 1).

In practice, the models are represented by a neu-
ral network, and they are often pretrained using un-
supervised learning before supervised fine-tuning.
This point is not considered in Assumption 4.

Aspects not considered. The analysis does not
account for the role of neural networks. In particu-
lar, it is known that solutions corresponding to flat
minima tend to generalize better than those with
sharp minima (Dinh et al., 2017). Understanding
the role of neural networks for MBR decoding is
future work.

We analyze a model that predicts sequences, but
practical implementations typically use autoregres-
sive language models (Lin et al., 2021). Incorpo-
rating the autoregressive assumption may lead to
improved theoretical bounds.

The study considers only random sampling and
temperature sampling. However, other strategies,
such as epsilon sampling (Hewitt et al., 2022) and
beam search (which is commonly used for MAP
decoding), are not analyzed.

Our analysis does not frame the problem as an
NLP task. Incorporating domain-specific charac-
teristics could lead to tighter bounds. This study is
purely theoretical and does not include empirical
experiments to validate the results on real-world
NLP tasks. Instead, we rely on prior experimental
findings (Freitag et al., 2023; Bertsch et al., 2023;
Suzgun et al., 2023) for providing empirical sup-
port for our theoretical conclusions.

Another key limitation is that the bounds derived
in this study are not proven to be tight, leaving
room for refinement. Furthermore, to measure how
tight the upper bounds is, we also need to derive
the lower bound in MBR decoding.

Lastly, while our study focuses on sample com-
plexity, practical implementations of MBR decod-
ing are often constrained by computational com-
plexity (Cheng and Vlachos, 2023; Vamvas and
Sennrich, 2024). Combining our sampling com-
plexity result with the existing computational com-
plexity bounds (Jinnai and Ariu, 2024) is future
work.

Summary. This work provides fundamental the-
oretical bounds for MBR decoding. However, there
remain avenues for improvement, including empir-
ical validation, refinement of theoretical bounds,

and comparative analysis with alternative decoding
algorithms.
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A Related Works

Experimental findings in MBR decoding. Many studies have reported that the performance of MBR
decoding increases with a larger number of samples (Eikema and Aziz, 2022; Freitag et al., 2022). Prior
works (Freitag et al., 2022; Fernandes et al., 2022) show that the performance of the MBR decoding
depends on the selection of the utility function. Experiments combining MBR decoding with neural
reference-based metrics, such as BLEURT, demonstrate significant improvements in human evaluations.
In recent work, Yan et al. (2024) propose Distributional Cooling MBR, this approach bridges the gap
between label smoothing and MBR decoding, with extensive experimental validation demonstrating its
effectiveness on various NMT benchmarks and Wu et al. (2025) shows that leveraging reference-based
LLM judges with MBR decoding improves the output quality of instruction-following LLMs compared to
greedy decoding, best-of-N approaches.

Analysis of MBR decoding. Kamigaito et al. (2024) conduct on the intricate relationship between bias
and diversity in MBR decoding. Their bias-diversity decomposition framework theoretically explains the
trade-offs observed in empirical studies.

B Useful Lemmas and Definition

In this section, we present the concentration inequality used in the paper. The following inequalities
represent a uniform concentration inequality.

Lemma 5 (Hoeffding’s inequality; Corollary 1.1 in Bach 2024). {Xi}ni=1 ∈ [0, b] being i.i.d. samples
drawn from same distribution.

Pr

(∣∣∣∣∣E [X]− 1

n

n∑

i=1

Xi

∣∣∣∣∣ ≥ ϵ

)
≤ 2 exp

(
−2nϵ2

b2

)
.

The following inequalities represent a uniform concentration inequality.

Lemma 6 (Uniform Concentration Inequality; Theorem 4.10 in Wainwright 2019). F is a class of
functions f : X → [0, b].

Pr (∥Pn − P∥F ≥ 2Rn(F) + ϵ) ≤ exp

(
−2nϵ2

b2

)
.

where ∥Pn − P∥F = supf∈F |Pnf − Pf |, Pnf = 1
n

∑n
i=1 f(Xi) and Pf = E[f(X)], with X and

{Xi}ni=1 being i.i.d. samples drawn from P, Rn : (F , {Xi}ni=1) → R.
Rn(F) represents the Rademacher complexity of the function class F (Definition 3.1 (Mohri, 2018)).

Rademacher complexity is a measure of model complexity, indicating how well a function class can fit
random noise. It provides a uniform bound on the deviation between the empirical and true expectations
across all functions in F , serving as a key tool for analyzing generalization error in statistical learning
theory.

Lemma 7 (Dvoretzky–Kiefer–Wolfowitz inequality; Massart 1990).

Pr

(
sup
x∈R

|Fn(x)− F (x)| > ε

)
≤ 2 exp(−2nε2).

Given a natural number n, let X1, X2, · · · , Xn be real-valued independent and identically distributed
random variables with cumulative distribution function F (·). Let Fn denote the associated empirical
distribution function defined by Fn(x) =

1
n

∑n
i=1 1{Xi≤x}

Definition 1 (Wassertstein Distance). The Wassertstein Distance (WD) (Wang, 2012) is defined as:

WD(ν, µ) = inf
γ∈Γ(ν,µ)

∑

(i,j)∈N×N

γij Cij , (18)

16274



where N : the total number of samples, consisting of the set {y1, y2, . . . , yN}, ν, µ ∈ ∆N : probability
measure on the aforementioned sets (νi, µi refer to the probability value ν(yi), µ(yi)), C: N ×N → R a
cost function measuring the distance between two outputs (e.g. Cij refers to the amount to be transported
from place yi to palace yj), and Γ(ν, µ) denotes the set of all joint distributions γ whose marginals are ν
and µ. The constraints on γ are given by:

∑

j∈n
γij = νi, ∀i ∈ n,

∑

i∈n
γij = µj , ∀j ∈ n,

γij ≥ 0, ∀i, j ∈ n.

The WD, also known as the Earth Mover’s Distance (EMD), is a metric used to quantify the dissimilarity
between two probability distributions. Unfortunately, computing WD between two probability distri-
butions over Y exactly is generally intractable, as it requires an enumeration over Y . Still, WD can be
approximated by using empirical distributions with a finite number of samples with the convergence rate
of O(n− 1

d ) (Peyré and Cuturi, 2020).

C Proof of Lemma 1

We start by analyzing the um(y∗)− um(ŷm).
We decompose it as follows:

um(y∗)− ûm(y∗) + ûm(ŷm)− um(ŷm) + ûm(y∗)− ûm(ŷm)︸ ︷︷ ︸
≤0

≤ ∆(um, ûm, y∗) + ∆(ûm, um, ŷm)

We can express ∆(um, ûm, y∗) using the following formulation, derived from Lemma 5.

Pr (|∆(um, ûm, y∗)| ≤ ϵ) ≤ 1− 2 exp

(
− 2nϵ2

U2
max

)
= 1− δ

2
.

∆(um, ûm, y∗) holds the following inequality with probability at least 1− δ
2 .

∆(um, ûm, y∗) ≤ Umax

√
1

2n
log

(
4

δ

)
.

Next, we analyze ∆(ûm, um, ŷm), however, Lemma 5 cannot be directly applied because ŷm depends
on ûm. To address this dependency, we instead utilize Lemma 6, and we can get the following formulation.

Pr

(
max
y

|∆(ûm, um, y)| ≤ 2Rn(F) + ϵ

)
≤ 1− exp

(
− 2nϵ2

U2
max

)
= 1− δ

2
.

We can thus express ∆(ûm, um, ŷm) with probability at least 1− δ
2 .

∆(ûm, um, ŷm) ≤ max
y

|∆(ûm, um, y)| ≤ 2Rn(F) + Umax

√
1

2n
log

(
2

δ

)
.

From Section 27.2 (Shalev-Shwartz and Ben-David, 2014), the following upper bound on the
Rademacher complexity Rn(F) is obtained under Assumption 1:

2Rn(F) ≤ 12Umax

n

(√
d log(2

√
d) + 2

√
d

)
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From above inequality, we can get the following the bound:

∆(ûm, um, ŷm) ≤ max
y

|∆(ûm, um, y)|

≤ 12Umax

n

(√
d log(2

√
d) + 2

√
d

)
+ Umax

√
1

2n
log

(
2

δ

)

≤ 12Umax

n

(√
d log(2

√
d) + 2

√
d

)
+ Umax

√
1

2n
log

(
4

δ

)
.

If d ≥ 4,

∆(um, ûm, y∗) + ∆(ûm, um, ŷm) ≤ 36Umax

n

√
d log(

√
d) + 2Umax

√
1

2n
log

(
4

δ

)
.

≤ 3

√
1

n
log

1

δ
+

36

n

√
d log d.

Otherwise, if d < 4,

∆(um, ûm, y∗) + ∆(ûm, um, ŷm) ≤ 36Umax

n

√
d log(

√
d) + 2Umax

√
1

2n
log

(
4

δ

)
.

≤ 3

√
1

n
log

1

δ
+

72
√
d

n
.

D The Case of Phuman and Pmodel are identical.

If Phuman and Pmodel are equal, the upper bound of Regretn corresponds to Lemma 1:

Regretn ≤ 2Umax

√
1

2n
log

8

δ
+

12Umax

n

(√
d log(2

√
d) + 2

√
d

)
.

≤ 3

√
1

n
log

1

δ
+

36

n

(√
d log d

)
.

In most studies, the primary goal of MBR decoding studies is to derive ym, given that Phuman is
inaccessible. These studies implicitly assume Pmodel = Phuman, highlighting the significance of the
results. This finding is for understanding and improving the practical application of MBR decoding
methods.
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E Proof of Lemma 3

We can derive the following inequality under Assumption 3 for any y ∈ Y:

∆(uh, um, y) ≤ |∆(uh, um, y)|

=

∣∣∣∣∣∣
∑

y′∈Y
Phuman(y

′)u(y, y′)−
∑

y′′∈Y
Pmodel(y

′′)u(y, y′′)

∣∣∣∣∣∣

=

∣∣∣∣∣∣
∑

y′,y′′
(u(y, y′)− u(y, y′′))γ(y′, y′′)

∣∣∣∣∣∣

where
∑

y′
γ(y′, y′′) = Pmodel(y

′′),
∑

y′′
γ(y, y′′) = Phuman(y

′), γ(y′, y′′) ≥ 0

≤ min
γ

∑

y′,y′′
|u(y, y′)− u(y, y′′)|γ(y′, y′′)

≤ min
γ

∑

y′,y′′
C(y′, y′′)γ(y′, y′′)

= WD(Phuman, Pmodel)

F Proof of Lemma 4

Under the Assumption 4, with using the Lemma 5, the ∆(uh, um, y∗) term is expressed as follows:

Pr (|∆(uh, um, y∗)| ≤ ϵ) ≤ 1− 2 exp

(
−2|D|ϵ2

U2
max

)
= 1− δ

2
.

We rearrange ϵ as follows:

ϵ = Umax

√
1

2|D| log
(
4

δ

)
.

In other words, the upper bound of ∆(uh, um, y∗) has a probability of at least 1− δ
2 .

∆(uh, um, y∗) ≤ Umax

√
1

2|D| log
(
4

δ

)
.

For the ∆(uh, um, ŷm) term, the upper bound can be obtained by the same operation, and the complement
Lemma 4 is proved.

∆(uh, um, y∗) + ∆(um, uh, ŷ
m) ≤ 3

√
1

|D| log
1

δ
.

G Regret Bound for MBR decoding with temperature sampling

We have been considering random sampling so far, but we also analyze what the bounds would be if we
did temperature sampling, considering practical aspects.

P t
model(y) =

exp
(
t−1Pmodel(y)

)
∑

y′∈Y exp (t−1Pmodel(y′))
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where t ∈ R+. The objective equation for MBR decoding of the Monte Carlo estimates using a collection
of reference hypotheses Yn

ref sampled from the model P t
model is as follows:

ûtm(y) =
1

|Yn
ref |

∑

y′∈Yn
ref

u(y, y′).

ŷmt = argmax
y∈Yn

ref

ûtm(y).

Our new objective formulation is defined as:

Regrettn,D := uh(y
∗)− uh(ŷ

m
t ). (19)

We can derive the upper bound of Regrettn,D as follows under the condition Theorem 2 for any t ∈ R+.

Corollary 3 (Regret Bound for MBR decoding with temperature sampling). Under Assumption 1,
Assumption 3, Assumption 4 and assuming d ≥ 4, the regret upper bound of the MBR decoding
holds for any δ ∈ (0, 1), with probability at least 1− δ:

Regrettn,D ≤ 4

√
1

n
log

1

δ
+ 4

√
1

|D| log
1

δ

+
36

n

√
d log d+WD(Pmodel, P

t
model).

The case of the little samples n might lead to better performance with using the temperature sampling
rather than using Pmodel if t is large. However, the above bound has an extra term WD when performing
temperature sampling compared to Theorem 2, so the upper bound of Regrettn,D might be improved
tighter than Corollary 3’s derived from. We discuss this later in this section.

Proof. From the definition of Regrettn,D:

Regrettn,D := uh(y
∗)− uh(ŷ

m
t ).

The objective equation for MBR decoding using temperature model distribution can be redefined as:

utm(y) =
∑

y′∈Y
u(y, y′) · P t

model(y
′).

ymt = argmax
y∈H

um(y).

We can decompose the following terms:

Regrettn,D ≤ ∆(uh, um, y∗) + ∆(um, uh, ŷ
m
t ) + um(y∗)− utm(y∗) + utm(y∗)− ûtm(y∗)

+ ûtm(ŷmt )− utm(ŷmt ) + utm(ŷmt )− um(ŷmt )

= ∆(uh, um, y∗) + ∆(um, uh, ŷ
m
t ) + ∆(um, utm, y∗) + ∆(utm, ûtm, y∗)

+ ∆(ûtm, utm, ŷmt ) + ∆(utm, um, ŷmt )

First, the involving the terms uh, um is immediately bounded by Lemma 4 with probability at least
1− δ

2 under Assumption 4.

∆(uh, um, y∗) + ∆(um, uh, ŷ
m
t ) ≤ 2Umax

√
1

2|D| log
(
8

δ

)

≤ 4

√
1

|D| log
1

δ
.
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Next we derive ∆(um, utm, y∗) + ∆(utm, ûtm, y∗)’s upper bound. Under Assummption 3, we can get
the following the bound.

∆(um, utm, y∗) + ∆(utm, um, ŷmt ) ≤ 2WD(Pmodel, P
t
model)

Finally, we derive the upper bound for the terms involving um and ûtm. We conduct the sample operation
he proof of Lemma 1. We can get the following bound with probability at least 1− δ

2 under Assumption 1
and assuming d ≥ 4:

∆(utm, ûtm, y∗) + ∆(ûtm, utm, ŷmt ) ≤ 2Umax

√
1

2n
log

(
8

δ

)
+

12Umax

n

(√
d log(2

√
d) + 2

√
d

)

≤ 4

√
1

n
log

1

δ
+

36

n

√
d log d.

The upper bound of Regrettn,D might be improved We focus on ∆(um, utm, y∗). In this paper, we can
derive the upper bound with Wasserstein Distance. However, if Pmodel capture Phuman, um(y∗) < uh(y

∗),
but we consider P t

model, it is possible to be ytm = y∗ with little samples, so ∆(um, utm, y∗) can be negative
value. In summary, rather than simply deriving an upper bound on the Wasserstein Distance, this bound
could be improved by taking into account a more detailed analysis of the temperature sampling.

H Proof of the Corollary 1

We drive the expected upper bound from high probability upper bound. If we have the regret value R with
probability at least 1− δ, we can get the expected upper bound the following the equation with worst-case
value U (e.g. when considering the MBR decoding in this paper, worst-case value can be 1.)

Expected Upper Bound for Regret = (1− δ) ·R+ δ · U

By applying the above equation to Theorem 1 and Theorem 2, the following upper bound is derived.

E [Regretn] ≤ 3

√
1

n
log

1

δ
+

36

n

√
d log d+ 2WD(Phuman, Pmodel) + δ

E
[
Regretn,D

]
≤ 4

√
1

n
log

1

δ
+

36

n

√
d log d+ 4

√
1

|D| log
1

δ
+ δ

I Proof of Corollary 2

Before the proof, we derive the upper bound of the utility function difference.
The expectation difference is:

E
[
u(y, y′)

]
− E

[
u′(y, y′)

]

= E
[
α(y)⊤v(y′)

]
− E

[
α′(y)⊤v(y′)

]

= E
[
(α(y)−α′(y) )⊤v(y′)

]
.

By applying the Cauchy–Schwarz inequality, we obtain:

E[u(y∗, y′)]− E[u′(y∗, y′)]
≤ ∥α(y∗)−α′(y∗)∥ · ∥E[v(y′)]∥
≤ ∥α(y∗)−α′(y∗)∥.
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Next, we prove the corollary 2.

uh(y
∗)− uh(y

′) = ∆(uh, um, y∗) + um(y∗)− um(y′) + ∆(um, uh, y
′).

From Appendix F, we can get the following bound with probability at least 1− δ
2 :

∆(uh, um, y∗) + ∆(um, uh, y
′) ≤ 4

√
1

|D| log
1

δ
.

The next step is to prove the remaining conditions.

um(y∗)− um(y′) = ∆(um, u′, y∗) + ∆(u′, um, y′)− u′(y′) + u′(y∗)

≤ ∆(um, u′, y∗) + ∆(u′, um, y′)

= ∆(um, ûm, y∗) + ∆(ûm, u′, y∗) + ∆(ûm, um, y′) + ∆(u′, ûm, y′)

≤ 4

√
1

n
log

1

δ
+ ∥α(y∗)−α′(y∗)∥+ ∥α(y′)−α′(y′)∥.

Finally, we can get the following the bound under Assumption 1 and Assumption 4 with probability at
least 1− δ:

Regretun,D ≤ 4

√
1

|D| log
1

δ
+ 4

√
1

n
log

1

δ
+ ∥α(y∗)−α′(y∗)∥+ ∥α(y′)−α′(y′)∥.

J MAP Decoding Upper Bound

In MAP decoding, our objective is to analyze the difference Phuman(y
∗
MAP)− Phuman(ŷ

m
MAP). To obtain

an upper bound, we decompose Phuman(y
∗
MAP)− Phuman(ŷ

m
MAP) as follows.

Phuman(y
∗
MAP)− Phuman(ŷ

m
MAP) = Phuman(y

∗
MAP)− Pmodel(y

∗
MAP) + Pmodel(y

∗
MAP)− Pmodel(ŷ

m
MAP)

+ Pmodel(ŷ
m
MAP)− Phuman(ŷ

m
MAP).

We solve the upper bound with Lemma 7, so we bound the difference of distributions with the difference
of empirical distributions. We also denote y− as the value immediately before y.

The following equation holds for all y with probability at least 1− 2
δ :

|P̂ (y)− Pmodel(y)| =
∣∣∣
(
F̂ (y)− F̂

(
y−
))

−
(
Fmodel(y)− Fmodel

(
y−
))∣∣∣ .

≤
(
|F̂ (y)− Fmodel(y)|+

∣∣∣F̂
(
y−
)
− Fmodel

(
y−
)∣∣∣
)
.

max
y

|P̂ (y)− Pmodel(y)| ≤ max
y

(
|F̂ (y)− Fmodel(y)|+

∣∣∣F̂
(
y−
)
− Fmodel

(
y−
)∣∣∣
)
≤ 2ϵ1.

We apply Lemma 7 to the above formulation:

Pr

(
max
y∈Y

∣∣∣F̂ (y)− Fmodel(y)
∣∣∣ > ϵ1

)
≤ 2 exp

(
−2nϵ21

)
.

Finally, we get the bound with probability at least 1− δ
2 :

max
y∈Y

|P̂ (y)− Pmodel(y)| ≤ 2

√
1

2n
log

8

δ
.

The following inequality holds for ŷmMAP:

Pmodel(ŷ
m
MAP) ≥ P̂ (ŷmMAP)− 2ϵ1.
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This also applies to y∗MAP:
Pmodel (y

∗
MAP) ≤ P̂ (y∗MAP) + 2ϵ1.

From the definition, it is clear that P̂ (ŷmMAP) ≥ P̂ (y∗MAP).

Pmodel(ŷ
m
MAP) ≥ P̂ (ŷmMAP)− 2ϵ1

≥ P̂ (y∗MAP)− 2ϵ1

≥ Pmodel (y
∗
MAP)− 4ϵ1.

Therefore, we can get the upper bound at least 1− δ
2 :

Pmodel (y
∗
MAP)− Pmodel(ŷ

m
MAP) ≤ 4

√
1

2n
log

8

δ
.

Pr

(
max
y∈Y

|Fmodel(h)− Fhuman(h)| > ϵ2

)
≤ 2 exp

(
−2|D|ϵ22

)
.

We also use Lemma 7. It satisfies with probability at least 1− δ
2 :

Phuman(y
∗
MAP)− Pmodel(y

∗
MAP) + Pmodel(ŷ

m
MAP)− Phuman(ŷ

m
MAP) ≤ 4

√
1

2|D| log
8

δ
.

Finally, we get the following upper bound with probability at least 1− δ:

RegretMAP
n,D ≤ 4

√
1

2n
log

8

δ
+ 4

√
1

2|D| log
8

δ

≤ 8

√
1

n
log

1

δ
+ 8

√
1

|D| log
1

δ
.

K Observation

We describe the derivations of the Observation 1 and 2.

K.1 Proof of Observation 1
Assuming the MBR decoding goal is the true value, we aim to know Phuman(h

∗)− Phuman(ŷ
m), where

ŷm is the optimal probability based on the empirical distribution of Pmodel, uh(h) =
∑

Phuman(y)u(h, y).

Remind of uh(y∗)− uh(ŷ
m) ≤ 4

√
1
n log 1

δ + 4
√

1
|D| log

1
δ +

36
n

√
d log d = σ1

Phuman(ŷ
m
MAP)uh(y

∗)− Phuman(ŷ
m
MAP)uh(ŷ

m) ≤ Phuman(ŷ
m
MAP) · σ1.

Remind of Phuman(h
∗)− Phuman(ŷ

m
MAP) ≤ 4

(√
1
n +

√
1
|D|

)(√
1
2 log

8
δ

)
.

Phuman(h
∗)uh(ŷ

m
MAP)− Phuman(ŷ

m
MAP)uh(ŷ

m
MAP) ≤ 8

√
1

n
log

1

δ
+ 8

√
1

|D| log
1

δ
︸ ︷︷ ︸

σ2

.

Combined above formulation:

Phuman(ŷ
m
MAP)uh(y

∗)− Phuman(ŷ
m
MAP)uh(ŷ

m) + Phuman(h
∗)uh(ŷ

m
MAP)− Phuman(ŷ

m
MAP)uh(ŷ

m
MAP)

≤ Phuman(ŷ
m
MAP)σ1 + σ2,

Phuman(ŷ
m
MAP)uh(y

∗)− Phuman(ŷ
m
MAP)uh(ŷ

m
MAP)

≤ Phuman(ŷ
m
MAP)uh(ŷ

m)− Phuman(h
∗)uh(ŷ

m
MAP) + Phuman(ŷ

m
MAP)σ1 + σ2,
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uh(y
∗)− uh(ŷ

m
MAP) ≤ uh(ŷ

m)− uh(ŷ
m
MAP) + σ1 +

σ2
Phuman(ŷ

m
MAP)

,

≤ uh(ŷ
m)− um(ŷm) + um(ŷm)− um(ŷmMAP) + um(ŷmMAP)− uh(ŷ

m
MAP)

+ σ1 +
σ2

Phuman(ŷ
m
MAP)

,

≤ um(ŷm)− um(ŷmMAP) + 2

√
1

2|D| log
8

δ
+ σ1 +

σ2
Phuman(ŷ

m
MAP)

,

≤ um(ŷm)− um(ŷmMAP) +O

(
max

(
1√
n
,

1√
D

))
.

From this, we assume that the MAP decoding target is the true value.

Phuman(ŷ
m)uh(y

∗)− Phuman(ŷ
m)uh(ŷ

m) ≤ Phuman(ŷ
m) · σ1.

Phuman(y
∗
MAP)uh(ŷ

m)− Phuman(ŷ
m
MAP)uh(ŷ

m) ≤ uh(ŷ
m) · σ2.

Combined above formulation:

Phuman(y
∗
MAP)uh(ŷ

m)− Phuman(ŷ
m)uh(ŷ

m) ≤ Phuman(ŷ
m)σ1 + uh(ŷ

m)σ2 + Phuman(ŷ
m
MAP)uh(ŷ

m)

− Phuman(ŷ
m)uh(y

∗)

Phuman(y
∗
MAP)− Phuman(ŷ

m) ≤ Phuman(ŷ
m
MAP)− Phuman(ŷ

m)
uh(y

∗)
uh(ŷm)

+
Phuman(ŷ

m)

uh(ŷm)
σ1 + σ2

≤ Phuman(ŷ
m
MAP)− Pmodel(ŷ

m
MAP) + Pmodel(ŷ

m
MAP)− Pmodel(ŷ

m)

+ Pmodel(ŷ
m)− Phuman(ŷ

m) +
σ1

uh(ŷm)
+ σ2

≤ 4

√
1

2|D| log
8

δ
+

σ1
uh(ŷm)

+ σ2 + Pmodel(ŷ
m
MAP)− Pmodel(ŷ

m)

≤ O

(
max

(
1√
n
,

1√
D

))
+ Pmodel(ŷ

m
MAP)− Pmodel(ŷ

m).

K.2 Proof of Observation 2
Remid of RegretMAP

n,D and Regretn,D ’s upper bound:

RegretMAP
n,D ≤ 8

√
1

n
log

1

δ
+ 8

√
1

|D| log
1

δ
︸ ︷︷ ︸

ϕ1

.

Regretn,D ≤ 4

√
1

n
log

1

δ
+ 4

√
1

|D| log
1

δ
+

36

n

√
d log d

︸ ︷︷ ︸
ϕ2

.

ϕ1 − ϕ2 = 4

√
1

n
log

1

δ
+ 4

√
1

|D| log
1

δ
− 36

n

√
d log d.

From the above inequality, we can derive this observation.
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• n → ∞ and D is finite, Regretn,D < RegretMAP
n,D .

• D is infinite, n is finite, Regretn,D < RegretMAP
n,D .

1

9

√
n log

1

δ
≥
√
d log d.

• D is finite and n is finite, the upper bound of Regretn,D remains less than or equal to the upper
bound of RegretMAP

n,D , provided the following condition holds:

n

9

(√
1

n
log

1

δ
+

√
1

|D| log
1

δ

)
≥
√
d log d.

L If the utility function can be considered as a kernel function.

Using the Assumption 2, we can get the following corollary related to the upper bound of Rademacher
complexity Rn(F).

Corollary 4. Under the Assumption 2, the upper bound of Rademacher complexity Rn(F) follow
as:

Rn(F) ≤ 1√
n
. (20)

Proof. We start by finding the Rademacher complexity Rn(F).

Rn(F) = E
[
max
h∈F

|∑n
i=1 ϵiu(h, yi)|

n

]
(21)

= E
[
max
h∈F

| ⟨∑n
i=1 ϵiu (yi, ·) , u(h, ·)⟩F |

n

]
(22)

≤ E
[
max
h∈F

∥∑n
i=1 ϵiu (yi, ·)∥F ∥u(h, ·)∥F

n

]
(23)

≤ E

[√
Umax ∥

∑n
i=1 ϵiu (yi, ·)∥F
n

]
(24)

= E



√
Umax

√∑n
i,j=1 ϵiϵju (yi, yj)

n


 (25)

≤

√
Umax

√
E
[∑n

i,j=1 ϵiϵju (yi, yj)
]

n
(26)

=

√
Umax

√∑n
i=1 u (yi, yi)

n
≤ Umax√

n
. (27)

• Eq. (21) to Eq. (22) uses the reproducing property u (h, yi) = ⟨u (yi, ·) , u(h, ·)⟩F .

• Eq. (22) to Eq. (23) uses the Cauchy Schwarz inequality |⟨∑n
i=1 ϵiu (yi, ·) , u(h, ·)⟩|F ≤

∥∑n
i=1 ϵiu (yi, ·) ∥F∥u(h, ·)∥F

• Eq. (23) to Eq. (24) uses ∥u(h, ·)∥F =
√
u(h, h) ≤ √

Umax
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• Eq. (24) to Eq. (25) uses ∥∑n
i=1 ϵiu (yi, ·)∥F

reproducing property
=

√∑n
i,j=1 ϵiϵj ⟨u (yi, ·) , u (yj , ·)⟩F =

√∑n
i,j=1 ϵiϵju (yi, yj)

• Eq. (25) to Eq. (26) uses Jensen Inequality.

• Eq. (26) to Eq. (27), E
[∑n

i,j=1 ϵiϵju (yi, yj)
]
=
∑n

i,j=1 E [ϵiϵj ]u (yi, yj) =
∑n

i=1 u (yi, yi)

We know the following bound from Appendix C.

∆(um, ûm, y∗) + ∆(ûm, um, ŷm) ≤ 2Rn(F) + 2Umax

√
1

2n
log

(
4

δ

)
.

≤ 3

√
1

n
log

1

δ
+

2√
n
.

M Experimental Details of Numerical Simulation (Section 6)

Phuman is non-uniform distribution (reflecting real-world biases), for each seed, we generate Phuman via
i.i.d. sampling, then form the empirical model distribution Pmodel by drawing D times from Phuman (i.e,
P̂ represents hypothesis frequencies). In the experiment setting of Fig. 3, we applied the utility function
according to Assumption 1, and in Fig. 4 and Fig. 5, we assume a symmetric utility matrix u ∈ RY×Y

with u(i, i) = 1 and u(i, j) ∈ [0, 1] for i ̸= j, assigning slightly higher utilities to outcomes with higher
Phuman probabilities.
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