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Abstract

Aligning powerful AI models on tasks that
surpass human evaluation capabilities is the
central problem of superalignment. To ad-
dress this problem, weak-to-strong generaliza-
tion aims to elicit the capabilities of strong mod-
els through weak supervisors and ensure that
the behavior of strong models aligns with the
intentions of weak supervisors without unsafe
behaviors such as deception. Although weak-
to-strong generalization exhibiting certain gen-
eralization capabilities, strong models exhibit
significant overfitting in weak-to-strong gener-
alization: Due to the strong fit ability of strong
models, erroneous labels from weak supervi-
sors may lead to overfitting in strong models.
In addition, simply filtering out incorrect labels
may lead to a degeneration in question qual-
ity, resulting in a weak generalization ability
of strong models on hard questions. To miti-
gate overfitting in weak-to-strong generaliza-
tion, we propose a two-stage framework that
simultaneously improves the quality of super-
vision signals and the quality of input ques-
tions. Experimental results in three series of
large language models and two mathematical
benchmarks demonstrate that our framework
significantly improves PGR compared to naive
weak-to-strong generalization, even achieving
up to 100% PGR on some models.

1 Introduction

Large language models (LLMs) have progressed
rapidly in recent years, achieving superhuman abil-
ity in diverse tasks, and showing great potential in
pursuing superhuman intelligence. Although large
language models acquire extensive world knowl-
edge and excellent capabilities to complete com-
plex tasks through large-scale pre-training, align-
ment is still necessary to ensure that these mod-
els carry out tasks according to human intentions
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Figure 1: Illustration of different weak-to-strong gener-
alization approaches. (a) Conventional approach with
noisy labels from weak model, indicated by black dots;
(b) Simple filtering approach that discards too many
valuable hard samples; (c) Our framework can maintain
both supervision quality and question quality.

(Ouyang et al., 2022). The hard problem of align-
ment is “How do we align systems on tasks that are
difficult for humans to evaluate? (Leike, 2022) "
This challenge is known as superalignment, which
refers to how humans can align models on tasks
that are beyond human ability to evaluate, which
means that humans cannot provide correct supervi-
sion. One notable method in superalignment is the
weak-to-strong generalization (Burns et al., 2023):
How can weak supervisors supervise stronger
models? This concept describes how the capacity
of strong students can be elicited by fine-tuning
on data labeled by weak teachers, consistently en-
abling them to outperform their weak teachers. In
specific experiments, a weak model is typically
used as a weak teacher, while a more capable model
serves as the strong student.

Figure 1(a) demonstrates the features of weak-to-
strong generalization, labels generated by the weak
model contain noise due to its limited capabilities,
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Figure 2: Overview of our two-stage training framework. Stage I (top): The raw question set is filtered based on
weak model’s consistency ( ). High-consistency questions are used to generate Training Set A, which is then used
for finetuning the strong model ( ). Stage II (bottom): Previously discarded questions are re-evaluated and refined
using the finetuned strong model from Stage I ( ). High-consistency questions are selected to form Training Set B,
which is then combined with Set A for final finetuning ( ). Here represents weak model, represents primary
strong model, represents Stage I finetuned model, and represents final finetuned model.

thus presenting lower correctness and adding diffi-
culties in eliciting strong model’s capabilities. As a
result, the strong model may overfit the erroneous
weak supervisions, leading to performance degen-
eration (Yang et al., 2024a). Recent research has
introduced filtering techniques to improve label cor-
rectness (Guo and Yang, 2024), making the analogy
similar to easy-to-hard learning (Hase et al., 2024).
In contrast to these related studies, we conduct a
more in-depth investigation into the effects of com-
monly used data filtering methods. Based on our
experimental results, we highlight that an exces-
sive emphasis on data filtering can lead to data
degeneration since some hard samples can be dis-
carded, which may hinder the overall performance,
as shown in Figure 1(b). In contrast, Figure 1(c)
illustrates an ideal scenario, where a clean train-
ing set, containing both strong and weak samples,
facilitates improved generalization. These hard
samples may be important to elicit student’s ca-
pabilities to solve hard problems.

According to the expansion theory proposed by
Lang et al. (2024), weak-to-strong generalization
emerges through two fundamental mechanisms:
pseudolabel correction and coverage expansion,
where models learn to rectify teacher’s errors while
extending to areas of teacher uncertainty. While
conventional approaches like filtering effectively
enhance pseudolabel correction by improving su-

pervision quality, this improvement often comes at
the expense of reduced question quality, particu-
larly in terms of difficulty distribution and diversity.
This trade-off can significantly impair coverage
expansion, thereby compromising the overall gen-
eralization capability.

Therefore, to mitigate overfitting and improve
weak-to-strong generalization, we propose a two-
stage weak-to-strong training framework, as de-
picted in Figure 2. In the first stage, we enhance
supervision quality by filtering the generated sam-
ples based on weak model’s uncertainty, which is
estimated through the model’s self-consistency. In
the second stage, we further augment question qual-
ity by reusing the discarded questions and leverage
the previous finetuned strong model to generate
answers, as finetuned strong model may solve diffi-
cult questions better, incorporating those with high
confidence back into the training dataset, to further
elicit strong model’s capabilities.

We assess the effectiveness of our framework
on two popular mathematical reasoning bench-
marks: GSM8k (Cobbe et al., 2021) and MATH
(Hendrycks et al., 2021). The evaluation involves
two distinct model series: Llama 3 (Dubey et al.,
2024) and Deepseek (Bi et al., 2024). The results
demonstrate the substantial improvements offered
by our framework. Specifically, the first stage
outperforms the standard weak-to-strong method,
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while the second stage further enhances data qual-
ity and narrows the performance gap. On the com-
momly used criteria performance gap recovered
(PGR), our framework significantly outperforms
conventional weak-to-strong finetuning, reaching
or surpassing 100% on certain models and datasets.

The main contributions of this paper are con-
cluded as follows:

1. We pinpoint two critical factors for mitigat-
ing overfitting in weak-to-strong generaliza-
tion: the quality of supervision and the quality
of questions. And we demonstrate that en-
hancing supervision quality through data filter-
ing leads to degeneration in question quality,
which may harm the model’s generalization
on hard questions.

2. We introduce a two-stage weak-to-strong
training framework focusing on supervision
quality and question quality, effectively ad-
dress overfitting on challenging reasoning
tasks.

3. We conduct extensive experiments on MATH
and GSM8k using model series including
Llama 3 and Deepseek. The results demon-
strate that our framework effectively mitigates
overfitting, in which our first stage signifi-
cantly outperforms the conventional weak-to-
strong generalization method, and the second
stage further enhances PGR with notable ro-
bustness, providing strong evidence of the ef-
fectiveness of our framework.

2 Background

In weak-to-strong generalization, the primary focus
is how to elicit the ability of superhuman models
using supervision from humans, as there is no ac-
cess to superhuman tasks and superhuman models.
The terms Weak and Strong here refer to model’s
latent potential, indicating human and superhuman
models in the superalignment hypothesis.

Generally, the weak-to-strong generalization pro-
cess involves the following steps, originally pro-
posed by Burns et al. (2023):

1. Creating a weak supervisor: The weak su-
pervisor referred to as Weak Model, is typi-
cally made by training small pretrained mod-
els. Its performance is referred to as weak
performance.

2. Training strong models with weak labels:
Data labelled by the weak model is used to
finetune a large pretrained model, with the
resulting performance termed weak-to-strong
performance.

3. Training the strong ceiling: Ground truth data,
used in the second step, is employed to fine-
tune the large pretrained model, resulting in
strong ceiling performance.

In the context of weak-to-strong generaliza-
tion, the Performance Gap Recovered is a com-
monly adopted criterion, introduced by Burns et al.
(2023), to assess how effectively the potential of
the strong model is elicited. A higher PGR indi-
cates improved weak-to-strong performance, as it
reflects the ability of the finetuned strong model to
achieve performance closer to the "strong ceiling,"
thereby demonstrating the effective extraction of
the model’s full potential. The PGR is mathemati-
cally defined as:

PGR =
weak-to-strong − weak
strong ceiling − weak

. (1)

In a specific model series, models’ weak or
strong can be directly represented by their model
size, as a weak instruct model may outperform
its strong under-elicited pretrained model, but still
underperforms the strong finetuned model (e.g.,
Llama 3 8B Instruct vs Llama 3 70B & Llama 3
70B Instruct). In this work, we simplify weak su-
pervisor’s training by selecting the instruct versions
of the current state-of-the-art models, as they show
more human-like behaviours and generate more
natural answers.

3 Methodology

An overview of our framework is illustrated in Fig-
ure 2. In the first stage, we use an uncertainty-based
criterion to filter data labelled by the weak model,
samples are filtered based on model’s consistency
and are then used to train the strong model. In the
second stage, we reuse discarded questions show-
ing high uncertainty for weak model in Stage I by
employing the finetuned strong model to provide
supervision. To ensure the correctness of the super-
visions in Stage II, we also employ an uncertainty-
based filtering criterion to retain the more accu-
rate supervisory signals. Our framework simulta-
neously improves both the quality of supervision
and the quality of questions in the weak-to-strong
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Figure 3: The relationship between supervision correct-
ness and filtering threshold. As the filtering threshold
increases, the supervision correctness (measured by la-
bel accuracy) shows a consistent upward trend.

process, enhancing the generalization ability of
weak-to-strong training.

3.1 Stage I: Purifying Supervision Signals
With given weak model Mweak, strong model
Mstrong and a set of questions, conventional weak-
to-strong generalization directly use weak model
to generate answers, then use generated samples to
train strong model.However, due to weak model’s
limited ability, generated labels may contain many
noisy labels showing low supervision quality, caus-
ing overfitting during strong model finetune. To pu-
rify noisy supervision, we introduce an uncertainty-
based filter, choosing samples with high model
consistency. We employ chain-of-thought prompt-
ing to randomly generate ten responses for each
question, thereby ensuring a diverse set of possi-
ble answers. Among these, we select the answer
with the highest consistency as the model’s final
response, as it reflects the greatest confidence in
the reasoning process. Specifically, for a selected
answer Ans, which appears NAns times out of a
total of NTotal samplings, the model’s confidence
in that answer is defined as:

Confidence(Ans) =
NAns

NTotal
× 100%. (2)

To filter out noisy labels and improve supervi-
sion quality, we apply an uncertainty-based filter
based on model‘s confidence. By filtering samples
with a consistency threshold, we form a filtered
dataset of high-confidence question-answer pairs,
shown as "Training set A" in Figure 2, showing
higher supervision quality. Our experiments show
that with higher consistency threshold results in
higher sample correctness, as shown in Figure 3.
We finally use the filtered dataset to finetune strong
model, expecting to solve the problem of overfit-
ting on wrong labels.

We further analyzed the effectiveness of chain-
of-thought prompting, detailed in Appendix 5.4.

3.2 Stage II: Mitigating Question
Degeneration

Following Stage I, the finetuned model Mfinretune
and two distinct datasets are produced: a filtered
dataset Dfiltered containing high-certainty questions
and a discarded dataset Ddiscarded comprising low-
certainty questions. The discarded questions often
represent questions with higher difficulty or less
common topics, where the weak model struggled to
provide confident answers. Despite this, these ques-
tions remain crucial for improving overall model
performance, as the test set typically encompasses a
diverse range of difficulty levels and topics. Mean-
while, the finetuned model in Stage I, having its
ability elicited by labels from weak teacher, now
outperforms its weak teacher, showing the potential
to solve questions beyond weak model’s ability.

To address this, the finetuned student
model—now exceeding the weak model in
performance—is employed to generate answers
for the discarded questions. For each question
in the discarded question set, the finetuned
model generates a variety of potential answers,
providing a more accurate and comprehensive set
of responses than its teacher. Similar to Stage I,
an uncertainty-based filtering process is applied to
retain only high-confidence samples, producing a
high quality dataset, shown as "Training set B" in
Figure 2.

The refined, high-certainty samples are then ap-
pended to the training set, creating an enriched
dataset. This updated training set is subsequently
used to finetune the initial strong model, enhanc-
ing its ability to generalize across the full spec-
trum of question difficulty and diversity. This re-
finement process ensures the inclusion of valuable
but initially uncertain data, maximizing the strong
model’s potential and overall performance.

4 Experiments

4.1 Experimental Settings

Dataset We conduct experiments on two promi-
nent mathematical reasoning benchmarks, the
grade-school level reasoning task GSM8K (Cobbe
et al., 2021) and the more challenging MATH task
(Hendrycks et al., 2021). For training, we use the
same training set as Yang et al. (2024b) for both
weak model labelling and strong model training.

16103



Baseline Stage I Stage II
74

76

78

80

82
Pe

rf
or

m
an

ce
Llama 3 GSM8K

Baseline Stage I Stage II
22

24

26

28

30

32

34

36

Llama 3 MATH

Baseline Stage I Stage II
45

50

55

60

65

70

75

Deepseek GSM8K

Baseline Stage I Stage II
10

12

14

16

18

20

22

Deepseek MATH

60% 70% 80%
Threshold (%)

74

76

78

80

82

Pe
rf

or
m

an
ce

60% 70% 80%
Threshold (%)

22

24

26

28

30

32

34

36

60% 70% 80%
Threshold (%)

45

50

55

60

65

70

75

30% 40% 50%
Threshold (%)

10

12

14

16

18

20

22

0

20

40

60

80

100

120

0

20

40

60

80

100

120

0

20

40

60

80

100

0

20

40

60

80

100

120

PG
R

 (%
)

(a)

(b)

Weak model Strong ceiling Baseline Performance PGR Stage I Stage II

Figure 4: (a) The upper row shows the performance trajectory and PGR across different stages (Baseline, Stage I,
and Stage II). The solid lines represent model performance (left y-axis), while the dash-dotted lines show PGR values
(right y-axis). (b) The lower row demonstrates the impact of different filtering thresholds on model performance,
with triangles representing Stage I results and circles representing Stage II results. For each experimental setting,
points with the same color correspond to the same Stage I filtering threshold. Results show consistent improvement
patterns across all model configurations, with Stage II generally achieving better performance than Stage I.

For evaluation, we utilized the GSM8K evaluation
set, which contains 1,319 data points. For MATH,
we used the smaller subset as the primary eval-
uation test set following Lightman et al. (2024),
which contains 500 data points. We compared the
model’s performance on the 500 samples subset
with that on the original test dataset, with details
provided in Appendix 5.5.

Models We use several models to investigate
the effectiveness of our framework, including the
Llama 3 series (Dubey et al., 2024) (Llama 3 8B
Instruct, Llama 3 70B) and the Deepseek series (Bi
et al., 2024) (Deepseek 7B Chat, Deepseek 67B
Base).

Evaluation Metrics We use accuracy and perfor-
mance gap recovered (PGR) as our primary eval-
uation metrics. For PGR, we define the perfor-
mance of small instruct/chat models as "weak per-
formance", and the performance of strong models
after finetuned with golden labels as "strong ceil-
ing", each representing the starting and the goal
performance we aim to achieve. Both metrics were
employed to assess the effectiveness of the weak-
to-strong generalization approach, highlighting the
elicited abilities of the model and the extent to
which the performance gap was recovered.

4.2 Main results

As illustrated in Figure 4, our framework signifi-
cantly narrows the performance gap between fine-
tuned strong model and strong ceiling, meanwhile
effectively eliciting strong model’s ability. Our
experimental results demonstrate the efficacy of
our framework across multiple model series, in-
cluding Llama 3 and Deepseek. For the Llama
3 model, specifically the 70B variant, the perfor-
mance in weak-to-strong generalization (PGR) on
the GSM8K dataset shows a remarkable improve-
ment, rising from 7.19% to 120.50% when utilizing
the smaller Llama 3 8B Instruct model as the weak
model. This improvement is accompanied by an
increase in task performance, which climbs from
75.20% to 81.50%. Similar enhancements are ob-
served on the MATH dataset, where PGR increases
from 36.17% to 121.28% and task performance
rises from 18.2% to 35.2%.

Comparable gains are seen with the Deepseek
model series. On the GSM8K dataset, PGR
increases significantly from 51.39% to 90.04%,
while task performance improves from 62.39% to
72.94%. For the MATH dataset, PGR improves
from 65.85% to 126.83%, with performance rising
from 16.8% to 21.8%.
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4.3 Performance Gains from Enhanced
Supervision Quality

As illustrated in Figure 4(a), the uncertainty-based
filtering approach implemented in Stage I con-
sistently outperforms the conventional baseline
across multiple datasets and model configurations.
Specifically, for Llama 3 on the GSM8K dataset,
the weak-to-strong generalization performance im-
proves substantially from 7.19% to 98.56% in PGR,
accompanied by an increase in task performance
from 75.20% to 80.28%. On the MATH dataset,
PGR rises from 36.17% to 112.77%, while task
performance increases from 18.2% to 34.0%. Sim-
ilarly, for Deepseek on GSM8K, PGR increases
from 51.39% to 83.33%, while performance en-
hances from 62.39% to 71.11%. On the MATH
dataset, Deepseek shows a notable improvement,
with PGR rising from 65.85% to 119.51%, and task
performance increasing from 16.8% to 21.2%.

4.4 Further Improvement from Enhanced
Question Quality

As further illustrated in Figure 4(b), the refinement
process in Stage II effectively enhances the quality
of the training data, particularly in terms of diffi-
culty and diversity, leading to significant improve-
ments in model performance. Specifically, for the
Llama 3 series, the strong model achieves a peak
PGR of 120.50% on the GSM8K dataset, reflecting
an additional 21.94% improvement compared to
the finetuned strong model in Stage I, correspond-
ing to a performance of 81.50%. On the MATH
dataset, we observe a peak PGR of 121.28%, with
a further increase of 8.51% compared to Stage I,
reaching 35.2% on task performance.

For the Deepseek series, the strong model at-
tains a peak PGR of 90.04% on GSM8K, mark-
ing an additional 6.71% improvement over Stage
I, with a corresponding finetuned performance
of 72.94%. On MATH, the peak PGR reaches
126.83%, demonstrating a further increase of
7.32% compared to Stage I, with task performance
reaching 21.8%.

5 Analysis

5.1 The Impact of Excessive Filtering on
Supervision Quality

As shown in Figure 3, label correctness increases
as model uncertainty decreases. However, in pre-
liminary experiments during Stage I, we observed
an intriguing trend: while performance improves
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Figure 5: Impact of filtering threshold on question diffi-
culty distribution. As the threshold increases, the pro-
portion of difficult questions (Levels 4-5) decreases,
while easier questions (Levels 1-2) increase, resulting
in a decline in average difficulty from 3.48 to 2.66.
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Figure 6: Changes in topic distribution across filtering
thresholds for three representative mathematical cate-
gories. Filtering causes shifts in topic distribution, with
minor categories seeing more reductions.

initially as uncertainty decreases, it starts to de-
teriorate after a certain threshold. This suggests
that other factors, beyond supervision quality, in-
fluence weak-to-strong generalization, and existing
filtering methods may have inherent limitations.

Reduction in Data Difficulty Figure 5 shows
that increasing the filtering threshold leads to a de-
crease in average difficulty, with fewer hard ques-
tions (Levels 4-5) remaining in the dataset. These
harder questions represent areas where the weak
model is less confident, suggesting they are beyond
its current capabilities. In contrast, easier questions
(Levels 1-2), where the model is more confident,
dominate the dataset. This results in a less chal-
lenging training set, hindering the model’s ability
to generalize to more difficult problems and con-
tributing to data degeneration.

Shift in Data Diversity As shown in Figure 6,
filtering also causes a significant shift in the diver-
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sity of questions. For instance, the Counting and
Probability section drops from 10.79% to 4.31%,
reflecting changes in the model’s uncertainty. This
shift in data diversity impacts the variety of ques-
tion types, reducing exposure to harder topics. The
complete trends and numerical results across all
categories are provided in Appendix D.1.

Once the filtering threshold surpasses a certain
point, performance degrades due to the exclusion of
important, challenging data. While reducing label
uncertainty can improve performance, excessive
filtering diminishes the dataset’s diversity, partic-
ularly regarding difficulty and topic variety. This
limits the model’s ability to generalize effectively,
leading to degeneration in its overall performance.

5.2 The Robust Effectiveness of Data
Refinement in Stage II

To address excessive filtering, we propose a strat-
egy that balances uncertainty-based filtering with
the preservation of question quality, including dif-
ficulty and diversity. In Stage II, we regenerate
answers for discarded questions from Stage I us-
ing the finetuned model, filtering them by uncer-
tainty before adding low-uncertainty samples to the
dataset.

As shown in Figure 4(a), Stage II consistently im-
proves performance across all filtering thresholds,
demonstrating the effectiveness of our framework
in recovering lost data and boosting performance.

Figure 7 shows recovery in both difficulty and
diversity, with the refined dataset closely resem-
bling the original. For Llama 3 on MATH, PGR
increases from 112.77% to 121.28%, and perfor-
mance rises from 34.4% to 35.2%. Similar results
are observed in Figure 4, highlighting the frame-
work’s robustness across models and datasets.

Additionally, Figure 4 demonstrates that even
models with initially lower performance show sig-
nificant improvements. For the Deepseek series
on MATH, the performance gap between thresh-
olds narrows in Stage II, indicating that the frame-
work effectively recovers discarded data from
over-filtered scenarios while refining fewer under-
filtered questions.

5.3 The Importance of Label Filtering in
Stage II

In Stage II, we focus on enhancing question quality
and mitigating degeneration by using the finetuned
model to generate answers for discarded questions
from Stage I. Instead of adding all generated an-

Number Theory Precalculus Counting & Probability
4

5

6

7

8

9

10

Pe
rc

en
ta

ge
 (%

)

Stage I Threshold-60% Threshold-70% Threshold-80% Threshold-90% Threshold-100%

(a) Topic distribution comparison in Stage II under different
thresholds.

StageII-60% StageII-70% StageII-80% StageII-90% StageII-100%
Filtering Threshold

0

20

40

60

80

100

Pe
rc

en
ta

ge
 o

f Q
ue

st
io

ns
 (%

)

2.85

2.90

2.95

3.00

3.05

3.10

3.15

3.20

Av
er

ag
e 

D
iff

ic
ul

ty

Level 5 Level 4 Level 3 Level 2 Level 1 Average Difficulty Stage I

(b) Distribution of difficulty levels and average difficulty
scores in Stage II.

Figure 7: Difficulty and diversity analysis in Stage II
(GSM8K, Llama 3, Threshold-70%), showing improved
preservation of question quality.

swers back, we apply an uncertainty-based filter
to ensure only reliable answers are reintegrated,
preventing the inclusion of low-quality data.

Table 1 summarizes the results of the ablation
study comparing the framework with and without
the filtering process, using the Llama 3 model se-
ries on the GSM8K dataset.

Origin With Filter Without Filter
Stage I-50% 78.99 80.89 (+1.90) 78.31 (-0.68)
Stage I-60% 80.07 81.50 (+1.43) 78.84 (-1.23)
Stage I-70% 80.28 81.19 (+0.91) 80.28 (+0.00)
Stage I-80% 80.06 80.74 (+0.68) 79.59 (-0.47)

Table 1: The impact of With vs. Without label filtering
in Stage II on Weak-to-Strong Generalization.

As shown in Table 1, appending all generated
samples without filtering leads to performance
degradation, highlighting that indiscriminate inclu-
sion reduces supervision quality. The uncertainty-
based filter ensures optimal supervision and ques-
tion quality, which are critical for effective weak-
to-strong reasoning generalization.
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Chain-of-Thought Direct Answer
GSM8K
Weak Model 74.8 14.6
Strong Ceiling 80.36 30.93
Weak-to-Strong 75.2 13.64
PGR 7.19% -5.87%(-13.06%)
MATH
Weak Model 23.8 14.6
Strong Ceiling 33.2 30.93
Weak-to-Strong 27.2 11.4
PGR 36.17% -31.8%(-76.97%)

Table 2: Performance comparison between chain-of-
thought and direct answer approaches in weak-to-strong
generalization on GSM8K and MATH datasets with
Deepseek series.

5.4 The Role of Chain-of-Thought in
Weak-to-Strong Reasoning

In contrast to the original weak-to-strong gener-
alization framework proposed by (Burns et al.,
2023), where all tasks are classification-based, rea-
soning tasks like GSM8K and MATH consist of
open-ended questions that lack definitive answer
sets. Previous work has utilized chain-of-thought
prompting to enhance performance (Guo and Yang,
2024; Yang et al., 2024b). This raises the ques-
tion: Can weak-to-strong generalization remain
effective without chain-of-thought prompting?

To explore this, we replicate the same base-
line settings, comparing using chain-of-thought
answers to manually constructed direct answers.
The results are shown in Table 2.

When omitting chain-of-thought prompting, we
fail to observe generalization in strong models, as
finetuned strong models perform worse than their
weak teachers. This occurs because step-by-step
reasoning enables strong models to verify inter-
mediate steps, learn question decomposition, and
mitigate harm from incorrect labels. In contrast,
direct answers propagate errors without instructive
pathways and cause greater damage as strong mod-
els learn only incorrect outcomes. We conclude
chain-of-thought is essential for weak-to-strong
generalization in reasoning tasks and may benefit
other domains.

5.5 Is MATH 500 Precise Enough Compared
to MATH 5000?

As introduced in Section 2, the Performance Gap
Recovered (PGR) quantifies the effectiveness of
weak-to-strong generalization by comparing the
performances of three models: weak model, strong

ceiling model, and finetuned strong model. Our
initial evaluations used a subset of 500 test samples
(MATH500). Given this relatively small sample
size, performance variations of up to 0.2 points per
test sample were observed. This variation could be
particularly significant when the performance gap
between weak and strong ceiling models is small,
potentially affecting the reliability of our results.

To validate our findings, we conducted addi-
tional evaluations on the untrained test set using
models from the DeepSeek series. The results are
presented in Table 3.

Model MATH500 MATH5000
Weak Model 11.4 9.34
Strong Ceiling 19.6 20.12
Stage I Models
Stage I-Threshold-30% 21.2 (119.51%) 19.96 (98.52%)
Stage I-Threshold-40% 19.6 (100.00%) 17.58 (76.44%)
Stage I-Threshold-50% 17.6 (75.61%) 16.84 (69.57%)
Stage II Models
Stage I-30% + Stage II-30% 21.4 (121.95%) 21.3 (110.95%)
Stage I-30% + Stage II-40% 21.8 (126.83%) 20.9 (107.24%)
Stage I-30% + Stage II-50% 19.4 (97.56%) 19.48 (94.06%)
Stage I-40% + Stage II-30% 20.4 (109.76%) 19.62 (95.36%)
Stage I-40% + Stage II-40% 19.8 (102.44%) 19.46 (93.88%)
Stage I-40% + Stage II-50% 17.4 (73.17%) 17.62 (76.81%)
Stage I-50% + Stage II-30% 20.6 (112.20%) 19.98 (98.70%)
Stage I-50% + Stage II-40% 20.6 (112.20%) 20.5 (103.53%)
Stage I-50% + Stage II-50% 19.4 (97.56%) 18.8 (87.76%)
Stage I-50% + Stage II-60% 18.6 (87.80%) 18.38 (83.86%)

Table 3: Performance comparison between MATH500
and MATH5000 test sets. Numbers in parentheses rep-
resent PGR values.

The results in Table 3 demonstrate that our
framework achieves consistent performance across
both MATH500 and MATH5000. While the ab-
solute accuracy values remain similar, the slightly
lower PGR on MATH5000 can be attributed to the
weaker baseline performance of the weak model.
However, this difference does not significantly im-
pact our framework’s effectiveness. These findings
confirm that MATH500 serves as a reliable repre-
sentative subset for evaluating model performance
using PGR, and our framework maintains its effi-
cacy across different evaluation scales.

5.6 Exploring the Potential for Further
Iterative Refinement

While our current framework demonstrates con-
siderable effectiveness, we recognize that addi-
tional iterations could further improve question
quality, thereby enhancing overall framework per-
formance. Specifically, the refinement process
in Stage II—where discarded questions are re-
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Accuracy PGR
GSM8K
Baseline 62.39 51.39%
Stage I 71.11 83.33% (+31.94%)
Stage II 72.94 90.04% (+38.65%)
Stage Exp-Threshold-80% 72.26 87.55%
Stage Exp-Threshold-90% 72.93 90.00%
Stage Exp-Threshold-100% 73.77 93.08% (+41.69%)
MATH
Baseline 16.8 65.85%
Stage I 21.2 119.51% (+53.66%)
Stage II 21.8 126.83% (+60.98%)
Stage Exp-Threshold-50% 21.4 120.71%
Stage Exp-Threshold-40% 21.2 119.51%
Stage Exp-Threshold-30% 22.4 134.15% (+68.3%)

Table 4: Performance comparison of iterative refine-
ment on GSM8K and MATH datasets (Deepseek model).
Best results are underlined.

covered and answered using the finetuned strong
model—holds significant potential for further im-
provement. This iterative process, as the model’s
ability improves, may offer a pathway for continu-
ous enhancement of question quality.

We introduce an additional iteration, which we
term Stage Exp, aimed at refining discarded ques-
tions by utilizing finetuned strong model in Stage
II to generate answers, and append samples to the
existing dataset after uncertainty filtering. Due to
computational limits, Stage Exp experiments fo-
cused on Deepseek series with best configurations
for GSM8K and MATH.

As shown in Table 4, our framework demon-
strates a promising potential for further refinement
by leveraging the power of finetuned strong models
to iteratively enhance discarded questions. How-
ever, it is important to acknowledge that the se-
lection of an optimal threshold for these further
iterations remains an open question, which we in-
tend to address in future work.

6 Related Work

6.1 AI Deceptions

A persistent challenge in weak-to-strong general-
ization is AI deception, where strong models overfit
to noisy labels from weak models, hindering their
ability to generalize to complex samples (Yang
et al., 2024a). A similar issue in reinforcement
learning from human feedback (RLHF) is identi-
fied by Wen et al. (2024), where models mislead
human evaluators. To address this, they propose
the "U-SOPHISTRY" pipeline.

This behaviour is akin to model sycophancy,
where models align with human feedback at the
expense of accuracy. Early work by Cotra (2021)

and Perez et al. (2023) shows models often aim
to please users. Sharma et al. (2024) attributes
this to human preference biases. Solutions such
as synthetic data (Wei et al., 2023) and pinpoint
tuning (Chen et al., 2024) aim to mitigate syco-
phancy, while Sicilia et al. (2024) links it to model
uncertainty.

6.2 Weak-to-Strong Generalization

Weak-to-strong generalization, introduced by Ope-
nAI (Burns et al., 2023), has led to advancements
in model training and supervision. Recent stud-
ies explore ensemble learning to improve labels by
integrating predictions from smaller models (Liu
and Alahi, 2024; Agrawal et al., 2024; Cui et al.,
2024). In terms of training methodologies, Dong
et al. (2024) replaces traditional sample-label pairs
with concept vectors to enhance learning represen-
tations, while Guo and Yang (2024) introduces fil-
tering mechanisms and confidence-based reweight-
ing strategies. Furthermore, a two-stage learning
framework presented in Yang et al. (2024b) itera-
tively refines training data, Zhou et al. (2024) en-
hances strong model with weak test-time guidance,
and Lyu et al. (2024) proposes a multi-agent con-
trastive preference optimization approach. Theoret-
ical foundations of weak-to-strong generalization
have been studied(Lang et al., 2024; Charikar et al.,
2024; Wu and Sahai, 2024). Safety considerations
are also highlighted, addressing AI safety impli-
cations within weak-to-strong frameworks (Yang
et al., 2024a; Zhao et al., 2024; Ye et al., 2024).

7 Conclusion

In this paper, we introduce a two-stage training
framework to enhance weak-to-strong generaliza-
tion through mitigating overfitting. By focusing on
both supervision and question quality, we demon-
strate that traditional data filtering methods, while
improving supervision, can reduce question diffi-
culty and diversity. Our framework mitigates this
by relabeling discarded questions using the fine-
tuned strong model, maintaining both supervision
accuracy and question quality.

Experiments on the GSM8k and MATH bench-
marks demonstrate that our approach significantly
outperforms conventional weak-to-strong general-
ization methods, improving the performance gap
recovered (PGR). This validates the effectiveness
of our framework in addressing overfitting and en-
hancing model capabilities on challenging tasks.
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Limitations

Our experiments demonstrate strong performance
on mathematical reasoning tasks, though the frame-
work’s effectiveness remains to be validated across
other domains. Through extensive experimenta-
tion, we identified optimal confidence thresholds
for filtering model predictions. However, these
thresholds vary significantly across different tasks
and datasets, making automatic threshold selection
an important direction for future research. Addi-
tionally, the computational overhead of our two-
stage finetuning approach, particularly in the sec-
ond stage, may pose scalability challenges for large-
scale applications or real-time scenarios.
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A Dataset details

A.1 Dataset Statistics

For the original question set used in GSM8K and
MATH, we followed the methodology of Yang et al.
(2024b), adopting the same training set for both
datasets. Specifically, we used their dataset D2,
which was employed for training the Llama 2 70B
model. For GSM8K, the dataset consists of 7,000
samples, while for MATH, the dataset comprises
6,000 samples.

For evaluation, we utilized the original evalua-
tion set for GSM8K and the test set from Lightman
et al. (2024), which contains 500 samples. We com-
pared the model’s performance on the 500 samples
subset with that on the original test dataset, with
details provided in Appendix 5.5.

A.2 Implementation Details

For answer generation within the framework, we
utilize chain-of-thought (CoT) prompting, as its ne-
cessity has been outlined in Section 5.4. In Stage I,
answers are generated using zero-shot CoT prompt-
ing for the weak models in the Deepseek series.
However, for the Llama 3 series, we observed that
the Llama 3 8B Instruct model performed below ex-
pectations, prompting us to switch from zero-shot
to one-shot CoT to enhance its performance.

For sampling parameters, we generate answers
with a temperature of 0.6 and top-p of 0.9 for
uncertainty-based filtering to ensure diverse and
coherent outputs, while using greedy decoding dur-
ing evaluation to enhance stability.

In both Stage II and the experimental Stage Exp,
discussed in Section 5.5, all answers are generated
using zero-shot prompting. During the filtering
process, after excluding answers based on model
confidence, we also discard responses that fail to
generate valid answers or do not adhere to the CoT
format.

A.3 Prompting Template

To better evaluate and compare the mathematical
reasoning capabilities of different models, we de-
signed specific prompting templates. For Stage I
answer generation, we employ chat-style templates
to facilitate more natural responses, while in Stage
II answer generation and evaluation, we utilize the
direct template for standardization.

We designed the following prompting templates
for different models, where [INPUT] denotes the
mathematical question to be solved.
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Direct Template:

Direct Template:

Prompt:
Question: [INPUT]
Answer:

Llama 3 GSM8K Template:

Llama 3 GSM8K Template:

Prompt:
<|begin_of_text|>
<|start_header_id|>user<|end_header_id|>
Please additionally write your final answer
with ####, like the example:
Question: Greg has his own dog walking
business. He charges $20 per dog plus $1
per minute per dog for walking the dog. If
he walks one dog for 10 minutes, two dogs
for 7 minutes and three dogs for 9 minutes,
how much money, in dollars, does he earn?
Answer: Greg earns $20 + $1 x 10 minutes
= $21 for walking the first dog. He earns
$20 + $1 x 7 minutes = $27 for walking
the second dog. He earns $20 + $1 x 9
minutes = $29 for walking the third dog.
Therefore, Greg earns $21 + $27 + $29 =
$77 for walking the three dogs. #### 77
Question:
Answer:
<|eot_id|>
<|start_header_id|>assistant<|end_header_id|>

Llama 3 MATH Template:

Llama 3 MATH Template:

Prompt:
<|begin_of_text|>
<|start_header_id|>user<|end_header_id|>
Answer the math question step by step. Our
answers need to end with ’The answer is ’.
Question: [INPUT]
Answer: Let’s think step by step.
<|eot_id|>
<|start_header_id|>assistant<|end_header_id|>

DeepSeek Templates:

DeepSeek Templates:

Prompt:
<|begin_of_sentence|>
User: Question: [INPUT]
Please reason step by step, and put your
final answer after ’The answer is: ’.
Assistant:

B Training Details

For the supervised finetuning in our framework,
we perform full-parameter finetuning on the strong
model. The finetuning is carried out with a learn-
ing rate of 110−5, a warmup ratio of 0.1, and a
cosine learning rate scheduler. We use a batch size
of 128 and train for 2 epochs on both the GSM8K
and MATH datasets. The implementation is based
on the LlamaFactory (Zheng et al., 2024) frame-
work and all experiments are conducted using 64
H100 80GB GPUs to ensure efficient processing
and model optimization.

C Additional Analysis

C.1 Theoretical Analysis

The weak-to-strong generalization phenomenon
can be theoretically explained through two key
mechanisms: pseudolabel correction and coverage
expansion, as demonstrated by Lang et al. (2024).
These mechanisms enable the student model to
both correct erroneous labels from the weak teacher
and generalize to samples where the teacher lacks
confidence.

Let us consider a student model f , a covered
subset S partitioned into correct samples Sgood and
incorrect samples Sbad, and the weak teacher’s er-
ror rate α. We can establish the relationship be-
tween the gold error err(f, y|S) and the weak error
err(f, ỹ|S) of the student model.

Given that M′(Sgood,F) satisfies (c, q)-
expansion on (Sbad, Sgood) where q < 3

4(1− 2α),
and for an optimal classifier f whose probability of
prediction errors or non-robustness is bounded by
(1 − α + 3cα)/4, we can establish the following
bound:

err(f, y|S) ≤ 2α

1− 2α
P(R(f)|S) + err(f, ỹ|S) + α

(
1− 3

2
c

)
.
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This bound demonstrates that when the expan-
sion coefficient c is sufficiently large and both
err(f, ỹ|S) and P(R(f)|S) are minimal, the true
error err(f, y|S) can be significantly lower than the
weak teacher’s error rate α, indicating successful
pseudolabel correction.

For the uncovered set T , assuming M(T,F)
satisfies (c, q)-expansion on (Sgood, T ) and
M′(T,F) satisfies (c, q)-expansion on (Sbad, T ),
we can derive another bound. For a classifier
f ∈ F that demonstrates good fit to weak la-
bels on S and maintains robustness on T such that
err(f, ỹ|S)+P(R(f)|T ) < c(1− q−α), we have:

err(f, y|T ) ≤
(
1 +

α

1− 2α

)
P(R(f)|T ) + max

(
q,

err(g, ỹ|S)− cα

c(1− 2α)

)
.

This bound becomes particularly tight when
f exhibits strong performance on weak labels
in S and maintains robustness across T , re-
sulting in small values for both err(f, ỹ|S) and
P(R(f)|T ). Combined with the previous bound
on err(f, y|S), these results theoretically justify
the student model’s capacity to surpass its weak
teacher.

In our framework, the filtering mechanism serves
to reduce the weak teacher’s error rate α by ex-
cluding low-confidence samples, thereby improv-
ing supervision quality and consequently reducing
err(f, y|S). However, this improvement relies on
the assumption that sets S and T maintain simi-
lar distributional characteristics for effective gen-
eralization. As the filtering threshold increases,
the shrinking of set S and expansion of set T can
lead to distributional shifts that violate this assump-
tion. To address this challenge, Stage II of our
framework employs the finetuned model to gener-
ate predictions for previously discarded questions,
selectively reincorporating high-confidence predic-
tions into the dataset. This approach effectively
reduces the weak error rate α while preserving dis-
tributional similarity, ultimately enhancing weak-
to-strong generalization.

C.2 Filtering Implications on Other Datasets
To validate the broader applicability of our frame-
work, we conducted additional experiments on the
SciQ classification task (Welbl et al., 2017) follow-
ing the experimental protocol from (Burns et al.,
2023). We used Qwen-1.8B as the weak super-
visor and evaluated two stronger student models:
Qwen-7B and Qwen-14B, employing absolute log-
its filtering with a threshold of 0.6. For consistency

with prior work, we aligned hyperparameters with
those from OpenAI’s official repository.The results
are presented in Table 5.

Accuracy PGR
Qwen-7B
Weak Model 83.8 /
Strong Ceiling 90.0 /
Conventional Weak-to-Strong 87.3 56.5%
Our Stage I 87.7 62.9%(+6.4%)
Our Stage II 87.9 66.1%(+9.6%)
Qwen-14B
Weak Model 83.8 /
Strong Ceiling 93.5 /
Conventional Weak-to-Strong 88.6 49.5%
Our Stage I 89.4 57.7%(+8.2%)
Our Stage II 89.7 60.8%(+11.3%)

Table 5: Performance of our framework on the SciQ
classification task with Qwen model series.

Our framework demonstrates consistent im-
provements across both stages, even in classifica-
tion tasks distinct from mathematical reasoning.
For example, Qwen-14B’s PGR improved by 8.3%
from Stage I to Stage II, while accuracy increased
from 0.894 to 0.897. These results suggest that
our two-stage approach effectively generalizes to
diverse task formats and model scales, balancing
supervision quality and question utility to mitigate
overfitting. The incremental gains across stages fur-
ther underline the importance of addressing both
label noise and data degeneration in weak-to-strong
generalization.

We have also conducted experiments on the
Paws dataset (Zhang et al., 2019) and the jus-
tice subset of the Ethics dataset (Hendrycks et al.,
2023), both using fine-tuned Qwen-1.8B as weak
supervisor and Qwen-7B and Qwen-14B as strong
students. Tables 6 and 7 present the results, where
"Stage I" denotes accuracy after the first filtering
stage, "Stage I + Stage II" indicates final accuracy
after both stages, and PGR measures performance
gain relative to strong ceiling. For baselines, Stage
I is inapplicable (left blank), and final accuracy is
reported in "Stage I + Stage II".

These results confirm that our method demon-
strates efficacy across different task types. Ab-
solute logits filtering thresholds were systemati-
cally varied (60%–90%), with optimal gains ob-
served at 80% for Paws (51.49% PGR for Qwen-
14B) and 90% for Ethics (46.48% PGR for Qwen-
14B). The improvements, while consistent, are less
pronounced than in mathematical reasoning tasks,
likely due to the reliance on absolute logits for
thresholding in non-reasoning contexts.
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Approach Stage I Stage I + Stage II PGR
Qwen-7B
Weak Model 90.35 -
Strong Ceiling 93.1 100%
Conventional Weak-to-Strong 91.39 37.82%
Threshold 60% 91.31 91.39 37.82%
Threshold 70% 91.28 91.46 40.36%
Threshold 80% 91.31 91.39 37.82%
Threshold 90% 90.93 90.85 18.18%
Qwen-14B
Weak Model 90.35 -
Strong Ceiling 95.4 100%
Conventional Weak-to-Strong 92.60 44.55%
Threshold 60% 92.45 92.58 44.16%
Threshold 70% 92.48 92.73 47.13%
Threshold 80% 92.90 92.95 51.49%
Threshold 90% 92.29 92.60 44.55%

Table 6: Performance on the Paws dataset with Qwen
model series.

Approach Stage I Stage I + Stage II PGR
Qwen-7B
Weak Model 71.30 -
Strong Ceiling 83.09 100%
Conventional Weak-to-Strong 75.80 38.17%
Threshold 60% 75.68 75.87 38.76%
Threshold 70% 76.70 76.70 45.80%
Threshold 80% 75.82 75.92 39.19%
Threshold 90% 76.31 76.31 42.49%
Qwen-14B
Weak Model 71.30 -
Strong Ceiling 86.06 100%
Conventional Weak-to-Strong 77.53 77.53 42.21%
Threshold 60% 77.72 77.72 43.50%
Threshold 70% 78.50 77.82 44.17%
Threshold 80% 77.63 77.77 43.83%
Threshold 90% 77.39 78.16 46.48%

Table 7: Performance on the Ethics dataset (justice sub-
set) with Qwen model series.

D Additional Experimental Results

D.1 Detailed Analysis of Section Diversity
Shifts

In this appendix, we analyze how filtering thresh-
olds affect section distribution in both stages of our
framework. As shown in Figure 8 for Stage I, in-
creasing the filtering threshold leads to a noticeable
reduction in several minor categories, negatively
impacting the strong model’s ability. For Stage II,
Figure 9 demonstrates how Llama 3 MATH recov-
ers some minor categories, revealing the trade-off
between filtering accuracy and maintaining cate-
gory diversity. We provide detailed distributions to
illustrate these changes across categories.

D.2 Numeric Results of All Models and
Datasets

We present the numerical results for all models and
datasets used in the experiments , showcasing the
impact of various stages and filtering thresholds on
model performance.

0 5 10 15 20 25 30
Percentage Change (%)

Counting & Probability

Precalculus

Geometry

Number Theory

Prealgebra

Intermediate Algebra

Algebra

origin
Threshold-60%

Threshold-70%
Threshold-80%

Threshold-90%
Threshold-100%

Figure 8: Changes in topic distribution across filtering
thresholds for all mathematical categories in Stage I.
(Llama 3 MATH) Filtering causes shifts in topic distri-
bution, with minor categories seeing more reductions.

0 5 10 15 20 25 30
Percentage (%)

Counting & Probability

Precalculus

Geometry

Number Theory

Prealgebra

Intermediate Algebra

Algebra

Stage I
Threshold-60%

Threshold-70%
Threshold-80%

Threshold-90%
Threshold-100%

Figure 9: Changes in topic distribution across filter-
ing thresholds for all mathematical categories in Stage
II.(Llama 3 MATH Stage I-Threshold-70%) We observe
recovery in several minor categories, while sections in-
cluding algebra, intermediate algebra, prealgebra are
also effected by difficulty.

16114



Accuracy Performance gap recovered(PGR)

Basic Settings

Weak Model 74.8% 0%

Strong Ceiling 80.36% 100%

Conventional Weak-to-Strong 75.2% 7.19%

Stage I

Stage I-Threshold-30% 79.37% 82.19%

Stage I-Threshold-40% 79.51% 84.71%

Stage I-Threshold-50% 78.99% 75.36%

Stage I-Threshold-60% 80.07% 94.78%

Stage I-Threshold-70% 80.28% 98.56%

Stage I-Threshold-80% 80.06% 94.60%

Stage I-Threshold-90% 80.13% 95.86%

Stage I-Threshold-100% 78.16% 60.43%

Stage II based on Stage I Threshold-50%

Stage I-50% + Stage II-50% 80.28% 98.56%

Stage I-50% + Stage II-60% 80.89% 109.53%

Stage I-50% + Stage II-70% 79.62% 86.69%

Stage I-50% + Stage II-80% 79.37% 82.19%

Stage II based on Stage I Threshold-60%

Stage I-60% + Stage II-50% 80.28% 98.56%

Stage I-60% + Stage II-60% 81.50% 120.50%

Stage I-60% + Stage II-70% 81.04% 112.23%

Stage I-60% + Stage II-80% 81.34% 117.63%

Stage II based on Stage I Threshold-70%

Stage I-70% + Stage II-60% 80.89% 109.53%

Stage I-70% + Stage II-70% 80.36% 100.00%

Stage I-70% + Stage II-80% 81.19% 114.93%

Stage I-70% + Stage II-90% 80.89% 109.53%

Stage II based on Stage I Threshold-80%

Stage I-80% + Stage II-70% 80.43% 101.26%

Stage I-80% + Stage II-80% 80.33% 99.46%

Stage I-80% + Stage II-90% 80.45% 101.62%

Stage I-80% + Stage II-100% 80.74% 106.83%

Table 8: Llama3 GSM8k
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Accuracy Performance gap recovered(PGR)

Basic Settings

Weak Model 23.8% 0%

Strong Ceiling 33.2% 100%

Conventional Weak-to-Strong 27.2% 36.17%

Stage I

Stage I-Threshold-30% 27.2% 36.17%

Stage I-Threshold-40% 29.8% 63.83%

Stage I-Threshold-50% 30.0% 65.96%

Stage I-Threshold-60% 31.4% 80.85%

Stage I-Threshold-70% 34.4% 112.77%

Stage I-Threshold-80% 33.2% 100.00%

Stage I-Threshold-90% 32.6% 93.62%

Stage I-Threshold-100% 22.6% -12.77%

Stage II based on Stage I Threshold-60%

Stage I-60% + Stage II-50% 27.0% 34.04%

Stage I-60% + Stage II-60% 30.6% 72.34%

Stage I-60% + Stage II-70% 32.4% 91.49%

Stage I-60% + Stage II-80% 32.4% 91.49%

Stage I-60% + Stage II-90% 29.0% 55.32%

Stage I-60% + Stage II-100% 30.7% 73.40%

Stage II based on Stage I Threshold-70%

Stage I-70% + Stage II-60% 32.2% 89.36%

Stage I-70% + Stage II-70% 32.4% 91.49%

Stage I-70% + Stage II-80% 35.2% 121.28%

Stage I-70% + Stage II-90% 34.2% 110.64%

Stage I-70% + Stage II-100% 33.2% 100.00%

Stage II based on Stage I Threshold-80%

Stage I-80% + Stage II-70% 30.0% 65.96%

Stage I-80% + Stage II-80% 32.2% 89.36%

Stage I-80% + Stage II-90% 33.8% 106.38%

Stage I-80% + Stage II-100% 32.8% 95.74%

Table 9: Llama 3 MATH
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Model Accuracy Performance gap recovered(PGR)

Basic Settings

Weak Model 48.36% 0%

Strong Ceiling 75.66% 100%

conventional Weak-to-Strong 62.39% 51.39%

Stage I

Stage I-Threshold-30% 68.68% 74.43%

Stage I-Threshold-40% 70.96% 82.78%

Stage I-Threshold-50% 69.74% 78.32%

Stage I-Threshold-60% 70.35% 80.55%

Stage I-Threshold-70% 71.11% 83.33%

Stage I-Threshold-80% 69.14% 76.12%

Stage I-Threshold-90% 68.38% 73.33%

Stage I-Threshold-100% 67.55% 70.29%

Stage II based on Stage I Threshold-40%

Stage I-40% + Stage II-30% 72.63% 88.90%

Stage I-40% + Stage II-40% 72.32% 87.77%

Stage I-40% + Stage II-50% 70.58% 81.39%

Stage I-40% + Stage II-60% 72.17% 87.22%

Stage II based on Stage I Threshold-60%

Stage I-60% + Stage II-60% 70.28% 80.29%

Stage I-60% + Stage II-70% 71.49% 84.73%

Stage I-60% + Stage II-80% 70.28% 80.29%

Stage I-60% + Stage II-90% 70.28% 80.29%

Stage II based on Stage I Threshold-70%

Stage I-70% + Stage II-60% 72.40% 88.06%

Stage I-70% + Stage II-70% 72.94% 90.04%

Stage I-70% + Stage II-80% 71.64% 85.27%

Stage I-70% + Stage II-90% 72.55% 88.61%

Stage II based on Stage I Threshold-80%

Stage I-80% + Stage II-70% 70.20% 80.00%

Stage I-80% + Stage II-80% 70.50% 81.10%

Stage I-80% + Stage II-90% 71.47% 84.65%

Stage I-80% + Stage II-100% 70.35% 80.55%

Table 10: Deepseek-GSM8K
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Model Accuracy Performance gap recovered(PGR)

Basic Settings

Weak Model 11.4% 0%

Strong Ceiling 19.6% 100%

conventional Weak-to-Strong 16.8% 65.85%

Stage I

Stage I-Threshold-30% 21.2% 119.51%

Stage I-Threshold-40% 19.6% 100.00%

Stage I-Threshold-50% 17.6% 75.61%

Stage I-Threshold-60% 15.8% 53.66%

Stage I-Threshold-70% 16.4% 60.98%

Stage I-Threshold-80% 15.0% 43.90%

Stage I-Threshold-90% 12.0% 7.32%

Stage II based on Threshold-30%

Stage I-30% + Stage II-30% 21.4% 121.95%

Stage I-30% + Stage II-40% 21.8% 126.83%

Stage I-30% + Stage II-50% 19.4% 97.56%

Stage I-30% + Stage II-60% 19.2% 95.12%

Stage I-30% + Stage II-70% 19.0% 92.68%

Stage II based on Threshold-40%

Stage I-40% + Stage II-30% 20.4% 109.76%

Stage I-40% + Stage II-40% 19.8% 102.44%

Stage I-40% + Stage II-50% 17.4% 73.17%

Stage I-40% + Stage II-60% 18.0% 80.49%

Stage II based on Threshold-50%

Stage I-50% + Stage II-30% 20.6% 112.20%

Stage I-50% + Stage II-40% 20.6% 112.20%

Stage I-50% + Stage II-50% 19.4% 97.56%

Stage I-50% + Stage II-60% 18.6% 87.80%

Table 11: Deepseek-MATH
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