
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 15812–15838
July 27 - August 1, 2025 ©2025 Association for Computational Linguistics

Program Synthesis Benchmark for Visual Programming
in XLogoOnline Environment

Chao Wen
MPI-SWS

chaowen@mpi-sws.org

Jacqueline Staub
University of Trier

staub@uni-trier.de

Adish Singla
MPI-SWS

adishs@mpi-sws.org

Abstract

Large language and multimodal models have
shown remarkable success on various bench-
marks focused on specific skills such as general-
purpose programming, math word problem-
solving, and visual question answering. How-
ever, it is unclear how well these models per-
form on tasks that require a combination of
these skills. In this paper, we curate a novel
program synthesis benchmark based on the real-
world tasks in the XLogoOnline visual pro-
gramming environment. Each task requires a
combination of different skills such as spatial
planning, basic programming, and logical rea-
soning. Our evaluation shows that current state-
of-the-art models like GPT-4V and Llama3-
70B struggle to solve these tasks, achieving
only 20% and 2.35% success rates, respec-
tively. Next, we develop a fine-tuning pipeline
to boost the performance of models by leverag-
ing a large-scale synthetic training dataset with
over 80, 000 tasks. Moreover, we showcase
how emulator-driven feedback can be used to
design a curriculum over training data distri-
bution, through which a fine-tuned Llama3-8B
drastically outperforms GPT-4V and Llama3-
70B models. Finally, we provide an in-depth
failure analysis to understand the limitations
of different models. We will publicly release
the benchmark for future research on program
synthesis in visual programming.

1 Introduction

In recent years, large models have shown remark-
able performance in various domains, such as
general-purpose programming and visual question
answering (Bubeck et al., 2023). For instance,
in programming, numerous tools and models
use large language models (LLMs) for code
generation (Chen et al., 2021; GitHub, 2021)
and programming feedback generation (Phung
et al., 2024, 2023a,b), revolutionizing how
programmers write code and how teachers instruct

Logic

Code
Constraints

Loops and
Variables

Variables

Loops

Basic
Actions

Draw

Math

0.0

0.2

0.4

0.6

0.8

1.0

GPT-4V

Llama-3-8B-Emu

DeepSeek-R1-Distill-Llama-70B

Llama-3-70B

o1

Figure 1: Success rates of different models across differ-
ent skills in real-world tasks in the XLOGOMINIPROG
benchmark.

programming (Peng et al., 2023; Denny et al.,
2024). Beyond text-based tasks, the focus has
expanded to multimodal models that process and
generate not only text but also images, achieving
significant success in domains such as visual
question answering (Radford et al., 2021) and
text-to-image generation (Ramesh et al., 2021).

Despite these successes, the performance of
large models on tasks that require a combination
of skills remains unclear. Real-world tasks often
demand a blend of skills. For example, a typical
task like “navigating to the kitchen to fetch ten ap-
ples” involves spatial reasoning to understand the
environment and plan a path around obstacles, to-
gether with basic arithmetic to ensure that exactly
ten apples are retrieved. This example illustrates
the multifaceted nature of real-world tasks. While
various benchmarks focus on specific skills (Chen
et al., 2021; Hendrycks et al., 2021c,b; Lin et al.,
2022), there is a lack of benchmarks evaluating
how large models perform on tasks that require a
combination of different skills.

15812

Task 28: Collect all red shapes
without standing on the color
green.

Required Skills: Logic,
Basic Actions

Solution Code:
def Run():
move_forward()
move_forward()
move_back()
turn_right()
move_forward()
move_forward()
turn_left()
move_forward()

Task 38: Collect exactly 10
strawberries.

Required Skills: Math, Basic
Actions

Solution Code:
def Run():
move_forward()
turn_left()
move_forward()
move_back()
turn_left()
move_forward()
turn_left()
move_forward()
turn_left()
move_forward()

Task 65: Draw the picture us-
ing the colors yellow, green,
blue and red.

Required Skills: Draw,
Variables, Basic Actions

Solution Code:
def Run():
setpc("yellow")
move_forward()
turn_right()
setpc("green")
move_forward()
turn_left()
setpc("blue")
move_forward()
turn_right()
setpc("red")
move_forward()

Task 73: Draw the picture in
green.

Required Skills: Draw,
Variables, Loops

Solution Code:
def Run():
for i in range(4):
setpc("green")
move_forward()
setpc("white")
move_forward()
turn_right()
move_forward()

Task 87: Find the strawberry
with just 6 commands.

Required Skills: Code
Constraints, Loops

Solution Code:
def Run():
move_forward()
turn_right()
for i in range(3):
move_forward()

turn_right()
move_forward()

Figure 2: Examples of real-world tasks, required skills, and solution codes in XLogoOnline-Mini.

To bridge this gap, we introduce XLOGO-
MINIPROG, a benchmark for program synthesis
in the visual programming domain. Our bench-
mark is constructed using the Mini-level of the
XLogoOnline platform (XLogoOnline, 2024),
featuring 85 real-world and 1, 000 synthetic visual
programming tasks, each demanding a blend of
diverse skills. Figure 2 illustrates examples of
these tasks. Each task includes a visual grid with
a turtle that needs to be directed to complete a
specific goal. For example, in Task 28, the goal
is to direct the turtle to collect all red shapes
without stepping on the color green, requiring
logical reasoning, spatial reasoning, planning,
and basic programming skills. Task 38 requires
additional math word problem-solving to collect
10 strawberries. These tasks provide a testbed
for evaluating how large models perform on tasks
that require a combination of skills, presenting a
unique challenge to current large models.

We evaluate large models on these tasks and find
that GPT-4V and Llama3-70B struggle, with suc-
cess rates of only 20% and 2.35%, respectively.
Reasoning model DeepSeek-R1-Distill-Llama3-
70B performs better, achieving 44.71% success
rate. However, a significant gap remains com-
pared to human performance, as these tasks are
designed for students up to 2nd grade, where hu-
mans can successfully solve almost all tasks (Staub,
2021). This indicates that current large models
are not yet capable of effectively solving visual

programming tasks that require a combination of
skills. Figure 1 compares the performance of large
models across different skill dimensions on these
tasks. To improve performance, we develop a fine-
tuning pipeline by leveraging a large-scale syn-
thetic dataset containing over 80, 000 visual pro-
gramming tasks. Our fine-tuned Llama3-8B model
outperforms GPT-4V, Llama3-70B, and DeepSeek-
R1-Distill-Llama3-70B, achieving a 54.12% suc-
cess rate. Moreover, we leverage emulator feed-
back to design a curriculum over the training data
distribution, improving performance by 6.1% over
standard supervised fine-tuning.

Our contributions are as follows: First, we
introduce XLOGOMINIPROG, a program synthesis
benchmark based on the XLogoOnline platform
to evaluate large models in visual programming,
which requires a blend of skills. Second, we
develop a fine-tuning pipeline that includes
synthetic dataset generation and supervised fine-
tuning, along with an emulator-driven fine-tuning
technique that improves standard supervised fine-
tuning performance by 6.1%. Third, we conduct
extensive experiments to benchmark the perfor-
mance of different models, providing an in-depth
failure analysis and a detailed analysis of their
expertise across multiple skill dimensions. We will
publicly release the benchmark for future research
on program synthesis in visual programming.1

1https://github.com/machine-teaching-group/
acl2025-xlogominiprog

15813

https://github.com/machine-teaching-group/acl2025-xlogominiprog
https://github.com/machine-teaching-group/acl2025-xlogominiprog

2 Related Work

Multimodal benchmarks for large models.
Existing works have developed many multimodal
benchmarks to evaluate the visual understanding
and reasoning capabilities of multimodal mod-
els (Hendrycks et al., 2021b; Yu et al., 2024;
Padlewski et al., 2024; Devlin et al., 2017). Our
work falls into this broader category but focuses
on program synthesis in visual programming
domains that demand both visual reasoning and
programming skills. Furthermore, our benchmark
is built on a widely used educational programming
platform, providing practical value for AI-assisted
programming education.

Program synthesis benchmarks for large models.
Program synthesis aims to automatically generate
programs from specifications. Recently, numerous
recent works have focused on training large mod-
els specifically for program synthesis (Chen et al.,
2021; Rozière et al., 2023; Fried et al., 2023; Ni-
jkamp et al., 2023). To evaluate these large models,
many program synthesis benchmarks have been de-
veloped, such as HumanEval (Chen et al., 2021),
MBPP (Austin et al., 2021), and APPS (Hendrycks
et al., 2021a). However, these benchmarks focus
on generating code from natural language or doc-
strings for general programming languages such
as Python (Chen et al., 2021; Austin et al., 2021;
Hendrycks et al., 2021a). Our benchmark focuses
on program synthesis in the visual programming
domain. While our benchmark covers basic pro-
gramming like loops and variables, it requires mod-
els to combine spatial, logical, and programming
skills, posing unique challenges not addressed by
these program synthesis benchmarks.

Large models for visual programming. Visual
programming has been studied in various scenar-
ios, such as task synthesis (Ahmed et al., 2020;
Ghosh et al., 2022; Wen et al., 2024; Pădurean
et al., 2023), program synthesis (Bunel et al., 2018;
Chen et al., 2019), and student modeling (Nguyen
et al., 2024). With the rise of large models, some
initial works evaluate ChatGPT (OpenAI, 2023a)
and GPT-4 (OpenAI, 2023b) in these scenarios,
showing that large models struggle with visual pro-
gramming tasks (Pădurean et al., 2023; Nguyen
et al., 2024; Singla, 2023). In contrast, we pro-
vide a comprehensive benchmark that evaluates a
broader range of models and skills for program
synthesis in visual programming.

3 Background and Synthesis Objective

In this section, we provide background on the XL-
ogoOnline visual programming platform and then
introduce the program synthesis objective.

3.1 Background on XLogoOnline-Mini

XLogoOnline (XLogoOnline, 2024) is a visual
programming platform based on the Logo pro-
gramming language (Pea, 1987) and is widely
used by tens of thousands of students every
year (Hromkovic et al., 2017; Staub, 2021). In this
work, we focus on the Mini-level (XLogoOnline-
Mini). In XLogoOnline-Mini, each task includes
a text description of the goal and code constraints,
along with a two-dimensional visual grid. The
visual grid features a turtle and various elements
such as fruits, shapes, colors, lines, walls, and
forbidden areas. To solve the task, one needs to
write a program to direct the turtle’s movement
in the visual grid to achieve the specified goal.
Figure 2 shows illustrative examples of tasks, the
required skills, and solution codes.

Required skills for XLogoOnline-Mini. We ex-
amine the skills required for solving visual pro-
gramming tasks in XLogoOnline-Mini. Specifi-
cally, the visual programming tasks in our domain
cover the following skills: (i) Logic: Understand-
ing underlying logical relationships specified in the
goal; (ii) Math: Applying basic arithmetic to solve
the task; (iii) Draw: Identifying patterns and gen-
erating the corresponding code; (iv) Basic actions:
Moving and changing directions using only basic
commands; (v) Loops: Utilizing loops to repeat
commands multiple times; (vi) Variables: Using
variables to set and update colors to draw lines with
a specific color; (vii) Loops and Variables: Integrat-
ing loops with variables to solve a task; (viii) Code
Constraints: Adhering to specific code constraints
such as maximum code length.

3.2 Program Synthesis Objective

Next, we formally define task and code specifica-
tions and introduce our synthesis objective.

Task specifications. In XLogoOnline-Mini, a
task T := (G, L, W) consists of a goal G, code con-
straints L, and a visual grid world W. The goal G de-
fines the turtle’s objective. The code constraints L
specify the requirements for a solution code. There
are five types of code constraints: None (no restric-
tions), AtMost (maximum number of commands),

15814

Task Type # Code Constraints # Code Concepts # Code Length # Grid Size #

Find 33 None 54 Basic Actions 47 Short (1-5) 41 Size ≤ 3 59
Draw 33 AtMost 21 Loops 24 Medium (6-10) 29 Size = 4 15
Math 10 Exactly 6 Variables 7 Long (11-17) 15 Size = 5 4
Logic 9 StartBy 4 Loops and Variables 7 Size = 6 4

Hybrid 0 Size ≥ 7 3

Total 85 Total 85 Total 85 Total 85 Total 85

(a) Task distribution of BASIC dataset.

0 25 50
Tasks

Code Constraints
Loops and Variables

Variables
Loops

Basic Actions
Draw
Math
Logic

31
7
7

24
47

33
10

9

(b) Skill distribution of BASIC dataset.

code C := def Run() Do b

rule b := a | b; b | repeat(x) do b

action a := forward | backward | left | right | setpc(r)

color r := red | blue | green | white | black | yellow

iter x := 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10

(c) Code DSL.

Figure 3: Statistics of the BASIC dataset and the code DSL. (a) shows the task distribution across five dimensions
within BASIC. (b) illustrates the skill distribution. To describe these skills, we extract various aspects from task
type, code constraints, and code concepts as detailed in (a), and consolidated these aspects into broader categories,
which we refer to as skills. A task may require multiple skills (see Figure 2). (c) shows the code DSL used in the
XLogoOnline-Mini domain.

Exactly (exact number of commands), StartBy
(initial command sequence), and Hybrid (combi-
nation of constraints). The visual grid world W is a
two-dimensional visual grid featuring a turtle and
various elements. We define the grid size as the
maximum dimension of the grid. For example,
in Figure 2 (Task 87), the goal is “Find the straw-
berry”, the code constraint is “use just 6 commands”
(AtMost), and the visual grid world depicts a 3× 4
grid (size = 4) with a turtle, a strawberry, and
forbidden areas marked by gray cells.

Code specifications. The code space of
XLogoOnline-Mini is defined by the domain-
specific language (DSL) depicted in Figure 3c.
Note that while the DSL defines the formal
structure and syntax, we implement it using a
Python-style code representation to leverage
large models’ pre-trained knowledge of Python
programming. A solution code for a given task is
the code that meets the task’s code constraints and
achieves the specified goal when executed in the
visual grid world. In Figure 2, a solution code is
provided below each task.

Program synthesis objective. Our objective is
to develop a synthesizer function, f : T → C,
which generates a solution code C for a given vi-
sual programming task T. To evaluate f on a task

T, we first use f to synthesize a code Ĉ and then
execute the synthesized code Ĉ using an emulator.
The emulator outputs success if the synthesized
code Ĉ successfully solves the task T and adheres
to code constraints; otherwise, the emulator out-
puts fail. We use success as the main evaluation
metric. Given a dataset Deval = {Ti}Ni=1, we cal-
culate the success rate of f on this dataset as the
overall performance. We curate a dataset BASIC

of N = 85 real-world visual programming tasks
from XLogoOnline-Mini, and we use this as one
of the main datasets for evaluation. In Figures 3a
and 3b, we show the overall distribution of this
dataset and the number of tasks requiring specific
skills, respectively.

4 Methodology for Synthetic Dataset
Generation and Fine-tuning

As discussed in Section 1, existing large models
such as GPT-4V and Llama3-70B struggle with
visual programming tasks in XLogoOnline-Mini.
To address this, we develop a two-stage fine-tuning
pipeline consisting of synthetic dataset generation
and supervised fine-tuning. This section details the
dataset generation process and the methodology for
fine-tuning large models on the synthetic dataset.

15815

Task Type # Code Constraints # Code Concepts # Code Length # Grid Size #

Find 36, 055 None 34, 680 Basic Actions 53, 779 Short (1-5) 20, 985 Size ≤ 3 35, 908
Draw 24, 851 AtMost 29, 354 Loops 24, 432 Medium (6-10) 45, 682 Size = 4 25, 933
Math 14, 994 Exactly 16, 169 Variables 5, 931 Long (11-17) 22, 386 Size = 5 14, 852
Logic 13, 153 StartBy 1, 430 Loops and Variables 4, 911 Size = 6 8, 061

Hybrid 7, 420 Size ≥ 7 4, 299

Total 89, 053 Total 89, 053 Total 89, 053 Total 89, 053 Total 89, 053

(a) Task distribution of SIM dataset.

0 25k 50k 75k
Tasks

Code Constraints
Loops and Variables

Variables
Loops

Basic Actions
Draw
Math
Logic

54,373
4,911
5,931

24,432
53,779

24,851
14,994

13,153

(b) Skill distribution of SIM dataset.

Dataset Purpose #

SIMTRAIN Train 87, 053
SIMVAL Validation 1, 000
SIMEVAL Evaluation 1, 000

SIM 89, 053

(c) Dataset split of SIM dataset.

Figure 4: Statistics of the synthetic SIM dataset. (a) and (b) show the task distribution and the skill distribution,
respectively. (c) shows the dataset split.

4.1 Synthetic Dataset Generation

Our goal is to develop a large synthetic dataset
to train models (Bunel et al., 2018). To achieve
this, we adopt the task synthesis techniques
from (Ahmed et al., 2020; Wen et al., 2024),
which were developed to automatically generate
high-quality tasks in visual programming educa-
tion domains. Instead of random task generation,
these techniques employ symbolic execution and
constraint satisfaction, enabling more controlled
and systematic task synthesis, such as specifying
task types, code concepts, and code lengths.
However, we further adapt these techniques to
generate a larger, more diverse dataset for model
training (see Appendix A.2 for more details).

Dataset generation process and statistics. We
use the adapted task synthesis technique to gener-
ate a synthetic dataset as follows: (i) We manually
craft a solution code for each task in the BASIC

dataset, resulting in a set {(Ti, Ci)}85i=1; (ii) For
each (Ti, Ci), we generate up to 1, 500 synthesized
tasks and their solution codes. To ensure the quality
of the dataset, we take the following processing
steps: we remove any duplicate task-code pairs to
maintain diversity, conduct a correctness check on
the generated solution codes using the emulator,
and exclude any task-code pairs present in the real-
world BASIC dataset from our synthetic dataset.
This last processing step guarantees that the
model has not seen any tasks from the evaluation

dataset during training. We ultimately produce the
synthetic dataset SIM with 89, 053 task-code pairs.
The statistics of this dataset are detailed in Figure 4.
From this synthetic dataset, we randomly select
1, 000 samples for validation, 1, 000 samples
for evaluation, and use the remaining samples
for training. We use this synthetic evaluation
dataset (1, 000 samples), referred to as SIMEVAL,
to complement the real-world dataset BASIC in
evaluating the model’s performance. We provide
full details of the dataset generation process and
dataset quality assessment in Appendix A.

4.2 Methodology for Fine-tuning

Supervised fine-tuning. Supervised fine-tuning
is commonly used to improve large models’ perfor-
mance on domain tasks. In our domain, one can use
the synthetic dataset SIM to fine-tune large mod-
els, where the model receives a natural language
task description as input and outputs Python-style
code. The model is optimized to minimize the
cross-entropy loss between the predicted code and
the ground truth solution code.

Emulator-driven feedback for fine-tuning.
Standard supervised fine-tuning assigns equal
weights to all training samples. However, our do-
main tasks require varying skills and have different
difficulty levels (see Figure 4). Moreover, some
skills are prerequisites for mastering advanced ones.
For instance, a model typically needs to understand

15816

You are presented with a visual programming
task involving a goal, a grid, a turtle, various
items (or lines). You need to write Python code
that enables the turtle to accomplish the goal
within the grid.

{description_of_grid_properties}
{description_of_python_functions}
Now, write a correct Python code that success-
fully solves the following task.

Task:
{description_of_task}
Goal:
{description_of_goal}
Correct code:

(a) Prompt template.

(2) Training(1) Emulator-driven
Resampling

 (3) Next Iteration

(b) Overview of emulator-driven fine-tuning.

Emulator SampleInference

(c) Emulator-driven resampling.

Figure 5: (a) shows the prompt template for fine-tuning. This prompt has several placeholders to include details
for the descriptions of different aspects of the task. More details can be found in the supplementary material.
(b) provides an overview of emulator-driven fine-tuning, starting with the dataset D and initial model f0, and
iteratively resampling and training to produce the final model fK . (c) illustrates the resampling process in emulator-
driven fine-tuning to create the dataset Dk.

basic actions before mastering loops and variables,
and it solves tasks with shorter code lengths be-
fore tackling longer ones. Thus, treating all tasks
with equal importance can be suboptimal in our
setting (Bengio et al., 2009). To address this, we in-
troduce emulator-driven fine-tuning, which designs
a curriculum over the training data distribution by
leveraging emulator feedback. The key idea is to
dynamically adjust the data distribution based on
emulator evaluation, assigning higher weights to
challenging tasks and progressively guiding the
model from simpler to more complex problems.
The overall process is shown in Figures 5b and 5c.
Given an initial model f0 and the training dataset
D, our goal is to learn a final model fK . To achieve
this, at each training epoch k, we first perform the
emulator-driven resampling step (see Figure 5c),
where model fk infers on the training dataset D to
obtain the predicted code Ĉi for each task Ti. Then,
we evaluate each predicted code using an emulator
and update the weight wi for (Ti, Ci) as follows:

wi =
1

|D|
[
1+β ·I

(
Emulator(Ti, Ĉi) = fail

)]
, (1)

where I(·) is an indicator function that returns 1
if the predicted code fails to solve Ti, and 0 other-
wise. The hyperparameter β is adjustable, with a
larger β encouraging the model to focus more on
its mistakes, and β = 0 is equivalent to fine-tuning
without resampling. Then, we sample from the
training dataset D according to the categorical dis-

tribution w′
i = wi/

∑|D|
j=1wj to obtain a resampled

dataset Dk. After resampling, we perform the train-
ing step, where we train model fk on Dk to obtain
fk+1. We repeat the resampling and training steps
until the model converges or reaches a predefined
number of training epochs, yielding the final model
fK . To reduce computational costs, resampling can
be performed at fixed intervals (set to 3 epochs in
our experiments).

5 Experimental Evaluations

In this section, we present a comprehensive evalu-
ation of large models on XLOGOMINIPROG. We
begin by describing the experimental setup in Sec-
tion 5.1, followed by the main results in Section 5.2.
Next, we provide a comparative analysis in Sec-
tion 5.3 and a failure analysis in Section 5.4.

5.1 Experimental Setup
Models evaluated. We evaluate four types of
models: (i) Base LLMs, which include GPT-
3.5 (OpenAI, 2023a), GPT-4 (OpenAI, 2023b),
Llama2 (Touvron et al., 2023), and Llama3 (Meta,
2024) family models; (ii) Reasoning LLMs, which
include o1 (OpenAI, 2024b) and DeepSeek-
R1 (DeepSeek-AI et al., 2025) family models;
(iii) Base VLMs, which include GPT-4V (OpenAI,
2023b), GPT-4o (OpenAI, 2024a), Llava1.5 (Liu
et al., 2023a), InternVL2 (Chen et al., 2023),
Qwen2-VL (Wang et al., 2024), NVLM-D (Dai
et al., 2024), and Molmo (Deitke et al., 2024);

15817

BASIC (85 tasks) SIMEVAL (1, 000 tasks)

Format (%) No-Crash (%) Success (%) Format (%) No-Crash (%) Success (%)

Base LLMs (text-only):
GPT-3.5 (gpt-3.5-turbo-0125) 92.94 11.76 1.18 87.60 9.50 1.60
GPT-4 (gpt-4-turbo-2024-04-09) 95.29 38.83 12.94 97.40 16.80 5.30
Llama3-8B 48.24 5.88 0.00 40.90 2.80 0.60
Llama3-70B 67.06 8.24 2.35 15.50 1.20 0.30
Llama2-7B 27.06 5.88 0.00 21.90 2.90 0.40
Llama2-13B 60.00 7.06 0.00 54.40 3.50 0.40
Llama2-70B 28.24 7.06 0.00 38.30 1.10 0.10

Base VLMs (text + vision):
GPT-4o (gpt-4o-2024-11-20) 100.00 36.47 22.35 99.10 18.30 5.90
GPT-4V (gpt-4-turbo-2024-04-09) 96.47 47.06 20.00 95.50 18.10 5.50
Llava1.5-7B 10.59 1.18 0.00 3.20 0.00 0.00
Llava1.5-13B 10.59 2.35 0.00 9.00 2.10 0.00
InternVL2-8B 0.00 0.00 0.00 56.90 3.80 0.00
InternVL2-Llama3-76B 77.65 31.76 9.41 40.50 6.10 1.50
Qwen2VL-7B 43.53 9.41 0.00 14.30 2.10 0.20
Qwen2VL-72B 28.24 11.76 0.00 36.50 4.40 0.40
NVLM-D-72B 61.18 8.24 1.18 67.40 8.30 2.00
Molmo-7B-D 75.29 8.24 0.00 66.00 7.70 0.60
Molmo-72B 4.71 1.18 1.18 6.40 0.70 0.40

Reasoning LLMs (text-only):
o1 (o1-2024-11-12) 100.00 97.65 76.47 99.08 47.38 23.18
DeepSeek-R1-Distill-Llama-8B 38.82 21.18 12.94 28.70 9.00 5.10
DeepSeek-R1-Distill-Llama-70B 76.47 48.24 44.71 67.00 41.00 32.90

Fine-tuned LLMs and VLMs:
Llava1.5-13B-Uni 68.24± 18.48 19.53± 14.98 11.99± 10.55 56.18± 15.68 13.64± 11.36 10.68± 10.23
Llama2-7B-Uni 99.76± 0.24 65.88± 1.05 45.65± 0.86 99.98± 0.02 62.64± 0.33 53.04± 0.20
Llama2-7B-Emu 100± 0.00 69.41± 1.97 51.53± 0.44 99.96± 0.02 68.70± 0.49 60.10± 0.69
Llama3-8B-Uni 99.53± 0.29 73.65± 0.80 54.12± 1.78 99.96± 0.04 71.26± 1.01 62.72± 1.17
Llama3-8B-Emu 99.76± 0.24 71.53± 0.78 60.23± 1.01 100± 0.00 74.92± 0.60 66.92± 0.65

Figure 6: Performance comparison of models on two evaluation datasets. Bold values indicate the highest
performance in each column within the group. Fine-tuned models are trained using 5 different random seeds and we
report the mean and standard error of the performance.

(iv) Fine-tuned LLMs and VLMs, which include
fine-tuned Llava1.5, Llama2, and Llama3 models.
We use “Uni” and “Emu” as suffixes for models
fine-tuned via standard supervised learning and
emulator-driven methods, respectively. Detailed
versions of the evaluated models are provided in
Appendix Figure 13. Additional evaluation and
fine-tuning details are in Appendix B.

Evaluation procedure and metrics. We eval-
uate models using two datasets: BASIC and the
synthetic dataset SIMEVAL (see Figure 4c). For
each task, we convert its JSON format into a natural
language description using a fixed prompt template
(see Figure 5a). 2 For multimodal models (e.g.,
GPT-4V, Llava1.5), we additionally provide the
task image as input. Then, we prompt the model
to generate Python code and extract only the code
portion from the model output. Finally, we evaluate
the extracted code using an emulator. We use suc-

2The prompt template does not include few-shot examples
or advanced prompting strategies. The evaluation of different
prompting strategies is provided in Appendix C.1.

cess as the main metric (see Section 3.2), and also
consider two additional metrics: (i) Format, which
evaluates whether the model’s output adheres to
the desired code format, and (ii) No-Crash, which
evaluates whether the code runs without crashing,
such as hitting walls, entering forbidden areas, or
exceeding grid boundaries.

5.2 Main Results
As shown in Figure 6, most of the evaluated mod-
els struggle significantly on our benchmark. The
best performance of base models on BASIC and
SIMEVAL is 76.47% and 32.90%, respectively.

Vision capabilities provide limited benefits.
Vision-enabled models, such as GPT-4V, show
modest improvements over their text-only counter-
parts (GPT-4V’s 20% vs. GPT-4’s 12.94% success
rate on BASIC), yet other VLMs continue to strug-
gle significantly. This suggests that while vision
capabilities offer some benefits, they are not the
determining factor in solving our benchmark tasks.
This is likely because, in our setting, the textual

15818

Find

Logic

Math

Draw 0.0
0.2

0.4
0.6

0.8
1.0

None

Exactly

AtMost

StartBy 0.0
0.2

0.4
0.6

0.8
1.0

Basic Actions

Loops and
Variables

Variables

Loops 0.0
0.2

0.4
0.6

0.8
1.0

Grid ≤ 3

Grid 4 ∼ 5

Grid ≥ 6

Code Long

Code
Medium

Code
Short

0.0

0.2

0.4

0.6

0.8

1.0

GPT-4V Llama-3-70B Llama-3-8B-Emu o1 DeepSeek-R1-Distill-Llama-70B

(a) Task Type (b) Code Constraints (c) Code Concepts (d) Code Length & Grid Size

Figure 7: Comparative analysis of models’ capabilities across different dimensions on BASIC. Each chart highlights
the models’ capabilities in different aspects within a dimension. Note that code length and grid size are combined in
the same chart, as both indicate the difficulty levels of the tasks.

input can already sufficiently capture all necessary
visual information required for solving the tasks.
Therefore, although vision capabilities offer some
incremental advantages, their overall impact on
performance in our benchmark remains limited.

Reasoning capabilities are crucial. Reasoning
models outperform all non-reasoning base models,
with o1 achieving a 76.47% success rate on BASIC,
compared to 22.35% for the best non-reasoning
model.3 This large gap suggests that reasoning is
essential for solving visual programming tasks.

Fine-tuning improves performance. Fine-
tuning significantly improves model performance,
especially for Llama models. Llama3-8B improves
from 0% to 54.12% with standard fine-tuning
(Uni), and further to 60.23% with emulator-driven
resampling (Emu).

5.3 Comparative Analysis Across Dimensions

We evaluate model performance across various di-
mensions to identify strengths and weaknesses. We
automatically categorize each task-code pair along
different dimensions (e.g., task type) and assess
model capability in specific aspects (e.g., Math in
the task type dimension) by calculating success
rates for all relevant tasks. Figure 7 presents a
comparative analysis of five representative mod-
els across distinct dimensions on BASIC. Overall,
o1 and Llama3-8B-Emu consistently outperform
other models across almost all dimensions. How-
ever, o1 and Llama3-8B-Emu particularly struggle
with draw tasks and complex code concepts (e.g.,
Loops and Variables), with performance degrading

3In our evaluation, o1 failed to generate responses for
25 tasks in SIMEVAL, so we report its performance on the
remaining 975 tasks.

significantly as task complexity increases through
larger grid sizes and longer code lengths.

5.4 Failure Analysis

In this section, we perform failure analysis to un-
derstand the limitations of different models. We
analyze model failures through two types of fail-
ure analysis: (i) explanation-based failure analysis,
which examines model-generated explanations to
identify failure reasons, and (ii) perturbation-based
failure analysis, which evaluates performance on
simplified, perturbed tasks.

Explanation-based failure analysis. We present
a failure analysis by examining output codes
and explanations from GPT-4V, Llama3-70B, and
DeepSeek-R1-Distill-Llama-70B. Fine-tuned mod-
els are excluded from this analysis as they generate
code without explanations. To conduct the failure
analysis, we first identify common failure types.
Then, we systematically analyze the explanations
and output codes and manually annotate the most
significant reason for each failure. In cases where
multiple failure reasons are identified, we attribute
the failure to the most significant reason. The anal-
ysis results are shown in Figure 8. Our findings
show that GPT-4V and Llama3-70B struggle most
with spatial reasoning, which is caused by mis-
understandings of coordinates or directions after
movements or turns. DeepSeek-R1-Distill-Llama-
70B often fails due to recursive reasoning, where
excessive reasoning produces lengthy outputs with-
out arriving at a final answer.

Perturbation-based failure analysis. We pro-
vide failure analysis by perturbing tasks. We con-
sider GPT-4V, Llama3-70B, and Llama3-8B-Uni.
We first select 10 tasks from the BASIC dataset
that the three models consistently fail to solve. For

15819

Repetition Format Goal
Code

Constraints
Grid

Constraints
Spatial

Reasoning
Recursive

Reasoning Hallucination Success

GPT-4V 0.00 3.53 11.76 7.06 11.76 42.35 0.00 3.53 20.00
Llama3-70B 34.12 1.18 5.88 3.53 8.24 44.71 0.00 0.00 2.35
DeepSeek-R1-Distill-Llama-70B 0.00 0.00 1.18 1.18 3.53 23.53 25.89 0.00 44.71

Figure 8: Percentage (%) of different failure types by analyzing model outputs on the BASIC dataset. Bold values
highlight the most common failure type for each model. See Appendix B.1 for detailed definitions of failure types.

T TA TB TC TA,B TB,C TA,C TA,B,C

GPT-4V 0 30.0 30.0 50.0 50.0 50.0 60.0 60.0
Llama3-70B 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Llama3-8B-Uni 0 0.0 10.0 0.0 20.0 20.0 0.0 30.0

Figure 9: Success rates (%) across 80 perturbed tasks (10 tasks × 8 perturbations). Perturbations are grouped by
the number of components removed. The perturbations include removing code constraints (TA), removing grid
constraints (TB), simplifying spatial relationships (TC), and combinations of these perturbations (TA,B, TB,C, TA,C, and
TA,B,C). Bold values indicate the highest success rate for each model within each perturbation group.

each task T, we consider perturbations including
removing code constraints (TA), removing grid con-
straints (TB), simplifying spatial relationships (TC),
and combinations of these perturbations (TA,B, TB,C,
TA,C, and TA,B,C). Tasks lacking certain components
remain unchanged. As shown in Figure 9, GPT-
4V struggles with spatial relationships. Simpli-
fying these increases its success rate from 0% to
50% (see columns T and TC). Conversely, Llama3-
8B-Uni struggles with grid constraints. Removing
these boosts its success rate to 10% (see column
TB), while removing code constraints and spatial
relationships has no effect. 4

6 Concluding Discussions

In this paper, we introduced XLOGOMINIPROG, a
visual programming benchmark designed to evalu-
ate the program synthesis capabilities of large mod-
els on visual programming tasks using the XLo-
goOnline environment. We found that large models
struggle with visual programming tasks that require
a combination of skills, even though our benchmark
tasks require only basic programming skills. To
improve performance, we developed a fine-tuning
pipeline that involves synthetic dataset generation
followed by supervised fine-tuning. This pipeline
enabled the Llama3-8B model to achieve a success
rate of 54.12% on the benchmark tasks. Addition-

4Interestingly, Llama3-8B-Uni performs worse than GPT-
4V in our failure analysis. This is likely because we selected
tasks that all models initially failed on, which already indicates
Llama3-8B-Uni’s limitations with these examples. When per-
turbed, these tasks further diverge from the training distribu-
tion. GPT-4V, with its stronger generalization capabilities,
remains robust to these distribution shifts and performs better.

ally, we demonstrated that leveraging emulator-
driven feedback can further enhance standard fine-
tuning performance by approximately 6% in both
the Llama3-8B and Llama2-7B models. Our fail-
ure analysis revealed that different models struggle
with distinct issues: DeepSeek-R1-Distill-Llama-
70B struggles with recursive reasoning, GPT-4V
and Llama3-70B with spatial reasoning, and the
fine-tuned Llama3-8B-Uni with grid constraints.

Limitations

We discuss some limitations of our work and pro-
pose ideas for addressing them in the future. First,
our benchmark focuses on basic programming
skills, and future work could extend it to include
more complex programming tasks. This could in-
volve tasks that require more advanced program-
ming concepts, such as conditionals and functions.
Second, our emulator-driven fine-tuning provides
the model with only binary feedback on the correct-
ness of the predicted code. In the future, it would
be interesting to provide more detailed feedback,
such as identifying specific errors in the generated
code and then using this more informative feedback
to guide the fine-tuning process.

Acknowledgments

Funded/Co-funded by the European Union (ERC,
TOPS, 101039090). Views and opinions expressed
are however those of the author(s) only and do not
necessarily reflect those of the European Union
or the European Research Council. Neither the
European Union nor the granting authority can be
held responsible for them.

15820

References

Umair Z. Ahmed, Maria Christakis, Aleksandr Efremov,
Nigel Fernandez, Ahana Ghosh, Abhik Roychoud-
hury, and Adish Singla. 2020. Synthesizing Tasks
for Block-based Programming. In NeurIPS.

Jacob Austin, Augustus Odena, Maxwell I. Nye,
Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie J. Cai, Michael Terry, Quoc V. Le,
and Charles Sutton. 2021. Program Synthesis with
Large Language Models. CoRR, abs/2108.07732.

Yoshua Bengio, Jérôme Louradour, Ronan Collobert,
and Jason Weston. 2009. Curriculum learning. In
ICML.

Tom B. Brown et al. 2020. Language Models are Few-
Shot Learners. In NeurIPS.

Sébastien Bubeck, Varun Chandrasekaran, Ronen Eldan,
Johannes Gehrke, Eric Horvitz, Ece Kamar, Peter
Lee, Yin Tat Lee, Yuanzhi Li, Scott M. Lundberg,
Harsha Nori, Hamid Palangi, Marco Túlio Ribeiro,
and Yi Zhang. 2023. Sparks of Artificial General
Intelligence: Early experiments with GPT-4. CoRR,
abs/2303.12712.

Rudy Bunel, Matthew J. Hausknecht, Jacob Devlin,
Rishabh Singh, and Pushmeet Kohli. 2018. Leverag-
ing Grammar and Reinforcement Learning for Neural
Program Synthesis. In ICLR.

Mark Chen et al. 2021. Evaluating Large Language
Models Trained on Code. CoRR, abs/2107.03374.

Xinyun Chen, Chang Liu, and Dawn Song. 2019.
Execution-Guided Neural Program Synthesis. In
ICLR.

Zhe Chen, Jiannan Wu, Wenhai Wang, Weijie Su, Guo
Chen, Sen Xing, Muyan Zhong, Qinglong Zhang,
Xizhou Zhu, Lewei Lu, Bin Li, Ping Luo, Tong Lu,
Yu Qiao, and Jifeng Dai. 2023. Internvl: Scaling up
vision foundation models and aligning for generic
visual-linguistic tasks. CoRR, abs/2312.14238.

Wenliang Dai, Nayeon Lee, Boxin Wang, Zhuoling
Yang, Zihan Liu, Jon Barker, Tuomas Rintamaki, Mo-
hammad Shoeybi, Bryan Catanzaro, and Wei Ping.
2024. NVLM: Open Frontier-Class Multimodal
LLMs. CoRR, abs/2409.11402.

Leonardo Mendonça de Moura and Nikolaj S. Bjørner.
2008. Z3: An Efficient SMT Solver. In TACAS.

DeepSeek-AI et al. 2025. DeepSeek-R1: Incentivizing
Reasoning Capability in LLMs via Reinforcement
Learning. CoRR, abs/2501.12948.

Matt Deitke et al. 2024. Molmo and PixMo: Open
Weights and Open Data for State-of-the-Art Multi-
modal Models. CoRR, abs/2409.17146.

Paul Denny, Sumit Gulwani, Neil T. Heffernan, Tanja
Käser, Steven Moore, Anna N. Rafferty, and Adish
Singla. 2024. Generative AI for Education (GAIED):
Advances, Opportunities, and Challenges. CoRR,
abs/2402.01580.

Jacob Devlin, Rudy Bunel, Rishabh Singh, Matthew J.
Hausknecht, and Pushmeet Kohli. 2017. Neural Pro-
gram Meta-Induction. In NIPS.

Daniel Fried, Armen Aghajanyan, Jessy Lin, Sida Wang,
Eric Wallace, Freda Shi, Ruiqi Zhong, Scott Yih,
Luke Zettlemoyer, and Mike Lewis. 2023. InCoder:
A Generative Model for Code Infilling and Synthesis.
In ICLR.

Ahana Ghosh, Sebastian Tschiatschek, Sam Devlin, and
Adish Singla. 2022. Adaptive Scaffolding in Block-
Based Programming via Synthesizing New Tasks as
Pop Quizzes. In AIED.

GitHub. 2021. Github Copilot. https://github.com/
features/copilot.

Dan Hendrycks, Steven Basart, Saurav Kadavath, Man-
tas Mazeika, Akul Arora, Ethan Guo, Collin Burns,
Samir Puranik, Horace He, Dawn Song, and Jacob
Steinhardt. 2021a. Measuring Coding Challenge
Competence With APPS. In NeurIPS Track on
Datasets and Benchmarks.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou,
Mantas Mazeika, Dawn Song, and Jacob Steinhardt.
2021b. Measuring Massive Multitask Language Un-
derstanding. In ICLR.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul
Arora, Steven Basart, Eric Tang, Dawn Song, and
Jacob Steinhardt. 2021c. Measuring Mathemati-
cal Problem Solving With the MATH Dataset. In
NeurIPS Track on Datasets and Benchmarks.

Juraj Hromkovic, Giovanni Serafini, and Jacqueline
Staub. 2017. XLogoOnline: A Single-Page, Browser-
Based Programming Environment for Schools Aim-
ing at Reducing Cognitive Load on Pupils. In ISSEP.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and
Weizhu Chen. 2022. LoRA: Low-Rank Adaptation
of Large Language Models. In ICLR.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying
Sheng, Lianmin Zheng, Cody Hao Yu, Joseph Gon-
zalez, Hao Zhang, and Ion Stoica. 2023. Efficient
Memory Management for Large Language Model
Serving with PagedAttention. In SIGOPS.

Stephanie Lin, Jacob Hilton, and Owain Evans. 2022.
TruthfulQA: Measuring How Models Mimic Human
Falsehoods. In ACL.

Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae
Lee. 2023a. Improved baselines with visual instruc-
tion tuning. CoRR, abs/2310.03744.

15821

https://github.com/features/copilot
https://github.com/features/copilot

Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and Ling-
ming Zhang. 2023b. Is Your Code Generated by
ChatGPT Really Correct? Rigorous Evaluation of
Large Language Models for Code Generation. In
NeurIPS.

Meta. 2024. Llama 3. https://llama.meta.com/llama3/.

Manh Hung Nguyen, Sebastian Tschiatschek, and Adish
Singla. 2024. Large Language Models for In-Context
Student Modeling: Synthesizing Student’s Behavior
in Visual Programming from One-Shot Observation.
In EDM.

Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan
Wang, Yingbo Zhou, Silvio Savarese, and Caiming
Xiong. 2023. CodeGen: An Open Large Language
Model for Code with Multi-Turn Program Synthesis.
In ICLR.

OpenAI. 2023a. ChatGPT. https://openai.com/
blog/chatgpt.

OpenAI. 2023b. GPT-4. https://openai.com/index/gpt-
4/.

OpenAI. 2024a. GPT-4o.
https://openai.com/index/hello-gpt-4o/.

OpenAI. 2024b. o1. https://openai.com/o1/.

Piotr Padlewski et al. 2024. Vibe-Eval: A hard eval-
uation suite for measuring progress of multimodal
language models. CoRR, abs/2405.02287.

Victor-Alexandru Pădurean, Georgios Tzannetos, and
Adish Singla. 2023. Neural Task Synthesis for Visual
Programming. Transactions on Machine Learning
Research.

Roy D Pea. 1987. Logo Programming and Problem
Solving.

Sida Peng, Eirini Kalliamvakou, Peter Cihon, and Mert
Demirer. 2023. The Impact of AI on Developer Pro-
ductivity: Evidence from Github Copilot. CoRR,
abs/2302.06590.

Tung Phung, José Cambronero, Sumit Gulwani, Tobias
Kohn, Rupak Majumdar, Adish Singla, and Gustavo
Soares. 2023a. Generating High-Precision Feedback
for Programming Syntax Errors using Large Lan-
guage Models. In EDM.

Tung Phung, Victor-Alexandru Padurean, José Cam-
bronero, Sumit Gulwani, Tobias Kohn, Rupak Ma-
jumdar, Adish Singla, and Gustavo Soares. 2023b.
Generative AI for Programming Education: Bench-
marking ChatGPT, GPT-4, and Human Tutors. In
ICER V.2.

Tung Phung, Victor-Alexandru Padurean, Anjali Singh,
Christopher Brooks, José Cambronero, Sumit Gul-
wani, Adish Singla, and Gustavo Soares. 2024. Au-
tomating Human Tutor-Style Programming Feed-
back: Leveraging GPT-4 Tutor Model for Hint Gener-
ation and GPT-3.5 Student Model for Hint Validation.
In LAK.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sas-
try, Amanda Askell, Pamela Mishkin, Jack Clark,
Gretchen Krueger, and Ilya Sutskever. 2021. Learn-
ing Transferable Visual Models From Natural Lan-
guage Supervision. In ICML.

Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott
Gray, Chelsea Voss, Alec Radford, Mark Chen, and
Ilya Sutskever. 2021. Zero-Shot Text-to-Image Gen-
eration. In ICML.

Baptiste Rozière et al. 2023. Code Llama: Open Foun-
dation Models for Code. CoRR, abs/2308.12950.

Adish Singla. 2023. Evaluating ChatGPT and GPT-4
for Visual Programming. In ICER V.2.

Jacqueline Staub. 2021. Logo Environments in the Fo-
cus of Time. Bulletin of EATCS.

Hugo Touvron et al. 2023. Llama 2: Open Foun-
dation and Fine-Tuned Chat Models. CoRR,
abs/2307.09288.

Peng Wang et al. 2024. Qwen2-VL: Enhancing Vision-
Language Model’s Perception of the World at Any
Resolution. CoRR, abs/2409.12191.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Brian Ichter, Fei Xia, Ed H. Chi, Quoc V. Le,
and Denny Zhou. 2022. Chain-of-Thought Prompt-
ing Elicits Reasoning in Large Language Models. In
NeurIPS.

Chao Wen, Ahana Ghosh, Jacqueline Staub, and Adish
Singla. 2024. Task Synthesis for Elementary Vi-
sual Programming in XLogoOnline Environment. In
AIED Track on Late Breaking Results.

XLogoOnline. 2024. XLogoOnline Platform. https:
//xlogo.inf.ethz.ch/.

Weihao Yu, Zhengyuan Yang, Linjie Li, Jianfeng Wang,
Kevin Lin, Zicheng Liu, Xinchao Wang, and Lijuan
Wang. 2024. MM-Vet: Evaluating Large Multimodal
Models for Integrated Capabilities. In ICML.

15822

https://openai.com/blog/chatgpt
https://openai.com/blog/chatgpt
https://xlogo.inf.ethz.ch/
https://xlogo.inf.ethz.ch/

A More Details About the Datasets

We provide more details about the BASIC dataset
and the synthetic SIM dataset.

A.1 Details of the BASIC Dataset
The real-world visual programming tasks in the
BASIC dataset are curated from the Mini level of
the XLogoOnline platform. These real-world pro-
gramming tasks can be accessed and viewed at
https://xlogo.inf.ethz.ch/. Figure 10 shows
screenshots of the platform.

A.2 Details of the Synthetic Dataset
Generation

In this section, we provide more details about the
generation process of the synthetic dataset SIM.

We use the adapted task synthesis tech-
nique (Ahmed et al., 2020; Wen et al., 2024) to
generate a synthetic dataset. The key idea is to
take a reference task and its solution code as input,
and then apply symbolic execution and constraint
satisfaction techniques to systematically enumer-
ate all possible task-code outputs. The details are
described as follows.

First, we manually craft a solution code for each
of the N = 85 tasks in the BASIC dataset, result-
ing in a set {(Ti, Ci)}Ni=1. However, our objective
is to generate a large and diverse set of tasks to
train large models. To achieve this, we specify an
additional parameter, the difficulty level D. This
parameter enables us to generate tasks with vary-
ing levels of difficulty by specifying the desired
code length, number of code constraints, and goals
relative to the reference input, thereby enhancing
the diversity of the dataset. The parameters are
detailed as follows:

• Easy: The code length and number of code
constraints remain the same as in the refer-
ence code and code constraints, and the goal
remains unchanged.

• Medium: The code length is increased by 1
or 2 additional commands compared to the
reference code, while the number of code con-
straints and the goal remain the same as in the
reference task T.

• Hard: The code length is increased by up to
2 additional commands, one more code con-
straint is added compared to the reference
code constraints, and the goal may be modi-
fied.

Note that the difficulty levels mentioned above in-
dicate the relative difficulty of the generated tasks
compared to the reference task, not the absolute
difficulty of the tasks.

Given the reference input (T, C, D), we begin by
enumerating all possible codes, code constraints,
and goals that meet the specified difficulty levels.
To achieve this, we first create templates for the
code, constraints, and goals, each containing place-
holders. These placeholders are then populated
with specific values using an SMT-based constraint
solver (de Moura and Bjørner, 2008). This process
allows us to generate all possible combinations of
code, constraints, and goals that align with the de-
sired difficulty levels.

Next, we generate task-code pairs by combining
the previously generated code, code constraints,
and goals with corresponding grid worlds. To gen-
erate these grid worlds, we symbolically execute
the previously generated code within an empty grid,
constructing elements like walls and target items
to ensure the grid can be successfully solved by
the code. After the grid world is constructed, it
is combined with the corresponding code, code
constraints, and goal to form a task-code pair.

In implementation, we generate up to 3,000 tasks
for each combination of code, code constraints, and
goals. Subsequently, we sample 500 tasks from
the pool of all generated tasks for each (T, C, D),
resulting in up to 500 tasks × 3 difficulty levels =
1, 500 tasks for each reference input (T, C). This
process is repeated for all reference inputs in the
dataset, resulting in a total of up to 85× 1, 500 =
127, 500 tasks. Finally, we apply the processing
steps described in the main paper to generate the
synthetic dataset, resulting in the final dataset, SIM,
containing 89, 053 tasks and solution codes.

To run the adapted task synthesis technique, we
use a 12-core, 3 GHz Intel Xeon E7-8857 CPU,
with parallelization across 8 cores under a 64-bit
Debian operating system.

A.3 Quality of the Datasets

The quality of the datasets is crucial for the suc-
cess of the models trained on them. Therefore,
we provide more details about the quality of the
datasets. We mainly use the following two datasets
for evaluation:

1. BASIC dataset (85 samples): This dataset was
derived from the visual programming platform
XLogoOnline. The tasks included in this plat-

15823

https://xlogo.inf.ethz.ch/

(a) Task 38 (b) Task 73

Figure 10: Example tasks from the XLogoOnline platform. Students need to drag and drop different blocks to solve
the tasks.

Collect all red shapes without
standing on the green.

Solution Code:
def Run():
move_forward()
move_forward()
move_back()
turn_left()
move_forward()
move_forward()
turn_left()
move_forward()

Collect exactly 5 strawberries.

Solution Code:
def Run():
turn_right()
move_forward()
turn_left()
move_forward()
turn_left()
move_forward()
turn_right()
move_forward()
turn_right()
move_forward()

Draw the picture in yellow.
Use at most 8 commands.

Solution Code:
def Run():
setpc("yellow")
for i in range(4):
move_forward()
turn_left()
move_forward()
turn_left()
move_back()
turn_left()

Draw the picture. Use at most
8 commands.

Solution Code:
def Run():
for i in range(2):
move_back()

turn_right()
for i in range(3):
move_forward()

turn_right()
for i in range(2):
move_forward()

Find the strawberry. Use at
most 6 commands.

Solution Code:
def Run():
move_forward()
turn_right()
for i in range(4):
move_forward()

turn_right()
move_forward()

Figure 11: Examples of synthetic tasks and their corresponding solution codes in SIMEVAL. Note that while the
synthesized solution codes are correct, they may not use the minimum number of commands.

form were meticulously crafted by experts and
have been used by tens of thousands of stu-
dents every year (Hromkovic et al., 2017; Staub,
2021). Given this extensive use and expert in-
volvement, the quality of the tasks in this dataset
is guaranteed.

2. SIMEVAL dataset (1000 samples): This dataset
was synthetically generated. However, we en-
sure data quality by implementing the following
checks: (i) we have removed any duplicate task-
code pairs; (ii) we have conducted a correctness
check on the generated solution codes using the
emulator; and (iii) we have excluded any task-

code pairs present in the BASIC dataset from
this synthetic dataset. In Figure 11, we show
examples of the tasks in this dataset.

To further demonstrate the quality of our
datasets, we conduct a quality annotation for both
datasets. Specifically, we annotate the quality of
all 85 samples in the BASIC dataset and randomly
sample 5% of tasks from the SIMEVAL dataset
for annotation. The following rubrics are used to
evaluate each (task, code) pair:

1. Visual appeal

• 0: Poor - The visual grid is highly unap-
pealing.

15824

Visual Appeal Grid Elements Utility Code Quality Overall Quality

BASIC 1.00 1.00 1.00 1.00
SIMEVAL 0.97 0.94 0.89 0.84

Figure 12: Quality annotation results for BASIC and SIMEVAL datasets. For BASIC, we annotate all 85 samples,
while for SIMEVAL, we randomly sample 5% of the dataset for annotation.

• 0.5: Acceptable - The visual grid is moder-
ately appealing.

• 1: Excellent - The visual grid is highly
appealing.

2. Grid elements utility

• 0: Poor - The distractors are neither useful
nor reasonably positioned.

• 0.5: Acceptable - Some distractors are use-
ful, while others lack utility.

• 1: Excellent - Most, if not all, distractors
are strategically useful and sensibly placed.

3. Code quality

• 0: Poor - The code is of poor quality, un-
able to solve the task, or violates code con-
straints.

• 0.5: Acceptable - The code can solve the
task but contains some unnecessary com-
mands.

• 1: Excellent - The code solves the task,
meets code constraints, and has no redun-
dant commands.

4. Overall quality: Calculated as the minimum
score across visual appeal, grid elements utility,
and code quality.

The results in Figure 12 demonstrate that the
overall quality of the BASIC dataset is excellent.
The SIMEVAL dataset, with an overall quality score
of 0.84, exceeds the acceptable threshold (score =
0.5) and approaches the level of excellence (score
= 1.0). Additionally, during the quality annotation,
we do not find any (task, code) pair where the task
is unsolvable or the code fails to successfully solve
the task.

15825

B More Details of the Failure Analysis,
Fine-tuning, and Evaluation

In this section, we provide more details about the
failure analysis, fine-tuning, and evaluation.

B.1 Details of Failure Analysis
We provide details of the explanation-based failure
analysis. To conduct the explanation-based failure
analysis, we first identify common failure types. In
cases where multiple failure reasons are identified,
we attribute the failure to the most significant cause.
These failure types are defined as follows:

• Repetition: generating the same code sequences
repeatedly;

• Format: producing code with incorrect format-
ting, including the use of disallowed commands;

• Goal: misinterpreting the goal or attempting to
devise a tricky approach to achieve the goal;

• Code constraints: failing to adhere to specified
code constraints while solving the task;

• Grid constraints: attempting to solve the task
while ignoring walls, forbidden cells, or grid
boundaries;

• Spatial reasoning: misunderstanding coordinates
or directions after movements or turns;

• Recursive reasoning: failing to arrive at a final
answer due to excessive or circular reasoning,
leading to lengthy responses that exceed maxi-
mum token generation limits;

• Hallucination: generating non-existent items or
code commands.

B.2 Details of the Evaluation
Versions of evaluated models. The versions of
the evaluated models are provided in Figure 13.

Details of evaluation. All models are queried
with a temperature of 0, except for the DeepSeek-
R1 family models, which are queried with a temper-
ature of 0.6. To evaluate GPT family models, we
use the OpenAI API with a temperature of 0. For
base LLMs, base VLMs, and fine-tuned models,
we use the vLLM (Kwon et al., 2023) inference
engine with 2 A100 GPUs, using a temperature of
0 and max_num_seqs of 2. We find that a smaller
max_num_seqs value slows down inference speed
but improves performance. Therefore, we choose a

max_num_seqs value of 2 to balance performance
and speed for inference. For the DeepSeek-R1 fam-
ily models, we use the vLLM inference engine with
4 A100 GPUs for DeepSeek-R1-Distill-Llama-8B
and 8 A100 GPUs for DeepSeek-R1-Llama-70B.
We set a temperature of 0.6 and max_num_seqs to
2, with a maximum of 8192 tokens to enable extra
reasoning tokens. For the o1 model, due to high
cost and budget constraints, we set the maximum
token generation limit (max_completion_tokens)
to 4096 and the reasoning_effort to Medium
when querying. After inference, we use the em-
ulator to evaluate the models’ success rates over
the evaluation datasets.

B.3 Details of Fine-tuning

Details of fine-tuning Llama family models.
For Llama family models, we choose non-
instruction-tuned versions for fine-tuning because
the base models will be fine-tuned to generate code,
without requiring instruction-following capabili-
ties. We use LoRA for parameter-efficient fine-
tuning (Hu et al., 2022). To find the best LoRA rank
and scaling factor, we experimented with ranks of
8, 16, 32, and 64, using a scaling factor α four
times the rank in each case. We found that ranks
of 32 and 64 provide the best performance. Conse-
quently, we use a rank of 32 and a scaling factor of
128 for all fine-tuning experiments. Fine-tuning is
performed with a batch size of 4 and a learning rate
of 1× 10−4. All fine-tuning experiments are con-
ducted on an internal cluster using 4 A100 GPUs.
Each epoch of fine-tuning for the Llama3-8B and
Llama2-7B models takes approximately 3.75 hours.
In our experiments, all fine-tuned Llama models
are trained for 8 epochs, as we observed that the val-
idation dataset loss stabilizes around epoch 8. We
train all fine-tuned Llama models using 5 different
random seeds.

Details of fine-tuning Llava family model.
We perform standard supervised fine-tuning on
Llava1.5-13B (Liu et al., 2023a). To do this, we fol-
low the default fine-tuning setup and code provided
by the authors. Specifically, we use LoRA with
a rank of 128 and a scaling factor of 256 for fine-
tuning Llava1.5-13B. During fine-tuning, we use a
batch size of 16, a learning rate of 2× 10−4, and a
maximum sequence length of 2048. We fine-tune
the Llava model for 3 epochs on the 87k training
dataset using 5 different random seeds, utilizing 4
A100 GPUs.

15826

Model Version

Base LLMs (text-only):
GPT-3.5 gpt-3.5-turbo-0125 (OpenAI, 2023a)
GPT-4 gpt-4-turbo-2024-04-09 (OpenAI, 2023b)
Llama2-7B meta-llama/Llama-2-7b-chat (Touvron et al., 2023)
Llama2-13B meta-llama/Llama-2-13b-chat (Touvron et al., 2023)
Llama2-70B meta-llama/Llama-2-70b-chat (Touvron et al., 2023)
Llama3-8B meta-llama/Meta-Llama-3-8B-Instruct (Meta, 2024)
Llama3-70B meta-llama/Meta-Llama-3-70B-Instruct (Meta, 2024)

Base VLMs (text + vision):
GPT-4o gpt-4o-2024-11-20 (OpenAI, 2024a)
GPT-4V gpt-4-turbo-2024-04-09 (OpenAI, 2023b)
Llava1.5-7B liuhaotian/llava-v1.5-7b (Liu et al., 2023a)
Llava1.5-13B liuhaotian/llava-v1.5-13b (Liu et al., 2023a)
InternVL2-8B OpenGVLab/InternVL2-8B (Chen et al., 2023)
InternVL2-76B-Llama3-76B OpenGVLab/InternVL2-Llama3-76B (Chen et al., 2023)
Qwen2-VL-7B Qwen/Qwen2-VL-7B-Instruct (Wang et al., 2024)
Qwen2-VL-72B Qwen/Qwen2-VL-72B-Instruct (Wang et al., 2024)
NVLM-D nvidia/NVLM-D-72B (Dai et al., 2024)
Molmo-72B allenai/Molmo-72B-0924 (Deitke et al., 2024)
Molmo-7B-D allenai/Molmo-7B-D-0924 (Deitke et al., 2024)

Reasoning LLMs (text-only):
o1 o1-2024-12-17 (OpenAI, 2024b)
DeepSeek-R1-Distill-Llama-8B DeepSeek/DeepSeek-R1-Distill-Llama-8B (DeepSeek-AI et al., 2025)
DeepSeek-R1-Distill-Llama-70B DeepSeek/DeepSeek-R1-Distill-Llama-70B (DeepSeek-AI et al., 2025)

Fine-tuned LLMs and VLMs:
Llava1.5-13B-Uni liuhaotian/llava-v1.5-13b (supervised fine-tuning)
Llama2-7B-Uni meta-llama/Llama-2-7b (supervised fine-tuning)
Llama2-7B-Emu meta-llama/Llama-2-7b (emulator-driven fine-tuning)
Llama3-8B-Uni meta-llama/Meta-Llama-3-8b (supervised fine-tuning)
Llama3-8B-Emu meta-llama/Meta-Llama-3-8b (emulator-driven fine-tuning)

Figure 13: Evaluated models and their versions.

Details of emulator-driven fine-tuning. For
emulator-driven fine-tuning, we use the same hy-
perparameters and setup as standard fine-tuning,
with the exception of resampling every 3 epochs.
Specifically, we resample the training dataset based
on the emulator’s evaluation results every 3 epochs.
To save time and resources, we start from the
checkpoint of the fine-tuned models without resam-
pling at epoch 3. We then reuse this checkpoint to
continue fine-tuning for 5 additional epochs using
emulator-driven resampling, resulting in a total of
8 epochs. Emulator-driven resampling requires cal-
culating a weight for each training sample, which
involves inference over the entire training dataset.
For inference, we use the vLLM inference en-
gine (Kwon et al., 2023) with max_num_seqs of
8, batch size of 2, and temperature of 0. In this set-
ting, a single iteration of inference and resampling
on the 87k training dataset takes approximately 8

hours. After inference, we use the emulator to eval-
uate the correctness of the model’s predicted code.
Based on this evaluation, we calculate the weight
for each training sample using a value of β = 1.

15827

C Additional Experiments and Results

In this section, we present additional experiments
and results.

C.1 Influence of Prompting Strategies

Vanilla 3-shot 3-shot + CoT

GPT-4 12.94 10.59 18.82
GPT-4V 20 14.12 15.29

Figure 14: Success rates (%) of GPT-4 and GPT-4V with
different prompting strategies on the BASIC dataset.

We conduct experiments on different prompting
strategies to investigate their effectiveness in our
benchmark. We consider the following prompting
strategies: (i) Vanilla is the prompt without any ad-
ditional examples or chain-of-thoughts; (ii) 3-shot
is the prompt with 3-shot examples (Brown et al.,
2020); (iii) 3-shot + CoT is the prompt with the 3-
shot examples and a step-by-step chain-of-thought
(CoT) for each example (Wei et al., 2022). Note
that the 3-shot examples are manually designed
to ensure they cover most skills, including math,
logic, drawing, basic actions, variables, loops, and
code constraints. These same 3-shot examples are
used to prompt all tasks for both 3-shot and 3-shot
+ CoT prompting.

The results are shown in Figure 14. We observe
that 3-shot prompting by itself is not notably effec-
tive. However, when combined with CoT, it leads
to performance improvements, though these gains
are limited. We speculate that this is due to the
nature of our visual programming tasks, which re-
quire long-term path planning, an understanding
of spatial relationships, and accurate prediction of
the consequences of actions. These elements are
typically absent from the training data, making it
difficult for the model to leverage in-context learn-
ing to solve unfamiliar visual programming tasks.

C.2 Influence of Task Representations

In this section, we investigate the influence of
natural language and ASCII representations on
model performance. For visual programming tasks,
the 2-dimensional grid can be represented in vari-
ous ways, including natural language descriptions,
ASCII-based representations, and images. For the
ASCII representation, we developed a template to
represent the task’s visual grid using ASCII charac-
ters. These ASCII characters are then provided to

the model as a replacement for the natural language
descriptions of the visual grid, both for fine-tuning
and evaluation. An example of an ASCII-based
prompt is shown in Figure 21.

The evaluation results are shown in Figure 15.
Our results indicate that GPT-4 and Llama3-70B
perform better with natural language (NL) repre-
sentations. This might be due to their predominant
training on natural language data. However, the
fine-tuned Llama3-8B-Uni model performs simi-
larly with both NL and ASCII prompts, with final
success rates of 54.12% and 53.18%, respectively.

In Figure 15b, we show Llama3-8B-Uni’s perfor-
mance across different epochs with NL and ASCII
prompts. We find that the performance of Llama3-
8B-Uni with NL and ASCII prompts converges at
a similar rate, suggesting that fine-tuning helps the
model adapt to ASCII-based task representations,
making task representations less critical for fine-
tuned models in our visual programming domain.

C.3 Fine-tuning Performance Across
Different Epochs

Figure 16a illustrates the performance of fine-tuned
models across different epochs. For the emulator-
driven fine-tuning (Emu), we adjust the resam-
pling interval to every three epochs, specifically
at epochs 3 and 6. At epoch 3, we reuse the check-
point from the standard fine-tuning (Uni) to save
time and resources. As a result, the performance
of the emulator-driven fine-tuning (Emu) matches
that of the corresponding standard fine-tuning (Uni)
up until epoch 3. Then, an emulator-driven resam-
pling is performed at epoch 3, leading to further
performance improvements compared to models
without resampling. Notably, at the end of train-
ing, Llama2-7B-Emu achieves performance close
to that of Llama3-8B-Uni, despite the latter being
fine-tuned on a more advanced base model. This
demonstrates the effectiveness of the curriculum
designed by emulator-driven resampling in enhanc-
ing the performance of standard fine-tuning.

In Figure 16b, we show the fine-tuning perfor-
mance across different epochs on the synthetic eval-
uation dataset SIMEVAL. This synthetic evaluation
dataset exhibits the same distribution as the train-
ing dataset due to our splitting method. Emulator-
driven resampling is performed at epochs 3 and
6 for both Llama3-8B-Emu and Llama2-7B-Emu.
We find that standard fine-tuning without resam-
pling leads to a smooth increase in performance
across epochs, as seen in the Llama3-8B-Uni and

15828

Success Rates (%)

NL ASCII

Base models
GPT-4 12.94 5.88
Llama3-70B 2.35 1.18

Fine-tuned models
Llama3-8B-Uni 54.12± 1.78 53.18± 1.01

(a) Performance of base and fine-tuned models with NL
and ASCII prompts.

0 1 2 3 4 5 6 7 8
Epoch

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Su
cc

es
s R

at
e

Llama3-8B-Uni (NL)
Llama3-8B-Uni (ASCII)

(b) Performance of Llama3-8B-Uni across epochs with
NL and ASCII prompts.

Figure 15: Influence of task representations on model performance. We compare the performance of base models
and fine-tuned models using natural language (NL) and ASCII prompts, respectively. (a) shows the success rates
of base and fine-tuned models. (b) shows the performance of fine-tuned models across different epochs. Natural
language prompts lead to better performance in base models. However, the fine-tuned Llama3-8B-Uni performs
similarly with both NL and ASCII prompts.

0 1 2 3 4 5 6 7 8
Epoch

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Su
cc

es
s R

at
e

Llama3-8B-Emu
Llama2-7B-Emu
Llama3-8B-Uni
Llama2-7B-Uni

(a) BASIC dataset.

0 1 2 3 4 5 6 7 8
Epoch

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Su
cc

es
s R

at
e

Llama3-8B-Emu
Llama2-7B-Emu
Llama3-8B-Uni
Llama2-7B-Uni

(b) SIMEVAL dataset.

Figure 16: Fine-tuning performance across different epochs on two evaluation datasets. (a) shows the performance
of fine-tuned models across different epochs on the evaluation dataset BASIC. (b) shows the fine-tuning performance
across different epochs on the synthetic evaluation dataset SIMEVAL.

Llama2-7B-Uni curves. In contrast, emulator-
driven fine-tuning with resampling shows slight
performance fluctuations, particularly in the epochs
immediately following resampling (i.e., epochs 4
and 7). The fluctuations in emulator-driven fine-
tuning might be due to the resampling process alter-
ing the distribution of the training data, leading to a
temporary drop in performance. However, in later
epochs after resampling (e.g., epoch 8), the perfor-
mance of resampling-based models outperforms
that of the standard fine-tuning models, indicating
the effectiveness of emulator-driven fine-tuning in
improving fine-tuning performance.

C.4 Can Fine-tuned Models Learn
Transferable Skills?

We explore whether fine-tuned models can develop
transferable skills to solve tasks that are not seen
during training. To investigate this, we first exclude

all tasks involving math skills (e.g., Task 38 in Fig-
ure 2) from the training dataset, resulting in a re-
duced training dataset with 72k samples. Then, we
fine-tune Llama3-8B on this reduced dataset using
standard supervised learning, referring to the re-
sulting model as Llama3-8B-Uni (no-math). Next,
we evaluate this model exclusively on math tasks
from the evaluation datasets. The results are shown
in Figure 17. Our results reveal that Llama3-8B-
Uni (no-math) outperforms Llama3-70B, despite
neither model being trained on math tasks. This
suggests that the fine-tuned Llama3-8B-Uni (no-
math) acquires certain transferable skills. However,
compared to Llama3-8B-Uni, which was trained on
the full dataset including math tasks, the no-math
version performs much worse. This indicates that
while Llama3-8B-Uni (no-math) learns some gen-
eralizable skills, it is less effective than the model
trained directly on data that includes those skills.

15829

BASIC (10 tasks) SIMEVAL (176 tasks)

Llama3-70B 0.00 0.00
Llama3-8B-Uni (no-math) 10.00± 10.00 6.25± 1.18
Llama3-8B-Uni 40.00 ± 5.48 38.98 ± 1.82

Figure 17: Success rates (%) of models on math tasks. Success rates of fine-tuned models are reported as mean and
standard error across five seeds.

HumanEval HumanEval+ MBPP MBPP+

Llama3-8B (Base) 36.6% 31.1% 62.4% 52.6%
Llama3-8B-Uni (Fine-tuned) 33.5% 26.8% 57.9% 46.8%

∆ (Fine-tuned - Base) −3.1% −4.3% −4.5% −5.8%

Figure 18: Pass@1 performance of Llama3-8B (Base) and the Llama3-8B-Uni (fine-tuned) on other program
synthesis benchmarks, including HumanEval, HumanEval+, MBPP, and MBPP+. Fine-tuning on the SIM dataset
leads to a performance drop of 3 ∼ 6% on these program synthesis benchmarks.

C.5 Impact of Domain-Specific Fine-Tuning
on Other Benchmarks

We have shown that fine-tuning on the domain
dataset SIM leads to performance improvements on
out-of-distribution tasks within the same domain,
compared to the base model without fine-tuning.
However, it remains uncertain whether fine-tuning
on our domain dataset would also enhance perfor-
mance on tasks from different domains, such as
Python program synthesis tasks.

To investigate this, we evaluate our fine-
tuned Llama3-8B-Uni model on other Python
program synthesis benchmarks, including Hu-
manEval (Chen et al., 2021), HumanEval+ (Liu
et al., 2023b), MBPP (Austin et al., 2021), and
MBPP+ (Liu et al., 2023b). Unlike our bench-
marks, these benchmarks focus on general Python
program synthesis tasks from natural language or
docstrings, without visual elements present in the
benchmark tasks.

The results are presented in Figure 18. Our find-
ings indicate that fine-tuning on our domain dataset
SIM results in a slight performance drop (3 ∼ 6%)
on these program synthesis benchmark tasks. We
hypothesize that this is due to the SIM dataset’s fo-
cus on visual programming tasks, which emphasize
visual understanding, spatial reasoning, and plan-
ning—skills that are not directly applicable to other
Python program synthesis tasks. Consequently,
fine-tuning on our domain dataset does not provide
additional knowledge for solving other benchmark
tasks. Instead, the fine-tuning process may cause
the model to forget some knowledge already

acquired during the pre-training stage, leading to
a performance drop in other benchmark tasks.

C.6 Case Study: Output Code Analysis on
Perturbed Tasks

In the main paper, we presented a failure analysis
by perturbing tasks and calculating the success rate.
To illustrate the failure cases, we provide examples
of output code from the evaluated models on these
perturbed tasks, including GPT-4V, Llama3-70B,
and Llama3-8B-Uni.

The output code is displayed in Figure 19. In the
provided examples, we observe that GPT-4V has
difficulty handling grid constraints and spatial rea-
soning. For example, in T and TA, GPT-4V attempts
to reach the strawberry by ignoring the walls. How-
ever, once the walls are removed (TB), GPT-4V is
able to successfully solve the task. Interestingly,
GPT-4V fails to solve TA,B, even though this task is
conceptually simpler than TB due to the absence of
code constraints. Upon examining the code and the
accompanying comments from GPT-4V, we found
that it miscalculates the strawberry’s coordinates,
indicating a struggle with spatial reasoning. Addi-
tionally, we observed that moving the turtle closer
to the strawberry consistently improves GPT-4V’s
performance, suggesting that long-path planning
and spatial reasoning are challenging for GPT-4V.
However, for Llama3-70B and Llama3-8B-Uni, we
observe that neither model successfully solves any
of the perturbed tasks.

15830

Task GPT-4V Llama3-70B Llama3-8B-Uni

Find the strawberry. Use at
most 8 commands.

T

def run():
Turtle faces east
turn_right()

Moves to (1,3)
move_forward()

Moves to (2,3)
move_forward()

Moves to (3,3) where the strawberry is located
move_forward()

def run():
move_forward()
turn_right()
move_forward()
move_forward()
turn_left()
move_forward()
move_forward()
move_forward()

def run():
move_forward()
move_forward()
turn_right()
for i in range(3):
move_forward()

turn_right()
for i in range(3):
move_forward()

Find the strawberry.

TA

def run():
Start at (0,3) facing north
First, turn right to face east
turn_right()

Move forward three times to reach (3,3)
for i in range(3):
move_forward()

def run():
for i in range(3):
move_forward()
turn_right()

move_forward()
turn_left()
move_forward()
turn_right()
move_forward()
turn_left()
for i in range(2):
move_forward()

def run():
move_forward()
turn_right()
move_forward()
turn_left()
move_forward()
move_forward()

Find the strawberry. Use at
most 8 commands.

TB

def run():
turn_right() # Turtle faces east
for i in range(3):
move_forward() # Moves from (0,3) to (3,3)

def run():
for i in range(3):
move_backward()

turn_right()
move_forward()
turn_left()
move_forward()
move_forward()
turn_right()
move_forward()

def run():
move_forward()
turn_right()
for i in range(3):
move_forward()

turn_right()
move_backward()
for i in range(3):
move_forward()

Find the strawberry. Use at
most 8 commands.

TC

def run():
move_forward() # Moves from (3,1) to (3,2)
move_forward() # Moves from (3,2) to (3,3)
↪→ where the strawberry is located
turn_right() # Turns to face west
turn_right() # Turns to face north
turn_right() # Turns to face east
turn_right() # Turns to face south again
turn_right() # Turns to face west
turn_right() # Turns to face north

def run():
turn_left()
move_forward()
turn_right()
move_forward()
move_forward()
turn_left()
move_forward()
move_forward()

def run():
move_forward()
turn_right()
for i in range(3):
move_forward()

turn_right()
move_forward()
move_forward()

Find the strawberry.

TA,B

def run():
Turn right to face east
turn_right()

Move forward three times to reach column 3
for i in range(3):
move_forward()

Turn right to face south
turn_right()

Move forward to reach the strawberry at (3,3)
move_forward()

def run():
for i in range(3):
move_forward()

turn_right()
move_forward()
turn_left()
for i in range(3):
move_forward()

def run():
move_forward()
turn_right()
move_forward()
turn_right()
move_forward()
move_forward()

Find the strawberry. Use at
most 8 commands.

TB,C

def run():
Moves from (3,1) to (3,2)
move_forward()

Moves from (3,2) to (3,3)
↪→ where the strawberry is located
move_forward()

def run():
turn_left()
turn_left()
for i in range(2):
move_forward()

turn_left()
move_forward()
turn_right()
move_forward()

def run():
move_forward()
turn_right()
move_forward()
for i in range(2):
move_forward()
turn_right()

turn_left()
move_forward()

Find the strawberry.

TA,C

def run():
The turtle starts at (3,1) facing south.
First, move forward to (3,2).
move_forward()

Then, move forward to (3,3)
where the strawberry is located.
move_forward()

def run():
turn_left()
move_forward()
turn_right()
move_forward()
turn_left()
move_forward()
turn_right()
move_forward()
turn_left()
move_forward()
turn_right()
... (repeat outputs)

def run():
move_forward()
turn_right()
move_forward()
turn_right()
move_forward()
move_forward()
turn_left()
move_forward()
turn_right()
move_forward()

Find the strawberry.

TA,B,C

def run():
The turtle starts at (3,1) facing south.
Move forward to reach (3,2).
move_forward()

Move forward again to reach (3,3)
↪→ where the strawberry is located.
move_forward()

def run():
turn_left()
turn_left()
for i in range(2):
move_forward()

turn_left()
for i in range(3):
move_forward()

turn_right()
move_forward()

def run():
turn_right()
move_forward()
turn_right()
move_forward()
turn_right()
move_forward()
move_forward()
turn_left()
move_forward()
move_forward()

Figure 19: Output codes generated by GPT-4V, Llama3-70B, and Llama3-8B-Uni for various perturbations applied
to a task T. The perturbations include removing code constraints (TA), removing grid constraints (TB), simplifying
spatial relationships (TC), and combinations of these perturbations (TA,B, TB,C, TA,C, and TA,B,C). Note that only the
code is shown due to space limitations. The red line in the output code marks the point where the code first triggers
an execution error or fails to successfully solve the task. GPT-4V successfully solves 5 out of 8 perturbed tasks, but
Llama3-70B and fine-tuned Llama3-8B-Uni fail to solve any of the perturbed tasks.

15831

D Prompts Used in the Benchmark

In this section, we present three types of prompts
for program synthesis in the XLogoOnline-Mini
domain. Figures 20 and 21 show examples of the
prompts using natural language and ASCII repre-
sentation, respectively. Figure 22 shows the prompt
for the few-shot + CoT prompting.

Note that after the title “#### Available Python
Functions” in prompts, we provide an explanation
and two examples of the code format. This is
intended for base models, such as GPT-family and
Llama-family base models, to ensure they follow
the desired code format. However, fine-tuning mod-
els does not need this code format in the prompt,
as models are trained with formatted code directly.
Therefore, we omit the code format and examples
from the prompts when fine-tuning models.

15832

Natural Language Prompt for Code Generation in XLogoOnline-Mini
You are presented with a visual programming task involving a goal, a grid, a turtle, various items (or lines). You need to write Python code that enables the turtle to accomplish the goal within
the grid.

Grid and Turtle
- The task has a `m x n` grid. The coordinates of the grid cells are `(x, y)`, where `x` is the column number and `y` is the row number. The top-left cell has coordinates `(0, 0)`. - The turtle starts
at a specific grid cell and faces one of four directions: North, East, South, or West.

Items
Each item in the grid is defined by three attributes:
- `count`: The number of identical items in that grid cell.
- `color`: The item’s color. Options include red, green, blue, yellow, black, white, orange, purple, and pink.
- `name`: The type of the item, such as circle, rectangle, triangle, cross, strawberry, or lemon.

Lines
Sometimes, the grid doesn’t contain any items but has lines with colors. You need to draw lines of the specified color to solve the task.

Grid Cell Properties
- A grid cell may be `accessible` or `forbidden`. The turtle can move to an accessible cell but not into a forbidden cell. If the turtle tries to move into a forbidden cell, it will crash and fail to
solve the task.
- Grid cells can have walls on their edges (top, bottom, left, and right). The turtle cannot move through walls, otherwise it will crash and fail to solve the task.

Available Python Functions
To solve the task, you can use the following Python functions:
- `move_forward()`: This function moves the turtle forward in the direction it is facing by one grid cell. For example, if the turtle is at the position (x, y) and facing north, after executing
move_forward(), the turtle will be at the position (x, y-1).
- `move_backward()`: This function moves the turtle backward in the direction it is facing by one grid cell. For example, if the turtle is at the position (x, y) and facing west, after executing
`move_backward()`, the turtle will be at the position (x+1, y).
- `turn_left()`: This function makes the turtle turn left in the direction it is facing - by 90 degrees. For example, if the turtle is facing north, after executing `turn_left()`, the turtle will be facing
west.
- `turn_right()`: This function makes the turtle turn right in the direction it is facing - by 90 degrees. For example, if the turtle is facing south, after executing `turn_right()`, the turtle will be
facing west.
- `setpc(color)`: This function sets the pen color to the specified color. The available colors are: red, green, blue, yellow, black, white. The default pen color is black. The trajectory of the turtle
is drawn with the pen color.
- `for` loop: This loop is used to repeat a set of commands a specified number of times. For example, `for i in range(4):` will repeat the commands inside the loop 4 times.
Your code should follow the format:
```python
def run():

# Your solution code goes here
pass

```
Here are some examples of the code:
Example 1:
```python
def run():

move_forward()
for i in range(4):

move_forward()
turn_left()

```
Example 2:
```python
def run():

move_forward()
setpc(’red’)
for i in range(3):

move_forward()
turn_right()
move_backward()

```

Now, write a CORRECT Python code that successfully solves the following task.
Task:
A 3x3 grid. The turtle starts at (1,1) facing north.
Accessible cells: (0,0), (1,0), (2,0), (0,1), (1,1), (2,1), (0,2), (1,2), (2,2).
Items in the grid:
- 1 red strawberry at (1,0).

Goal:
Find the strawberry.

CORRECT code:

Figure 20: An example of natural language prompt in the XLogoOnline-Mini domain.

15833

ASCII-based Prompt for Program Synthesis in XLogoOnline-Mini
You are presented with a visual programming task involving a goal, a grid, a turtle, various items (or lines). You need to write Python code that enables the turtle to accomplish the goal within
the grid.

Grid and Turtle
A task’s grid contain a turtle and some items. The turtle can face one of four directions: North (`ˆ`), South (`v`), East (`>`), or West (`<`). An item has three attributes: `count`, `color`, and
`name`. The `count` indicates the number of identical items in that grid cell. The `color` specifies the item’s color, and the `name` describes the item’s type. Here are the possible options:
- Colors: Red (`R`), Green (`G`), Blue (`B`), Yellow (`Y`), Black (`K`), White (`W`), Orange (`O`), Purple (`U`), Pink (`P`)
- Names: Circle (`o`), Rectangle (`□`), Triangle (`△`) ,Cross (`X`), Strawberry (`S`), Lemon (`L`)
- Counts: `1`, `2`, `3`, `4`
- For example, `2RS` means two red strawberries.

We use the following symbols to describe a grid:
- `—` represents the top or bottom edge of a grid cell.
- `|` represents the left or right edge of a grid cell.
- `===` represents an upper or lower wall of a cell.
- `||` represents a left or right wall of a cell.
- `+` represents the corner of a grid cell.
- `X` represents a forbidden cell that cannot be accessed.

Grid Cell Properties
- A grid cell may be `accessible` or `forbidden`. The turtle can move to an accessible cell but not into a forbidden cell. If the turtle tries to move into a forbidden cell, it will crash and fail to
solve the task.
- Grid cells can have walls on their edges (top, bottom, left, and right). The turtle cannot move through walls, otherwise it will crash and fail to solve the task.

Available Python Functions
To solve the task, you can use the following Python functions:
- `move_forward()`: This function moves the turtle forward in the direction it is facing by one grid cell. For example, if the turtle is at the position (x, y) and facing north, after executing
move_forward(), the turtle will be at the position (x, y-1).
- `move_backward()`: This function moves the turtle backward in the direction it is facing by one grid cell. For example, if the turtle is at the position (x, y) and facing west, after executing
`move_backward()`, the turtle will be at the position (x+1, y).
- `turn_left()`: This function makes the turtle turn left in the direction it is facing - by 90 degrees. For example, if the turtle is facing north, after executing `turn_left()`, the turtle will be facing
west.
- `turn_right()`: This function makes the turtle turn right in the direction it is facing - by 90 degrees. For example, if the turtle is facing south, after executing `turn_right()`, the turtle will be
facing west.
- `setpc(color)`: This function sets the pen color to the specified color. The available colors are: red, green, blue, yellow, black, white. The default pen color is black. The trajectory of the turtle
is drawn with the pen color.
- `for` loop: This loop is used to repeat a set of commands a specified number of times. For example, `for i in range(4):` will repeat the commands inside the loop 4 times.
Your code should follow the format:
```python
def run():

# Your solution code goes here
pass

```
Here are some examples of the code:
Example 1:
```python
def run():

move_forward()
for i in range(4):

move_forward()
turn_left()

```
Example 2:
```python
def run():

move_forward()
setpc(’red’)
for i in range(3):

move_forward()
turn_right()
move_backward()

```

Now, write a CORRECT Python code that successfully solves the following task:
Task:

+---+---+---+
| |1RS| |
+---+---+---+
| | ^ | |
+---+---+---+
| | | |
+---+---+---+

Goal:
Find the strawberry.
CORRECT Code:

Figure 21: An example of ASCII-based prompt in the XLogoOnline-Mini domain.

15834

Few-shot + CoT Prompt for Code Generation in XLogoOnline-Mini
You are presented with a visual programming task involving a goal, a grid, a turtle, various items (or lines). You need to write Python code that enables the turtle to accomplish the goal within
the grid.

Grid and Turtle
- The task has a `m x n` grid. The coordinates of the grid cells are `(x, y)`, where `x` is the column number and `y` is the row number. The top-left cell has coordinates `(0, 0)`. - The turtle starts
at a specific grid cell and faces one of four directions: North, East, South, or West.

Items
Each item in the grid is defined by three attributes:
- `count`: The number of identical items in that grid cell.
- `color`: The item’s color. Options include red, green, blue, yellow, black, white, orange, purple, and pink.
- `name`: The type of the item, such as circle, rectangle, triangle, cross, strawberry, or lemon.

Lines
Sometimes, the grid doesn’t contain any items but has lines with colors. You need to draw lines of the specified color to solve the task.

Grid Cell Properties
- A grid cell may be `accessible` or `forbidden`. The turtle can move to an accessible cell but not into a forbidden cell. If the turtle tries to move into a forbidden cell, it will crash and fail to
solve the task.
- Grid cells can have walls on their edges (top, bottom, left, and right). The turtle cannot move through walls, otherwise it will crash and fail to solve the task.

Available Python Functions
To solve the task, you can use the following Python functions:
- `move_forward()`: This function moves the turtle forward in the direction it is facing by one grid cell. For example, if the turtle is at the position (x, y) and facing north, after executing
move_forward(), the turtle will be at the position (x, y-1).
- `move_backward()`: This function moves the turtle backward in the direction it is facing by one grid cell. For example, if the turtle is at the position (x, y) and facing west, after executing
`move_backward()`, the turtle will be at the position (x+1, y).
- `turn_left()`: This function makes the turtle turn left in the direction it is facing - by 90 degrees. For example, if the turtle is facing north, after executing `turn_left()`, the turtle will be facing
west.
- `turn_right()`: This function makes the turtle turn right in the direction it is facing - by 90 degrees. For example, if the turtle is facing south, after executing `turn_right()`, the turtle will be
facing west.
- `setpc(color)`: This function sets the pen color to the specified color. The available colors are: red, green, blue, yellow, black, white. The default pen color is black. The trajectory of the turtle
is drawn with the pen color.
- `for` loop: This loop is used to repeat a set of commands a specified number of times. For example, `for i in range(4):` will repeat the commands inside the loop 4 times.

Your code should follow the format:
```python
def run():

# Your solution code goes here
pass

```

Here are some examples of the the tasks and their corresponding solution codes:
{few_shot_example_1}
{few_shot_example_2}
{few_shot_example_3}

Now, write a CORRECT Python code that successfully solves the following task.
Task:
A 3x3 grid. The turtle starts at (1,1) facing north.
Accessible cells: (0,0), (1,0), (2,0), (0,1), (1,1), (2,1), (0,2), (1,2), (2,2).
Items in the grid:
- 1 red strawberry at (1,0).

Goal:
Find the strawberry.

CORRECT code:

Figure 22: An example of the few-shot + CoT prompt in the XLogoOnline-Mini domain. This prompt has several
placeholders to include details for few-shot examples.

15835

{few_shot_example_1}
Task 1: A 4x4 grid. The turtle starts at (3,3) facing south.
Accessible cells: (3,0), (3,1), (3,2), (0,3), (1,3), (2,3), (3,3).
Forbidden cells: (0,0), (1,0), (2,0), (0,1), (1,1), (2,1), (0,2), (1,2), (2,2).
Lines in the grid:
- A red line from (3,0) to (3,1).
- A red line from (3,1) to (3,2).
- A red line from (3,2) to (3,3).
- A red line from (0,3) to (1,3).
- A red line from (1,3) to (2,3).
- A red line from (2,3) to (3,3).

Goal 1:
Draw the picture in red. Use at most 8 commands.

Code 1:
Explanation:
1. Starting Position and Initial Setup:
- The turtle starts at `(3, 3)`, facing south. To achieve the goal of drawing the picture in red, we first need to set the pen color to red using the `setpc(’red’)` command.

2. Plan the path:
- To draw the pattern, the path is `(3,3) -> (3,0) -> (3,3) -> (0,3)`.

3. Compiling the Path into Commands:
- The turtle starts at `(3, 3)`, facing south. To draw the first red line from `(3, 3)` to `(3, 0)`, we need to first set the pen color to red and then move back 3 times to reach from `(3, 3)` to `(3, 0)`.
- Now, the turtle is at `(3, 0)` and still facing south. To move back to `(3, 3)`, we move forward 3 times in the same direction (south).
- At `(3, 3)` and facing south, the turtle needs to turn right to face west.
- Now, the turtle is at `(3, 3)` and facing west. Move forward 3 times to reach from `(3, 3)` to `(0, 3)` facing west.
- Now the turtle has drawn the picture in red.

Putting it all together and notice that the solution code can use at most 8 commands. Here is the solution code:

```python
def run():

setpc(’red’)
for i in range(3):

move_backward()
for i in range(3):

move_forward()
turn_right()
for i in range(3):

move_forward()
```

Figure 23: The detail of the first few-shot + CoT example {few_shot_example_1}.

15836

{few_shot_example_2}
Task 2:
A 3x3 grid. The turtle starts at (1,2) facing south.

Accessible cells: (0,0), (1,0), (2,0), (0,1), (1,1), (2,1), (0,2), (1,2), (2,2).
(1,0) has a wall at the bottom edge.
(2,0) has a wall at the bottom edge.
(1,1) has a wall at the top edge.
(2,1) has a wall at the top edge.

Items in the grid:
- 4 red strawberries at (1,0).
- 1 red strawberry at (2,0).
- 2 red strawberries at (2,1).
- 1 red strawberry at (2,2).

Goal 2:
Collect exactly 5 strawberries.

Code 2:
Explanation:
1. Starting Position and Initial Setup:
- The turtle starts at `(1, 2)`, facing south.
- The goal is to collect exactly 5 strawberries.
- There are 4 strawberries at `(1, 0)` and 1 strawberry at `(2, 0)`. By visiting these two cells, we can collect exactly 5 strawberries. We need a path to visit both `(1, 0)` and `(2, 0)` while
considering walls that block movement between cells `(1, 0)` & `(1, 1)` and `(2, 0)` & `(2, 1)`.

2. Planning the Path:
- An ideal path to avoid the walls and collect strawberries is: `(1, 2) -> (1, 1) -> (0, 1) -> (0, 0) -> (2, 0)`.
- This path efficiently collects exactly 5 strawberries.

3. Compiling the Path into Commands:
- The turtle starts at `(1, 2)` facing south.
- To move from `(1, 2)` to `(1, 1)`, it needs to move backward. Now the turtle is at `(1, 1)` facing south.
- To move from `(1, 1)` to `(0, 1)`, it needs to turn right and move forward. Now it is at `(0, 1)` facing west.
- To move from `(0, 1)` to `(0, 0)`, it needs to turn right to face north, then move forward. Now it is at `(0, 0)` facing north.
- To move from `(0, 0)` to `(2, 0)`, it needs to turn right to face east, and finally, move forward twice to go from `(0, 0)` to `(2, 0)`.
- Now the turtle has collected exactly 5 strawberries.

Putting it all together. The solution code is:

```python
def run():

move_backward()
turn_right()
move_forward()
turn_right()
move_forward()
turn_right()
move_forward()
move_forward()

```

Figure 24: The detail of the second few-shot + CoT example {few_shot_example_2}.

15837

{few_shot_example_3}
Task 3:
A 3x3 grid. The turtle starts at (2,2) facing south.
Accessible cells: (0,0), (1,0), (2,0), (0,1), (1,1), (2,1), (0,2), (1,2), (2,2).
Items in the grid:
- 1 blue triangle at (0,0).
- 1 red circle at (1,0).
- 1 green circle at (2,0).
- 1 blue circle at (0,1).
- 1 blue rectangle at (1,1).
- 1 red triangle at (2,1).
- 1 red cross at (0,2).
- 1 green rectangle at (1,2).

Goal 3:
Find the blue triangle without standing on a red. Use at most 3 ’backward’.

Code 3:
Explanation:
1. Starting Position and Initial Setup:
- The turtle starts at `(2, 2)`, facing south.
- The goal is to find the blue triangle located at `(0, 0)` without standing on any red items.
- There are several items in the grid: red circle at `(1, 0)`, red triangle at `(2, 1)`, and red cross at `(0, 2)`.
- We need to avoid these red items and reach `(0, 0)` using at most 3 backward movements.

2. Planning the Path:
- Since we have to avoid red items and should use at most 3 backward movements, we need to plan an efficient path.
- A suitable path that avoids red items and stays within the permitted movements is: `(2, 2) -> (1, 2) -> (1, 1) -> (0, 1) -> (0, 0)`.

3. Compiling the Path into Commands:
- The turtle starts at `(2, 2)` facing south. First, turn left to face east.
- Move backward to reach `(1, 2)` facing east.
- Turn left again to face north.
- Move forward to reach `(1, 1)` facing north.
- Turn right to face east.
- Move backward to reach `(0, 1)` facing east.
- Turn right to face south.
- Move backward to reach `(0, 0)` facing south.

Putting it all together. The solution code is:

```python
def run():
turn_left()
move_backward()
turn_left()
move_forward()
turn_right()
move_backward()
turn_right()
move_backward()
```

Figure 25: The detail of the third few-shot + CoT example {few_shot_example_3}.

15838

