g FinanceReasoning: Benchmarking Financial Numerical Reasoning
More Credible, Comprehensive and Challenging

Zichen Tang Haihong E* Ziyan Ma Haoyang He Jiacheng Liu
Zhongjun Yang Zihua Rong RongjinLi KunJi Qing Huang Xinyang Hu
Yang Liu Qianhe Zheng

Beijing University of Posts and Telecommunications

 bupt-reasoning-lab.github.io/FinanceReasoning

€) BUPT-Reasoning-Lab/FinanceReasoning

Abstract

We introduce FinanceReasoning, a novel
benchmark designed to evaluate the reason-
ing capabilities of large reasoning models
(LRMs) in financial numerical reasoning prob-
lems. Compared to existing benchmarks, our
work provides three key advancements. (1)
Credibility: We update 15.6% of the questions
from four public datasets, annotating 908 new
questions with detailed Python solutions and
rigorously refining evaluation standards. This
enables an accurate assessment of the reason-
ing improvements of LRMs. (2) Comprehen-
siveness: FinanceReasoning covers 67.8% of
financial concepts and formulas, significantly
surpassing existing datasets. Additionally, we
construct 3,133 Python-formatted functions,
which enhances LRMs’ financial reasoning
capabilities through refined knowledge (e.g.,
83.2% — 91.6% for GPT-40). (3) Challenge:
Models are required to apply multiple finan-
cial formulas for precise numerical reasoning
on 238 Hard problems. The best-performing
model (i.e., OpenAl ol with PoT) achieves
89.1% accuracy, yet LRMs still face challenges
in numerical precision. We demonstrate that
combining Reasoner and Programmer models
can effectively enhance LRMs’ performance
(e.g., 83.2% — 87.8% for DeepSeek-R1). Our
work paves the way for future research on
evaluating and improving LRMs in domain-
specific complex reasoning tasks.

1 Introduction

“If you cannot measure it, you cannot improve it.”
— Lord Kelvin

Recently, combined with train-time scaling and
test-time scaling (Kaplan et al., 2020; OpenAl,
2024b), large language models (LLMs) have exhib-
ited remarkable reasoning capabilities (Xu et al.,

*Corresponding author.

¥. BUPT-Reasoning-Lab/FinanceReasoning

Dataset Difficulty Distribution and Knowledge Coverage

Dataset Subset Easy Medium Hard Knowledge Coverage
CodeFinQA Test (795) 559 239 6 45.70%
CodeTAT-QA Test (288) 189 99 0 14.66%
FinCode Test (47) 6 27 14 15.46%
FinanceMath Val (200) 34 104 62 18.89%
FinanceReasoning All (2,238) 1,000 1,000 238 67.76%
_ I
& [Example of FinanceReasoning| |

Question

A hedge fund has the following fee structure:

Annual management fee based on year-end AUM 2%

Incentive fee calculated net of management fee 20%
Hurdle rate before incentive fee collection starts 5%

The hedge fund with $120 million of initial investment, earned 35% return at
year end. What is an investor's net return in $ terms? Answer in millions of
dollars to two decimal places.

It

Fund Composition & output
$162 | Management Fee |3. Management Fee:
$3.24 2% of year-end AUM ($162 million) ...
$158.76 Incentive F 4. Profit After Management Fee:
"Cegé"’% €€ |$158.76 million — $120 million = $38.76 million.
$152.21 = 5. Hurdle Rate:
5% of initial investment = 0.05 x $120 million.
6. Excess Profit Over Hurdle:
Net Return $38.76 million — $6 million = $32.76 million.
$32.21 7. Incentive Fee:
20% of excess profit = 0.20 x $32.76 million.
8. Total Fees:
Hurdle Rate Management ($3.24 million) + Incentive ...
$120 $6 Final Answer: Therefore, the answer is 32.21.

Figure 1: Statistics and an example of FinanceRea-
soning. The Knowledge Coverage is calculated as the
proportion of financial calculations involved in the ques-
tions relative to the financial encyclopedia. To address
the given problem, LRMs are required to first select
appropriate financial formulas based on the given condi-
tions (e.g., hurdle rate) and perform step-by-step precise
numerical computations with rounding requirements.

2025), through a long reasoning process and ef-
fective reasoning strategies. These reasoning-
enhanced models (i.e., Large reasoning models
(LRMs)) (OpenAl, 2024d,c, 2025; DeepSeek-Al
et al., 2025; Team, 2024; Team et al., 2025; Gem-
ini, 2025), are able to tackle complex tasks that
require multi-step reasoning, such as code (Jain
et al., 2025; Chen et al., 2021a), math (Mao et al.,
2024; Lightman et al., 2024), and science (Lu et al.,
2024; Yue et al., 2024; Wang et al., 2024).

However, as illustrated in Figure 1, more real-
world domain-specific numerical reasoning tasks

15721

Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 15721-15749

July 27 - August 1, 2025 ©2025 Association for Computational Linguistics

https://bupt-reasoning-lab.github.io/FinanceReasoning
https://github.com/BUPT-Reasoning-Lab/FinanceReasoning
https://huggingface.co/datasets/BUPT-Reasoning-Lab/FinanceReasoning

(a) Re-annotation

Dataset Subset Answer Corrections Question Disambiguations Total
CodeFinQA Test (795) 55 (6.92%) 58 (7.30%) 113 (14.21%)
CodeTAT-QA Test (288) 19 (6.60%) 9 (3.13%) 28 (9.72%)
FinCode Test (47) 6 (12.77%) 1 (2.13%) 7 (14.89%)
FinanceMath Val (200) 15 (7.50%) 45 (22.50%) 60 (30.00%)
(b) Re-evaluation
" Dataset (Criteria) DeepSeek-V3 ~ DeepSeek-RI ARI-V3) % Relative Increase (R1 vs. V3)
CodeFinQA (Silver) 61.76 60.88 -0.88 -1.42%
CodeFinQA (Gold) 85.41 87.42 2.01 2.35%
CodeTAT-QA (Silver) 89.24 89.58 0.34 0.38%
CodeTAT-QA (Gold) 91.67 93.75 2.08 2.27%
FinCode (Silver) 80.85 82.98 2.13 2.63%
FinCode (Gold) 87.72 95.74 8.02 9.14%
FinanceMath (Silver) 58.50 71.00 12.50 21.37%
FinanceMath (Gold) 59.50 83.50 24.00 40.34%

Table 1: (a) Re-annotation: For the fest or validation sets of four datasets, the proportion of updated examples
ranges from 9.72% to 30.00%. (b) Re-evaluation: Silver denotes the Accuracy on the original dataset under relaxed
criteria, while Gold represents the results on the re-annotated dataset under strict criteria. Rigorous revision and
evaluation reveal LRMs’ actual performance and DeepSeek-R1’s significant improvement over DeepSeek-V3.

(e.g., financial quantitative analysis) challenge
LRMs to deeply understand and apply domain-
specific knowledge, and perform intricate mathe-
matical calculations based on hybrid contexts such
as table and text (Plaat et al., 2024; Chen et al.,
2023c; Wang and Zhao, 2024; Romera-Paredes
et al., 2024). Specifically, in the high-stakes fi-
nancial domain, where precision and transparent
reasoning are paramount (Krumdick et al., 2024),
the reasoning capabilities of LRMs must be further
validated and accurately assessed. Existing numeri-
cal reasoning benchmarks for finance are limited in
their notation quality, coverage of specific knowl-
edge in the financial domain, and complexity of
reasoning (Chen et al., 2021b, 2022; Zhu et al.,
2021; Zhao et al., 2024; Krumdick et al., 2024). As
illustrated in Table 1, DeepSeek-R1 have achieved
greater accuracy 90% in easier datasets and are
saturated due to annotation quality, making it diffi-
cult to objectively evaluate their actual reasoning
capabilities and analyze their shortcomings.

Therefore, we propose FinanceReasoning, a
credible, comprehensive, and challenging finan-
cial numerical reasoning benchmark to evaluate
the reasoning capabilities of LRMs in the finance
domain. The dataset comprises a total of 2,238
problems covering diverse financial knowledge, of
which 1,420 problems have been reviewed and re-
vised based on public datasets, while 908 problems
were automatically generated by LLM (i.e., GPT-
40) and subsequently annotated by experts. Each
problem includes hybrid contexts, unambiguous

questions, Python-formatted solutions, and precise
answers, providing a reliable reference for accu-
rately evaluating the complex numerical reason-
ing capabilities of LRMs. Additionally, we have
collected and open-sourced a comprehensive fi-
nancial function library containing 3,133 Python-
formatted functions. Each function includes pre-
cise functional descriptions, parameter explana-
tions, and step-by-step implementation code, of-
fering a high-quality structured knowledge base
to automatically build domain-specific reasoning
problems and enhance LLMs’ domain-specific rea-
soning capabilities through knowledge retrieval.

We evaluate six current open-source and propri-
etary LRMs (OpenAl, 2024d,c, 2025; DeepSeek-
Al et al., 2025; Team, 2024; Gemini, 2025), using
Chain-of-Thought (CoT) (Wei et al., 2022) and
Program-of-Thought (PoT) (Chen et al., 2023b).
We also evaluate seven LLMs without reasoning-
specific enhancement (Gemini, 2025; OpenAl,
2024a; Anthropic, 2024; DeepSeek-Al et al., 2024;
Al@Meta, 2024b,a; Qwen et al., 2025).

Our experimental results demonstrate that the
powerful LRM (i.e., OpenAl ol) with PoT
achieves the best performance, with an accuracy of
89.1% on Hard subset, significantly outperforming
other LLMs. However, current LRMs still faced
incorrect formula application and imprecise numer-
ical calculation on challenging domain-specific rea-
soning problems. Next, we explore various knowl-
edge augmentation methods and combinations of
models. Experiments demonstrate that integrating

15722

Step 1: Update

-~

Limitation 1: Unsolvable Problem e Analy'sis: The material does not match the

and the table lacks 2018 data.
\/_Di
r V
Update 1: Solvable Problem &
Revised Question: What portion of total expected

cash outflow for capital leases is due in 2008?
Answer to three decimal places.

]

Question: What portion of total expected cash
outflow for capital leases is due in 2018? Answer
to three decimal places.

Context: A table without 2018 data
Source: CodeFinQA
2

J
(Gimtaion .3 L
Question: What is the change in total cost of
revenue between 2019 and 2018? Answer to two
decimal places.
Ground Truth: 17.45
Output: 0.17
\Source: CodeTAT-QA

Analysis: The question is unclear and should
specify the rate of change.
o
Update 2: Clear Statement L <]
Revised Question: What is the percentage change
in total cost of revenue between 2019 and 20187
Answer as a percentage to two decimal places.

l

'9

J

(‘Limitation 3: Oversimplified Process &) E?
Question: Based onWhat is the
expectation for February 2014 (expressed as a
percentage)?

Python Solution: def solution():
return 27.0 + 77.5 * (35.0 - 27.0) / 100
\Source: FinanceMath

Analysis: Elaborate the python solution to better
present the correct reasoning process.

Elaboration
Update 3: Detailed Process
Detailed Python Solution: def solution():
sample_size_A=25... t_ statistic =
/

(Limitation 4: Incorrect Answer (=) Analysis: Correct incorrect answer and python
Question: An... What is the realized yield solution to improve the accuracy of the dataset.

)
%)

lysis: Strictly refine the evaluation criteria

and conduct a more detailed assessment of the
model's capability.

on the bond investment? Answer as a
percentage with two decimal places.
Answer: 3.77 x

Source: FinCode

{} Correction

Update 4: Correct Answer
True Answer: 8.71 4

5

Limif 58 A
Question: What is the holding period return
for the three-year...as reported by a
researcher (expressed as a percentage)?
Evaluation Criteria: 0.548 v 548 / -548

Source: FinanceMath

Refinement

Update 5: Strict Evaluation (<]
Our Evaluation Criteria: 0.548 # 548 X -548 X

(sample_mean_A - sample_mean_B) / standard_errorj|.

D)

Step 2: Expand

G

o ¥ Generate, (=) Voenerat
> B> _—

Review EFynctions Review
= =

Question: What would the 2012 shares ...
international?

Context: Atable showing ... stock from

2010 to 20127

Python Solution: shares_outstanding = 1328..|
Ground Truth: 1152

Investopedia Articles

= A

A

Step 3: Grade sz FinanceReasoning

(Three levels of difficulty of questions in the same context)
Context: A manufacturing company finances itself through uL\E‘OJ
equity and debt.
3 Assessing LRMs'
Easy Question Different Capabilities
Easy Data: market_value_equity = 150 million Conceptual

1,000 Question: What is the company's market value of Memorization
equity?
Reasoning Requirements: Direct data extraction, Numerical
No calculations involved Extraction

All Medium Question
2,238 7

Data: market_value_equity...
market_value_debt = 100 million

Medium Question: What are the proportions of equity and Knowledge

1,000 debt in the company's capital structure? Provide Understanding
answers as percentages rounded to two decimal
(ilzess Numerical
Reasoning Requirements: Basic percentage B
calculation, No need to apply WACC formula or Computation
tax adjustments

Hard Question

Data: market_value_equity... cost_of_debt = 5%,

Hard tax_rate = 25% Knowledge

238 Question: What is the company's Weighted Ave-
rage Cost of Capital (WACC)? Provide the answer :>
as a percentage rounded to two decimal places.
WACC formula, Performing weighted calculations, Judgment
- Applying tax impact on debt cost, Reasoning about

capital structure effects on overall cost

o

Figure 2: Overview of FinanceReasoning’s construction.

structured, refined reasoning knowledge and en-
abling model collaboration can further enhance the
complex reasoning capabilities of LRMs.

Our contributions are summarized below:

* We propose FinanceReasoning, a credible finan-
cial numerical reasoning benchmark constructed
from re-annotated public datasets and newly col-
lected challenging data through Human-Al col-
laboration, demonstrating the superior reasoning
capabilities of LRMs.

* We construct and open-source a comprehen-
sive financial function library containing 3,133
Python-formatted functions, demonstrating the
effectiveness of refined knowledge augmentation
in enhancing domain-specific reasoning.

* We analyze the shortcomings of LRMs and pro-
pose a combination of Reasoner and Program-
mer models, effectively enhancing their perfor-
mance on complex mathematical calculations.

2 FinanceReasoning Benchmark

As illustrated in Figure 2, we first update existing
datasets like BizBench (Krumdick et al., 2024) and
FinanceMath (Zhao et al., 2024), addressing issues
such as disambiguation and corrections. We then
construct a financial function library by extracting
articles. Expert annotators are guided to review
and revise the model-generated problems.

2.1 Updates to Public Datasets

Following prior work (Krumdick et al., 2024; Zhao
et al., 2024), we retain the format of questions with
optional hybrid contexts as input, accompanied by
Python-formatted solutions and program-executed
numerical results. Due to the specialized nature of
complex financial problems and the high cost of ex-
pert annotation, we observe certain limitations in
existing datasets (Chen et al., 2021b; Zhu et al.,
2021; Zhao et al., 2024), including unsolvable
problems, ambiguous statements (e.g., the phras-
ing “the range of” confuses the LLMs, as it is not
clear whether to output a range like 70.18-81.05
or a specific difference of 10.87), oversimplified
processes, incorrect answers, and relaxed evalua-
tion criteria. Statistical details of these issues are
presented in Table 1.

Specifically, we perform updates on the fest
sets of CodeFinQA, CodeTAT-QA, and Fin-
Code (Krumdick et al., 2024), as well as the vali-
dation set of FinanceMath (Zhao et al., 2024). The
annotators are instructed to examine each exam-
ple and perform three types of Update Actions:
Disambiguation, Elaboration, and Correction.

* Disambiguation: For problems that are unsolv-
able due to insufficient contextual conditions or
unclear target results, minimally modifies the
question to eliminate potential ambiguities.

15723

* Elaboration: For Python programs with missing
or skipped computational steps, supplement the
code and add detailed annotations.

¢ Correction: For problems with incorrect ground
truth, the solution and answer are revised.

Additionally, existing evaluation standards are
relatively relaxed: BizBench allows an error mar-
gin 1% (Krumdick et al., 2024), while Finance-
Math disregards units and signs (Zhao et al., 2024).
We refine the evaluation criteria by specifying
units, percentage formats, signs, and decimal
places, and strictly enforce a 0.2% error margin,
enhancing the rigor, challenge, and relevance to
real-world scenarios. Detailed examples are illus-
trated in Appendix C.1.

2.2 Function Library Construction

For LRMs, the challenge lies not in extracting nu-
merical values from relevant texts but in applying
domain-specific knowledge to perform complex
multi-step numerical computations (Plaat et al.,
2024; Chen et al., 2023c). Although LLMs have al-
ready acquired a solid understanding of conceptual
knowledge in the financial domain, to further re-
fine reasoning capabilities, we collect and annotate
a financial function library comprising 3,133 struc-
tured Python functions for financial calculations,
aimed at improving models’ reasoning knowledge.

We begin by collecting 6,138 financial ency-
clopedia articles from Investopedia, a platform
renowned for its extensive expertise in financial
knowledge!. Each article provides a detailed in-
troduction to a specific financial term, covering
fundamental concepts, application scenarios, and
potential limitations, some including relevant cal-
culation formulas and practical examples. To distill
dense, structured financial reasoning knowledge
while reducing annotation costs, we instruct GPT-
40 to extract potential financial calculation func-
tions from each article according to a predefined
format. Each function is required to include a se-
mantically meaningful signature, a concise and
clear docstring (functionality, parameters, return
values, applicable constraints, and other notes),
and step-by-step implementation code with appro-
priate annotations. Finally, we organize financial
experts to rigorously review and revise the gener-
ated functions, ensuring their professional expres-
sion and logical correctness. Detailed examples of

"https://www. investopedia.com

Financial Function

def calc_net_return(init_investment: float,
growth: float, fee_rate: float, inc_rate:
float, hurdle: float) -> float:

Calculate the net return for an investor in
a hedge fund given various parameters.

Args:
initial_investment (float): The initial
amount invested in the hedge fund...

Returns:
net_return (float): The net return for the
investor after fees, in millions.

end_value = init_investment * (1 + growth)
fee = end_value * fee_rate

net_value = end_value - fee

hurdle_value = init_investment * (1 + hurdle

)
inc_fee = max(@, (net_value - hurdle_value)
* inc_rate)
net_return = end_value - (fee + inc_fee) -
init_investment
return round(net_return, 2)

Figure 3: An example of financial function from the
constructed function library to calculate net return.

financial functions are illustrated in Figure 3 and
Table 15.

2.3 Expansion of Data Annotation

Existing financial question-answering datasets
(e.g., CodeFinQA, CodeTAT-QA (Krumdick et al.,
2024)) focus primarily on evaluating models’ ba-
sic concept understanding, precise numerical ex-
traction, and simple calculation abilities within
given contexts. Problem-solving processes in these
datasets typically involve fewer reasoning steps
(e.g., calculate the difference in net profit over two
years). These datasets often suffer from redun-
dancy in simple questions and a lack of complex
questions, failing to adequately assess the reason-
ing capabilities of LRMs, such as knowledge ap-
plication, constraint emphasis and long thought
(e.g., compute the net return rate of a fund in Fig-
ure 1). As a result, the real reasoning capabilities
of LRMs cannot be evaluated comprehensively and
objectively. Therefore, optimizing data construc-
tion methods, rigorously verifying data quality, and
building more challenging datasets have become
crucial to improve the evaluation of financial rea-
soning tasks.

During the data expansion process, we leveraged
the structured financial functions to guide GPT-40
in generating new financial numerical reasoning
problems and Python solutions. Then, experts rig-
orously reviewed and corrected them, resulting in
908 high-quality problems with varying reasoning
difficulties and a wide knowledge coverage. The

15724

https://www.investopedia.com

data annotation process is as follows:

Seed Function Selection We selected 1,250 fi-
nancial functions from the library based on oper-
ators, arguments, code lines, and long-tail knowl-
edge, prioritizing those with complex computation.

Question and Solution Generation For each
seed function, GPT-40 was prompted to generate
the complex reasoning problem with the necessary
financial tabular data, using the financial terms and
the computational processes of the function. The
generated Python solutions were required to have
clear reasoning paths and be executable to acquire
numerical answers, taking into account units, per-
centages, and decimal precision requirements.

Expert Verification The experts are required to
review and correct all problems, solutions, and
answers to ensure the absence of ambiguities, de-
tailed processes, and correct answers.

2.4 Data Quality Assurance

To ensure the high quality of FinanceReasoning,
we implemented a rigorous annotation process.
Specifically, we organized a team of 8 graduate stu-
dents with interdisciplinary backgrounds in finance
and computer science, along with 2 experts holding
CFA licenses, to participate in the dataset verifi-
cation. Each financial function and problem were
initially reviewed by two graduate students, who
provided reasons for errors and suggested mod-
ifications. Consistent suggestions were adopted
directly. For cases with conflicting opinions, the
final modification plan was determined through a
discussion between the two experts. With the help
of LLMs, the entire annotation process lasted for
three months. The annotation example is provided
in Appendix D.2.

2.5 Data Grading and Statistics

To evaluate the performance of LRMs in finan-
cial numerical reasoning problems of varying diffi-
culty levels, we designed a heuristic algorithm for
the first time to assess the difficulty of reasoning
for each problem based on the number of oper-
ators, pairs of parentheses, and lines of code in
the Python program. Specifically, the difficulty of
reasoning rc of a problem is defined as:

re¢ = In(max (0,1)) + In (max (I +p,1)) (1)

where o is the number of operators, p is the number
of pairs of parentheses, and [is the number of code
lines in the Python program.

Property Value
Financial Function Library

Total Functions 3,313

Operators (Avg) 2.85

Arguments (Avg) 2.64

Lines of Code (Avg) 3.45

Financial Concepts Involved 1,864

FinanceReasoning Dataset

Operators (Easy/Medium/Hard) 1.77/3.79/10.12
Lines of Code (Easy/Medium/Hard) 3.13/4.27/9.49
Parentheses (Easy/Medium/Hard) 0.80/3.28/11.21
Difficulty (Easy/Medium/Hard) 1.69/3.00/4.88

Table 2: Statistics of the financial function library and
FinanceReasoning dataset (Avg values of three subsets).

Frequency
M [1 FinanceReasoning (Easy)
M Il [1 FinanceReasoning (Medium)
200 [FinanceReasoning (Hard)
CodeFinQA (Test)
M (CodeTAT-QA (Test)
150 —— FinCode (Test)
—— FinanceMath (Val)
100 ‘ ‘ ‘ W
1Ll
\
1 2 3 4 5 6 7
Difficulty

Figure 4: The difficulty distribution of FinanceReason-
ing, compared with four existing datasets, shows a no-
tably higher proportion of medium and hard problems,
presenting greater challenges for complex reasoning.

As illustrated in Table 2 and Figure 4, based on
the difficulty of reasoning, we divided the prob-
lems into three subsets: Easy (1,000 examples),
Medium (1,000 examples), and Hard (238 exam-
ples). More analyses are in Appendix C.2. To
promote the evaluation of LRMSs’ reasoning ca-
pabilities in the financial domain, we have made
all problems publicly available, along with the
complete financial function library.

3 Evaluation System

We developed an evaluation system for complex
reasoning on FinanceReasoning, where all evalu-
ations of LLMs were conducted by calling their
official API interfaces. Table 19 illustrates the ex-
act model versions we used.

15725

Model Size Notes Hard Medium Easy Avg.
CoT PoT CoT PoT CoT PoT CoT PoT
Large Reasoning Models (LRMs)
OpenAl ol 81.1 89.1 89.7 - 88.0 - 86.3 -
DeepSeek-R1 671B MoE 83.2 853 91.1 89.8 89.8 89.2 88.0 88.1
OpenAl 03-mini 773 840 87.8 88.6 88.8 88.1 84.6 869
OpenAl ol-mini 714 83.6 86.2 869 85.6 870 81.1 85.8
Gemini 2.0 Flash Thinking Experimental 70.6 815 852 872 88.8 86.6 815 85.1
QwQ-32B-Preview 32B 63.5 618 81.1 728 835 749 76.0 69.8
Large Language Models (LLMs)
Gemini 2.0 Pro Experimental 723 83.6 883 874 873 878 82.6 86.3
Claude 3.5 Sonnet 68.5 83.6 857 832 87.7 884 80.6 86.7
GPT-40 65.6 83.6 84.6 879 86.8 88.1 79.0 86.5
Qwen2.5-Max MoE 65.1 824 872 86.5 89.6 89.1 80.6 86.0
DeepSeek-V3 671B MoE 66.8 75.6 852 873 872 869 79.7 80.7
Llama 3.3 70B 504 714 79.2 859 833 848 71.0 807
Llama 3.1 405B 51.7 702 81.7 877 84.1 858 72.5 812

Table 3: Results of different models using CoT and PoT prompting methods on the different subsets of FinanceRea-
soning. We use Accuracy of Hard subset using PoT prompting as the ranking indicator of model performance. The
results underscore the superior performance of LRMs (i.e., OpenAl ol and DeepSeek-R1) with PoT.

3.1 Large Language Models

We focused on evaluating six of the most powerful
LRMs currently available.

* OpenAl ol (OpenAl, 2024d) is trained using
large-scale reinforcement learning and employs
chain-of-thought reasoning, excelling in general
knowledge tasks and code reasoning tasks.

* OpenAl ol-mini (OpenAl, 2024c) is a cost-
effective alternative to OpenAl ol, designed for
high performance in STEM fields, particularly
in mathematics and coding.

* OpenAl 03-mini (OpenAl, 2025) is OpenAl’s
latest small reasoning model, providing faster
response times while maintaining comparable
performance to OpenAl ol.

* DeepSeek-R1 (DeepSeek-Al et al., 2025) en-
hances its reasoning capabilities through multi-
stage training with reinforcement learning, using
a minimal amount of supervised fine-tuning data.

* Gemini 2.0 Flash Thinking Experimen-
tal (Gemini, 2025) introduces a 1M token con-
text window to deeply understand long texts and
incorporates self-correction mechanisms.

* QwQ-32B-Preview (Team, 2024) is an experi-
mental model of the Qwen team, approaching
problems with curiosity, self-questioning, and
reflection, striving for a deeper understanding.

Gemini 2.0 Pro Experimental (Gemini, 2025),
GPT-40 (OpenAl, 2024a), Claude 3.5 Sonnet (An-
thropic, 2024), DeepSeek-V3 (DeepSeek-Al et al.,

2024), Llama 3.3 (Al@Meta, 2024b), Llama
3.1 (Al@Meta, 2024a), and Qwen2.5-Max (Qwen
et al., 2025) are also evaluated for comparison,

providing a baseline to assess the performance be-
tween LRMs and traditional LLMs.

3.2 Evaluation Methods

Prompting Methods Following Zhao et al.
(2024), we evaluated LLMs with CoT (Wei et al.,
2022) and PoT (Chen et al., 2023b) to achieve
optimal performance and make comparisons.

Answer Extraction and Evaluation We adopt
the answer extraction pipeline from Zhao et al.
(2024), using GPT-40-mini to extract numerical
results from the output in CoT setting, and exe-
cuting the program from the output in PoT setting.
Finally, we perform a strict accuracy evaluation
comparing the numerical results with the ground
truth within 0.2% error margin.

4 Experiments

We answer the following research questions (RQs):
RQ1: Do LRMs outperform other LLMs in fi-
nancial reasoning tasks? RQ2: What are the
main shortcomings of LRMs? RQ3: Does refined
knowledge augmentation improve LRMs’ perfor-
mance? RQ4: Does model collaboration enhance
LRMs’ performance? RQS5: Does PoT outperform
CoT in complex numerical reasoning tasks?

15726

4.1 Main Results (RQ1)

The performance of the evaluated LRMs and LLMs
using two prompting methods on the FinanceRea-
soning are shown in Table 3.

The results demonstrate that the powerful LRM
(i.e., OpenAl ol) using PoT prompting method
achieves the best performance, with an accuracy
of 89.1% on the Hard subset, significantly outper-
forming other LRMs and LLMs. On the Easy and
Medium subsets, the evaluated LLMs achieve ac-
curacy above 87%, except for the Llama models,
where the advantage of LRMs is less pronounced.
This further validates that simpler datasets have
largely been solved by LLMs, making it difficult
to assess the real reasoning capabilities of LRMs.
On the Hard subset, LRMs exhibit a clear advan-
tage over LLMs with CoT, further confirming the
superiority of LRMs in complex reasoning tasks.

In particular, on the Hard subset, the current
superior LRMs (i.e., OpenAl ol and DeepSeek-
R1) exhibit distinct performance contrasts in CoT
and PoT settings. In CoT, DeepSeek-R1 achieves
a 2.1% higher accuracy than OpenAl ol (83.2%
vs. 81.1%). However, the PoT prompting method
significantly enhances OpenAl ol’s performance,
allowing it to surpass DeepSeek-R1 (89.1% vs.
85.3%). This suggests that DeepSeek-R1 excels
at text-based step-by-step reasoning, while Ope-
nAl ol outperforms in programming capabilities.
This discrepancy may be due to differences in their
training methods and training data.

4.2 Error Analysis (RQ2)

To better analyze the capabilities and limitations
of LRMs on difficult problems in our dataset, we
conduct a thorough and comprehensive error anal-
ysis. This analysis is based on 80 DeepSeek-R1
failure cases with PoT, with stratified sampling (20
Easy 120 Medium /40 Hard). We summarize four
types of error in the current LRMs on challeng-
ing domain-specific reasoning problems, some of
which involve compound errors. The detailed error
distribution is shown in Table 4. More details of
error cases are provided in Appendix B.

* Misunderstanding of Problem: The model in-
correctly interprets the question and context due
to a lack of financial knowledge.

* Formula Application Errors: Owing to inexpe-
rience in financial reasoning, the model uses an
incorrect formula that does not correspond to the
specified conditions of the problem.

Subset M F E C
Easy 35% 5% 15% 45%
(7/20) (1/20) (3/20) (9/20)
Medium 25% 30% 5% 40%
(5/20) (6/20) (1/20) (8/20)
Hard 20% 35% 7.5% 37.5%
(8/40) (14/40) (3/40) (15/40)

Table 4: Error distribution across difficulty subsets. M means
Misunderstanding of Problem, F means Formula Application
Errors, E means Numerical Extraction Errors, C means Nu-
merical Calculation Errors.

* Numerical Extraction Errors: The model ex-
tracts incorrect variables, especially when pro-
cessing structured tabular data, despite the fact
that the reasoning process and the selected for-
mula are correct.

* Numerical Calculation Errors: When multiple
calculation steps are involved, the model pro-
duces significant precision differences from the
correct answer due to rounding and hallucination
during the computation process.

As shown in Table 4, we observe that:

e Formula Application Errors and Numerical
Calculation Errors increase with difficulty, es-
pecially the former, which supports the effective-
ness of our difficulty categorization. In contrast,
Numerical Extraction Errors remain consis-
tently low across all subsets. These findings
suggest that the model’s domain-specific knowl-
edge comprehension and application capabilities
should be enhanced through retrieval-augmented
generation (RAG) or reinforcement learning
(RL), thereby improving its performance on com-
plex reasoning tasks in specialized domains.

* Numerical Calculation Errors occur at similar
rates across all difficulty levels. Since Formula
Application Errors are less frequent in easier
subsets, improving the handling of calculation-
related issues, such as unit conversions, per-
centage formats, significant digits, and sign cor-
rectness, becomes key to boosting accuracy on
Easy and Medium problems. The results indicate
the necessity of incorporating external computa-
tional tools or model collaboration to strengthen
numerical computation capabilities, which could
mitigate errors caused by calculation inaccura-
cies on relatively simple problems.

15727

4.3 Knowledge Augmentation (RQ3)

To enhance the understanding and application capa-
bilities of complex formulas of LL.Ms in financial
reasoning tasks, we explored and compared two
formats of knowledge and various methods of en-
hancing knowledge to improve the performance of
LLMs in domain-specific reasoning tasks.

Knowledge Augmentation Settings We use
Contriever (Izacard et al., 2022) to retrieve relevant
financial knowledge passages or financial Python
functions based on the question.

* Function Retrieval: We use the question as a
query to compute semantic similarity with the
function descriptions, retrieving the Top-3 finan-
cial functions as relevant knowledge.

» Passage Retrieval: For comparison with func-
tion retrieval, we segment each collected finan-
cial article into passages based on markdown
hierarchical structures and retrieved the Top-10
passages for knowledge enhancement.

¢ LLM as Retrieval Judge: Recent studies have
shown that models are capable of judging the
relevance of candidates retrieved for the ques-
tion (Guan et al., 2024). In this setting, we first
retrieved the Top-30 financial functions and then
prompted the LLM to select the Top-3 functions
most useful to answer the question, if any.

¢ LLM-Instructed Knowledge Retrieval: In fi-
nancial problems with hybrid contexts, using
short questions or full contexts for retrieval
often fails to retrieve directly relevant knowl-
edge (Chen et al., 2023a; Peng et al., 2023). We
observed that powerful LLMs (e.g., GPT-40) can
effectively summarize rich semantic information
from contexts. Therefore, we prompt the LLM
to generate precise retrieval queries based on the
context (Li et al., 2025; Verma et al., 2025).

Knowledge Augmentation Results As shown in
Table 5, the format and method of knowledge aug-
mentation significantly affect the performance of
the model reasoning. Specifically, LLMs enhanced
with financial function knowledge significantly out-
perform those enhanced with passage knowledge,
as financial functions serve as refined reasoning
knowledge. Excessive and intricate passages can
disrupt the model’s reasoning abilities, resulting
in diminished performance for both LLMs and
LRMs. Taking advantage of the improved retrieval

Setting GPT-40 (PoT) DeepSeek-R1 (CoT)

wo. knowledge augmentation ~ 83.19 83.19

Passage Retrieval (n = 10)

Vanilla Retrieval 81.93 (-1.26) 82.77 (-0.42)
Function Retrieval (n = 3)

Vanilla Retrieval 90.76 (+7.57) 85.29 (+2.10)

LLM as Judge 89.08 (+5.89) 84.87 (+1.68)

LLMe-instructed Retrieval & 9160 (+8.41) 86.97 (+3.78)

LLM as Judge

Table 5: Results of different knowledge augmentation
methods on the Hard subset of FinanceReasoning. GPT-
4o with refined knowledge augmentation, outperform-
ing OpenAl ol (91.6% vs. 89.1%) in PoT setting.

Accuracy/%
90.0

vZZ] R1 87.82
87.5 M 40/ Claude 86.55
EZ2 R1 + 40/ Claude 85.29

83.19 83.61 83.61

85.0

82.5

80.0

77.5

Rl ©oD 4o (""Té‘a“de [CLI Y ®oD) g1+ 4‘;‘ 1 ¥ Claude

Figure 5: Results of different model combinations and
individual models. R1 means DeepSeek-R1, 40 means
GPT-40, Claude means Claude 3.5 Sonnet.

efficiency caused by LLM-Instructed Knowledge
Retrieval, the combination approach achieves the
best performance, improving the accuracy of GPT-
40 to 91.6% with PoT. More analyses are shown in
Appendix E.

4.4 Reasoner with Programmer (RQ4)

To address the issue of imprecise numerical cal-
culations in LRMs, we instruct the LRM to act
as the Reasoner, responsible for carefully reason-
ing through the problem-solving path, while dis-
regarding its generated numerical results. Then, a
code-specialized LLM acts as the Programmer,
strictly following the reasoning path provided by
the Reasoner to generate executable Python pro-
grams, which are ultimately executed to obtain
precise numerical results.

Specifically, we employ DeepSeek-R1 as Rea-
soner, and the best-performing models in PoT set-
ting, Claude 3.5 Sonnet and GPT-40, as Pro-
grammers, respectively. As shown in Figure 5,
the combination of models achieves significant im-
provements compared to individual models. Com-
pared to GPT-40, Claude 3.5 Sonnet demonstrates
a stronger ability to follow the given reasoning
logic and generate precise code without introduc-
ing noise, owing to its programming advantages.

15728

The combination of DeepSeek-R1 and Claude 3.5
Sonnet achieves an accuracy of 87.82%, correcting
91.7% of the numerical calculation errors. Fur-
thermore, we isolate the knowledge reasoning ca-
pabilities of DeepSeek-R1 in complex financial
reasoning tasks, which outperform other LLMs.
More analyses are shown in Appendix F.

4.5 PoT vs. CoT (RQ5)

Based on an analysis of the Hard subset, we ob-
serve that PoT exhibits a markedly stronger perfor-
mance than CoT in multi-step and complex numer-
ical reasoning tasks. Specifically, PoT leverages
structured code generation to reduce token con-
sumption. Under similar or lower token usage,
PoT achieves greater accuracy (Table 3). More-
over, its performance is on par with certain LRMs
that utilize test-time scaling strategies. For exam-
ple, GPT-40, when prompted with PoT, consumes
only 54k tokens to solve the Hard subset, whereas
CoT requires 173k tokens. Detailed statistics on
token consumption are provided in Table 20.

As shown in Figure 6, LLMs using PoT prompt-
ing method not only significantly reduce token
overhead during inference, but can also approach
or match the performance of LRMs. DeepSeek-
R1 with CoT achieves the similar accuracy on
the Hard subset as GPT-4o0 with PoT, but con-
sumes much more tokens (742k vs. 54Kk). This
“token-for-accuracy” test-time scaling strategy al-
lows LRMs to maintain high correctness by re-
peatedly verifying outcomes from multiple per-
spectives. However, the associated inference cost
is prohibitively high. In contrast, PoT achieves
performance comparable to LRMs for complex fi-
nancial calculations, while offering notably better
cost-effectiveness.

5 Related Work

The emergence of reasoning models such as
OpenAl ol (OpenAl, 2024d) and DeepSeek-
R1 (DeepSeek-Al et al., 2025) has significantly
improved the performance of LLMs in complex
reasoning tasks in domains such as code (Jain
et al., 2025; Chen et al., 2021a), math (Mao et al.,
2024; Lightman et al., 2024), and science (Lu et al.,
2024; Yue et al., 2024; Wang et al., 2024). Among
these LRMs (OpenAl, 2024d,c, 2025; DeepSeek-
Al et al., 2025; Team, 2024; Team et al., 2025;
Gemini, 2025), OpenAl ol and DeepSeek-R1 have
achieved competitive optimal performance. How-

ever, there currently exists a gap between the eval-
uation of LRMs and real-world domain-specific
reasoning tasks, with a lack of evaluation and re-
search on the model’s ability to flexibly apply do-
main knowledge in complex multi-step numerical
reasoning. In the financial domain, the difficulty
of questions and the quality of annotations become
key limitations in evaluating the real reasoning
capabilities of LRMs. For example, CodeFinQA
and CodeTAT-QA (Krumdick et al., 2024), which
are derived from the classic financial question-
answering datasets FinQA (Chen et al., 2021b)
and TAT-QA (Zhu et al., 2021), rely on tabular
data extraction and simple arithmetic operations
that cannot accurately assess the improvements in
reasoning ability of LRMs compared to LLMs. For
datasets such as FinCode (Krumdick et al., 2024)
and FinanceMath (Zhao et al., 2024), limited com-
plex problems, ambiguous questions, and relaxed
evaluation criteria hinder the accurate assessment.

6 Conclusion

This paper introduces FinanceReasoning, a cred-
ible, comprehensive, and challenging benchmark
designed to evaluate the financial numerical rea-
soning capabilities of LRMs. We update exist-
ing numerical reasoning financial question answer-
ing datasets, rigorously refine evaluation standards,
and explore methods to build complex reasoning
datasets tailored for LRM evaluation. We compre-
hensively evaluated the six most advanced LRMs
in subsets of varying difficulty levels. Compared
to LLMs, we validated the leading performance of
OpenAl ol and DeepSeek-R1, while highlighting
the need for further improvement in the precise nu-
merical reasoning capabilities among LRMs. Our
experiments on knowledge augmentation and the
combination of models demonstrate that integrat-
ing structured, refined reasoning knowledge and
enabling model collaboration can further enhance
the complex reasoning performance of LRMs in
expert domains.

Limitations

In this work, we introduce FinanceReasoning, a
benchmark dataset designed to evaluate and en-
hance LLMs in complex financial numerical rea-
soning tasks that require multi-step quantitative
analysis, precise formula application, and hybrid
contextual understanding. However, there are still
some limitations: (1) We process tabular content as

15729

text, whereas in real-world scenarios, tables may
also appear as images, requiring additional process-
ing steps. In such cases, datasets such as MathVista
(Lu et al., 2024) and MMMU (Yue et al., 2024),
which focus on reasoning over image-based ques-
tions, serve as valuable complements to our bench-
mark. We believe that incorporating elements from
these datasets into FinanceReasoning could help
bridge the gap between text-based and multimodal
financial reasoning, enabling a more comprehen-
sive assessment of LLMs’ real-world applicability.
(2) Due to limited resources, we do not conduct an
evaluation of OpenAl ol with PoT on the Easy and
Medium subsets, as preliminary experiments sug-
gest they are less challenging, and existing LLMs
already demonstrate strong performance on these
levels. (3) While we systematically verified and up-
dated numerical answers and program solutions for
multiple published datasets, we were unable to per-
form the same verification for the 1,000-problem
test subset of FinanceMath (Zhao et al., 2024), as it
does not publicly provide ground-truth references
or Python solutions, limiting our ability to ensure
consistency in result validation. We commit to
incorporating additional FinanceMath fest subset
should it become publicly available in the future,
subject to the same rigorous validation process. (4)
While FinanceReasoning provides comprehensive
evaluation criteria, its long-term utility depends on
adapting to evolving challenges. To address this,
we commit to maintaining and periodically updat-
ing the benchmark through versioned releases on
Hugging Face Datasets. (5) We clarify that Fi-
nanceReasoning evaluates perfect-information sce-
narios where all solution prerequisites are explic-
itly provided, thus focusing on the upper bounds
of LRMs’ precision in deterministic calculations.
This design intentionally distinguishes reasoning
errors (e.g., outputting -3.1 vs. 310,000 given clear
constraints) from ambiguity resolution capabili-
ties. While the important direction of modeling
LRMs’ proactive clarification-seeking behavior un-
der insufficient conditions falls outside this work’s
scope, we will pursue it in future research through
controlled ambiguity injection and interactive eval-
uation protocols.

Ethical Considerations

This work complies with ACL ethics guidelines.
FinanceReasoning is released under the Creative
Commons Attribution 4.0 International License

(CC BY 4.0), permitting free use with proper at-
tribution. The codebase is distributed under the
Apache License 2.0, ensuring compatibility with
commercial and open-source ecosystems.

Acknowledgements

This work is supported by the National Natural Sci-
ence Foundation of China (Grant Nos. 62176026,
62473271), the Beijing Natural Science Founda-
tion (Grant No. QY24214), and the BUPT Innova-
tion and Entrepreneurship Support Program (Grant
Nos. 2025-YC-A033, 2025-YC-A042). This work
is also supported by the Engineering Research Cen-
ter of Information Networks, Ministry of Educa-
tion, China. We would also like to thank the anony-
mous reviewers and area chairs for constructive
discussions and feedback.

References
Al@Meta. 2024a. Llama 3.1 model card.

Al@Meta. 2024b. Llama 3.3 model card.
Anthropic. 2024. Claude 3.5 sonnet.

Liang Chen, Yang Deng, Yatao Bian, Zeyu Qin,
Bingzhe Wu, Tat-Seng Chua, and Kam-Fai Wong.
2023a. Beyond factuality: A comprehensive evalu-
ation of large language models as knowledge gen-
erators. In Proceedings of the 2023 Conference on
Empirical Methods in Natural Language Process-
ing, pages 6325-6341, Singapore. Association for
Computational Linguistics.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming
Yuan, Henrique Ponde de Oliveira Pinto, Jared Ka-
plan, Harri Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, Alex Ray, Raul Puri, Gretchen
Krueger, Michael Petrov, Heidy Khlaaf, Girish Sas-
try, Pamela Mishkin, Brooke Chan, Scott Gray,
Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz
Kaiser, Mohammad Bavarian, Clemens Winter,
Philippe Tillet, Felipe Petroski Such, Dave Cum-
mings, Matthias Plappert, Fotios Chantzis, Eliza-
beth Barnes, Ariel Herbert-Voss, William Hebgen
Guss, Alex Nichol, Alex Paino, Nikolas Tezak, Jie
Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain,
William Saunders, Christopher Hesse, Andrew N.
Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan
Morikawa, Alec Radford, Matthew Knight, Miles
Brundage, Mira Murati, Katie Mayer, Peter Welinder,
Bob McGrew, Dario Amodei, Sam McCandlish, Ilya
Sutskever, and Wojciech Zaremba. 2021a. Evaluat-
ing large language models trained on code. Preprint,
arXiv:2107.03374.

Wenhu Chen, Xueguang Ma, Xinyi Wang, and
William W. Cohen. 2023b. Program of thoughts

15730

https://github.com/meta-llama/llama-models/blob/main/models/llama3_1/MODEL_CARD.md
https://github.com/meta-llama/llama-models/blob/main/models/llama3_3/MODEL_CARD.md
https://www.anthropic.com/claude/sonnet
https://doi.org/10.18653/v1/2023.emnlp-main.390
https://doi.org/10.18653/v1/2023.emnlp-main.390
https://doi.org/10.18653/v1/2023.emnlp-main.390
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://openreview.net/forum?id=YfZ4ZPt8zd

prompting: Disentangling computation from reason-
ing for numerical reasoning tasks. Transactions on
Machine Learning Research.

Wenhu Chen, Ming Yin, Max Ku, Pan Lu, Yixin Wan,

Xueguang Ma, Jianyu Xu, Xinyi Wang, and Tony
Xia. 2023c. TheoremQA: A theorem-driven ques-
tion answering dataset. In Proceedings of the 2023
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 7889-7901, Singapore. As-
sociation for Computational Linguistics.

Zhiyu Chen, Wenhu Chen, Charese Smiley, Sameena

Shah, Tana Borova, Dylan Langdon, Reema Moussa,
Matt Beane, Ting-Hao Huang, Bryan Routledge, and
William Yang Wang. 2021b. FinQA: A dataset of
numerical reasoning over financial data. In Proceed-
ings of the 2021 Conference on Empirical Methods
in Natural Language Processing, pages 3697-3711,
Online and Punta Cana, Dominican Republic. Asso-
ciation for Computational Linguistics.

Zhiyu Chen, Shiyang Li, Charese Smiley, Zhigiang

Ma, Sameena Shah, and William Yang Wang. 2022.
ConvFinQA: Exploring the chain of numerical rea-
soning in conversational finance question answering.
In Proceedings of the 2022 Conference on Empiri-
cal Methods in Natural Language Processing, pages
6279-6292, Abu Dhabi, United Arab Emirates. As-
sociation for Computational Linguistics.

DeepSeek-Al Daya Guo, Dejian Yang, Haowei Zhang,

Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang,
Xingkai Yu, Yu Wu, Z. FE. Wu, Zhibin Gou, Zhihong
Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue,
Bingxuan Wang, Bochao Wu, Bei Feng, Chengda
Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang,
Chong Ruan, Damai Dai, Deli Chen, Dongjie Ji,
Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo,
Guangbo Hao, Guanting Chen, Guowei Li, H. Zhang,
Han Bao, Hanwei Xu, Haocheng Wang, Honghui
Ding, Huajian Xin, Huazuo Gao, Hui Qu, Hui Li,
Jianzhong Guo, Jiashi Li, Jiawei Wang, Jingchang
Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L.
Cai, Jiaqi Ni, Jian Liang, Jin Chen, Kai Dong, Kai
Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai
Yu, Lean Wang, Lecong Zhang, Liang Zhao, Litong
Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan
Zhang, Minghua Zhang, Minghui Tang, Meng Li,
Miaojun Wang, Mingming Li, Ning Tian, Panpan
Huang, Peng Zhang, Qiancheng Wang, Qinyu Chen,
Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan,
Runji Wang, R. J. Chen, R. L. Jin, Ruyi Chen,
Shanghao Lu, Shangyan Zhou, Shanhuang Chen,
Shengfeng Ye, Shiyu Wang, Shuiping Yu, Shun-
feng Zhou, Shuting Pan, S. S. Li, Shuang Zhou,
Shaoging Wu, Shengfeng Ye, Tao Yun, Tian Pei,
Tianyu Sun, T. Wang, Wangding Zeng, Wanjia Zhao,
Wen Liu, Wenfeng Liang, Wenjun Gao, Wenqin Yu,
Wentao Zhang, W. L. Xiao, Wei An, Xiaodong Liu,
Xiaohan Wang, Xiaokang Chen, Xiaotao Nie, Xin
Cheng, Xin Liu, Xin Xie, Xingchao Liu, Xinyu
Yang, Xinyuan Li, Xuecheng Su, Xuheng Lin, X. Q.

15731

Li, Xiangyue Jin, Xiaojin Shen, Xiaosha Chen, Xi-
aowen Sun, Xiaoxiang Wang, Xinnan Song, Xinyi
Zhou, Xianzu Wang, Xinxia Shan, Y. K. Li, Y. Q.
Wang, Y. X. Wei, Yang Zhang, Yanhong Xu, Yao
Li, Yao Zhao, Yaofeng Sun, Yaohui Wang, Yi Yu,
Yichao Zhang, Yifan Shi, Yiliang Xiong, Ying He,
Yishi Piao, Yisong Wang, Yixuan Tan, Yiyang Ma,
Yiyuan Liu, Yongqiang Guo, Yuan Ou, Yuduan
Wang, Yue Gong, Yuheng Zou, Yujia He, Yunfan
Xiong, Yuxiang Luo, Yuxiang You, Yuxuan Liu,
Yuyang Zhou, Y. X. Zhu, Yanhong Xu, Yanping
Huang, Yaohui Li, Yi Zheng, Yuchen Zhu, Yunxian
Ma, Ying Tang, Yukun Zha, Yuting Yan, Z. Z. Ren,
Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu, Zhenda
Xie, Zhengyan Zhang, Zhewen Hao, Zhicheng Ma,
Zhigang Yan, Zhiyu Wu, Zihui Gu, Zijia Zhu, Zi-
jun Liu, Zilin Li, Ziwei Xie, Ziyang Song, Zizheng
Pan, Zhen Huang, Zhipeng Xu, Zhongyu Zhang, and
Zhen Zhang. 2025. Deepseek-rl: Incentivizing rea-
soning capability in 1lms via reinforcement learning.
Preprint, arXiv:2501.12948.

DeepSeek-Al, Aixin Liu, Bei Feng, Bing Xue, Bingx-

uan Wang, Bochao Wu, Chengda Lu, Chenggang
Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan,
Damai Dai, Daya Guo, Dejian Yang, Deli Chen,
Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai,
Fuli Luo, Guangbo Hao, Guanting Chen, Guowei
Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng
Wang, Haowei Zhang, Honghui Ding, Huajian Xin,
Huazuo Gao, Hui Li, Hui Qu, J. L. Cai, Jian Liang,
Jianzhong Guo, Jiaqi Ni, Jiashi Li, Jiawei Wang,
Jin Chen, Jingchang Chen, Jingyang Yuan, Jun-
jie Qiu, Junlong Li, Junxiao Song, Kai Dong, Kai
Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai
Yu, Lean Wang, Lecong Zhang, Lei Xu, Leyi Xia,
Liang Zhao, Litong Wang, Liyue Zhang, Meng Li,
Miaojun Wang, Mingchuan Zhang, Minghua Zhang,
Minghui Tang, Mingming Li, Ning Tian, Panpan
Huang, Peiyi Wang, Peng Zhang, Qiancheng Wang,
Qihao Zhu, Qinyu Chen, Qiushi Du, R. J. Chen,
R. L. Jin, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan,
Runji Wang, Runxin Xu, Ruoyu Zhang, Ruyi Chen,
S. S. Li, Shanghao Lu, Shangyan Zhou, Shanhuang
Chen, Shaoqing Wu, Shengfeng Ye, Shengfeng Ye,
Shirong Ma, Shiyu Wang, Shuang Zhou, Shuiping
Yu, Shunfeng Zhou, Shuting Pan, T. Wang, Tao
Yun, Tian Pei, Tianyu Sun, W. L. Xiao, Wangding
Zeng, Wanjia Zhao, Wei An, Wen Liu, Wenfeng
Liang, Wenjun Gao, Wenqin Yu, Wentao Zhang,
X. Q. Li, Xiangyue Jin, Xianzu Wang, Xiao Bi,
Xiaodong Liu, Xiaohan Wang, Xiaojin Shen, Xi-
aokang Chen, Xiaokang Zhang, Xiaosha Chen, Xiao-
tao Nie, Xiaowen Sun, Xiaoxiang Wang, Xin Cheng,
Xin Liu, Xin Xie, Xingchao Liu, Xingkai Yu, Xin-
nan Song, Xinxia Shan, Xinyi Zhou, Xinyu Yang,
Xinyuan Li, Xuecheng Su, Xuheng Lin, Y. K. Li,
Y. Q. Wang, Y. X. Wei, Y. X. Zhu, Yang Zhang, Yan-
hong Xu, Yanhong Xu, Yanping Huang, Yao Li, Yao
Zhao, Yaofeng Sun, Yaohui Li, Yaohui Wang, Yi Yu,
Yi Zheng, Yichao Zhang, Yifan Shi, Yiliang Xiong,
Ying He, Ying Tang, Yishi Piao, Yisong Wang, Yix-
uan Tan, Yiyang Ma, Yiyuan Liu, Yongqgiang Guo,
Yu Wu, Yuan Ou, Yuchen Zhu, Yuduan Wang, Yue

https://openreview.net/forum?id=YfZ4ZPt8zd
https://openreview.net/forum?id=YfZ4ZPt8zd
https://doi.org/10.18653/v1/2023.emnlp-main.489
https://doi.org/10.18653/v1/2023.emnlp-main.489
https://doi.org/10.18653/v1/2021.emnlp-main.300
https://doi.org/10.18653/v1/2021.emnlp-main.300
https://doi.org/10.18653/v1/2022.emnlp-main.421
https://doi.org/10.18653/v1/2022.emnlp-main.421
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948

Gong, Yuheng Zou, Yujia He, Yukun Zha, Yunfan
Xiong, Yunxian Ma, Yuting Yan, Yuxiang Luo, Yuxi-
ang You, Yuxuan Liu, Yuyang Zhou, Z. F. Wu, Z. Z.
Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu,
Zhen Huang, Zhen Zhang, Zhenda Xie, Zhengyan
Zhang, Zhewen Hao, Zhibin Gou, Zhicheng Ma, Zhi-
gang Yan, Zhihong Shao, Zhipeng Xu, Zhiyu Wu,
Zhongyu Zhang, Zhuoshu Li, Zihui Gu, Zijia Zhu,
Zijun Liu, Zilin Li, Ziwei Xie, Ziyang Song, Ziyi
Gao, and Zizheng Pan. 2024. Deepseek-v3 technical
report. Preprint, arXiv:2412.19437.

Gemini. 2025. Gemini 2.0: Flash, flash-lite and pro.

Jian Guan, Wei Wu, zujie wen, Peng Xu, Hongning
Wang, and Minlie Huang. 2024. AMOR: A recipe
for building adaptable modular knowledge agents
through process feedback. In The Thirty-eighth An-
nual Conference on Neural Information Processing
Systems.

Gautier Izacard, Mathilde Caron, Lucas Hosseini, Se-
bastian Riedel, Piotr Bojanowski, Armand Joulin,
and Edouard Grave. 2022. Unsupervised dense in-
formation retrieval with contrastive learning. Trans-
actions on Machine Learning Research.

Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia
Yan, Tianjun Zhang, Sida Wang, Armando Solar-
Lezama, Koushik Sen, and Ion Stoica. 2025. Live-
codebench: Holistic and contamination free evalua-
tion of large language models for code. In The Thir-
teenth International Conference on Learning Repre-
sentations.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B.
Brown, Benjamin Chess, Rewon Child, Scott Gray,
Alec Radford, Jeffrey Wu, and Dario Amodei. 2020.
Scaling laws for neural language models. Preprint,
arXiv:2001.08361.

Michael Krumdick, Rik Koncel-Kedziorski, Viet Dac
Lai, Varshini Reddy, Charles Lovering, and Chris
Tanner. 2024. BizBench: A quantitative reasoning
benchmark for business and finance. In Proceedings
of the 62nd Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 8309-8332, Bangkok, Thailand. Association
for Computational Linguistics.

Xiaoxi Li, Guanting Dong, Jiajie Jin, Yuyao Zhang,
Yujia Zhou, Yutao Zhu, Peitian Zhang, and
Zhicheng Dou. 2025. Search-ol: Agentic search-
enhanced large reasoning models. Preprint,
arXiv:2501.05366.

Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harri-
son Edwards, Bowen Baker, Teddy Lee, Jan Leike,
John Schulman, Ilya Sutskever, and Karl Cobbe.
2024. Let’s verify step by step. In The Twelfth
International Conference on Learning Representa-
tions.

Pan Lu, Hritik Bansal, Tony Xia, Jiacheng Liu, Chun-
yuan Li, Hannaneh Hajishirzi, Hao Cheng, Kai-
Wei Chang, Michel Galley, and Jianfeng Gao. 2024.

Mathvista: Evaluating mathematical reasoning of
foundation models in visual contexts. In The Twelfth
International Conference on Learning Representa-
tions.

Yujun Mao, Yoon Kim, and Yilun Zhou. 2024.
CHAMP: A competition-level dataset for fine-
grained analyses of LLMs’ mathematical reason-
ing capabilities. In Findings of the Association for
Computational Linguistics: ACL 2024, pages 13256—
13274, Bangkok, Thailand. Association for Compu-
tational Linguistics.

OpenAl. 2024a. Hello gpt-4o.

OpenAl 2024b. Learning to reason with llms.
OpenAl. 2024c. Openai ol-mini.

OpenAl. 2024d. Openai ol system card.
OpenAl. 2025. Openai 03-mini system card.

Baolin Peng, Michel Galley, Pengcheng He, Hao Cheng,
Yujia Xie, Yu Hu, Qiuyuan Huang, Lars Liden, Zhou
Yu, Weizhu Chen, and Jianfeng Gao. 2023. Check
your facts and try again: Improving large language
models with external knowledge and automated feed-
back. Preprint, arXiv:2302.12813.

Aske Plaat, Annie Wong, Suzan Verberne, Joost
Broekens, Niki van Stein, and Thomas Back. 2024.
Reasoning with large language models, a survey.
Preprint, arXiv:2407.11511.

Qwen, An Yang, Baosong Yang, Beichen Zhang,
Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan
Li, Dayiheng Liu, Fei Huang, Haoran Wei, Huan
Lin, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin
Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin,
Kai Dang, Keming Lu, Keqin Bao, Kexin Yang,
Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin
Zhu, Rui Men, Runji Lin, Tianhao Li, Tianyi
Tang, Tingyu Xia, Xingzhang Ren, Xuancheng
Ren, Yang Fan, Yang Su, Yichang Zhang, Yu Wan,
Yugiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan
Qiu. 2025. Qwen2.5 technical report. Preprint,
arXiv:2412.15115.

Bernardino Romera-Paredes, Mohammadamin
Barekatain, Alexander Novikov, Matej Balog,
M. Pawan Kumar, Emilien Dupont, Francisco J. R.
Ruiz, Jordan S. Ellenberg, Pengming Wang, Omar
Fawzi, Pushmeet Kohli, and Alhussein Fawzi. 2024.
Mathematical discoveries from program search with
large language models. Nature, 625(7995):468—475.

Kimi Team, Angang Du, Bofei Gao, Bowei Xing,
Changjiu Jiang, Cheng Chen, Cheng Li, Chenjun
Xiao, Chenzhuang Du, Chonghua Liao, Chuning
Tang, Congcong Wang, Dehao Zhang, Enming Yuan,
Enzhe Lu, Fengxiang Tang, Flood Sung, Guangda
Wei, Guokun Lai, Haiqing Guo, Han Zhu, Hao
Ding, Hao Hu, Hao Yang, Hao Zhang, Haotian Yao,
Haotian Zhao, Haoyu Lu, Haoze Li, Haozhen Yu,
Hongcheng Gao, Huabin Zheng, Huan Yuan, Jia

15732

https://arxiv.org/abs/2412.19437
https://arxiv.org/abs/2412.19437
https://developers.googleblog.com/en/gemini-2-family-expands/
https://openreview.net/forum?id=jImXgQEmX3
https://openreview.net/forum?id=jImXgQEmX3
https://openreview.net/forum?id=jImXgQEmX3
https://openreview.net/forum?id=jKN1pXi7b0
https://openreview.net/forum?id=jKN1pXi7b0
https://openreview.net/forum?id=chfJJYC3iL
https://openreview.net/forum?id=chfJJYC3iL
https://openreview.net/forum?id=chfJJYC3iL
https://arxiv.org/abs/2001.08361
https://doi.org/10.18653/v1/2024.acl-long.452
https://doi.org/10.18653/v1/2024.acl-long.452
https://arxiv.org/abs/2501.05366
https://arxiv.org/abs/2501.05366
https://openreview.net/forum?id=v8L0pN6EOi
https://openreview.net/forum?id=KUNzEQMWU7
https://openreview.net/forum?id=KUNzEQMWU7
https://doi.org/10.18653/v1/2024.findings-acl.785
https://doi.org/10.18653/v1/2024.findings-acl.785
https://doi.org/10.18653/v1/2024.findings-acl.785
https://openai.com/index/hello-gpt-4o/
https://openai.com/index/learning-to-reason-with-llms/
https://openai.com/index/openai-o1-mini-advancing-cost-efficient-reasoning/
https://openai.com/index/openai-o1-system-card/
https://openai.com/index/o3-mini-system-card/
https://arxiv.org/abs/2302.12813
https://arxiv.org/abs/2302.12813
https://arxiv.org/abs/2302.12813
https://arxiv.org/abs/2302.12813
https://arxiv.org/abs/2407.11511
https://arxiv.org/abs/2412.15115
https://doi.org/10.1038/S41586-023-06924-6
https://doi.org/10.1038/S41586-023-06924-6

Chen, Jianhang Guo, Jianlin Su, Jianzhou Wang,
Jie Zhao, Jin Zhang, Jingyuan Liu, Junjie Yan, Jun-
yan Wu, Lidong Shi, Ling Ye, Longhui Yu, Meng-
nan Dong, Neo Zhang, Ningchen Ma, Qiwei Pan,
Qucheng Gong, Shaowei Liu, Shengling Ma, Shu-
peng Wei, Sihan Cao, Siying Huang, Tao Jiang, Wei-
hao Gao, Weimin Xiong, Weiran He, Weixiao Huang,
Wenhao Wu, Wenyang He, Xianghui Wei, Xianqing
Jia, Xingzhe Wu, Xinran Xu, Xinxing Zu, Xinyu
Zhou, Xuehai Pan, Y. Charles, Yang Li, Yangyang
Hu, Yangyang Liu, Yanru Chen, Yejie Wang, Yibo
Liu, Yidao Qin, Yifeng Liu, Ying Yang, Yiping
Bao, Yulun Du, Yuxin Wu, Yuzhi Wang, Zaida
Zhou, Zhaoji Wang, Zhaowei Li, Zhen Zhu, Zheng
Zhang, Zhexu Wang, Zhilin Yang, Zhiqi Huang, Zi-
hao Huang, Ziyao Xu, Zonghan Yang, and Zongyu
Lin. 2025. Kimi k1.5: Scaling reinforcement learn-
ing with llms. Preprint, arXiv:2501.12599.

Qwen Team. 2024. Qwq: Reflect deeply on the bound-
aries of the unknown.

Prakhar Verma, Sukruta Prakash Midigeshi, Gaurav

Sinha, Arno Solin, Nagarajan Natarajan, and Amit
Sharma. 2025. Plan*rag: Efficient test-time planning
for retrieval augmented generation. In Workshop on
Reasoning and Planning for Large Language Mod-
els.

Xiaoxuan Wang, Ziniu Hu, Pan Lu, Yangiao Zhu,
Jieyu Zhang, Satyen Subramaniam, Arjun R Loomba,
Shichang Zhang, Yizhou Sun, and Wei Wang.
2024. Scibench: Evaluating college-level scientific
problem-solving abilities of large language models.
In Forty-first International Conference on Machine
Learning.

Yuqing Wang and Yun Zhao. 2024. Metacognitive
prompting improves understanding in large language
models. In Proceedings of the 2024 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies (Volume 1: Long Papers), pages 1914-1926,
Mexico City, Mexico. Association for Computational
Linguistics.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, brian ichter, Fei Xia, Ed H. Chi, Quoc V Le,
and Denny Zhou. 2022. Chain of thought prompt-
ing elicits reasoning in large language models. In
Advances in Neural Information Processing Systems.

Fengli Xu, Qianyue Hao, Zefang Zong, Jingwei Wang,

Yunke Zhang, Jingyi Wang, Xiaochong Lan, Jiahui
Gong, Tianjian Ouyang, Fanjin Meng, Chenyang
Shao, Yuwei Yan, Qinglong Yang, Yiwen Song, Si-
jian Ren, Xinyuan Hu, Yu Li, Jie Feng, Chen Gao,
and Yong Li. 2025. Towards large reasoning models:
A survey of reinforced reasoning with large language
models. Preprint, arXiv:2501.09686.

Xiang Yue, Yuansheng Ni, Kai Zhang, Tianyu Zheng,
Ruoqi Liu, Ge Zhang, Samuel Stevens, Dongfu Jiang,
Weiming Ren, Yuxuan Sun, et al. 2024. Mmmu: A
massive multi-discipline multimodal understanding

15733

and reasoning benchmark for expert agi. In Pro-
ceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 9556-9567.

Yilun Zhao, Hongjun Liu, Yitao Long, Rui Zhang,

Chen Zhao, and Arman Cohan. 2024. Financemath:
Knowledge-intensive math reasoning in finance do-
mains. In Proceedings of the 62nd Annual Meet-
ing of the Association for Computational Linguis-
tics (Volume 1: Long Papers), pages 12841-12858,
Bangkok, Thailand. Association for Computational
Linguistics.

Fengbin Zhu, Wengiang Lei, Youcheng Huang, Chao

Wang, Shuo Zhang, Jiancheng Lv, Fuli Feng, and Tat-
Seng Chua. 2021. TAT-QA: A question answering
benchmark on a hybrid of tabular and textual con-
tent in finance. In Proceedings of the 59th Annual
Meeting of the Association for Computational Lin-
guistics and the 11th International Joint Conference
on Natural Language Processing (Volume 1: Long
Papers), pages 3277-3287, Online. Association for
Computational Linguistics.

https://arxiv.org/abs/2501.12599
https://arxiv.org/abs/2501.12599
https://qwenlm.github.io/blog/qwq-32b-preview/
https://qwenlm.github.io/blog/qwq-32b-preview/
https://openreview.net/forum?id=gi9aqlYdBk
https://openreview.net/forum?id=gi9aqlYdBk
https://openreview.net/forum?id=bq1JEgioLr
https://openreview.net/forum?id=bq1JEgioLr
https://doi.org/10.18653/v1/2024.naacl-long.106
https://doi.org/10.18653/v1/2024.naacl-long.106
https://doi.org/10.18653/v1/2024.naacl-long.106
https://openreview.net/forum?id=_VjQlMeSB_J
https://openreview.net/forum?id=_VjQlMeSB_J
https://arxiv.org/abs/2501.09686
https://arxiv.org/abs/2501.09686
https://arxiv.org/abs/2501.09686
https://openaccess.thecvf.com/content/CVPR2024/html/Yue_MMMU_A_Massive_Multi-discipline_Multimodal_Understanding_and_Reasoning_Benchmark_for_CVPR_2024_paper.html
https://openaccess.thecvf.com/content/CVPR2024/html/Yue_MMMU_A_Massive_Multi-discipline_Multimodal_Understanding_and_Reasoning_Benchmark_for_CVPR_2024_paper.html
https://openaccess.thecvf.com/content/CVPR2024/html/Yue_MMMU_A_Massive_Multi-discipline_Multimodal_Understanding_and_Reasoning_Benchmark_for_CVPR_2024_paper.html
https://doi.org/10.18653/v1/2024.acl-long.693
https://doi.org/10.18653/v1/2024.acl-long.693
https://doi.org/10.18653/v1/2024.acl-long.693
https://doi.org/10.18653/v1/2021.acl-long.254
https://doi.org/10.18653/v1/2021.acl-long.254
https://doi.org/10.18653/v1/2021.acl-long.254

A Construction of FinanceReasoning

To rigorously assess financial numerical reasoning
in LLMs and LRMs, we constructed FinanceRea-
soning, a benchmark comprising 2,238 problems.
This dataset integrates two key sources:

* 1,420 updated existing problems, carefully re-
viewed and refined from existing datasets, in-
volving Disambiguation, Elaboration and Cor-
rection.

* 908 newly generated problems, synthesized by
LLMs (i.e., GPT-40) using a financial function
library that we collected and open-sourced, con-
taining 3,133 Python-formatted financial func-
tions. Each generated problem is accompanied
by an executable Python solution and precise
numerical answer, all expert-verified to ensure
accuracy and robustness.

To systematically evaluate models’ capabilities,
we introduce a tiered classification of difficulty
based on computational complexity and reasoning
depth:

* Easy: Direct data extraction and minimal com-
putation, involving simple value retrieval with
<2-step reasoning (e.g., YoY growth rate calcu-
lation).

* Medium: Basic percentage operations and stan-
dard financial formula application without struc-
tural modifications, requiring >3-step computa-
tions with multiple variables (e.g., Lorenz curve
area calculation needing 35 precise steps across
5 segments with 4 boundary checks).

* Hard: Multi-stage weighted computations and
complex financial concept integration, demand-
ing ~8-step reasoning with 10+ variables (e.g.,
80-10-10 mortgage calculations requiring 22+
chained operations).

This construction process, illustrated in Figure 2,
underscores FinanceReasoning’s credibility, com-
prehensiveness, and challenge, setting a new stan-
dard for evaluating financial numerical reasoning
in Al models.

B Error Cases

For each of the four error types, we provide rep-
resentative DeepSeek-R1 examples in Table 6, Ta-
ble 7, Table 8, and Table 9, respectively.

C Details of Public Dataset Updates

In this section, we present five common issues
encountered in CodeFinQA (Test), CodeTAT-QA
(Test), Fincode (Test), and FinanceMath (Val),
along with the corresponding updating approaches.
Besides, we analyze the distribution of difficulty
among the public datasets and our dataset.

C.1 Cases of Dataset Update

* Unsolvable Problem: Problems that either lack
sufficient data or are inherently unsolvable. To
address this, the case in Table 10 was updated by
applying the Disambiguation strategy to refine
the question.

* Ambiguous Statement: Questions or statements
that are unclear or open to multiple interpreta-
tions. In the case of Table 11, we updated the
question by applying the Disambiguation strat-
egy.

* Oversimplified Process: Inadequate or missing
steps in problem-solving processes can make
calculations or conclusions difficult to follow. To
address this, we enhanced the Python solution in
Table 12 by applying an Elaboration approach,
ensuring a more detailed and structured problem-
solving process.

* Incorrect Answer: Answers that are mathemat-
ically or conceptually incorrect, leading to mis-
leading conclusions. In Table 13, the answer was
refined by applying a Correction process.

¢ Relaxed Evaluation: Issues with evaluation
standards, where answers that differ in precision
(e.g., 0.01, 10 and 1%) are considered equivalent.
We refined the answer in Table 14 by adopting a
strict standard.

C.2 Difficulty Distribution Analysis

The distribution of difficulty among public datasets
and FinanceReasoning is shown in Figure 4. As
can be seen, the difficulty distribution of Fi-
nanceReasoning surpasses previous datasets with
respect to the number of medium and hard-level
questions, thereby facilitating a more accurate re-
flection of the model’s reasoning ability.

D Details of Dataset Expansion

D.1 Example of Financial Function

The constructed financial functions primarily con-
sist of detailed computational code accompanied

15734

by comprehensive annotations. These annotations
include explanations of function calculations, de-
scriptions of input parameters and output vari-
ables, as well as specifications of application scope
and constraints. This enhances the readability of
the functions and strengthens the applicability of
LLMs through well-structured documentation. For
detailed information, refer to Table 15.

D.2 Example of Financial Problem

The expanded questions are based on the financial
functions and concepts extracted earlier, ensuring
that the questions are both relevant to the domain
and challenging enough to test deep reasoning. For
detailed information, refer to Table 16.

E Case of Knowledge Augmentation

The comparison between the performance of
DeepSeek-R1 and knowledge augmentation are
shown in Table 17. When using DeepSeek-R1
alone, errors may occur due to a lack of sufficient
financial knowledge. However, when the knowl-
edge augmentation is applied, the retrieval of ex-
ternal knowledge provides additional context and
enables the model to generate the correct answer.

F Case of Reasoner with Programmer

The comparison between the performance of
DeepSeek-R1 combined with Claude 3.5 Sonnet
and DeepSeek-R1 alone are shown in Table 18.
The task involves solving a problem that, when
attempted using DeepSeek-R1 alone, results in er-
rors. However, when DeepSeek-R1 is combined
with Claude 3.5 Sonnet, the solution is correctly
generated. This comparison highlights the advan-
tage of using reasoning-enhanced model in combi-
nation with code-specialized model to improve the
accuracy and reliability of the model’s output.

G More Experimental Details

The details of the evaluated models are provided
in Table 19. The token consumption of LLMs
and LRMs in CoT and PoT settings is provided in
Table 20. Additionally, the relationship between
token consumption and accuracy across the evalu-
ated models is illustrated in Figure 6.

15735

Question: A risk manager specializing in market risk is looking to determine the cost of a 2-year zero-
coupon bond. The current 1-year interest rate is 8.0%. There’s a chance of 50% that the 1-year interest
rate will reach 10.0% after one year and an equal probability of its falling to 6.0% in the same period.
Suppose the yearly risk premium for duration risk is 40 bps, and the bond faces a value of EUR 1,000.
What should be the zero-coupon bond’s valuation? Answer to three decimal places.

Question ID: test-2164

Ground Truth: 854.466

Python Solution:

def solution():
bond_face_value = 1000
risk_free_rate = 0.08
risk_premium = 0.004

up_interest_rate = 0.10
down_interest_rate = 0.06
probability_up = 0.5
probability_down = 0.5

up_price_datel = bond_face_value / (1 + up_interest_rate + risk_premium)
down_price_datel = bond_face_value / (1 + down_interest_rate + risk_premium)

expected_price_datel probability_up * up_price_datel + probability_down =*
down_price_datel

zero_coupon_bond_price = expected_price_datel / (1 + risk_free_rate)

return zero_coupon_bond_price

DeepSeek-R1:
To determine the valuation of the 2-year zero-coupon bond, we account for the uncertain future interest
rates and the yearly risk premium of 40 basis points (bps). The steps are as follows:

3. Discounting to Present Value:
The expected value at ¢ = 1 is discounted back to ¢ = 0 using the first-year rate adjusted for the risk
premium (8.0% + 0.4% = 8.4%):

922.8234

PV = =207
T 170.084

~ 851.2993

Therefore, the answer is 851.299.

Table 6: Misunderstanding of Problem Example by DeepSeek-R1. The wrong answer is highlighted in red, the
ground truth is highlighted in green, while the incorrectly generated content is shown in red. At ¢ = 0, there is no
need for risk premium adjustment other than that related to interest rate uncertainty, while the model incorrectly
adjusted the discount rate at ¢ = 0 (by incorporating a risk premium).

15736

Question: Smith demonstrates to Harmonica the total return of a recent transaction performed by the
Zenith Fund. Smith explains that the Zenith Fund entered a fully collateralized long position in nearby
soybean futures contracts at the quoted futures price of 865.0 (US cents/bushel). Three months afterward,
the whole futures position was rolled when the short-term futures price was 877.0 and the long-term
futures price was 883.0. What is the Zenith FunddAZs three-month total return on the soybean futures
transaction, factoring in that the collateral earned an annualized rate of 0.60% during the three-month
period between when the initial long position was established and the rolling of the contract (expressed as
a percentage)? Answer to three decimal places.

Question ID: test-2162
Ground Truth: 0.853
Python Solution:

def solution():

Calculating each return

price_return = (current_price_short_term - previous_price) / previous_price

roll_return = (current_price_short_term - current_price_long_term) /
current_price_short_term

collateral_return = (months / 12) * (collateral_rate / 100)

Calculating total return
total_return = price_return + roll_return + collateral_return

return total_return *x 100

DeepSeek-R1:

The Zenith Fund’s total return consists of the gain from the futures position and the interest earned on the
collateral.

1. Futures Return:

The futures price increased from 865.0 to 877.0 over three months.

Profit = 877.0 — 865.0 = 12.0 cents/bushel

12.0
Return = 3650 0.013872 (or 1.3872%)

2. Collateral Return:
The annualized interest rate is 0.60%, so the three-month rate is:

3
: — =0.1
0 60% X 9 0 5%
3. Sum of futures return and collateral return:
1.3872% + 0.15% = 1.5372%

Rounded to three decimal places, the total return is 1.537%.
Therefore, the answer is 1.537.

Table 7: Formula Application Error Example by DeepSeek-R1. The wrong answer is highlighted in red, the ground
truth is highlighted in green, while the incorrectly generated content is shown in red. The model failed to account
for the roll yield component in the total return calculation, resulting in an overestimated final answer.

15737

Question: What is the taxable income from Jane’s ESPP transaction? Answer to the nearest dollar.

Question ID: test-2017
Ground Truth: 4200
Python Solution:
def solution():
Define the given variables
purchase_price = 40.0 # Purchase price per share in dollars
sale_price = 55.0 # Sale price per share in dollars
shares = 200 # Number of shares
discount = 0.15 # ESPP discount
holding_period = 1.5 # Holding period in years (less than 2)

Calculate the discounted purchase price per share
discounted_purchase_price = purchase_price * (1 - discount)

Calculate the total gain from selling the shares
total_gain = (sale_price - discounted_purchase_price) * shares

Since the holding period is less than 2 years, treat the entire gain as ordinary
income
taxable_income = total_gain

Return the answer rounded to the nearest dollar

return round(taxable_income)
Context:
Jane participates in her company’s Employee Stock Purchase Plan (ESPP), which offers a 15% discount
on stock purchases. She bought 200 shares at a purchase price of $40 per share. After holding the shares
for 18 months, she decides to sell them at $55 per share. The IRS mandates that any share held less
than two years must have its gain treated entirely as ordinary income. Jane needs to calculate the taxable
income from this transaction to determine her tax liability.

DeepSeek-R1:

Jane’s taxable income from the ESPP transaction involves two components: the discount received at
purchase and the gain from selling the shares, both treated as ordinary income due to the holding period
being less than two years.

1. Discount Calculation (Compensation Income):

- The purchase price per share ($40) reflects a 15% discount. The fair market value (FMV) at purchase is
calculated as:

$40 $40
1-0.15 0.85

FMV at purchase = ~~ $47.06 per share.

- Discount per share:
$47.06 — $40 = $7.06.

Therefore, the answer is 3000.

Table 8: Numerical Extraction Error Example by DeepSeek-R1. The wrong answer is highlighted in red, the ground
truth is highlighted in green, while the incorrectly generated content is shown in red. The model treated the purchase
price (pre-discount price) as the post-discount price.

15738

Question: What is the fair price of the European put option? Answer in USD, rounded to two decimal
places.

Question ID: test-2208
Ground Truth: 5.46
Python Solution:

def solution():

Define variables
= 150 # Current stock price in USD
140 # Strike price in USD
= 0.02 # Risk-free interest rate (as a decimal)
= 0.5 # Time to maturity in years
volatility = 0.25 # Volatility as a decimal
Calculate d1 and d2 using the Black-Scholes formula
dl = (log(S / K) + (r + 0.5 * volatility *x 2) = T) / (volatility * sqrt(T))
d2 = d1 - volatility * sqrt(T)
Calculate the put option price
put_price = K * exp(-r * T) * norm.cdf(-d2) - S * norm.cdf(-d1)
Return the put price rounded to two decimal places
return round(put_price, 2)
Context:
A professional investor is considering purchasing a European put option for a technology stock currently
trading at 150 USD. The put option has the following parameters:
Current stock price, S = 150 USD
Strike price, K = 140 USD
Time to maturity, 7' = 0.5 years
Risk-free interest rate, r = 2% per annum
Volatility, o = 25% per annum
The investor wants to determine the fair price of the put option to make an informed investment decision.

DeepSeek-R1:

— 5 X n #HF -
1] :

2. Calculate d; and ds:
We use the following formulas for d; and da:

L In(S/K) + (r+ YT 1n(150/140) + (0.02 + 0.25%/2) - 0.5
b o T a 0.25v/0.5

In(150/140) ~ 0.06908

(0.02 + 0.03125) - 0.5 = 0.025625

Numerator: 0.06908 4 0.025625 = 0.094705

Denominator: 0.25 - /0.5 ~ 0.1767767 dy ~ 2520 ~ 0.5357
Next, calculate do:

dy = di — oV/T = 0.5357 — 0.1767767 ~ 0.3589

After refining calculations with precise approximations and standard normal CDF values, the fair price of
the European put option rounds to 5.44 USD.

Table 9: Numerical Calculation Error Example by DeepSeek-R1. The wrong answer is highlighted in red, the
ground truth is highlighted in green, while the incorrectly generated content is shown in red. The model applied
excessive rounding during the calculation steps.

15739

Question: As of december 31, 2006 , what was the total total cash obligations aggregate carrying value
of long-term debt due in 2006 Answer to three decimal places.

The Revised Question: As of December 31, 2011, what was the total cash obligations aggregate carrying
value of long-term debt due in 2011? Answer as a percentage to three decimal places.

Question ID: test-114
Ground Truth: 9.562
Python Solution:
def solution():
notes_2011 = 338501
total_obligations = 3540009
percent_2011 = notes_2011 / total_obligations
answer = percent_2011 * 100
return round(answer, 3)
Context:

Maturities 2014

As of December 31, 2006, the aggregate carrying value of long-term debt, including capital leases, for the
next five years and thereafter are estimated to be (in thousands):

Year Ending December 31 Amount ($)
2007 253,907
2008 1,278
2009 654
2010 1,833,416
2011 338,501
Thereafter 1,112,253
Total Cash Obligations 3,540,009
Accreted Value of the Discount and Premium of 3.00% Notes and 7.125% Notes 3,007
Balance as of December 31, 2006 3,543,016

The holders of the company’s 5.0% (5.0%) notes have the right to require the company to repurchase
their notes on specified dates prior to the maturity date in 2010, but the company may pay the purchase
price by issuing shares of Class A common stock, subject to certain conditions. Obligations with respect
to the right of the holders to put the 5.0% (5.0%) notes have been included in the table above as if such
notes mature the date on which the put rights become exercisable in 2007. In February 2007, the company
conducted a cash tender offer for its outstanding 5.0% (5.0%) notes to enable note holders to exercise
their right to require the company to purchase their notes. (See Note 19.)

Table 10: Example of Unsolvable Problem in CodeFinQA. The parts highlighted in red are unsolvable , and the
parts highlighted in green are the revised ones. Since the question is flawed due to missing 2006 data in the table, it
cannot be solved, making the entire output meaningless.

15740

Question: What is the change in total cost of revenue between 2019 and 2018? Answer to two decimal
places.

The Revised Question: What is the percentage change in total cost of revenue between 2019 and 2018?
Answer as a percentage to two decimal places.

Question ID: test-142
Ground Truth: -5.81
Python Solution:
def solution():

total_cost_of_revenue_2019 = df["Cost of revenue: - Total cost of revenue"]["2019"]
total_cost_of_revenue_2018 = df["Cost of revenue: - Total cost of revenue"]["2018"]
answer = (total_cost_of_revenue_2019 - total_cost_of_revenue_2018) /
total_cost_of_revenue_2018 * 100.0
return round(answer, 2)

Context:
Category 2019 | 2018 | Amount | Percent
Cost of revenue: — Products 29816 | 34066 -4250 -12%
Cost of revenue: — Services 19065 | 17830 1235 T%
Cost of revenue: — Total cost of revenue | 48881 | 51896 -3015 -6%

Table 11: Example of Ambiguous Statement in CodeTAT-QA. The parts highlighted in red are ambiguous, and the
parts highlighted in green are the revised ones. The ambiguous phrasing of the question leads to multiple possible
answers.

ACC/%

Y
89.08% OpenAl ol DednSeek R1
85 - GPT-40 Gemini 2.0 Pro Exp OpenAlT 03-mini eepeek-
Claude 3.5 Sonnet OvenAl ol-mini DeepSeek-R1
. Qwen2.5-Max penat ot-minl OpenAl o1
80 " Gemini 2.0 Flash Thinking Exp
N DeepSeek-V3 OpenAl 03-mini
75 Llama 3.3
Gemini 2.0 Pro Exp OvenAl ol-mini
Gemini 2.0 Flash Thinking Exp penAlof-mint
70 - Llama 3.1
Claude 3.5 Sonnet
DeepSeek-V3

65 - Qwen2.5-Max

GPT-40 QwQ-32B-Preview

QwQ-32B-Preview

60 -
55 1 CoT A LRM

Llama 3.1 PoT O LLM

Llama 3.3
50 T T T T T T T
100 200 300 400 500 600 700

Token/k

Figure 6: Relationship between token consumption and accuracy across different LLMs and LRMs using CoT and
PoT prompting.

15741

Question: Assuming that the variances of the underlying populations are equal, independent samples
taken from normally distributed groups display the following features: The combined estimation of the
common variance is 2,678.05. What is the suitable t-test statistic to verify the assumption that the average
of the two populations are the same?

Question ID: validation-24
Ground Truth: 0.938
Topic: Quantitative Analysis & Valuation
Python Solution:
def solution():
return (200 - 185) / (2678.05 / 25 + 2678.05 / 18)*%0.5
The Revised Python Solution:
def solution():
Given values
sample_size_A = 25
sample_size_B = 18
sample_mean_A = 200
sample_mean_B = 185
combined_variance = 2678.05

Standard error of the difference in means
standard_error = (combined_variance / sample_size_ A + combined_variance /
sample_size_B)*x0.5

t-test statistic calculation
t_statistic = (sample_mean_A - sample_mean_B) / standard_error

return round(t_statistic, 3)

Context:
Sample Name | Sample Size | Sample Mean | Sample Standard Deviation
A 25 200 45
B 18 185 60

Table 12: Example of Oversimplified Process in FinanceMath. The parts highlighted in red are oversimplified, and
the parts highlighted in green are the revised ones. While the answer is correct, the solution process lacks clarity,
and the code omits some steps.

15742

Question: An investor purchases a five-year, 6% annual-coupon payment bond at 89.4535 and sells it in
four years. Following the purchase of the bond and prior to the receipt of the first coupon, interest rates
go down to 8.5%. What is the realized yield on the bond investment? Answer as a percentage with two
decimal places.

Before Update
Question ID: test-8
Answer: 3.7699999809
Python Solution:
def solution():
coupon_rate = 0.06
initial_price = 89.4535
years_til_maturity = 5
interest_rate = 0.085
coupon = coupon_rate * initial_price
discount = initial_price - coupon
final_price = discount * (1 + interest_rate) *x (years_til_maturity - 4)
realized_yield = (final_price / initial_price) - 1
realized_yield_per = 100.0 * realized_yield
return round(realized_yield_per, 2)

After Update
Question ID: test-8
Answer: 8.71
Python Solution:
def solution():
face_value = 100
coupon_rate = 0.06
initial_price = 89.4535
years_til_maturity = 5
interest_rate = 0.085
holding_period = 4
coupon = coupon_rate * face_value
sell_price = (face_value + coupon) / ((1 + interest_rate) xx (years_til_maturity
- holding_period))

coupon_received = coupon + coupon * (1 + interest_rate) + coupon * (1 +
interest_rate) ** 2 + coupon * (1 + interest_rate) *x 3
realized_yield = ((sell_price + coupon_received) / initial_price) **x (1 /

holding_period) - 1
realized_yield_per = 100.0 * realized_yield
return round(realized_yield_per, 2)

Table 13: Example of Incorrect Answer in FinCode. The case had an incorrect answer and incorrect python solution,
which we have corrected. The parts highlighted in red are incorrect, and the parts highlighted in green are the
revised ones.

15743

Question: What is the holding period return for the three-year timeframe, given the following annual
rates of return for a mutual fund as reported by a researcher (expressed as a percentage)?

The Revised Question: What is the holding period return for the three-year timeframe, given the
following annual rates of return for a mutual fund as reported by a researcher (expressed as a percentage)?
Answer to three decimal places.

Question ID: validation-68
Ground Truth: 0.548
Python Solution:
def solution():
return round(((1+0.14)*(1-0.10)*(1-0.02)-1)*100, 3)

Context:
Year | Return (%)
2008 14
2009 -10
2010)

Table 14: Example of Relaxed Evaluation in FinanceMath. The parts highlighted in green are the revised ones. The
question is answered with an evaluation that lacks rigor, and multiple correct answers are possible.

15744

Financial Function:

def calculate_hedge_fund_net_return(initial_investment: float, gross_return_rate:
float, management_fee_rate: float, incentive_fee_rate: float, hurdle_rate:
float) -> float:
Calculate the net return for an investor in a hedge fund with fees and hurdle
rates.

This function computes the net return in dollar terms for an investor after
accounting for management fees and incentive fees, based on a hurdle rate.

Args:
initial_investment (float): The initial investment amount in millions.
gross_return_rate (float): The gross return rate achieved by the hedge fund.

management_fee_rate (float): The management fee rate as a decimal.
incentive_fee_rate (float): The incentive fee rate as a decimal.
hurdle_rate (float): The hurdle rate as a decimal percentage of initial
investment.
Returns:
net_return (float): The net return for the investor in millions to two
decimal places.
Notes:
- Applicability: Suitable for hedge funds using a similar fee structure.
- Constraints: Assumes management fee is based on year-end assets and
incentive fee is calculated net of management fee, based on returns over
the hurdle rate.
- Considerations: Ensure all rates are provided as decimals (e.g., 2% as
0.02).
year_end_assets = initial_investment * (1 + gross_return_rate)
management_fee = year_end_assets * management_fee_rate
net_year_end_assets = year_end_assets - management_fee
hurdle_amount initial_investment * (1 + hurdle_rate)
excess_return = max(@, net_year_end_assets - hurdle_amount)
incentive_fee = excess_return * incentive_fee_rate
total_fees = management_fee + incentive_fee
net_return = year_end_assets - total_fees - initial_investment

return round(net_return, 2)

Table 15: Example of financial function from function library.

15745

Question: What is the company’s Weighted Average Cost of Capital (WACC)? Answer as a percentage to
two decimal places.

Question ID: test-2002

Ground Truth: 6.9

Context:

A manufacturing company is evaluating its financing strategy and needs to calculate its Weighted Average
Cost of Capital (WACC) to optimally structure its capital resources. The company’s current market value
of equity is 150 million, and the market value of its debt is 100 million. The cost of equity is estimated at
9%, while the cost of debt stands at 5%. Considering the corporate tax rate is 25%, the company wants to
determine its WACC to make informed investment decisions.

Function used as an instruction:

def calculate_wacc(market_value_equity: float, market_value_debt: float,
cost_of_equity: float, cost_of_debt: float, tax_rate: float) -> float:

nnn

Calculate the Weighted Average Cost of Capital (WACC).

This function calculates the WACC, which represents a firm’s average cost of
financing from all sources, weighted by their respective usage in the
overall capital structure. It gives an overall measure of the firm’s cost
of capital.

Args:

market_value_equity (float): Market value of the firm’s equity.

market_value_debt (float): Market value of the firm’s debt.

cost_of_equity (float): Cost of equity (Re) represented as a decimal (e.g.,
0.08 for 8%).

cost_of_debt (float): Cost of debt (Rd) represented as a decimal (e.g.,
0.04 for 4%).

tax_rate (float): Corporate tax rate (Tc) represented as a decimal (e.g.,
0.30 for 30%).

nnn

total_value = market_value_equity + market_value_debt

equity_weight = market_value_equity / total_value

debt_weight = market_value_debt / total_value

wacc = (equity_weight * cost_of_equity) + (debt_weight x cost_of_debt * (1 -
tax_rate))

return wacc

Table 16: A generated problem in FinanceReasoning, combined with the structured financial function as an
instruction. The ground truth is highlighted in green.

15746

Question: According to the given table, can you compute the value added from the choice of security
(expressed as a percentage)? Answer to a single decimal place.

Question ID: test-2193

Ground Truth: 5.6

Context:
Portfolio return | Benchmark return | Portfolio weight | Benchmark weight
Domestic 25% 15% 50 35
Bond 9% 5% 30 35
International 15% 18% 20 30

DeepSeek-R1:
To compute the value added from the choice of security (selection effect)...

Domestic:
(25% — 15%) x 35% = 3.5%
Bond:
(9% — 5%) x 35% = 1.4%
International:

(15% — 18%) x 30% = —0.9%

Total Selection Effect:
3.5% +1.4% — 0.9% = 4.0%

Therefore, the answer is 4.0.

DeepSeek-R1 + Knowledge Augmentation:

Instruct from GPT-4o:

What function calculates the security selection effect in portfolio performance attribution...
The function retrieved and considered useful by GPT-40:

def calculate_security_selection_effect(portfolio_returns: list, benchmark_returns:
list, portfolio_weights: list) -> float:

total_security_selection_effect = sum((pr - br) * pw for pr, br, pw in zip(
portfolio_returns, benchmark_returns, portfolio_weights)

return round(total_security_selection_effect * 100, 1)

Domestic:
(25% — 15%) x 50% = 5.0%
Bond:
(9% — 5%) x 30% = 1.2%
International:

(15% — 18%) x 20% = —0.6%

The final selection effect is:
5.0% 4+ 1.2% — 0.6% = 5.6%

Output: 5.6

Table 17: A comparison of DeepSeek-R1 and DeepSeek-R1 with Knowledge Augmentation in FinanceReasoning.
The ground truth is highlighted in green. Segments highlighted in red or red indicate errors made by DeepSeek-R1,
while those shown in green indicate correct answers produced by DeepSeek-R1 with Knowledge Augmentation.

15747

Question: What is the total amount of money that John will pay towards the principal in the first 12
months of his mortgage? Answer to the nearest dollar.

Question ID: test-2224

Ground Truth: 4597

Context:
Loan Amount ($) 250,000
Annual Interest Rate (%) 3.75
Loan Term (Years) 30

DeepSeek-R1:

To determine the total amount John will pay towards the principal in the first 12 months of his mortgage,
we use the following steps:

1. **Calculate the monthly payment (M):**

Using the formula for a fixed-rate mortgage...

2. **Total principal paid after 12 months:**

The formula for the remaining balance B after 12 payments is:

1.003125)%% — (1.003125)"2
Buy = 250,000 x @ (‘)’égmr)gﬁo .)7 < 945,366.50 (245, 403.05)
. 9 -

So, total principal paid is:
250,000 — 245, 366.50 = 4,633.50 (rounded to 4634)

3. **Validation via amortization schedule:**

Summing the principal portions of each monthly payment (rounded to the nearest cent) results in a total
principal paid of ...

Therefore, the answer is 4634 .

DeepSeek-R1 + Claude 3.5 Sonnet:
Based on the reasoning process, I'll create a Python program that calculates the total principal paid in the
first 12 months using the formula method:

def solution():
Define variables name and value
loan_amount = 250000
annual_rate = 0.0375
monthly_rate = annual_rate / 12
#...
Calculate remaining balance after 12 months
remaining_balance = loan_amount * (power_n - power_k) / (power_n - 1)
Total principal paid is original loan amount minus remaining balance
principal_paid = loan_amount - remaining_balance
...

return answer

Program Output: 4597

Table 18: A comparison of DeepSeek-R1 alone and DeepSeek-R1 combined with Claude 3.5 Sonnet in Fi-
nanceReasoning. The ground truth is highlighted in green. Segments highlighted in red or red indicate errors by
DeepSeek-R1, while those shown in green indicate correct answers from DeepSeek-R1 combined with Claude
3.5 Sonnet.

15748

Model Organization Size Notes Source

DeepSeek-R1 DeepSeek 671B MoE deepseek-ai/DeepSeek-R1
DeepSeek-V3 DeepSeek 671B MoE deepseek-ai/DeepSeek-V3

Claude 3.5 Sonnet Anthropic - claude-3.5-sonnet-1022

Gemini 2.0 Flash Thinking Experimental ~Google - gemini-2.0-flash-thinking-exp-01-21
Gemini 2.0 Pro Experimental Google - gemini-2.0-pro-exp-02-05
QwQ-32B-Preview Alibaba 32B Qwen/QwQ-32B-Preview

Qwen2.5-Max Alibaba - MoE gwen-max-2025-01-25

Llama 3.1 Meta 405B meta-llama/Llama-3.1-405B-Instruct
Llama 3.3 Meta 70B meta-1lama/Llama-3.3-7@0B-Instruct
OpenAl ol OpenAl - 01-2024-12-17

OpenAlI ol-mini OpenAl - 01-mini-2024-09-12

OpenAlI 03-mini OpenAl - 03-mini-2025-01-31

GPT-40 OpenAl - gpt-40-2024-11-20

Table 19: Details of the model organization and model source (i.e., model version for proprietary models, and
Hugging Face model name for open-source models) for the LLMs and LRMs evaluated in FinanceReasoning.

Model Tokens (k) for Easy/Medium/Hard

CoT PoT

OpenAl ol-mini 417/1,074 /944 341/1,015/953

OpenAl ol 695/1,500/ 1,242 505/-1/-
Gemini 2.0 Flash Thinking Experimental 154 /4427311 62/164 /140
QwQ-32B-Preveiw 556/1,514 /1,307 246 /609 /543
DeepSeek-R1 742/1,499/1,274 743 /1,593 /1,257
OpenAl 03-mini 37477717712 328/664/618

Gemini 2.0 Pro Experimental
GPT-40

Claude 3.5 Sonnet
Deepseek-V3

Llama 3.3

Llama 3.1

Qwen2.5-Max

128 /2957206
173 /428 /298
90/261 /201
133/322/237
145/350/263
125 /318 /235
215/526/373

60/143/112
54/133/105
110/335/275
56/144 /114
60/156 /130
53/139/109
58/139/108

Table 20: Token usage across different models.

15749

