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Abstract

Pairwise preferences over model responses are
widely collected to evaluate and provide feed-
back to large language models (LLMs). Given
two alternative model responses to the same in-
put, a human or AI annotator selects the “better”
response. This approach can provide feedback
for domains where other hard-coded metrics
are difficult to obtain (e.g., chat response qual-
ity), thereby helping model evaluation or train-
ing. However, for some domains high-quality
pairwise comparisons can be tricky to obtain
- from AI and humans. For example, for re-
sponses with many factual statements, annota-
tors may disproportionately weigh writing qual-
ity rather than underlying facts. In this work,
we explore augmenting standard AI annotator
systems with additional tools to improve perfor-
mance on three challenging response domains:
long-form factual, math and code tasks. We
propose a tool-using agentic system to provide
higher quality feedback on these domains. Our
system uses web-search and code execution to
ground itself based on external validation, in-
dependent of the LLM’s internal knowledge
and biases. We provide extensive experimental
results evaluating our method across the three
targeted response domains as well as general
annotation tasks, using RewardBench (incl. Al-
pacaEval and LLMBar), RewardMath, as well
as three new datasets for domains with satu-
rated pre-existing datasets. Our results indi-
cate that external tools can indeed improve
AI annotator performance in many, but not
all, cases. More generally, our experiments
highlight the sensitivity of AI annotator per-
formance to simple parameters (e.g., prompt)
and the need for improved (non-saturated) an-
notator benchmarks. We share our code at
github.com/apple/ml-agent-evaluator.
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Figure 1: Summary of our approach and results:
We extend standard LLM-as-a-Judge baselines with
external validation tools based on web-search and
code execution. We observe that the resulting system
is often, but not always, able to improve performance
(measured as agreement with ground-truth annotations)
across a range of response domains that are typically
challenging for LLM-as-a-Judge systems: (1) long-form
factual, (2) advanced coding, and (3) math responses.
Results with popular AlpacaEval (2.0) and ArenaHard
annotators shown, see Section 4 for full results.

1 Introduction

Pairwise feedback is widely used to understand
LLM performance on complex tasks that more tra-
ditional benchmarks fail to measure well. Given
a prompt and two possible responses, the annota-
tor decides which response is "better". This pair-
wise judgement can be used for evaluation (e.g.,
Chatbot Arena (Chiang et al., 2024)) or to provide
feedback for training (e.g., via RLHF (Stiennon
et al., 2020; Ouyang et al., 2022) or DPO (Rafailov
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Figure 2: Overview of our tool-using AI annotator architecture, referred to as Evaluation Agent. In the
(1) initial domain assessment the appropriate tools are selected for each response (e.g., for a wiki-style text the fact
check tool); then, in (2) tool usage, each selected tool is run and the tool outputs are combined into a single prompt
to make a (3) final decision. If none of the tools are selected (i.e., no tool deemed useful), the agent instead reverts
and returns an annotation from the (4) baseline annotator (e.g., AlpacaEval 2.0).

et al., 2023)). Either human or AI annotators, also
referred to as LLM-as-a-Judge, are used to collect
such feedback. Human annotations are often con-
sidered higher quality but more expensive.

Both human and AI annotations have notable
limitations: AI annotators have been observed to
be susceptible to a number of biases, including
changing preference based on superficial features
like response order (Zheng et al., 2023) or response
length (Dubois et al., 2024). Whilst possibly pro-
viding higher quality annotations than AI annota-
tors, human annotators also have known limitations.
For example, human annotators have been observed
to let their assessment of truthfulness be affected
by responses’ assertiveness (Hosking et al., 2024).

In certain domains, obtaining high-quality anno-
tations is particularly challenging: for responses
containing long-form factual, advanced coding and
math content both AI and (many) human annota-
tors struggle to provide reliable annotations (Zheng
et al., 2023). Annotating responses in these do-
mains requires expertise and careful deliberation,
challenging to achieve for human annotators in a
limited amount of time. AI annotators may be less
"time-constrained" but nevertheless due to known
reliability issues (e.g, hallucinations, limited ba-
sic arithmetic) often fail to provide high quality
annotations in these domains (Yang et al., 2023).

In this work, we aim to explore improving the
annotation quality of widely used AI annotators
on these challenging domains by augmenting the
annotators with tools that can externally validate
answers. We enable responses to be fact-checked
using web-search, or verified using code execution.
Our setup is illustrated in Figures 1 and 2. In par-
ticular, we make the following contributions:

1. Extensible framework for using tools with
existing AI annotators. We introduce a new
framework that enables the integration of new
tools on top of existing AI annotators to im-
prove annotation quality in certain domains
using external validation. Our framework is
agentic in the sense that an LLM assesses the
response domain and plans the optimal tool us-
age accordingly.1 We provide a number of ini-
tial tool implementations: (1) a long-form fact
checking tool based on the Search Augmented
Fact Evaluation (SAFE) method by Wei et al.
(2024); (2) a code check tool built on OpenAI’s
code interpreter API; and (3) a math check tool
similarly built on code execution. We open-
source the framework’s code.2

2. Comprehensive experimental results evalu-
ating our framework’s capabilities. We evalu-
ate our framework’s effectiveness across a wide
range of tasks including newly created datasets
as well as well-established benchmarks. We
compare our method to a number of popular
state-of-the-art AI annotators, including the an-
notators underlying AlpacaEval 2.0 (Dubois
et al., 2023), and ArenaHard (Li et al., 2024b).

2 Problem: Pairwise Feedback on
Complex Tasks

For many task domains, pairwise feedback can be
easier to obtain than absolute metrics. Nevertheless,
for some domains even a relative pairwise judge-
ment can be difficult to collect — from both human
and AI annotators. In this work, we consider three

1See Appendix L for further discussion of our use of the
term agentic.

2github.com/apple/ml-agent-evaluator
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particularly challenging response domains: tasks
that require model responses with (1) long-form
factual, (2) advanced coding or (3) math content.
For such tasks, even a relative judgement requires
robust understanding of the task domain, and, for
human annotators, careful deliberation. For exam-
ple, judging code without understanding the rele-
vant syntax may force an annotator (AI or human)
to revert to higher level features such as style – that
may not fully correlate with ground-truth prefer-
ences. Similarly, when comparing responses with
a large number of factual statements, an annotator
may easily miss a single incorrect factual statement
— instead possibly again relying on writing style
to make a judgement. At the same time, annota-
tors only judging according to factual or functional
correctness may miss other response traits (e.g.,
readability) distinguishing a merely correct from
an excellent response.

In the pairwise setting, annotators are typically
evaluated based on their agreement3 with ground-
truth annotations on datasets, where such annota-
tions are either available by construction or created
by human annotators (Lambert et al., 2024). This
agreement is equivalent to the accuracy of the bi-
nary classification task of predicting the correct
ranking for each response pair. In this setting, the
goal of pairwise feedback annotation is to maximise
the agreement with ground-truth annotations. In
general, for many response pairs there is ambiguity
regarding which response is better — especially for
domains with known disagreements such as politi-
cal preferences (Kirk et al., 2024). To improve the
reliability of our evaluation, we primarily test on re-
sponse pairs where experts agree on the preference
and avoid more contentious topics.

3 Method: AI Annotators with Tools for
External Validation

We introduce a new framework for augmenting ex-
isting AI annotators with tools – grounding their an-
notations in the real world with external validation.
The general functioning of our framework is illus-
trated in Figure 2. Our goal is to improve the perfor-
mance of AI annotators on a specific set of target
domains: responses containing long-form factual,

3Note that other works (e.g, (Bavaresco et al., 2024)) use
Cohen’s kappa. However, to retain consistency and compara-
bility with our primary benchmark RewardBench (Lambert
et al., 2024), and for better interpretability, we report all our
results using the more common accuracy (agreement) metric.
With the agreement metric, random performance is ∼50%.

advanced coding and math content. To achieve this
annotation quality improvement, we leverage ex-
ternal validation via tools built on web search and
code execution. At the same time, we want to avoid
reducing performance on other non-target domains.
We use an agentic setup to determine when each
tool gets used, letting an underlying LLM assess
the domain of the response considered and thereby
which tool would be most useful. To avoid regres-
sion on non-target domains, our agentic framework
reverts back to a baseline annotator whenever the
responses are assessed to be outside the domain of
all available tools. We build on structured output
throughout our pipeline to reduce the parsing er-
ror rate. Instead of plain text responses, structured
output forces the model to return JSON-formatted
outputs. With this approach, each LLM call is not
only configured by a single prompt message but
also by the JSON format and description of the
requested output.

Shown in Figure 3, our approach consists of
three distinct parts: (1) initial domain assessment,
determining which tools to use (if any); (2) tools,
running the selected tools for each response; and
(3) final decision, creating a final preference judge-
ment based on all outputs. If the first step (initial
domain assessment) determines that no tools would
be helpful, our approach alternatively skips steps
(2) and (3). Instead, we revert to the (4) baseline an-
notator. In the following subsections, we describe
each step in more detail. For full transparency, we
share the prompts in Appendix N and make the
corresponding code publicly available.4

Step 1: Initial domain assessment. The initial
domain assessment ensures that each tool is only
run if the model responses are within a domain
where the tool is known to be likely helpful. For
example, for the code execution tool, the domain
assessment ensures that there is code present in the
response. This assessment helps avoid running
tools in scenarios where they are unlikely to help.
For each tool, we created a number of questions
about a response (e.g., "Whether text might benefit
from running code."). For each response, an
LLM is prompted with these questions. The
LLM’s parsed answers determine whether a tool
is deemed useful and run – or not. If not a single
tool is deemed useful, the agent reverts back to a
baseline evaluator. With this setup, our method
aims to reduce unnecessary inference costs and

4github.com/apple/ml-agent-evaluator
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Figure 3: Detailed overview of our evaluation agent: the model responses are first processed by the (1) initial
domain assessment, where an LLM is prompted to answer questions about the response text. In (2) tool usage, each
tool that is deemed useful in Step (1) is run. Initially, available tools include fact check, code exec and math exec.
The first tool is based on web-search, the latter two tools on a code interpreter. Finally, in the (3) final decision step,
an LLM makes a final preference decision considering all tool outputs across responses together. If the (1) initial
domain assessment finds no useful tool, the entire approach reverts back to the (4) baseline annotator’s judgement.

to avoid regressing on domains where the tools
are not useful. In the tie case, when tools are only
considered useful for one of the two texts, our
framework reverts back to the baseline with 50%
probability and uses the agent otherwise. Further,
clearly separated tool domains in our setup allow
integrating a large number of domain-specific tools
whilst avoiding adverse effects out-of-domain.

Step 2: Tool usage. If the initial assessment
deems one or more tools useful, the respective tools
are run. We initially implemented three different
tools as part of our extensible framework, chosen
to specifically tackle the limitations of LLM-as-a-
Judge systems discussed in Section 2:

Tool A: Fact-checking. We build on the Search
Augmented Factuality Evaluator (SAFE) by Wei
et al. (2024) to create a fact-checking tool for
the pairwise setting. Our fact-checking tool fol-
lows similar steps as the original SAFE algorithm:
(1) separating atomic facts, (2) making atomic
facts self-contained, and (3) checking whether self-
contained facts are supported by web-search. Our
tool omits the relevance check in the original SAFE
algorithm. In a pairwise preference setting we con-
sider the truthfulness of all facts relevant, even if
the facts are not directly related to the task. The
final assessment ultimately decides which factual
statements are most relevant. Note that our ap-
proach currently relies on the LLM itself to judge
the web search results. The method does not cur-
rently explicitly verify the information from the

web beyond the LLM’s judgement.

Tool B: Code execution. Taken into account exist-
ing works that show that compiler/runtime output
is a useful signal, we build on top of OpenAI’s
code interpreter API to create a code-execution
tool. For both proposed answers to a prompt, the
code-execution tool will verify its correctness us-
ing execution feedback. Internally, OpenAI’s code
interpreter API can create additional unit tests, run
multiple execution steps and draw a conclusion.
Only the last conclusion is used in the agent’s final
assessment to determine which response is better.

Tool C: Math checker. Noting that autoregressive
language models are not reliable arithmetic engines
(Yang et al., 2023), we prompt-constrain our code-
execution tool to perform math (and in particular
arithmetic) validation on each of the model outputs.
As in the case of general code execution, multiple
checks may be executed per model output, and the
final assessment uses the outcome of these checks
to inform its overall decision. We created a separate
math checker after preliminary tests indicated a
standard code interpreter tool does not transfer well
to math annotation settings.

Step 3: Final assessment. In the final assessment
step, we combine the results of all tools per re-
sponse alongside the original prompt and response,
to ask an LLM to make a preference judgement
based on all collected information. Critically, this
step allows the LLM to access the external vali-
dation results when making a decision. The LLM
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response to this step provides the final preference
judgement (e.g., "Text A is preferred.") as well as
a chain-of-thought (CoT) reasoning for the judge-
ment (e.g., "Text A is preferred because [...]").

4 Experimental Results

4.1 Datasets

Existing datasets. A number of benchmarks aim
to evaluate AI annotator capabilities, notable ex-
amples include (subsets of) AlpacaEval (Dubois
et al., 2023), MT-Bench (Zheng et al., 2023), LLM-
Bar (Zeng et al., 2024) and RewardBench (Lambert
et al., 2024). We use the latter, RewardBench, for
our evaluation, as it represents a superset including
the other tasks. This benchmark provides a broad
coverage of response domains, including mathe-
matical reasoning, code generation and general
chatbot conversation. We find that some subsets of
the benchmark are fairly saturated: state-of-the-art
LLM-as-a-judge systems already achieve close to
100% agreement with the ground-truth annotations
(see Appendix C for discussion). Thus, to effec-
tively evaluate improvements in these domains, we
created new pairwise datasets.

New pairwise datasets. We extend Reward-
Bench by adapting existing, more challenging (pre-
viously non-pairwise) datasets to the pairwise set-
ting. Appendix M contains examples from each
dataset introduced below.

1. Long-form fact checking: LongFact pairwise.
We create a dataset of response pairs, where re-
sponses vary in long-form factual correctness, us-
ing the LongFact prompt dataset by Wei et al.
(2024). We use OpenAI’s gpt-4o-mini-2024-07-
18 model to generate two long-form factual re-
sponses for each prompt. We then manually in-
troduce factual errors into one of the responses.
We further collect human preference annotations
from 3 annotators over the entire new dataset, and
these annotators, on average, agree with 76.83%
of those ground-truth annotations when not select-
ing a tie. 18% of the average human annotations
are ties. Full details on the data generation process
are available in Appendix K.

2. Challenging coding: APPS competition pair-
wise. From the original APPS dataset (Hendrycks
et al., 2021), we create a pairwise response dataset
to evaluate the ability to determine code correct-
ness. The APPS benchmark contains coding prob-
lems, unit tests and Python ground-truth solutions

for most problems. We take the “competition”
subset, arguing it is these harder problem/solution
combinations that are tricky to evaluate correctly.
We only keep samples that contain a ground-truth
solution, leaving us with 310 items. We then use
GPT-4-0613 to generate solutions to the problems,
until we have failing solutions for all 310 items.

3. Challenging maths: GSM8k hard pairwise.
We select a “hard” subset of the GSM8k (Cobbe
et al., 2021a) dataset by keeping the 116 examples
that GPT-4o is unable to solve. For each exam-
ple, we generate pairwise responses by keeping
both the ground-truth answer and the incorrect
answer that GPT-4o provided. We also conducted
a detailed analysis of validity of the GSM8k data-
points used, shared in Appendix I.

We additionally create a pairwise response
dataset where responses vary in short-form factual
correctness using the TruthfulQA datasetby Lin
et al. (2022). Unlike the previous three datasets,
baseline annotators are able to achieve high (satu-
rated) performance on this dataset and we thus pri-
marily use this dataset for our regression tests. Fur-
ther, unlike the long-form responses in our Long-
Fact pairwise dataset, responses in this dataset are
typically between a single word and single sentence
long, relating to a single fact. See Appendix K for
full data generation details.

4.2 Baseline Annotators
We compare our method to two popular AI annota-
tor configurations that are widely used in academic
and industry settings, and may be considered state-
of-the-art: (1) the widely-used AlpacaEval 2.05 an-
notator by Dubois et al. (2023) using GPT-4-Turbo,
logprob parsing to extract annotations; and (2) the
ArenaHard annotator by Li et al. (2024b) using
more extensive annotation instructions (including
asking the model to craft its own response) and
string parsing; We further share results using two
minimalist AI annotators that simply ask the un-
derlying LLM to "select the better" text, powered
by GPT-3.5-Turbo and GPT-4o. Perhaps surpris-
ingly, we find that the simple annotator powered by
GPT-4o performs competitively on many datasets
considered in our experiments. We report all re-
sults based on 5 seeds (unless otherwise specified),
showing the mean with standard deviation as error
bars. When reporting the agent results across differ-
ent baselines, we use the same 5 seeds of the agent

5Config. name: weighted_alpaca_eval_gpt4_turbo.
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Figure 4: Long-form fact checking results on Long-
Fact pairwise data. We augment multiple baseline an-
notators (light green) with our evaluation agent frame-
work (dark green) and observe that our agents have
higher average agreement with ground-truth annotations
across baselines. The effect is most pronounced for sim-
pler baselines, including when agent and baseline are
based on the less capable GPT-3.5-Turbo model. We
also collect non-expert human annotations (blue) for the
same dataset, and observe that, when making a non-tie
judgement, human annotators have higher disagreement
with the ground-truth than our best agent evaluators.

Steps 1-3, only changing the underlying baseline
results (Step 4). This setup notably reduces the
cost of our experiments as agent steps required the
majority of inference compute.

4.3 Results on Target Domains

In this section we show results on the targeted do-
mains: long-form factual, code and math tasks.

4.3.1 Long-Form Fact-Checking

We evaluate our method on data pairs that require
long-form fact checking using the LongFact pair-
wise dataset introduced in Section 4.1. Figure 4
illustrates our results on this dataset.

Observation 1: Our external validation tools
can help AI annotators improve performance
annotating long-form factual responses. In
Figure 4 we observe that, across all evaluated
baselines, augmenting any baseline with our fact-
checking agent helps improve the overall agree-
ment with the ground-truth annotations on this
dataset. Whilst the contrast is most pronounced
with simpler baselines (e.g., for GPT-4o pick-best
baseline, 63% vs 81%), the effect is present across
all baselines, including ArenaHard (78% vs 80%).

Observation 2: For baseline annotators, con-
figurations such as prompt have a strong impact
on the downstream performance on long-form
fact checking (jumping from 63% to 78% for
GPT-4o). We observe a jump in agreement be-
tween the pick-best and ArenaHard baseline anno-
tators, both powered by GPT-4o. The only differ-
ence between these annotators is the prompt and
answer parsing used. The pick-best annotator uses
a simple prompt asking for the better answer, either
text A or B. The ArenaHard annotator uses an ex-
tensive prompt, including asking the LLM to create
its own response for comparison. This observation
indicates that for this type of factual task the ex-
act choice of AI annotator configuration is critical,
with the ArenaHard configuration performing the
best amongst the tested baselines.

Observation 3: Our agents’ agreement with
our ground-truth annotations is higher than hu-
man annotators’ on long-form factual responses.
This effect holds for all agents based on baselines
with GPT-4-style models. Wei et al. (2024) simi-
larly report their method sometimes outperforming
non-expert human annotators. Intuitively, it seems
plausible that human annotators may be affected by
time limits and fatigue – unlike our agent. (Hosking
et al., 2024) similarly observe that human annota-
tors’ perceived rate of factual errors can be skewed
by the assertiveness of a model response, indicat-
ing that human annotators may not always consider
factual errors sufficiently.

4.3.2 Math-Checking
We further evaluate our method on annotating so-
lutions to advanced mathematics tasks, via the
GSM8k hard pairwise dataset introduced in Sec-
tion 4.1, the results are shown in Figure 5.

Observation 4: Our agents are able to outper-
form some, but not all, baselines on hard math
annotation tasks based on GSM8k. We observe
that only some augmented baseline annotators are
able to improve their performance. In particular,
the ArenaHard annotator is notably able to outper-
form all agent-based methods on this task. This
result indicates that more complex prompting meth-
ods (in terms of token usage and code), such as our
framework, do not necessarily always improve an-
notator performance over (relatively) less complex
methods, such as ArenaHard. Future work may be
able further improve our method’s ability to use
code execution in a math context.

To further evaluate our method’s ability to im-
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Figure 5: Results annotating responses on our pair-
wise set of mathematical tasks based on GSM8k. We
observe that our method improves performance over
some baselines, but the overall level of agreement re-
mains relatively low (around 56%). Further work is
needed to improve the models capability to leverage
code execution fully in a math context.

prove math performance, we additionally conduct
an experiment on the RewardMATH dataset by
Kim et al. (2024). Unlike on the GSM8k dataset,
we observe our method outperforming the Arena-
Hard baseline on RewardMATH. The detailed re-
sults are shared in Appendix H.

4.3.3 Code-Execution
Finally, we evaluate our method’s ability to im-
prove capabilities in annotating advanced coding
tasks using our pairwise coding dataset based on
the APPS dataset by (Hendrycks et al., 2021). The
results are shown in Figure 6.

Observation 5: Our method is able to notably
improve the baseline performance on annotating
the APPS advanced coding responses. Across
all baselines, our agent-based approach is able to
notably improve annotation performance. This im-
provement holds both for the less capable GPT-3.5-
Turbo model (31% baseline vs 71% agent) as well
as the ArenaHard annotator that performs strongly
on other tasks (38% baseline vs 72% agent).

Observation 6: Baseline annotators perform
worse than random on APPS dataset. Based on
the construction, there may be slight style differ-
ences between correct (pre-existing ground-truth
solutions) and incorrect responses (GPT-4 gener-
ated incorrect code), see examples in Appendix M.
We observe that all baseline annotators have a bias
towards the incorrect GPT-4 responses, preferring

Figure 6: Results on our pairwise dataset of responses
to advanced coding tasks from the APPS dataset
(Hendrycks et al., 2021). We observe a notable improve-
ment of our method over the baseline results, even for
the otherwise less capable models GPT-3.5-Turbo.

only 26% to 42% of correct responses. This effect
may possibly be explained with self-enhancement
bias (Panickssery et al., 2024; Stureborg et al.,
2024). Our agent method using code execution
does not show such misaligned preferences.

4.4 Results Outside of Target Domains
(Out-of-Domain)

In practice, an AI annotator may encounter re-
sponse pairs from across a variety of task domains –
including domains not intended to be addressed by
our method. A good AI annotator should be able
to work across domains, as filtering data may not
always be feasible or sufficiently effective. Thus,
we go beyond the domain-specific capability im-
provements shown in Sections 4.3.1 to 4.3.3 and
also evaluate our method’s performance on Reward-
Bench tasks that are out-of-domain for our tools6.
In this general scenario we would not expect per-
formance improvements with our method but aim
for minimal performance regression – as our tools
are not built to help (or activate) on most of these
tasks. Figure 7 shows our results on these tasks.

Observation 7: On out-of-domain tasks from
Rewardbench there are minimal performance
reductions using our approach with any tested
baseline. The agreement reductions are less than
2% for all tested baselines. For the GPT-3.5-Turbo-
based agent we even observe a slight improvement.

6This out-of-domain dataset includes the Chat, Chat Hard
and Safety RewardBench categories.
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Figure 7: General out-of-domain annotation capabil-
ities result based on RewardBench (Lambert et al.,
2024). We observe that our agent achieves similar per-
formance to the baseline annotator across these tasks —
at worst seeing a reduction of ∼2% in agreement.

Future work may be able to refine the initial assess-
ment to further reduce this gap.

Further analysis of agent performance. To
better understand why performance sometimes re-
duces slightly in Figure 7 with the agent, we con-
duct further analysis of the agents’ performance.
First, we investigate how often agent reverts to the
baseline annotator: for our out-of-domain exper-
iments our agents revert for 73.9% of datapoints,
for the in-domain experiments (LongFact, GSM8k
and APPS) our agents only revert for between 0.2%
to 2.2% of datapoints. Whilst our domain assess-
ment correctly identifies the in-domain tasks, fur-
ther adaptions to the assessment may help further
reduce the activation out-of-domain. We further
manually inspect the failure reasons for 30 data-
points where the agent fails to annotate correctly.
We observe that for 9 out of 30 examples the agent
chooses the wrong tool for the task. For exam-
ple, the agent sometimes uses the fact-checking
tool when a refusal response should be selected
for safety-reasons. Further, for 18 out of the 30
datapoints, we observe that tool-use does not fix ex-
isting capability issues: both with and without tools
the annotator makes the wrong decision. For 6 of
these 18 datapoints, the previously described safety
scenario also applies. Additional details of the
manual inspection are provided in Appendices C.2
and C.3.

Results on adjacent domains. Further, we
specifically evaluate our results on domains closely
adjacent to our main focus domains: short-form

fact checking (TruthfulQA pairwise), simple cod-
ing tasks (RewardBench HumanEval pairwise) and
general math problems (RewardBench PRM pair-
wise). These domains are already quite well solved
by state-of-the-art AI annotators. Thus, as with the
general out-of-domain results, we would not expect
any notable improvements but aim to demonstrate
limited performance regressions. We observe two
opposing effects: for the short-form fact check-
ing and simple maths our approach is consistently
able to improve performance, whereas for simple
coding tasks the annotation performance decreases
(reduction of up to 9%, see Figure 9). One pos-
sible explanation may be that the very high base-
line performance on HumanEval (above 97% for
GPT-4-style models) may be reduced by additional
noise due to code execution pipeline. Appendix F
includes detailed results for these adjacent domain
experiments.

5 Related Work

Pairwise AI annotators. As human annotations
are costly and time-intensive, extensive work has
been done to explore the use of AI annotators as an
alternative. Works such as LLM-as-a-judge (Zheng
et al., 2023), AlpacaEval (Dubois et al., 2023) and
G-Eval (Liu et al., 2023) popularized AI annotators
in the context of evaluation. The ArenaHard anno-
tator is another popular choice (Li et al., 2024b).
Various efforts have also explored the use of AI
annotators for generating training data, such as
constitutional AI (Bai et al., 2022). This line of
work is also known as reinforcement learning from
AI feedback (RLAIF) (Lee et al., 2024).

AI annotator problems. A number of biases
have been observed in AI annotators, for exam-
ple (1) length bias (Zheng et al., 2023; Dubois
et al., 2024), where annotators prefer more verbose
outputs (even when not corresponding to human
preference); (2) position bias (Zheng et al., 2023),
where the model’s annotation affected by order in
which they are shared with the model; and (3) self-
enhancement bias (Panickssery et al., 2024; Sture-
borg et al., 2024), where preferred responses have
high probability under judge model’s distribution.

Augmented AI evaluators. Given the known
limitations of basic AI annotators, various augmen-
tations of such annotators have been explored. Li
et al. (2024a) explore the use of external validation
tools to improve the performance of a reward model
(RM), in a framework named Themis. Similar to
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our work, the tools considered include code inter-
preter and web search tools. However, Themis re-
quires a language model with customized architec-
ture and fine-tuning—preventing the use of Themis
with the latest state-of-the-art closed-source mod-
els. We conducted experiments applying Themis
to the datasets considered in our work with limited
success, the results are discussed in Appendix J.
Dubois et al. (2024) propose augmenting AI an-
notators to be length-controlled using a general-
ized linear model to address the widely observed
length bias. Others explore using multiple AI an-
notators simultaneously to improve performance
(Verga et al., 2024; Chan et al., 2023).

In a non-pairwise setting, the Search Augmented
Factuality Evaluator (SAFE) by Wei et al. (2024),
and prior work FActScore (Min et al., 2023),
RARR (Gao et al., 2023), Factcheck-Bench (Wang
et al., 2024), all aimed to improve the capability of
verifying facts within text, such as model responses.
Gou et al. (2023) explore the use of external val-
idation tools to improve generative performance,
demonstrating improvements for question answer-
ing, programming and toxicity reduction tasks.

6 Conclusion

In this work we have presented a novel frame-
work for augmenting AI annotators with tools to
externally validate outputs and address existing
limitations with AI and human annotations. We
compare our method to state-of-the-art and widely
used AI annotators, including the AlpacaEval 2.0
(Dubois et al., 2023) and ArenaHard annotator (Li
et al., 2024b). To challenge our method on an-
notation tasks where the existing datasets appear
saturated (coding, math) or little pairwise data ex-
ists (long-form factual responses), we created new
pairwise datasets, building on LongFact (Wei et al.,
2024), GSM8k (Cobbe et al., 2021b), and APPS
(Hendrycks et al., 2021). We evaluate our method’s
effectiveness across a diverse collection of datasets,
including the new datasets and RewardBench (Lam-
bert et al., 2024). We observe that our external
validation-based method often improves baseline
annotator performance, with strongest effective-
ness when annotating advanced coding responses
but also for long-form factual responses, with more
mixed results in advanced math responses. We
conclude that, whilst external validation tools can
often improve annotation quality of AI annotator
(or LLM-as-a-Judge) for certain scenarios, such

tools represent a trade-off in terms of complexity
and cost. Careful evaluation is required to effec-
tively apply such tools and they may not be the
right fit for every use-case.

7 Limitations

As discussed in Section 4.4, our method does
(as expected) currently show some regression on
some out-of-domain tasks. Thus, in practice, our
method’s overall usefulness will depend on the do-
main distribution of the datasets it is applied to.
For datasets with a high proportion of datapoints in
our target domains, our method is likely able to im-
prove annotation quality. For more out-of-domain
datasets any performance improvement will likely
be limited.

Further, as discussed in Section 2, our exper-
iments are limited to domains with high expert
agreement. Domains where expert agreement is
not necessarily given are more difficult to target, as
the goal of judges is less clearly defined in such a
case. This limitation applies to both for our system
and LLM-as-a-Judge systems in general.

Potential risks of using our method include over-
relying on LLM-as-a-Judge systems rather than
human judgements, possibly leading to misaligned
models that are overfit to such AI judges. In gen-
eral, LLM-as-a-Judge methods should be used to
complement – rather than replace – human judge-
ment.

More broadly, our results highlight the strong
effect that simple configuration parameters, such
as prompt and parsing method, can have on anno-
tator performance — even if the same underlying
LLM is used. When considering more technically
involved augmentations like our external validation
tools, we recommend to also carefully evaluate
simpler configurations as an alternative across a
wide range of scenarios, as we have done. A robust
AI annotator testing pipeline can be critical to de-
termine the right annotator. Concurrent work by
Calderon et al. (2025) offers a promising direction
for more rigorous statistical tests of annotators. We
would welcome future work that develops further
datasets and methods to improve the reliability and
comprehensiveness of AI annotator evaluation.
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Appendix

A Concurrent Work

Concurrently, Zhuge et al. (2024) similarly explore
extending LLM-as-Judge to use an LLM with an
agentic framework, referring to their method as
Agent-as-a-Judge. Unlike our work, their setup is
not directly compared on the general prior LLM-
as-a-Judge datasets used in our work, e.g. via Re-
wardBench (Lambert et al., 2024). Instead, the
authors focus on using their setup to evaluate soft-
ware development AI agents and establish their
own dataset for this purpose. Within this setting
the authors appear to compare their method only
to a single LLM-as-a-Judge approach (unlike the
three approaches considered in this dataset). Nev-
ertheless, it would be interesting to adapt/extend
the authors’ setup to non-agentic and non-code set-
tings, and then to directly compare the setup to our
approach and other LLM-as-a-Judge approaches in
future work.

B Datasets

This section provides additional details about the
datasets used within this work, including the rele-
vant licenses and links.

1. RewardBench by Lambert et al. (2024):
Open Data Commons Attribution Li-
cense (ODC-By), with subdatasets having
separate licenses available at https:
//huggingface.co/datasets/allenai/
reward-bench#license-information.
Main dataset link: https://huggingface.
co/datasets/allenai/reward-bench

2. GSM8k by Cobbe et al. (2021b): MIT Li-
cense. Link: https://huggingface.co/
datasets/openai/gsm8k

3. APPS by Hendrycks et al. (2021): MIT
License. Link: https://github.com/
hendrycks/apps

4. LongFact prompts by Wei et al.
(2024): Apache 2.0. Link: https:
//github.com/google-deepmind/
long-form-factuality

5. RewardMATH by Kim et al. (2024): MIT
License. Link: https://github.com/
kimsh0507/RewardMATH_official

As far as we are aware, our use of these datasets
was consistent with their intended use.

C RewardBench Discussion

In this appendix, we provide further discussion of
our results on RewardBench (Lambert et al., 2024).
The main results are shown in Section 4.4.

C.1 Saturation

Some parts of RewardBench appear fairly satu-
rated. For example, we find that a simple GPT-4o-
based baseline AI annotator achieves above 97%
across all HumanEval-based coding subsets (Chen
et al., 2021) in RewardBench (each subset has
at most 5 datapoints, 164 datapoints per dataset
×3%, to improve on). Similarly, the same baseline
achieves over 90% on the math benchmark based
on PRM800k (Lightman et al., 2023), leaving less
that 45 datapoints to improve on.

C.2 Analysis of Tool Activation

Our current tools (fact checking, code execution,
math checker) are often not applicable for tasks in
the RewardBench out-of-domain (OOD) dataset.
In this dataset, tasks are focused on general chat
responses that often do not contain long-form fac-
tual responses, code or math. Further, the dataset
additionally contains a number of safety-related
datapoints, where the goal is to select the refusing
response to a dangerous prompt. To quantify the
difference between RewardBench OOD and our
other target datasets, we ran additional analysis
on our experimental results. The analysis shows
that our agent reverted to the baseline annotator
(deemed available tools not relevant) for 73.9% of
all datapoints on RewardBench OOD data (main
results are in Figure 7). For comparison, the agent
reverted to the baseline for 0.2%, 0.3% and 2.2% of
target domain datasets (for the APPS, GSM8k and
LongFact datasets respectively, main results in Fig-
ures Figures 4 to 6). As such, on the latter datasets,
our existing tools were used for the vast majority of
datapoints. We take a closer look and continue our
exploration of RewardBench performance below,
following your more detailed questions.

C.3 Manual Analysis of Failure Cases

To further understand how tool-use fails, we manu-
ally inspect 30 examples from RewardBench OOD
where our method uses tools but fails to correctly
annotate according to the ground-truth labels (in
at least one seed). We consider two failure cate-
gories: (1) the evaluator is unable to use the right
tool, or (2) the evaluator’s evaluation capabality is
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insufficient with and without tools. We observe
problem (1) for 9 of the 30 examples. For exam-
ple, when our method chooses an incorrect tool for
safety-related annotation tasks: it applies the fact-
checking tool to responses for a prompt that should
be refused, and then selects the more factually cor-
rect response rather than the refusal. We observe
problem (2) for 18 of the 30 examples: both the
baseline annotator as well as our method make a
false annotation. This indicates that both with and
without our (current) tools the evaluator has lim-
ited annotation capability. That said, as mentioned
before, additional tools may still be able to help
the evaluator. Further note that for 6 of these 18
examples, also problem (1) occurs, where an un-
suitable tool is called for a safety-related prompt
and the baseline annotator does no better either.
The remaining examples follow more diverse and
less easily categorized problem patterns.

D Guidance for Extending Framework

Adding tools. Our framework is built to be straight-
forward to be extended with additional tools to be
applicable to new domains. There are three main
parts to a tool in our framework: (1) domain assess-
ment questions, (2) domain assessment logic, and
(3) tool execution code. To illustrate building a new
tool, we briefly discuss how each of these points is
implemented for the Math checker tool introduced
in Section 3. The domain assessment questions con-
sists of a single confirmation: “Whether the text
involves math or arithmetic that may benefit from
careful checking?”. Then, the domain assessment
logic checks if this confirmation is positive (i.e., the
text involves math or arithmetic). If the confirma-
tion is positive, the tool’s execution code runs using
OpenAI’s code interpreter API with a prompt spe-
cific to solving math tasks. The three steps are im-
plemented as class functions of the tool. To make a
tool available to our agent, it needs to be registered
using the register_tool function decorator from
ageval.evaluators.agent.tools.registry.

Based on our experiments, we recommend to
keep the domain where a tool activates narrow,
confined to tasks with high confidence that the
tool improves performance. Otherwise, adding fur-
ther tools may lead to regression on out-of-domain
(OOD) tasks. To get started implementing a new
tool and further clarify this explanation, we rec-
ommend looking at the existing tools (under sr-
c/ageval/evaluators/agent/tools in our code reposi-

tory).
Potential direction for new tools. During

manual inspection of OOD results in Section 4.4
we observed a common failure mode: prioritis-
ing instruction-following over safe responses in
response to potentially harmful prompts. Thus,
we conjecture that an additional safety tool would
likely be helpful: a method that automatically de-
tects if a prompt is potentially safety-relevant and
a refusal response should likely be preferred. Such
a tool could build on a smaller classifier model to
identify potentially harmful prompts, or alterna-
tively the tool could explicitly prompt an LLM
to watch out for potential safety-related issues.
The RewardBench OOD dataset uses a number of
safety-related datasets (740 of all 1554 datapoints),
where such a tool would likely apply. We would
welcome such a tool to be implemented in future
work.

E AI Assistant Usage

As part of this research work, AI assistants were
used for help with some coding tasks.

F Adjacent Domain Results

Adjacent domain results are shown in Figures 8
to 10.
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Figure 8: Annotation capabilities results on adjacent domain short-form fact-checking. We observe that our
agent is able to minimally improve over the baseline’s agreement with ground-truth annotations.

Figure 9: Average results on RewardBench’s code task subsets based on HumanEval in different programming
languages. We see a drop of up to 9% points across baselines. The noise or variability added by the code interpreter
pipeline may be partially to blame for the decrease in agreement.

Figure 10: Results on RewardBench’s math tasks. We see strong improvements for simpler baselines, with
(almost) constant performance for the agent with ArenaHard baseline.
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G Additional Baseline: Standard OpenAI
API with Tool-Use Enabled

We additionally compare our method to OpenAI’s
standard GPT-4o API with tool-use enabled.7 We
enable access to two tools: OpenAI’s code inter-
preter as well as a web-search tool. This setup has
the same level of access to external validation tools
as our Evaluation Agent framework but omits the
agent scaffolding we provide as part of our frame-
work (e.g., initial domain assessment, tool prompts
and scaffolding, final assessment). Thus, it allows
us to estimate the impact this additional scaffolding
has on the annotator performance. We evaluate this
non-agent tool-using setup with two of our baseline
LLM-a-Judge prompting approaches: the simpler
pick-best and the on average best-performing Are-
naHard baseline. We test this baseline across four
different datasets: LongFact, GSM8k hard, APPS,
and RewardBench Out-of-Domain.

Results. The results across the datasets are
shown in Figures 11 to 14. The figure show the per-
centage of datapoints where the annotators agree
(Agreed) and disagree (Disagree) with the origi-
nal annotations, and the percentage of datapoints
where the annotators do not provide responses that
can be correctly parsed (Not avail.). Both results
for the standard API with tools (e.g., “ArenaHard
baseline (GPT-4o + code-interpreter + search)”)
and without tools (e.g., “ArenaHard baseline (GPT-
4o)”) are shown.

Observation A: Adding access to tools without
additional scaffolding does not notably improve
performance across any of the tested datasets
and LLM-as-a-Judge configurations. Unlike
with our framework, we do not see notable im-
provements of the tool-enabled over the non-tool
baselines. Across all datasets, the tool-enabled
baselines are either roughly equivalent or worse
than the non-tool baselines. This observation aligns
with our own prior experience during the develop-
ment of our framework: we observed that GPT-4o
requires notable scaffolding guidance to effectively
make use of tools in our annotation settings.

Observation B: Adding tools reduces the
output reliability of GPT-4o-based ArenaHard
baseline. When given access to tools, GPT-4o
often does not follow the prompt’s output format
when prompted using the ArenaHard prompt. This
non-compliance leads to many datapoints where

7Documentation: https://platform.openai.com/
docs/assistants/overview

the annotator does not output that can be parsed
into annotations, making the annotator overall less
reliable and useful. The effect is most pronounced
on LongFact (Figure 11) and OOD RewardBench
(Figure 14). Further fine-tuning of the prompt may
mitigate the issue but is beyond the scope of this
ablation study. Overall, this observation highlights
the sensitivity of LLM-as-a-Judge annotators to
changes in model and configuration parameters.

Conclusion. The observations indicate that with-
out additional scaffolding, as our framework pro-
vides, GPT-4o struggles to make effective use of
tools in the annotations tasks considered as part of
these experiments.

H Results on RewardMath

We conduct additional experiments to evaluate our
method on the RewardMATH dataset by Kim et al.
(2024).

Setup. For each of the 483 math problems con-
sidered in RewardMATH, we select one of the nine
available incorrect solutions randomly to form a
preference pair with the correct solution. Thus, as
in our previous experiments, random performance
in this setting would be 50% accuracy. According
to the authors, RewardMATH may be considered as
more challenging than the original RewardBench
math subset (Figure 10), which they suggest may
be susceptible to reward hacking due to the consis-
tently lower number of solution steps in the correct
vs incorrect solutions. Baseline results are aver-
aged over 5 seeds, agent results over a single seed.
We test against the baseline that performs strongest
in our prior experiments (ArenaHard) as well as
the pick-best baseline for reference.

Results. Shown in Table 1, our agents are able
to consistently outperform the baseline methods on
this new math benchmark. Indeed we observe a
more notable gap than on the RewardBench math
or GSM8k hard benchmarks, indicating that our
method’s capabilities are well-suited for the harder
tasks of RewardMATH. With respect to generalis-
ability, these results provide evidence that method
may generalise well in terms of math tasks.

I Analysis of GSM8k Data

Given reports of potential issues of GSM8k data,
we conducted a check of the validity of all GSM8k
hard datapoints used in our experiments.

Process. We first compared our results to errors
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Figure 11: Annotation results of standard GPT-4o with tools enabled on our pairwise LongFact dataset. We
also include the other results shown in the paper alongside the new baselines.

Figure 12: Annotation results of standard GPT-4o with tools enabled on GSM8k hard. We also include the
other results shown in the paper alongside the new baselines.

Table 1: Results on RewardMath

Method Accuracy
Pick-best baseline (GPT-4o) 75.41
Agent (GPT-4o, tools: fact+code+math, base: pick-best) 92.75
ArenaHard baseline (GPT-4o) 87.91
Agent (GPT-4o, tools: fact+code+math, base: ArenaHard) 92.55

in GSM8k that were publicly reported89. We found
two incorrect datapoints included, approx. 2% of
the dataset. To be certain, we then manually solved
the remaining datapoints and validated whether the
supposedly correct answer is indeed correct. We
found no further incorrectly labeled answers (based
on our own solutions).

Results. Overall, we found two incorrectly la-
beled datapoints in our GSM8k hard dataset. For
both samples, we observe that our agent mod-
els consistently prefer the (actually correct) GPT-

8https://huggingface.co/datasets/Cleanlab/bad_
data_gsm8k_svamp.csv/

9https://github.com/openai/grade-school-math/
issues

4o generated datapoints (rather than the incorrect
golden perferences), whereas the baseline mod-
els only sometimes prefer the golden datapoints.
This effect may slightly inflate the performance of
baseline models, but by less than 2%. Thus, these
incorrect labels do not have a notable effect on
our reported results, where all differences between
baseline and agent annotators are above 2%.

J Themis Baseline

We attempted to apply the Themis method by (Li
et al., 2024a) on the datasets considered in our
experiments. Themis’ similarities and differences
to our method are discussed in Section 5.

Setup. We ran the Themis model on the Long-
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Figure 13: Annotation results of standard GPT-4o with tools enabled on APPS coding tasks. We also include
the other results shown in the paper alongside the new baselines.

Figure 14: Annotation results of standard GPT-4o with tools enabled on Rewardbench out-of-domain tasks.
We also include the other results shown in the paper alongside the new baselines.

Fact (Figure 4), GSM8k (Figure 5) and the Reward-
Bench (RB) OOD (Figure 7) and code (Figure 13)
datasets. We note that the Themis code tool re-
quires additional unit test data for each datapoint,
differing from the conventional pairwise prefer-
ence data used in our experiments and the LLM-
as-a-Judge literature (i.e., response 1 + response
2 + preference label (+ prompt)). Thus, the lack
of available unit tests likely negatively affects the
Themis results on GSM8k and RewardBench, as
the code tool gets called but cannot provide useful
answers without unit test data available. We note
that the assumption that unit tests would be avail-
able does not hold for general pairwise datasets,
limiting the applicability of Themis in its current
form.

Results. To our surprise, due to either imple-
mentation issues or fundamental limitations of the
Themis model, we were unable to get Themis to
perform better than a random annotator on any
of our datasets. Whilst we expected some perfor-
mance loss due to the smaller model size, we were

surprised not to be able to substantially outperform
random baseline (50% agreement) with Themis
(48.0% - 49.5% agreement) on any of our datasets.
Despite our best efforts, it is certainly possible that
implementation issues in our setup affected Themis’
performance, and would encourage further work to
enable direct comparison between our method and
Themis.

K Additional Data Generation Details

Long-form fact checking: LongFact pairwise.
We create a dataset of response pairs, where re-
sponses vary in long-form factual correctness, us-
ing the LongFact prompt dataset by Wei et al.
(2024). In particular, we use OpenAI’s gpt-4o-mini-
2024-07-18 model to generate two responses at
temperature 0.1 for 100 randomly sampled prompts
from LongFact-object prompt subset used in the
experiments by Wei et al. (2024). We use the same
postamble as the original work, asking the model to
respond to the prompt in 8 or 5 sentences, generat-
ing 20 and 80 samples for each setting respectively.
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Whilst the responses roughly follow these num-
bers, exact response length varies. For each result-
ing response pair, we manually introduce between
1-3 factual errors (e.g., wrong numbers, names,
or dates) into one of the two responses. We only
change factual information, trying to avoid apply-
ing any stylistic changes that could affect model
preferences. If we notice obvious factual errors
in the other response, we correct those errors. Us-
ing this procedure, we create a dataset of pairwise
long-form factual responses, where we know one
response to be (likely) less factually correct than the
other. Further, as they are generated by the same
model, but with a non-zero temperature, the re-
sponses are similar in style and quality but, in most
cases, not exactly identical. This setting makes the
task more challenging as the (incorrect) adapted
facts are often not necessarily obvious to detect.
We further collect human preference annotations
from 3 annotators over the entire new dataset, and
these annotators, on average, agree with 76.83% of
those ground-truth annotations when not selecting
a tie. 18% of the average human annotations are
ties.

Short-form fact checking: TruthfulQA pair-
wise. We additionally create a pairwise response
dataset where responses vary in short-form factual
correctness using the TruthfulQA datasetby Lin
et al. (2022). Unlike the previous three datasets,
baseline annotators are able to achieve high (sat-
urated) performance on this dataset and we thus
primarily use this dataset for our regression tests.
For each prompt included in a random subsam-
ple of 400 datapoints from TruthfulQA, we pair
up the value in the "Best Answer" column and
a randomly selected answer from the "Incorrect
Answers" column. We randomly shuffle the or-
der of the pairs, with our ground-truth preference
always preferring the annotation from the "Best
Answer" column. Note that the TruthfulQA bench-
mark specifically focuses on question prompts that
may be answered incorrectly by humans due to mis-
conceptions or misunderstandings. Unlike the long-
form responses in our LongFact pairwise dataset,
responses in this dataset are typically between a
single word and single sentence long, relating to a
single fact.

L Agent Terminology Discussion

Definitions of the term “agentic” vary across the
literature, thus we further clarify the use of the term

agentic in our work. Our method includes some of
the agentic capabilities commonly discussed (e.g.,
tool-use, certain forms of planning) but not all (e.g.,
it omits long horizon planning or memory manag-
ing capabilities). In particular, we allow the LLM,
through the initial domain assessment, to determine
which and how many of the available tools to use
per text, but overall only allow for one call per
tool and per text. Further, within the fact-checking
tool, we let the LLM determine the number of web
searches necessary to check each fact (up to a max-
imum number, by default 3).

While our framework could be made more agen-
tic, we found there to be a strong reliability trade-
off when allowing for such more open-ended agen-
tic capabilities. Our initial prototypes were more
agentic in the sense that they included less scaffold-
ing (in particular with respect to the initial domain
assessment step). While more agentic, at the capa-
bility level of tested state-of-the-art models, such
approaches suffered substantial reliability issues,
making them less useful in practice. Nevertheless,
we look forward to future work that explores more
open agentic systems based on more capable LLMs,
as such model advances become available.
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M Dataset Examples

In this section we share examples from all new
datasets introduced in this paper, as discussed in
Section 4.1.

Listing 1: LongFact pairwise - Example
Prompt
"What was the architectural inspiration

behind the design of the Leaning
Tower of Pisa?"

Text A:
"The Leaning Tower of Pisa , officially

known as the Campanile di Pisa , was
inspired by Romanesque architecture ,
characterized by its rounded arches
and sturdy pillars. Construction

began in 1173 under the architect
Bonanno Pisano , who aimed to create
a freestanding bell tower for the
nearby cathedral. The design
reflects the influence of the
Lombard architectural style , evident
in its use of white and gray marble
and intricate arcades. The tower 's

height was originally intended to be
around 60 meters , but due to the

unstable foundation and possibly
sabotage , it began to lean during
construction , which started in the
third story.

The project was interrupted multiple
times , notably during the wars
between Pisa and its rival city -
states , which delayed its completion
until 1372. The final design

included nine stories , including the
chamber for the bells , and features
a series of columns and arches that
echo the design of the adjacent

cathedral , Santa Maria Assunta. The
tower 's iconic lean , which reached
about 5.5 degrees by the early 21st
century , has become a defining
characteristic , leading to extensive
restoration efforts to stabilize it

. Today , the Leaning Tower of Pisa
stands as a UNESCO World Heritage
Site , attracting around 3.4 million
visitors annually who marvel at its
unique architectural history and
engineering challenges ."

Text B:
"The Leaning Tower of Pisa , officially

known as the Campanile di Pisa , was
inspired by Romanesque architectural
styles prevalent in the 11th and 12

th centuries. Its design is
attributed to Bonanno Pisano ,
although some sources suggest that
Giovanni di Simone may have also
contributed to its construction. The
tower was commissioned in 1173 as

part of the cathedral complex in
Pisa , which included the adjacent
Pisa Cathedral and Baptistery , all

located in the Piazza dei Miracoli.
The structure stands approximately
56 meters tall and features eight
stories , including the chamber for
the seven bells at the top.

The use of white and grey marble , along
with intricate arcades and columns ,
reflects the influence of classical
Roman architecture , while the tower '
s circular form is reminiscent of
ancient Roman towers. Construction
began in 1173, but it was halted
multiple times due to wars and the
tower 's infamous tilt , which began
during its early stages. The tilt is
attributed to unstable foundation

soil , which was not adequately
addressed during construction. The
tower was finally completed in 1372,
with the last bell installed in

1377, showcasing the resilience of
medieval engineering despite its
challenges ."

Ground truth preferred text: Text B

Listing 2: TruthfulQA pairwise
Prompt
What happens to you if you eat

watermelon seeds?

Text A:
You digest the watermelon seeds

Text B:
The watermelon seeds pass through your

digestive system

Ground truth preferred text: Text B

Listing 3: GSM8k hard pairwise
Prompt
Carlos is planting a lemon tree. The

tree will cost $90 to plant. Each
year it will grow 7 lemons , which he
can sell for $1.5 each. It costs $3
a year to water and feed the tree.

How many years will it take before
he starts earning money on the lemon
tree?

Text A:
The tree costs $90 to plant.\ nEach year ,

it will produce 7 lemons , which
could be sold for 1.5 dollars each.\
nSo , every year from selling the
lemons , Carlos could earn 7 * 1.5 =
$10 .5.\ nBut there is a cost for
watering and feeding the tree every
year , which is $3.\nSo after paying
the cost , the profit per year by
selling the lemons is 10.5 - 3 = $7
.5.\ nThen to recover the initial
cost of $90 , he would need 90 / 7.5
= 12 years.\nThe answer is 12.
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Text B:
He makes $10.5 selling lemons each year

because 7 x 1.5 = 10.5\ nHe earns $7
.5 each year from the lemon tree
because 10.5 - 3 = 7.5\ nIt will take
12 years to earn enough to pay off

the tree because 90 / 7.5 = 12\ nHe
will make money in year 13 because
12 + 1 = 13.

Ground truth preferred text: Text B

Listing 4: APPS competition pairwise
Prompt
You are given an integer $x$ of $n$

digits $a_1 , a_2 , \ldots , a_n$ ,
which make up its decimal notation
in order from left to right.

Also , you are given a positive integer
$k < n$.

Let 's call integer $b_1 , b_2 , \ldots ,
b_m$ beautiful if $b_i = b_{i+k}$
for each $i$ , such that $1 \leq i \
leq m - k$.

You need to find the smallest beautiful
integer $y$ , such that $y \geq x$.

-----Input -----

The first line of input contains two
integers $n, k$ ($2 \leq n \leq
200\ ,000, 1 \leq k < n$): the number
of digits in $x$ and $k$.

The next line of input contains $n$
digits $a_1 , a_2 , \ldots , a_n$ ($a_1
\neq 0$, $0 \leq a_i \leq 9$):

digits of $x$.

-----Output -----

In the first line print one integer $m$:
the number of digits in $y$.

In the next line print $m$ digits $b_1 ,
b_2 , \ldots , b_m$ ($b_1 \neq 0$, $0
\leq b_i \leq 9$): digits of $y$.

-----Examples -----
Input
3 2
353

Output
3
353

Input
4 2
1234

Output
4

1313

Text A:
n, k = map(int , input().split())
x = list(map(int , list(input ().strip()))

)
y = x[:k] * (n // k) + x[:n % k]
if y < x:

i = k - 1
while y[i] == 9:

y[i] = 0
i -= 1

y[i] += 1
y = y[:k] * (n // k) + y[:n % k]

print(n)
print(''.join(map(str , y)))

Text B:
import sys
reader = (s.rstrip () for s in sys.stdin)
input = reader.__next__

n,k = list(map(int , input().split ()))
a = list(map(int , input ()))
b = a[:k]
c = [b[i%k] for i in range(n)]
if tuple(a)>tuple(c):

d = int ("""". join(map(str , b)))
d += 1
b = list(map(int , str(d)))
c = [b[i%k] for i in range(n)]

print(len(c))
print ("""". join(map(str , c)))

Ground truth preferred text: Text B
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N Prompts

In this Appendix we share the detailed prompts
used for each step and tool in our method. As
discussed in Section 3, we use structured outputs
throughout our method. Thus, an LLM call in our
method is not simply described by a single prompt
but also by the JSON-style structured output. In
our code, we describe the output JSON-structure
as Python dataclasses. Below we provide an ex-
ample mapping from dataclass definition to JSON
outputs. To make comparability to our code eas-
ier, we provide the remaining structured outputs as
the dataclasses (as this is the representation in the
code).

Listing 5: Example structured output as dataclass and
JSON
# Dataclass
class TextAssessment(BaseModel):

code_useful: bool = Field(
description =" Whether text might

benefit from running code."
)

# JSON
{

'title ': 'TextAssessment ',
'description ': 'Assessment of a text

.',
'type ': 'object ',
'properties ': {

'code_useful ': {
'title ': 'Code Useful ',
'description ': 'Whether text

might benefit from
running code.',

'type ': 'boolean '
}

},
'required ': ['code_useful ']

}

N.1 Step 1: Initial Assessment

During initial assessment, we decide what tools to
execute. Each tool registers a structured output,
and we combine them to give the tool the informa-
tion required to decide whether to run. Each tool
decides their own requirements.

Listing 6: Initial assessment prompt
struct_prompt = (

f"Assess the following text: {text}"
f"\nThe text is a response to the

following context: {prompt }"
)

N.1.1 Fact-Checking

Listing 7: Initial assessment structured output
class FactCheckToolConfig:

contains_facts_desc: str = (
"Whether the text contains any

facts that may be checked
using a web search ."

)
is_like_wiki_desc: str = "Whether

the response text could be from
a wiki page."

is_maths_desc: str = "Whether the
text is a solution to any kind
of maths problem ."

is_word_count_desc: str = "Whether
the text is providing a word
count."

confidence_web_helps_desc: str = (
"Confidence that a websearch

will help "
"correctly select the better

response. "
"Integer between 0 (won 't help)

and 5 "
"(will with absolute certainty

help), 3 "
"would mean 'may help '."
"Consider whether there are

facts present in "
"either response , and if (!)

consider whether "
"these facts can be checked in a

websearch. "
"For example a word count task

can 't be checked "
"with a websearch , but the

birthday of a celebrity "
"may be checked. "
"Remember that websearches do

not help on maths problems ."
)

class TextAssessment(BaseModel):
contains_facts: bool = Field(

description=FactCheckToolConfig.
contains_facts_desc

)
is_like_wiki: bool = Field(

description=FactCheckToolConfig.
is_like_wiki_desc , # check
if long -form factual text

)
is_maths: bool = Field(

description=FactCheckToolConfig.
is_maths_desc ,

)
is_wordcount: bool = Field(

description=FactCheckToolConfig.
is_word_count_desc

)
confidence_websearch_will_help: int

= Field(
description=FactCheckToolConfig.

confidence_web_helps_desc
)

N.1.2 Code-interpreter

Listing 8: Initial assessment structured output
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class TextAssessment(BaseModel):
code_useful: bool = Field(

description =" Whether text might
benefit from running code."

)

N.1.3 Math-Checker

Listing 9: Initial assessment structured output
class TextAssessment(BaseModel):

math_question: bool = Field(
description =" Whether the text

involves math or arithmetic
that may benefit from
careful checking ."

)

N.2 Step 2: Tools

After initial assessment, tools will be executed. Not
all tools might be executed, this depends on the
initial asessment. Below are the prompts used in
the tools themselves.

N.2.1 Fact-Checking

Listing 10: Tool execution prompt
# 1. We extract individual facts.
class AtomicFacts(BaseModel):

""" List of individual atomic facts
that can be checked with a web
search ."""

atomic_facts: list[str] = Field(
description ="A list of separate

individual facts."
)

prompt = (
f"Break down the following statement

into separate individual facts
:\n\n{text}"

"\n Ignore things that cannot be
verified in a web search ."

)

# 2. We make them self -contained.
class SelfContainedFact(BaseModel):

"""A self contained fact ."""

self_contained_fact: str = Field(
description ="A self -contained

fact that does not require
external information to be
understood. Do not add
additional information that
is not needed ."

)
prompt = (

f"We have a response text for the
following prior conversation :\n{
prompt }\n\n"

"You are given the following
response "

f"context :\n\n{context }\n\nUse this
context to make the following
statement "

f"self -contained (if necessary ,
otherwise return unchanged):{
fact}"

)

# 3. For each extracted self -contained
fact , we verify whether it 's true
using web -search.

class FactCheckingResult(BaseModel):
"""A self contained fact ."""

reasoning: str = Field(
description ="A short

justification for the
truthfulness verdict. Max
three sentences ."

)
truthful: bool = Field(

description =" Whether or not the
fact is truthful. Must be
true or false ."

)

web_search_results =
get_information_from_web_searches(
fact=fact , model=model)

prompt = (
f"You have the following statement:

{fact}\n"
"\nYou also have the following web

search results :"
f"\n```\n{web_search_results }\n```"
"Is the truthfulness of the

statement supported by these
search results? "

"Determine the truthfulness of the
statement based on the shown
search results ."

)

# 4. We finally create a list that is
used for the final -assessment.

final_fact_str_list = []
for fact in processed_facts:

if fact[" result "][" truthful "]:
final_fact_str_list.append ("[

green -check -emoji] " + fact
[" contained "])

else:
final_fact_str_list.append ("[red

-cross -emoji] " + fact["
contained "])

N.2.2 Code-Interpreter

Listing 11: Tool execution prompt
assistant_instruction: str = (

"You are a coding expert. "
"Your goal is to evaluate whether

code from a student is correct.
"

"Write and run code to verify the
provided answer to the prompt. "

"Think of unit tests to verify
whether the code is correct. "
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"Only report back whether the
solution was correct. "

"Do not try to correct the code ,
they need to do that themselves
."

)
content = f"For the prompt :\n```{prompt

}\n```\nis the provided answer
correct ?\n```{text}\n```"

N.2.3 Math-Checker

Listing 12: Tool execution prompt
assistant_instruction: str = (

"You are a personal math tutor. "
"When asked a math question , write

and execute code to validate
whether the provided answer is
correct ."

)
content = f"For the prompt :\n```{prompt

}\n```\nis the provided answer
correct ?\n```{text}\n```"

N.3 Step 3: Final Assessment

When all tools have been executed, a final decision
will be made which takes both texts into account
and the associated tool outputs.

Listing 13: Final assessment prompt
struct_prompt = (

f"Compare the following two texts
and select the better text "

"according to the information
provided :"

f"\n\n### text_a: {summary['text_a
']['text ']}"

f"\n\n### text_b: {summary['text_b
']['text ']}"

f"\nThe following tool output should
also be taken into account :"

f"\n\n### tool_output for text_a: {
summary['text_a '].get('
tool_output ', {})}"

f"\n\n### tool_output for text_b: {
summary['text_b '].get('
tool_output ', {})}"

f"\nBoth texts were a response to
the following context: {prompt }"

)

Listing 14: Final assessment structured output
class EvaluationResult(BaseModel):

reasoning: str = Field(
description ="A short

justification for selecting
one text over the other ."

)
selected_text: Literal [" text_a", "

text_b "] = Field(
description =" Selected text that

is better than the other
text. Must be one of the

following two strings: '
text_a ' or 'text_b '. Do not
set as the selected text
string itself ."

)
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