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Abstract
Large language models (LLMs) encode vast
world knowledge but struggle to stay up-to-
date, often leading to errors and hallucinations.
Knowledge editing offers an efficient alterna-
tive to retraining, enabling targeted modifica-
tions by updating specific model parameters.
However, existing methods primarily focus on
individual models, posing challenges in effi-
ciently updating multiple models and adapt-
ing to new models. To address this, we pro-
pose ONCEEDIT, a novel ensemble-based ap-
proach that employs a plug-in model as the
editing module, enabling stable knowledge up-
dates across multiple models. Building on the
model ensemble, ONCEEDIT introduces two
key mechanisms to enhance its effectiveness.
First, we introduce a dynamic weight mecha-
nism through a [WEIGHT] token for distinguish-
ing between edit-related and non-edit-related
instances, ensuring the appropriate utilization
of knowledge from integrated models. Second,
we incorporate an ensemble enhancement mech-
anism to mitigate the excessive reliance on the
central model inherent in the model ensemble
technique, making it more suitable for knowl-
edge editing. Extensive experiments on di-
verse LLMs demonstrate that ONCEEDIT con-
sistently outperforms existing methods while
achieving superior editing efficiency. Further
analysis confirms its adaptability and stability
in multi-model editing scenarios.

1 Introduction

Large language models (Achiam et al., 2023; Jiang
et al., 2023a; Meta, 2024) have demonstrated re-
markable performance in various downstream tasks
by scaling in both parameters and training data,
thereby capturing extensive world knowledge dur-
ing pretraining (Wang et al., 2024a; Feng et al.,
2023). However, as real-world information under-
goes dynamic changes, the internal parameterized

* means Equal Contribution
† means Corresponding Author

Donald Trump is the 
current president of 
the United States.

SLM

2025Time

Edit*1

Donald Trump is the current 
president of the United States..

Growing Knowledge

···

Knowledge Editing

···

Edit*2 Edit*3 Edit*n

(a)

LLMs

···

Model Ensemble

···

···

Joe Biden is the 
46th president of 
the United States.

Growing Knowledge
Once Edit

(b)

Figure 1: The comparison of traditional knowledge edit-
ing and ONCEEDIT for multi-model updates. (a) Tra-
ditional methods require separate edits for each model,
while (b) ONCEEDIT updates all models with a single
edit via model ensemble.

knowledge of LLMs gradually becomes outdated,
resulting in errors and hallucinations (Huang et al.,
2023; Zhang et al., 2023; Zhong et al., 2024), hin-
dering the practical application of LLMs. Currently,
efforts to mitigate hallucinations mainly focus on
two aspects: faithfulness (Huang et al., 2024a,
2025) and factuality (Li et al., 2024a). Among
these, knowledge editing has emerged as a promis-
ing approach for improving the factual accuracy of
LLMs by directly modifying their internal knowl-
edge. Rather than resorting to costly retraining,
knowledge editing provides an efficient and prac-
tical ways to update a model’s knowledge (Yao
et al., 2023; Zhang et al., 2024a). These techniques
enable the integration of growing knowledge into
the models by allowing precise updates through the
targeted parameters modification (Li et al., 2024b).

In recent years, various knowledge editing meth-
ods for LLMs have been proposed, leveraging tech-
niques such as meta-learning (Mitchell et al., 2021;
Tan et al., 2023), locate-then-edit strategies (Meng
et al., 2022a,b), and memory-based approaches
(Mitchell et al., 2022; Hartvigsen et al., 2024) to
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update model knowledge while preserving unre-
lated information. However, existing methods pri-
marily focus on modifying a single model, which
makes them unsuitable for complex scenarios re-
quiring the simultaneous update of multiple mod-
els. Additionally, these methods exhibit significant
sensitivity to hyperparameter settings, leading to
considerable inconsistency in editing effectiveness
across models, which limits their scalability and
adaptability to new models.

To address these challenges, we introduce ON-
CEEDIT, which modifies a unified lightweight plug-
in model and employs a heterogeneous model en-
semble for knowledge transfer across multiple mod-
els, thereby enabling seamless and stable knowl-
edge editing, as shown in Figure 1. However,
model ensemble methods are not directly appli-
cable to editing scenarios, and ONCEEDIT intro-
duces two improvement mechanisms to align more
closely with knowledge editing tasks. Firstly, tra-
ditional ensemble methods fuse the knowledge of
the plug-in model and the LLM using fixed ensem-
ble weights, making them unsuitable for knowl-
edge editing, where new knowledge should be up-
dated without affecting unrelated information. To
this end, ONCEEDIT introduces a dynamic weight
mechanism using a special [WEIGHT] token, which
predicts weight allocation for each instance, en-
suring the effective utilization of knowledge from
integrated models. Secondly, model ensembles
often suffer from the inherent bias of the central
large model, where its knowledge dominates the
ensemble results compared to the plug-in model.
To counter this, we propose an ensemble enhance-
ment mechanism that incorporates two strategies:
search-space zero initialization and target augmen-
tation. By starting the decoding search with a zero
vector instead of the central model’s distribution,
and emphasizing high-probability tokens from the
fused distribution, these strategies ensure that the
decoding is driven by the fused knowledge, im-
proving both the precision and generalization of
the edited knowledge.

We conduct extensive experiments on Llama2-
7B, Mistral-7B-v0.1, and GPT-J-6B using the
ZsRE and Counterfact datasets to compare the
performance of ONCEEDIT against seven popular
knowledge editing methods. Experimental results
demonstrate that ONCEEDIT consistently outper-
forms other methods in both teacher-forced and val-
idation generation evaluation settings, which better
align with realistic scenarios, while also requir-

ing the fewest editing interventions. Additionally,
we quantitatively analyze the editing time of each
method, showing that ONCEEDIT incurs the lowest
editing overhead in multi-model knowledge editing
scenarios. Furthermore, we extend our evaluation
to more and larger models, such as Qwen2.5-7B,
Llama3-70B, etc., to further validate the adaptabil-
ity and stability of ONCEEDIT.

2 Preliminaries

In this section, we introduce knowledge editing as
the core task of our study and model ensemble as
the underlying technique supporting our methods.

2.1 Knowledge Editing
Knowledge editing is an effective technique for up-
dating LLMs with new knowledge. Given a target
model that is parametrized by θ and a new edited
set SE , the goal of knowledge editing is to update
the model so that it correctly responds to the edits
while maintaining its unrelated knowledge. The
knowledge editing function, denoted as KE(θ, SE),
represents the process of modifying the model θ
based on the edited knowledge set SE . The editing
process can be expressed as follows:

θ′ ← KE(θ, SE), (1)

let fθ(·) represent the original mapping function
of the model θ. The expected output of the edited
model θ′ is defined as follows:

fθ′(x) =

{
ye if x ∈ Iedit,

fθ(x) otherwise.
(2)

Here, Iedit represents the set of instances within
the editing scope of the edits in SE . In addition
to SE , Iedit may also include knowledge-related
input, such as re-phrased versions of the edit input.

Following previous research (Wang et al., 2024b;
Zhang et al., 2024a), an ideal knowledge editing
method should ensure that the edited model meets
three key properties: Reliability, Generality, and
Locality. These properties collectively ensure that
the edited model maintains correctness on targeted
updates, generalizes appropriately, and preserves
unaffected knowledge. Details about these three
properties can be found in Appendix B.

2.2 Model Ensemble
Existing knowledge editing methods primarily fo-
cus on single models, making it difficult to effi-
ciently adapt across models. This challenge moti-
vates us to propose a model ensemble framework,
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Figure 2: Overview of ONCEEDIT, which consists of two stages. In the editing stage, ONCEEDIT applies knowledge
edits to a lightweight model while introducing [WEIGHT] to learn the ensemble weights (§3.1). In the ensemble
stage, the edited model is integrated with LLMs to achieve multi-model knowledge updating (§3.2).

where a small plug-in model serves as an edited
module to reliably modify various LLMs.

The model ensemble techniques integrate the
output distributions from multiple models to
achieve an optimal result. Specifically, the aggre-
gated output probability, denoted as P, is calcu-
lated as the sum of the weighted probabilities of
each model, where αi represents the weight as-
signed to the i-th model and pi is the output proba-
bility distribution from the i-th model. The ensem-
ble process can be expressed as follows:

P =
N∑

i=1

αi × pi. (3)

However, when the candidate models to be in-
tegrated are heterogeneous, additional steps are
needed to align their vocabularies before effective
integration. For instance, in the classic heteroge-
neous model ensemble method, DEEPEN (Huang
et al., 2024b), the procedure involves selecting a set
of common tokens shared across models to serve as
anchor words. The distance between other words
and each anchor word is then computed, result-
ing in a relative transfer matrix. This matrix is
used to map each model’s output probability into
the relative representation space, facilitating the
integration of their probability distributions. The
process can be expressed as follows:

P =
N∑

i=1

αi × (pi ×Ri), (4)

where Ri ∈ R|Vi|×|A| represents the relative trans-
fer matrix of the i-th model. Here, |Vi| denotes the
corresponding vocabulary size of the i-th model
and |A| represents the number of anchor words.

3 Methodology

In this section, we introduce ONCEEDIT based
on DEEPEN (Huang et al., 2024b), an effec-
tive method for integrated heterogeneous mod-
els. The overall process of ONCEEDIT comprises
two stages: Editing Stage and Ensemble Stage,
as shown in Figure 2. In the editing stage, ON-
CEEDIT selects a lightweight plug-in model as the
editing module, which is updated using knowledge
editing techniques to incorporate new information
(§3.1). To enhance DEEPEN’s static weight alloca-
tion, ONCEEDIT introduces the Dynamic Weight
echanism, which enables instance-level weight ad-
justment. In the ensemble stage, the edited model
is integrated with multiple LLMs for knowledge
updating (§3.2). To better align DEEPEN with
knowledge editing, ONCEEDIT incorporates the
Ensemble Enhancement mechanism, leveraging
Search-space Zero Initialization and Target Aug-
mentation to stabilize the new knowledge transfer.

3.1 Editing Stage
To efficiently facilitate multi-model knowledge up-
dates, editing the plug-in model plays a crucial
and foundational role. In this context, ONCEEDIT

employs a simple but effective full fine-tuning strat-
egy to update the knowledge within the plug-in
model. This approach is particularly well-suited
since the plug-in model is relatively small, keeping
the associated computational cost manageable. The
following outlines the training objectives:

Lgen(θ) = −E(x,y)∈SE
[log fθ (y |x)] . (5)

However, full fine-tuning often results in signif-
icant degradation of the model’s original knowl-
edge. To address this issue, ONCEEDIT introduces
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a Dynamic Weighting mechanism that adaptively
adjusts the contribution of each model during the
ensemble stage based on the given input. Specifi-
cally, we introduce a special token, [WEIGHT], into
the vocabulary of the plug-in model. This token
helps distinguish between knowledge that requires
modification and knowledge that should remain un-
affected. Consequently, for edit-related inputs, the
plug-in model is assigned a higher weight, whereas
for non-edit-related inputs, the LLMs dominate.

To effectively train [WEIGHT], it is essential not
only to fine-tune the model on the target knowledge
modifications but also to introduce a set of unre-
lated knowledge as a reference group to guide the
model in distinguishing between edit-related and
non-edit-related knowledge. The training objective
of the token is formulated as follows:

Lweight(θ) = E(x,z)BCE (z, ϕ(logitw(x)) , (6)

where z denotes the edit-label of the input, where
instances related to edits are assigned a value of
1, and instances not related to edits are assigned a
value of 0. Additionally, logitw(x) represents the
logits at the position of the [WEIGHT] after encod-
ing the input x. In this context, ϕ(·) and BCE(·)
denote the sigmoid function and the binary cross-
entropy loss function, respectively.

Finally, we adopt a multi-task learning approach
to jointly train the plug-in model. The overall train-
ing objective of the editing stage is formulated as:

Ledit(θ) = Lgen(θ) + λ · Lweight(θ), (7)

where λ is a hyperparameter that balances the learn-
ing contributions of the two tasks.

3.2 Ensemble Stage
During the ensemble stage, as previously described
in §2.2, we select the common words shared be-
tween the plug-in model and the LLMs as an-
chor words and calculate the corresponding relative
transfer matrix. At each decoding step, the ensem-
ble models use the corresponding relative transfer
matrices to map the output distribution into the rel-
ative space, where it is then fused with weighted
contributions. The aggregated distribution is then
obtained by combining the outputs, with the weight
provided by [WEIGHT]:

P = α× (ps ×Rs) + (1− α)× (pl ×Rl), (8)

where ps and pl represent the output distributions
of the plug-in model and the LLMs. Rs and Rl

are the relative transfer matrices for these models.
α = ϕ(logitw(x)) is the ensemble weight derived
from the plug-in model.

Once the aggregated distribution is obtained, we
use the LLM as the decoding model. Following the
DEEPEN framework, we employ gradient descent
to search for an optimal output distribution within
the vocabulary space of the LLM, ensuring that the
aggregated distribution is accurately represented.
The process is formalized as follows:

pd = argminL(pinit ×Rl, P), (9)

where pinit and pd denote the initial search distri-
bution and the final decoding distribution, both in
the absolute representation space of the LLMs.

DEEPEN originally initializes the search using
the LLM’s output distribution pinit = pl, treat-
ing the aggregated distribution as a perturbation to
the LLM’s original output. This approach is effec-
tive for traditional model ensemble, where the inte-
grated models produce similar outputs, allowing for
minor corrections for LLM’s behaviors. However,
this method can lead to the central model becom-
ing biased, resulting in the ensemble’s output being
overly reliant on the LLM’s knowledge. In the con-
text of knowledge editing, where the plug-in model
and the LLM often exhibit significant distributional
differences, using the LLM’s original distribution
for initialization may fail to effectively capture the
newly injected knowledge.

Based on the above analysis, we propose an En-
semble Enhancement mechanism including two
strategies: Search-space Zero Initialization and Tar-
get Augmentation to better align the decoding dis-
tribution with the aggregated distribution. These
strategies work together to strengthen the search
process, as described below:

pinit = zeros_like(pl), (10)

Po =

{
1, i = argmaxj Pj ,

0, otherwise,
(11)

where zeros_like(·) is a function that creates a vec-
tor with the same shape as the input, but with all
elements set to 0.

These two strategies work as follows: the first,
Search-space Zero Initialization, initializes the
search space with a zero vector. The second, Target
Augmentation, converts the aggregated distribution
into a one-hot vector. Together, these strategies
help the final decoding distribution better capture
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Method Llama2-7B Mistral-7B-v0.1 GPT-J-6B Score↑ Freq.↓
Rel.↑ Gen.↑ Loc.↑ Avg.↑ Rel.↑ Gen.↑ Loc.↑ Avg.↑ Rel.↑ Gen.↑ Loc.↑ Avg.↑

ZsRE

FT-L 0.34 0.21 0.13 0.23 0.55 0.41 0.54 0.50 0.11 0.10 0.48 0.23 0.32 3
MEND 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3
ROME 0.07 0.06 0.01 0.05 0.01 0.01 0.01 0.01 0.01 0.01 0.00 0.01 0.02 3
MEMIT 0.78 0.76 0.53 0.69 0.91 0.89 0.50 0.77 0.98 0.92 0.76 0.89 0.78 3
DEFER 0.63 0.58 0.62 0.61 0.37 0.36 1.00 0.58 0.34 0.32 0.85 0.50 0.56 3
WISE 0.84 0.78 0.99 0.87 0.68 0.64 0.99 0.77 0.76 0.68 1.00 0.81 0.82 3

ONCEEDIT 0.99 0.92 0.99 0.97 0.95 0.88 0.98 0.93 0.84 0.76 0.99 0.87 0.92 1

Counterfact

FT-L 0.26 0.01 0.18 0.15 0.41 0.05 0.99 0.48 0.71 0.09 0.07 0.30 0.31 3
MEND 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3
ROME 0.07 0.04 0.05 0.05 0.01 0.02 0.00 0.01 0.00 0.00 0.00 0.00 0.02 3
MEMIT 0.95 0.51 0.23 0.56 0.78 0.43 0.26 0.49 0.99 0.20 0.90 0.70 0.58 3
DEFER 0.98 0.88 0.34 0.74 0.47 0.53 0.79 0.60 0.94 0.84 0.15 0.64 0.66 3
WISE 0.74 0.33 0.38 0.48 0.67 0.24 0.35 0.42 0.37 0.08 0.37 0.27 0.39 3

ONCEEDIT 0.99 0.81 0.62 0.81 0.94 0.76 0.62 0.77 0.94 0.76 0.53 0.74 0.72 1

Table 1: Experimental results on ZsRE and Counterfact under teacher-forced setting. Bold and underline numbers
indicate the best and second performance among evaluated methods. Score represents the average output of the
three models (Rel., Gen., and Loc.), while Freq. indicates the total number of edits required to update these models.

the partial order relations in the aggregated dis-
tribution, ultimately leading to a more effective
representation of the new knowledge.

4 Experiments

4.1 Experimental Setups

Datasets Building on previous works (Meng
et al., 2022a; Yao et al., 2023), we conduct our
experiments using two widely-used model edit-
ing datasets: ZsRE (Levy et al., 2017) and Coun-
terfact (Meng et al., 2022a). ZsRE is a context-
free question-answering dataset, and we adopt the
dataset split following Zhang et al. (2024a). Coun-
terfact is a counterfactual dataset in its completed
form, which is employed to assess the impact of
model editing techniques on entity-relation triples.

Metrics We evaluate all methods from three
perspectives based on the EasyEdit (Wang et al.,
2023b), as defined in §2.1: Reliability (Rel.), Gen-
erality (Gen.), and Locality (Loc.), which are com-
monly used in prior works (Wang et al., 2024b;
Hartvigsen et al., 2024). The final score is the
average accuracy across these three sets.

Baselines We select seven trending baselines
compared with ONCEEDIT, covering four distinct
types of knowledge editing methods: 1) Con-
strained fine-tuning: FT-L (Meng et al., 2022a),
focuses on fine-tuning a single layer’s FFN with
new knowledge while incorporating an additional

KL divergence loss. 2) Locate-then-edit: ROME
(Meng et al., 2022a) and MEMIT (Meng et al.,
2022b), employ causal tracing to identify model
areas relevant to the desired edit, followed by tar-
geted updates to the corresponding parameters. 3)
Meta-learning: MEND (Mitchell et al., 2021),
trains an external hyper-network to model the gra-
dients produced by conventional fine-tuning. 4)
Memory-based: This category encompasses the
DEFER (Hartvigsen et al., 2024), WISE (Wang
et al., 2024b), and GRACE (Hartvigsen et al.,
2024) methods, all of which use dedicated memory
to store and manage edited knowledge.

Implementation Details We conduct experi-
ments on three popular models from prior research:
Llama2-7B (Touvron et al., 2023), Mistral-7B-v0.1
(Jiang et al., 2023a), and GPT-J-6B (Wang and
Komatsuzaki, 2021). For the datasets, we sample
1,000 records from the evaluation sets of ZsRE and
Counterfact under the batch editing setting, where
the evaluation is conducted after all knowledge edit-
ing operations have been completed. Meanwhile,
we select Tiny-Llama (Zhang et al., 2024b) as the
plug-in model for ONCEEDIT. Additionally, we
utilize EasyEdit for evaluation, incorporating two
decoding strategies: teacher-forced and validation
generation. For the main experiment, we apply
both strategies, with the teacher-forced strategy be-
ing commonly employed in prior research and the
validation generation strategy better reflecting real-
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Method Llama2-7B Mistral-7B-v0.1 GPT-J-6B Score↑
Rel.↑ Gen.↑ Loc.↑ Avg.↑ Rel.↑ Gen.↑ Loc.↑ Avg.↑ Rel.↑ Gen.↑ Loc.↑ Avg.↑

ZsRE

DEEPEN 0.88 0.81 0.02 0.57 0.73 0.67 0.02 0.47 0.20 0.19 0.14 0.18 0.41
+DW 0.88 0.77 0.99 0.88 0.73 0.65 0.95 0.78 0.20 0.19 0.99 0.46 0.71
+DW+EE(Ours) 0.99 0.89 0.99 0.96 0.93 0.83 0.96 0.91 0.84 0.76 0.99 0.86 0.91

Counterfact

DEEPEN 0.79 0.60 0.11 0.50 0.64 0.51 0.14 0.43 0.10 0.06 0.11 0.09 0.34
+DW 0.81 0.60 0.40 0.60 0.64 0.51 0.41 0.52 0.11 0.07 0.29 0.16 0.43
+DW+EE(Ours) 0.99 0.82 0.36 0.72 0.94 0.76 0.37 0.69 0.93 0.74 0.23 0.63 0.68

Table 2: Ablation study on the Dynamic Weight (DW) mechanism by [WEIGHT] and the Ensemble Enhancement
(EE) mechanism which includes Search-space Zero Initialization and Target Augmentation. Green indicates
improved performance compared to the previous row, while gray indicates a decline compared to the previous row.

world scenarios. Among the baselines, GRACE
primarily reports results based on the validation
generation strategy. Further details are provided in
Appendix A.

4.2 Main Results

The main experimental results are shown in Table 1.
ONCEEDIT achieves the highest overall scores, sur-
passing the second-best methods by 14% on ZsRE
and 6% on Counterfact. Unlike traditional knowl-
edge editing methods that require separate edits
for each model, ONCEEDIT updates multiple mod-
els with a single edit, demonstrating its efficiency.
Moreover, ONCEEDIT achieves top performance
in all five settings except for a slightly lower score
on GPT-J-6B with ZsRE, demonstrating its strong
capability in single-model editing.

Additionally, the results indicate that other meth-
ods exhibit significant performance fluctuations
across datasets and models. For instance, MEMIT
performs well on GPT-J-6B with Counterfact but
poorly on ZsRE (0.92 vs. 0.20), and FT-L shows
exceptionally high locality (0.99) on Mistral-7B-
v0.1 under Counterfact while underperforming on
other models. In contrast, ONCEEDIT maintains
stable and consistent results across all models and
datasets. Notably, due to the nature of Counter-
fact completions, all methods yield lower locality
on it compared to ZsRE. Despite this, ONCEEDIT

achieves comparable locality across different mod-
els. Overall, the main experiment demonstrates that
ONCEEDIT enables stable and effective knowledge
editing across multiple models and datasets.

Previous studies typically evaluate methods un-
der teacher-forced conditions. However, the valida-
tion generation setting, which relies solely on out-
put generation, more accurately reflects a model’s
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Figure 3: Experimental results on ZsRE and Counterfact
under validation generation setting. Score represents
the average output of each model (Rel., Gen., and Loc.).

ability to understand and apply the knowledge, and
better aligns with real-world scenarios. As a re-
sult, we choose to supplement our evaluation with
this setting. The experimental results, presented
in Figure 3, highlight four methods that stand out
in terms of performance. Notably, ONCEEDIT ex-
hibits superior editing capabilities, outperforming
all other methods. In contrast, MEMIT, which per-
forms relatively well under teacher-forced, shows
a significant drop in performance under the valida-
tion generation setting. Although GRACE achieves
a strong overall score, it demonstrates poor gener-
alization, a limitation that has also been observed
in Wang et al. (2024b). More detailed results can
be found in Table 7.

5 Further Analysis and Ablation Study

5.1 Ablation Study

In this section, we conduct a series of ablation stud-
ies to evaluate the effectiveness of ONCEEDIT’s
components and the impact of hyperparameters.
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Methods Llama2-7B Mistral-7B-v0.1 GPT-J-6B Score

FT-L 0.23 0.50 0.23 0.32
MEMIT 0.69 0.77 0.89 0.78
DEFER 0.61 0.58 0.50 0.56
WISE 0.87 0.77 0.81 0.82

OE(Tiny-Llama) 0.97 0.93 0.87 0.92
OE(Qwen2.5-1.5B) 0.83 0.83 0.89 0.85

Table 3: Experimental results on the ZsRE dataset using
different plugin models. OE represents the ONCEEDIT
method. Bold and underline numbers indicate the best
and second performance among evaluated methods.

Components Ablation. We examine the impact
of the mechanisms introduced in §3 on 1,000 edited
instances under validation generation. The results
are presented in Table 2. ONCEEDIT progressively
enhances the overall editing performance of the
three models by incorporating the dynamic weight
mechanism and the ensemble enhancement mech-
anism into DEEPEN. When applied to a single
model on the datasets, the method with both mech-
anisms also achieves the best performance.

To evaluate the impact of these two mechanisms
separately, we analyze their effects on model per-
formance across different settings. For the dynamic
weight mechanism, results indicate that it signif-
icantly enhances locality while maintaining relia-
bility and generality in most cases. The only no-
table drawback is a minor generalization loss of
2% to 4% on Llama2-7B and Mistral-7B-v0.1 on
ZsRE, which remains within an acceptable range.
Meanwhile, the ensemble enhancement mechanism
proves to be highly beneficial, substantially improv-
ing reliability and generality across all settings in
line with our design objectives. While it introduces
a 4% to 6% reduction in locality for the three mod-
els on the Counterfact dataset, this trade-off is out-
weighed by gains in the other two aspects. Notably,
the overall average score of each model on Counter-
fact increases by more than 12%, making the slight
decrease in locality an acceptable compromise.

Hyperparameters Ablation. We conduct an ab-
lation study on the balanced hyperparameter λ for
multi-task learning during the editing stage. Specif-
ically, we select 200 edited instances and evaluate
the performance under five different λ settings. The
experimental results, presented in Table 8, indicate
that λ is relatively robust. With the exception of
the extreme case where λ = 0, all other settings
yield good editing performance.

Plugin Models. In the main experiments, we se-
lected Tiny-Llama as the plugin model, as it is one

Methods Llama2-7B Mistral-7B-v0.1 GPT-J-6B Total

FT-L 0.69 0.71 0.73 2.13
MEND - - - -
ROME 2.29 3.39 2.50 8.18
MEMIT - - - -
GRACE 0.65 0.72 0.84 2.21
DEFER 1.49 1.47 1.40 4.36
WISE 1.35 1.33 1.26 3.94

ONCEEDIT 1 1 1 1

Table 4: The editing times for each method are normal-
ized relative to the time taken by ONCEEDIT, with ’-’
indicating a time that is more than 100 times longer.
The term ’total’ refers to the overall time required to
edit all three models.

Models TFLOPS/token TFLOPSall Num

Llama2-7B 0.013 12.638 973
Mistral-7B-v0.1 0.014 9.552 683
GPT-J-6B 0.011 9.739 886

Table 5: Analysis of the TFLOPS computational cost for
model ensemble attributed to the relative representation
matrix across three models.

of the most widely used lightweight models. More-
over, in practical applications, OnceEdit demon-
strates high adaptability, enabling seamless integra-
tion with various LLMs through a unified plugin
model. This design supports flexible knowledge up-
dates without requiring a switch between different
plugin models.

However, to further explore the performance of
alternative plugin models, we conducted additional
experiments on the ZsRE dataset using Qwen2.5-
1.5B as the plugin model, integrated with three
different LLMs. We compared its overall knowl-
edge editing performance against strong baselines,
including FT-L, MEMIT, WISE, and DEFER, as
presented in Table 3.

The results show that the ONCEEDIT method,
when using Qwen2.5-1.5B as a plugin model,
achieves a higher overall score than all baselines,
further validating the effectiveness of OnceEdit. Its
performance is only second to TinyLlama, which
may be influenced by the post-editing performance
of the plugin model itself. In practical applica-
tions, selecting a more stable small model (e.g.,
TinyLlama) as the plugin model can lead to more
effective knowledge editing.

5.2 Cost of Editing and Ensemble

In this section, we quantitatively evaluate the edit-
ing time required for each method under identical
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hardware conditions and dataset scales.
The editing time statistics are summarized in Ta-

ble 4. MEMIT involves computing second-order
momentum to ensure locality, while MEND re-
quires training an additional hypernetwork using a
training set. Due to the substantial computational
cost of these two methods, their results are omitted
from the table. FT-L incurs lower time overhead for
single-model editing as it only updates a specific
layer of the model. Similarly, GRACE maintains
a working memory for a specific layer, resulting
in relatively low editing time as well. However,
as the number of models to be edited increases,
the efficiency of ONCEEDIT becomes increasingly
evident. When editing three models, the editing
time for other methods is more than twice that of
ONCEEDIT. This demonstrates that ONCEEDIT

is highly efficient in multi-model knowledge edit-
ing scenarios, with its advantages becoming more
pronounced as the number of models increases.

In addition, we analyze the migration cost of
ONCEEDIT between LLMs, which mainly comes
from the calculation of the relative transfer matrix
of the integrated models. We combined DEEPEN
to derive the FLOPS formula required to calcu-
late the relative transfer matrices for the plug-in
model and LLMs. The detailed derivation process
is shown in the Appendix C. We calculate the to-
tal FLOPS, denoted as TFLOPSall, for the relative
transfer matrix required for each pair of integrated
models based on Equations 25 and 26. The results
are summarized in Table 5. Specifically, for the
three models being edited, the cost of constructing
the relative transfer matrices is equivalent to gen-
erating approximately 600 to 1000 tokens during
forward propagation. This overhead is modest com-
pared to the cost of performing another round of
editing, demonstrating that the migration overhead
introduced by our model integration is acceptable.

5.3 Extending on More Models
In the main experiment, we aim to provide an ef-
fective comparison with other popular knowledge
editing methods by following previous studies and
selecting three classic models. Unlike other meth-
ods, which are often sensitive to hyperparameters,
ONCEEDIT demonstrates strong adaptability and
can be quickly generalized to new models. To fur-
ther validate this, we selected four newer, larger,
and more diverse models, including Llama3-8B,
Mistral-7B-v0.3, Qwen2.5-7B, and Llama3-70B,
and applied ONCEEDIT to edit 200 instances under

Model Rel.↑ Gen.↑ Loc.↑ Avg.↑
ZsRE

Llama3-8B 0.91 0.90 0.97 0.93
Mistral-7B-v0.3 0.93 0.93 0.95 0.94
Qwen2.5-7B 0.90 0.90 0.74 0.85
Llama3-70B 0.74 0.75 0.91 0.80

Counterfact

Llama3-8B 0.99 0.91 0.16 0.69
Mistral-7B-v0.3 0.95 0.87 0.25 0.69
Qwen2.5-7B 0.98 0.92 0.18 0.70
Llama3-70B 0.79 0.72 0.18 0.56

Table 6: Extended experimental results on editing 200
instances across multiple models using ONCEEDIT.

the validation generation setting. The results, as
shown in Table 6, highlight ONCEEDIT’s ability
to achieve effective and stable editing across all
four models and two datasets, further confirming
its high scalability.

6 Related Work

Knowledge Editing. Knowledge editing (Yao
et al., 2023; Feng et al., 2023) is an effective com-
pensatory approach for updating models’ knowl-
edge, categorized into four main types: fine-tuning,
locate-then-edit, meta-learning, and memory-based
methods. Constrained fine-tuning (Meng et al.,
2022a), while straightforward for correcting model
behavior, often risks damaging non-edited knowl-
edge. Locate-then-edit methods typically involve
identifying and updating specific parameters, as
seen in ROME (Meng et al., 2022a), which
uses MLP-based memories for factual edits, and
MEMIT (Meng et al., 2022b), which extends this
to batch edits. Meta-learning approaches, such as
MEND (Mitchell et al., 2021), involve training an
external hyper-network to predict updates to the
original model. MALMEN (Tan et al., 2023) fur-
ther addresses the issue of the cancellation effect in
MEND by framing parameter shift aggregation as
a least-squares problem. Memory-based methods
like SERAC (Mitchell et al., 2022) and GRACE
(Hartvigsen et al., 2024) employ working memo-
ries to store edits, dynamically selecting parameters
based on input similarity. Furthermore, recent stud-
ies (Wang et al., 2024b; Wang and Li, 2024a) have
further investigated ways to reduce the adverse ef-
fects associated with sequential edits. While exist-
ing approaches predominantly focus on individual
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models, there is a lack of research addressing the
efficient editing of multiple models.

Model Ensemble. The model ensemble ap-
proach (Lu et al., 2024) integrates the strengths
of multiple models to produce refined answers
and can be categorized by fusion granularity into
output-level and probability-level ensembles (Yao
et al., 2024). In output-level model ensembles,
the outputs from multiple models are combined
as candidate sets. Methods like PAIRRANKER
(Jiang et al., 2023b) and routing mechanisms (Lu
et al., 2023) select the best candidate based on pair-
wise comparison or input-specific suitability. Other
studies (Wang et al., 2023a; Jiang et al., 2023b)
train fusion modules to integrate outputs effectively.
Probability-level model ensembles, on the other
hand, focus on merging the probability distribu-
tions of multiple models at each decoding step.
This process is particularly challenging when deal-
ing with heterogeneous models due to the need for
vocabulary alignment. To address this issue, EVA
(Xu et al., 2024) employs overlapping tokens to
learn token alignment across different vocabularies,
while DEEPEN (Huang et al., 2024b) transforms
the representations of each model into a shared
space using common vocabulary tokens.

7 Conclusion

In this work, we introduce ONCEEDIT which ad-
dresses the challenges of efficiency and stability
in multi-model editing scenarios. By leveraging a
lightweight plug-in model as the editing module
and employing improved heterogeneous model en-
semble techniques, ONCEEDIT enables knowledge
updates across multiple models with low migra-
tion costs. Extensive evaluations across multiple
models and datasets demonstrate that ONCEEDIT

outperforms existing knowledge editing methods
in both teacher-forced and validation generation
settings. Further analysis confirms ONCEEDIT’s
adaptability and stability, underscoring its potential
as an effective solution for real-world scenarios.

Limitations

Despite ONCEEDIT’s high efficiency and adapt-
ability, there are several limitations worth noting.
Firstly, although the plug-in model is relatively
small and inference speed can be improved through
strategies such as parallel decoding, ONCEEDIT

inevitably incurs additional overhead due to the

inclusion of the plug-in model. Secondly, our ex-
periments focused exclusively on the batch editing
setting and did not explore more complex scenar-
ios, such as sequential editing or multi-hop editing
tasks. Thirdly, our study primarily adopted a direct
fine-tuning approach for knowledge editing within
the plug-in model. It is important to emphasize
that our framework is fundamentally orthogonal
to existing knowledge editing methods. In future
work, we plan to enhance the plug-in model by
integrating more advanced editing techniques, en-
abling us to more effectively address challenges
such as sequential editing and generalization.

Acknowledgements

Xiaocheng Feng is the corresponding author of
this work. We thank the anonymous review-
ers for their insightful comments. This work
was supported by the National Natural Science
Foundation of China (NSFC) (grant 62276078,
U22B2059), the Key R&D Program of Hei-
longjiang via grant 2022ZX01A32, and the Funda-
mental Research Funds for the Central Universities
(Grant No.HIT.OCEF.2023018).

References
Josh Achiam, Steven Adler, Sandhini Agarwal, Lama

Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774.

Zhangyin Feng, Weitao Ma, Weijiang Yu, Lei Huang,
Haotian Wang, Qianglong Chen, Weihua Peng, Xi-
aocheng Feng, Bing Qin, et al. 2023. Trends in inte-
gration of knowledge and large language models: A
survey and taxonomy of methods, benchmarks, and
applications. arXiv preprint arXiv:2311.05876.

Tom Hartvigsen, Swami Sankaranarayanan, Hamid
Palangi, Yoon Kim, and Marzyeh Ghassemi. 2024.
Aging with grace: Lifelong model editing with dis-
crete key-value adaptors. Advances in Neural Infor-
mation Processing Systems, 36.

Lei Huang, Xiaocheng Feng, Weitao Ma, Yuchun Fan,
Xiachong Feng, Yangfan Ye, Weihong Zhong, Yux-
uan Gu, Baoxin Wang, Dayong Wu, et al. 2025. Im-
proving contextual faithfulness of large language
models via retrieval heads-induced optimization.
arXiv preprint arXiv:2501.13573.

Lei Huang, Xiaocheng Feng, Weitao Ma, Liang Zhao,
Yuchun Fan, Weihong Zhong, Dongliang Xu, Qing
Yang, Hongtao Liu, and Bing Qin. 2024a. Advanc-
ing large language model attribution through self-
improving. arXiv preprint arXiv:2410.13298.

16029



Lei Huang, Weijiang Yu, Weitao Ma, Weihong Zhong,
Zhangyin Feng, Haotian Wang, Qianglong Chen,
Weihua Peng, Xiaocheng Feng, Bing Qin, et al. 2023.
A survey on hallucination in large language models:
Principles, taxonomy, challenges, and open questions.
arXiv preprint arXiv:2311.05232.

Yichong Huang, Xiaocheng Feng, Baohang Li, Yang
Xiang, Hui Wang, Bing Qin, and Ting Liu. 2024b.
Enabling ensemble learning for heterogeneous large
language models with deep parallel collaboration.
arXiv preprint arXiv:2404.12715.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego
de las Casas, Florian Bressand, Gianna Lengyel, Guil-
laume Lample, Lucile Saulnier, et al. 2023a. Mistral
7b. arXiv preprint arXiv:2310.06825.

Dongfu Jiang, Xiang Ren, and Bill Yuchen Lin. 2023b.
Llm-blender: Ensembling large language models
with pairwise ranking and generative fusion. arXiv
preprint arXiv:2306.02561.

Omer Levy, Minjoon Seo, Eunsol Choi, and Luke
Zettlemoyer. 2017. Zero-shot relation extrac-
tion via reading comprehension. arXiv preprint
arXiv:1706.04115.

Junyi Li, Jie Chen, Ruiyang Ren, Xiaoxue Cheng,
Wayne Xin Zhao, Jian-Yun Nie, and Ji-Rong Wen.
2024a. The dawn after the dark: An empirical study
on factuality hallucination in large language models.
arXiv preprint arXiv:2401.03205.

Shuaiyi Li, Yang Deng, Deng Cai, Hongyuan Lu, Liang
Chen, and Wai Lam. 2024b. Consecutive model edit-
ing with batch alongside hook layers. arXiv preprint
arXiv:2403.05330.

Jinliang Lu, Ziliang Pang, Min Xiao, Yaochen Zhu, Rui
Xia, and Jiajun Zhang. 2024. Merge, ensemble, and
cooperate! a survey on collaborative strategies in
the era of large language models. arXiv preprint
arXiv:2407.06089.

Keming Lu, Hongyi Yuan, Runji Lin, Junyang Lin,
Zheng Yuan, Chang Zhou, and Jingren Zhou. 2023.
Routing to the expert: Efficient reward-guided en-
semble of large language models. arXiv preprint
arXiv:2311.08692.

Kevin Meng, David Bau, Alex Andonian, and Yonatan
Belinkov. 2022a. Locating and editing factual as-
sociations in gpt. Advances in Neural Information
Processing Systems, 35:17359–17372.

Kevin Meng, Arnab Sen Sharma, Alex Andonian,
Yonatan Belinkov, and David Bau. 2022b. Mass-
editing memory in a transformer. arXiv preprint
arXiv:2210.07229.

AI Meta. 2024. Introducing meta llama 3: The most
capable openly available llm to date. Meta AI Blog
(accessed 2024–04–20). There is no corresponding
record for this reference.

Eric Mitchell, Charles Lin, Antoine Bosselut, Chelsea
Finn, and Christopher D Manning. 2021. Fast model
editing at scale. arXiv preprint arXiv:2110.11309.

Eric Mitchell, Charles Lin, Antoine Bosselut, Christo-
pher D Manning, and Chelsea Finn. 2022. Memory-
based model editing at scale. In International Con-
ference on Machine Learning, pages 15817–15831.
PMLR.

Chenmien Tan, Ge Zhang, and Jie Fu. 2023. Massive
editing for large language models via meta learning.
arXiv preprint arXiv:2311.04661.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

Ben Wang and Aran Komatsuzaki. 2021. Gpt-j-6b: A 6
billion parameter autoregressive language model.

Hongyi Wang, Felipe Maia Polo, Yuekai Sun, Souvik
Kundu, Eric Xing, and Mikhail Yurochkin. 2023a.
Fusing models with complementary expertise. arXiv
preprint arXiv:2310.01542.

Mengru Wang, Yunzhi Yao, Ziwen Xu, Shuofei Qiao,
Shumin Deng, Peng Wang, Xiang Chen, Jia-Chen
Gu, Yong Jiang, Pengjun Xie, et al. 2024a. Knowl-
edge mechanisms in large language models: A sur-
vey and perspective. In Findings of the Association
for Computational Linguistics: EMNLP 2024, pages
7097–7135.

Peng Wang, Zexi Li, Ningyu Zhang, Ziwen Xu, Yunzhi
Yao, Yong Jiang, Pengjun Xie, Fei Huang, and Hua-
jun Chen. 2024b. Wise: Rethinking the knowledge
memory for lifelong model editing of large language
models. arXiv preprint arXiv:2405.14768.

Peng Wang, Ningyu Zhang, Xin Xie, Yunzhi Yao,
Bozhong Tian, Mengru Wang, Zekun Xi, Siyuan
Cheng, Kangwei Liu, Guozhou Zheng, et al. 2023b.
Easyedit: An easy-to-use knowledge editing frame-
work for large language models. arXiv preprint
arXiv:2308.07269.

Renzhi Wang and Piji Li. 2024a. Lemoe: Advanced
mixture of experts adaptor for lifelong model edit-
ing of large language models. arXiv preprint
arXiv:2406.20030.

Renzhi Wang and Piji Li. 2024b. Memoe: Enhanc-
ing model editing with mixture of experts adaptors.
arXiv preprint arXiv:2405.19086.

Yangyifan Xu, Jinliang Lu, and Jiajun Zhang. 2024.
Bridging the gap between different vocabularies for
llm ensemble. arXiv preprint arXiv:2404.09492.

Yunzhi Yao, Peng Wang, Bozhong Tian, Siyuan Cheng,
Zhoubo Li, Shumin Deng, Huajun Chen, and Ningyu
Zhang. 2023. Editing large language models: Prob-
lems, methods, and opportunities. arXiv preprint
arXiv:2305.13172.

16030



Yuxuan Yao, Han Wu, Mingyang Liu, Sichun Luo,
Xiongwei Han, Jie Liu, Zhijiang Guo, and Linqi
Song. 2024. Determine-then-ensemble: Necessity
of top-k union for large language model ensembling.
arXiv preprint arXiv:2410.03777.

Ningyu Zhang, Yunzhi Yao, Bozhong Tian, Peng Wang,
Shumin Deng, Mengru Wang, Zekun Xi, Shengyu
Mao, Jintian Zhang, Yuansheng Ni, et al. 2024a. A
comprehensive study of knowledge editing for large
language models. arXiv preprint arXiv:2401.01286.

Peiyuan Zhang, Guangtao Zeng, Tianduo Wang, and
Wei Lu. 2024b. Tinyllama: An open-source small
language model. arXiv preprint arXiv:2401.02385.

Zihan Zhang, Meng Fang, Ling Chen, Mohammad-Reza
Namazi-Rad, and Jun Wang. 2023. How do large
language models capture the ever-changing world
knowledge? a review of recent advances. Preprint,
arXiv:2310.07343.

Weihong Zhong, Xiaocheng Feng, Liang Zhao, Qiming
Li, Lei Huang, Yuxuan Gu, Weitao Ma, Yuan Xu,
and Bing Qin. 2024. Investigating and mitigating the
multimodal hallucination snowballing in large vision-
language models. arXiv preprint arXiv:2407.00569.

16031

https://arxiv.org/abs/2310.07343
https://arxiv.org/abs/2310.07343
https://arxiv.org/abs/2310.07343


A Implementation Details

Our experiment evaluates ONCEEDIT under batch
editing by comparing it with seven knowledge edit-
ing methods: FT-L, MEND, ROME, MEMIT, DE-
FER, GRACE, and WISE. All experiments were
conducted on NVIDIA A100 80GB GPUs. The
hyperparameter settings for these baselines follow
previous works (Wang et al., 2024b; Wang and Li,
2024a). Below, we provide an overview of these
methods along with their implementation details:
• FT-L is a constrained fine-tuning approach that

updates only a single MLP layer while imposing
a L∞ norm constraint on weight modifications.
In our experiments, we select the 21-th layer for
GPT-J-6B and the 27-th layer for Llama2-7B and
Mistral-7B-v0.1. The fine-tuning learning rate
is set to 5e-4. Notably, to avoid OOM issues,
we adopt a batch-based strategy, where we use
5 batches, each updating 200 knowledge entries
per round when testing FT-L.

• MEND is a meta-learning-based approach that
trains an external hyper-network to simulate gra-
dients. It employs low-rank decomposition with
a specialized design to reduce the size of the
hyper-network. For the training phase of MEND,
we align the experimental settings entirely with
those used in EasyEdit (Wang et al., 2023b).

• ROME locates layers relevant to edits by first
disrupting and then restoring activations. It sub-
sequently updates the parameters of feedforward
networks (FFNs) in a direct manner to modify
knowledge. We select the [3,4,5,6,7,8] layers as
the target layer for the GPT-J-6B, and [4,5,6,7,8]
for the Llama2-7B and Mistral-7B-v0.1.

• MEMIT utilizes the same knowledge localiza-
tion method as ROME but enables simultaneous
updates across multiple layers, allowing for the
batch integration of thousands of edited knowl-
edge entries. Consequently, MEMIT and ROME
share the same target layer selection.

• DEFER is a reimplementation of SERAC, uti-
lizes an external memory to store editing in-
stances and trains an additional scope classifier
and counterfactual model to appropriately re-
spond to inputs. we set the learning rate is 7e-5
and select the 21-th layer for GPT-J-6B and the
27-th layer for Llama2-7B and Mistral-7B-v0.1.

• GRACE leverages a discrete key-value code-
book to perform knowledge editing. Throughout
the editing process, the codebook is dynamically
maintained by introducing new keys, expanding

existing ones, and splitting them as needed. Dur-
ing inference, the method identifies the closest
matching key and determines whether to adjust
the activation of the hidden layer output. For the
learning rate and ϵinit, we also align the experi-
mental settings with those used in EasyEdit.

• WISE stores different edits in separate side mem-
ories and routes input queries to the appropriate
memory based on activation scores. For the hy-
perparameters setting of WISE, we adhere to the
original paper.

Apart from the aforementioned methods, there are
also two more recent approaches, MEMoe (Wang
and Li, 2024b) and LEMoE (Wang and Li, 2024a),
whose results are not included due to the unavail-
ability of their source code.

For ONCEEDIT, we use Tiny-Llama as the plug-
in model, setting the learning rate to 1.0e-4 and
the multi-task balanced hyperparameter λ = 0.8.
Since both ONCEEDIT and WISE require the intro-
duction of unrelated knowledge as auxiliary infor-
mation, we select the instances from the training
sets of ZsRE and Counterfact. Additionally, due
to the edited models are the base model, we incor-
porate prompt-assisted fine-tuning for the ZsRE
and Counterfact. The prompts are as follows:
For ZsRE: "Answer this question:\n[Question]:
{Input}\n[Answer]:". For Counterfact: "Com-
plete this half sentence.\n [Half Sentence]: {In-
put}\n[Answer]:" To ensure a fair comparison,
we evaluate the baselines both with and without
prompts, reporting the highest observed value.

B Evalution for Knowledge Editing

Following prior research, an effective knowledge
editing method should satisfy three essential proper-
ties: Reliability, Generality, and Locality. These
properties serve as important evaluation metrics for
editing methods.
Reliability refers to the model’s ability to correctly
respond to inputs from the edited set. Specifically,
the edited model θ′ should consistently produce the
correct output for the instances in SE :

E(xe,ye)∈SE
1 {fθ′ (xe) = ye} . (12)

Generality refers to the edited model’s capacity
to apply the edited knowledge beyond the specific
examples in SE . Specifically, the model should be
able to correctly respond to the instances in the set
SR, where xr is a rephrased version of an edit xe,
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and the expected output remains ye:

E(xr,ye)∈SR
1 {fθ′ (xr) = ye} . (13)

Locality emphasizes that the edited model should
not alter its behavior on the non-edited knowledge.
Specifically, for instances in the dataset SL, which
are not affected by the edits, the edited model
should produce the same output as before the edit:

E(xloc,yloc)∈SL
1 {fθ′ (xloc) = fθ (xloc)} . (14)

Method Llama2-7B Mistral-7B-v0.1

Rel.↑ Gen.↑ Loc.↑ Avg.↑ Rel.↑ Gen.↑ Loc.↑ Avg.↑
ZsRE

MEMIT 0.03 0.03 0.00 0.02 0.50 0.48 0.04 0.34
WISE 0.58 0.46 0.99 0.67 0.57 0.46 0.99 0.67
GRACE 1.00 0.00 0.99 0.66 0.98 0.03 1.00 0.67

ONCEEDIT 0.99 0.89 0.99 0.96 0.93 0.83 0.96 0.91

Counterfact

MEMIT 0.03 0.03 0.03 0.03 0.79 0.72 0.01 0.50
WISE 0.34 0.04 0.09 0.16 0.33 0.08 0.65 0.35
GRACE 1.00 0.00 0.99 0.67 0.99 0.00 0.99 0.67

ONCEEDIT 0.99 0.82 0.36 0.72 0.94 0.76 0.37 0.69

Table 7: Experimental results on ZsRE and Counter-
fact under validation generation setting. Bold and
underline numbers indicate the best and second per-
formance among evaluated methods.

Lambda
Llama2-7B Mistral-7B-v0.1

Rel.↑ Gen.↑ Loc.↑ Avg.↑ Rel.↑ Gen.↑ Loc.↑ Avg.↑
ZsRE

0.00 0.05 0.04 0.99 0.36 0.05 0.05 0.98 0.36
0.20 0.99 0.95 0.99 0.98 0.94 0.90 0.98 0.94
0.40 0.99 0.97 1.00 0.99 0.94 0.92 0.99 0.95
0.60 0.99 0.95 0.99 0.98 0.94 0.91 0.98 0.94
0.80 0.99 0.98 1.00 0.99 0.93 0.93 0.98 0.95
1.00 0.99 0.97 1.00 0.99 0.94 0.91 0.99 0.95

Counterfact

0.00 0.00 0.00 0.99 0.33 0.01 0.00 0.96 0.32
0.20 0.99 0.84 0.68 0.83 0.94 0.80 0.67 0.80
0.40 0.99 0.70 0.76 0.82 0.95 0.72 0.66 0.78
0.60 0.99 0.80 0.71 0.83 0.95 0.77 0.70 0.80
0.80 0.99 0.89 0.53 0.80 0.95 0.85 0.49 0.76
1.00 0.95 0.84 0.67 0.83 0.95 0.80 0.66 0.80

Table 8: Ablation study on the impact of lambda (λ) dur-
ing the editing stage, evaluated on 200 edited instances
under validation generation. Bold numbers indicate the
best performance among diverse settings.

C FLOPS of Relative Transfer Matrix

In this section, we derive the statistical formula
for the FLOPS required by ONCEEDIT to compute
the relative transfer matrix during the ensemble
stage. Specifically, given an LLM parametrized
by θ, and a tiny model parametrized by θ̃, let the
vocabulary of LLM be M and that of the small

model be N . The dimension of embeddings in
LLM is denoted as dl, while that of small model is
ds. Additionally, we define A as the anchor tokens
set shared between the two models.

Following DEEPEN (Huang et al., 2024b), we
compute the relative transfer matrices for both the
LLM and the tiny model. Here, we take the LLM
matrix Rl as an example, while the derivation for
the tiny model follows analogously. Formally, the
relative representation matrix Rl ∈ R|M |×|A| en-
codes the relative representation of each word m(i)

in the LLM’s vocabulary. The i-th row of Rl is
given by:

Rl[i] = (cos(em(i) , ea(1)), ..., cos(em(i) , ea(|A|))),
(15)

where em(i) and ea(1) denote the embeddings of
word m(i) and a(j), respectively.

To address the representation degeneration of
outlier words, DEEPEN applies a softmax normal-
ization to transform the relative representations into
a probability distribution:

R̂l[i] = softmax(Rl[i]). (16)

For Equation 15, the cosine similarity between
each vocabulary word and the anchor tokens is
computed as:

Rl[i, j] =
El[i] ·Al[j]

T

∥El[i]∥∥Al[j]∥
, (17)

where El ∈ E|M |×|dl| and Al ∈ E|A|×|dl| repre-
sents the original word embedding matrix and the
anchor words word embedding matrix of the LLM,
respectively.

The L2 norm of El and Al is calculated as fol-
lows:

∥El[i]∥ =

√√√√
dl∑

j=1

E[i, j]2, (18)

∥Al[i]∥ =

√√√√
dl∑

j=1

A[i, j]2. (19)

Based on Equation 17, 18 and 19, the total
FLOPS required to calculate Rl consists of three
components:the dot product operation, the L2 norm
computation, and the final division. These are for-
mulated as follows:

FLOPSDot = |M | ∗ |A| ∗ (dl + dl − 1), (20)
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Models Vocab. Size AW Num Embedding Dim.

Llama2-7B 32000 31999 4096
Mistral-7B-v0.1 32000 24184 4096
GPT-J-6B 50400 17830 4096
Tiny-Llama 32001 - 2048

Table 9: configurations for calculating relative transfer
matrix FLOPS. Vocab. Size denotes the vocabulary size,
AW Num represents the number of anchor words shared
between the models and Tiny-Llama, and Embedding
Dim. refers to the dimension of the embedding layer.

FLOPSL2 = |M | ∗ (dl + dl − 1 + Csqrt)

+ |A| ∗ (dl + dl − 1 + Csqrt) + 1,
(21)

FLOPSDiv = |M | ∗ |A|, (22)

where FLOPSDot, FLOPSL2 and FLOPSDiv cor-
respond to the FLOPS of the dot product, L2
norm, and division operations, respectively. The
term Csqrt represents the computational cost of the
square root operation, which is a constant.

For the computed Rl, a softmax operation is
applied for normalization, defined as follows:

softmax(Rl[i, j]) =
exp(Rl[i, j])∑|A|
j=1 exp(Rl[i, j])

. (23)

The FLOPS required for the softmax computa-
tion on Rl are given by:

FLOPSsoftmax = |M | ∗ |A| ∗ Cexp

+ |M | ∗ (|A| − 1) + |M | ∗ |A|,
(24)

where Cexp represents the computational cost of
the exponential operation, which is a constant.

In summary, the total FLOPS, denoted as
FLOPSl

all, required to compute the relative trans-
fer matrix of LLM is the sum of the computa-
tional costs from the Equation 17, 18 ,19 and 24.
For simplification, we set Csqrt = 2 FLOPS and
Cexp = 25 FLOPS. Under this assumption, the
FLOPSl

all is given by:

FLOPSl
all = FLOPSDot + FLOPSL2

+ FLOPSDiv + FLOPSsoftmax

= (2 ∗ dl + 27) ∗ |M | ∗ |A|+ 1

+ 2 ∗ dl ∗ |M |+ (2 ∗ dl + 1) ∗ |A|.
(25)

Based on the reasoning process above, We derive
the FLOPS equation for the relative transfer matrix

of the tiny model:

FLOPSt
all = (2 ∗ ds + 27) ∗ |N | ∗ |A|+ 1

+ 2 ∗ ds ∗ |N |+ (2 ∗ ds + 1) ∗ |A|.
(26)

Finally, by integrating Equations 25 and 26 along
with the configurations of each model, as summa-
rized in Table 9, we compute the final FLOPSall.
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