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Abstract

This paper proposes formulating Zipf’s
meaning-frequency law, the power law between
word frequency and the number of meanings,
as a relationship between word frequency and
contextual diversity. The proposed formula-
tion quantifies meaning counts as contextual
diversity, which is based on the directions of
contextualized word vectors obtained from a
Language Model (LM). This formulation gives
a new interpretation to the law and also en-
ables us to examine it for a wider variety of
words and corpora than previous studies have
explored. In addition, this paper shows that
the law becomes unobservable when the size
of the LM used is small and that autoregres-
sive LMs require much more parameters than
masked LMs to be able to observe the law.

1 Introduction

This paper proposes a new way to formulate Zipf’s
meaning-frequency law (Zipf, 1945), known as a re-
lationship between word frequency and the number
of word meanings, by contextual diversity mea-
sured based on contextualized word vectors1. This
formulation extends the law both theoretically and
practically. Theoretically, it allows us to correlate
word frequency to word meaning via contextual
diversity, relating Zipf’s meaning-frequency law to
Harris’s (1954) distributional hypothesis. Practi-
cally, it enables us to show that the law holds for a
wider variety of words and corpora than previous
studies have shown.

The meaning-frequency law states that the more
frequent a word is, the more meanings it has, which
follows a power law. Formally, it is denoted as:

m ∝ fα, (1)

1The source codes to reproduce the results in this work
are available at https://github.com/nagata-github/
meaning_frequency_law_via_contextual_diversity.
git

where f and m denote the frequency of a word and
the number of meanings it has, respectively. Most
previous studies examine the law by regression
analysis to Eq. (1) where f and m are respectively
obtained from a corpus and from a dictionary such
as WordNet (Fellbaum, 1998).

The use of a dictionary causes several problems
and limitations in the previous studies as Sect. 2
will describe in detail. It is a difficult task to de-
termine the number of word meanings in the first
place; the number of meanings registered for a
word can vary greatly from dictionary to dictio-
nary. Conclusions may differ with different mean-
ing counts. Besides, not all the meanings defined
in a dictionary necessarily appear in a given corpus,
and vice versa. For these reasons (and others as
described in Sect. 2), the previous studies use a lim-
ited vocabulary list excluding function words, high-
frequency words, and inflected/conjugated forms.
Therefore, it is not yet known if the law holds for
these excluded words.

To overcome these problems and limitations, this
paper proposes formulating the meaning-frequency
law in a completely different way without using
a dictionary. Specifically, the proposed method
defines m in Eq. (1) as contextual diversity by us-
ing contextualized word vectors obtained from a
Language Model (LM). In other words, this for-
mulation measures the quantity related to meaning
counts via contextual diversity. In doing so, the
proposed method considers all words appearing
in a corpus except for infrequent words. It is ap-
plicable to a much wider variety of language data
than before, including historical and learner cor-
pora. This is the first work to investigate whether
the law holds for such corpora.

This paper also explores the relationship be-
tween the meaning-frequency law and the lexical
capability of LMs with this new formulation. It
shows that the value of m, or contextual diversity,
measured by the proposed method deviates from
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the meaning-frequency law when the sizes of the
LMs used are small. In addition, the comparison
between Masked LMs (MLMs) and autoregressive
LMs, which predict the next token, reveals that
the latter require much more parameters (14 times
more in the experiment) to be able to observe the
law. From these findings, this paper proposes using
the newly-formulated meaning-frequency law as a
sanity check for the lexical capability of LMs.

2 Related Work

All previous studies view the meaning-frequency
law as a relationship between word frequency and
the number of word meanings. This has natu-
rally led researchers in the domain to use meaning
counts obtained from a dictionary in their inves-
tigations. Examples include Zipf (1945) himself,
Edmonds (2005) (English), Ilgen and Karaoglan
(2007) (Turkish), Casas et al. (2019) (English,
Spanish, and Dutch), Bond et al. (2019) (English,
Polish, Spanish, French, Portuguese, Japanese, Chi-
nese, and Indonesian), and Hernández-Fernández
et al. (2016) (child language).

Even putting aside the difficulty in determining
the number of word meanings, the use of a dictio-
nary limits the previous studies to targeting only the
base forms of words. Furthermore, previous studies
exclude high-frequency words and function words
because meaning counts are not available for these
words in the widely-used dictionary, WordNet. As
a result, the previous studies only show that the law
holds for base forms with limited vocabulary.

Even if meaning counts are available, it is not
at all straightforward how to treat words with the
same meaning count, but with different distribu-
tions. For example, it is questionable whether to
treat equally a word with one of its meanings oc-
curring 99% of the time and another word with a
uniform distribution of its meanings.

As another approach to examining the law, Ilgen
and Karaoglan (2007) and Bond et al. (2019) anno-
tate words in a corpus with their meanings to obtain
meaning counts. Even in this approach, word mean-
ing sets are determined based on a dictionary, and
thus this approach also suffers from problems stem-
ming from the use of a dictionary. Furthermore,
it is not an easy task to annotate words with their
meanings and, consequently, it would be difficult
to increase the size of the investigation. As the
meaning-frequency law is a power low, it is crucial
to use data of a size large enough for log-scale.

Our new formulation explained in the next sec-
tion provides a new view of the law as the rela-
tionship between word frequency and contextual
diversity. It naturally overcomes all problems and
limitations stemming from the use of a dictionary.

3 New Formulation of Meaning
Frequency Law

3.1 Measuring Meaning Counts through
Directions of Word Vectors

Unlike previous studies where m in Eq. (1) is spec-
ified to be the number of meanings listed in a dic-
tionary, the proposed method assumes that every
single usage of a word in a different context has
a different meaning. It further assumes that the
degree of the difference can be continuously mea-
sured as the difference of contexts through contex-
tualized word vectors (simply, word vectors, here-
after). These assumptions reflect Harris’s (1954)
views:

In other words, difference of meaning
correlates with difference of distribution.

and

. . . , the amount of meaning difference
corresponding roughly to the amount of
difference in their environments.

To be precise, the difference is measured based on
the angle between the vectors of the two words
in question. It is natural to do so considering the
convention that the semantic similarity between
two words is measured by the cosine similarity
of their corresponding word vectors (i.e., ignoring
the norm). Then, the variation of the directions
of vectors for a word type can be regarded as the
variation of meanings that it has.

In this study, the variation of vector directions is
quantified through the von Mises-Fisher distribu-
tion (Banerjee et al., 2005), a probability distribu-
tion of the random d-dimensional unit vector x; in
this study, x corresponds to a word vector of the
word type in question. It is defined as:

f(x;µ, κ) ∝ exp
(
κµTx

)
, (2)

where µ (∥µ∥ = 1) and κ (κ ≥ 0) are parameters
called mean direction and concentration, respec-
tively. It assumes that the unit vector x distributes
on the (d − 1)-sphere around the mean direction
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µ with the concentration κ. In other words, κ re-
flects the degree of concentration of vector direc-
tions; an intuitive interpretation of κ is described
in Appendix A.1. Nagata et al. (2023) show that
κ is effective in lexical semantic change detection.
Similarly this work needs to estimate the quantity
related to meaning counts.

While κ is the degree of concentration of the
distribution, the meaning-frequency law is about
meaning diversity (and also contextual diversity in
this paper). Therefore, we consider the reciprocal:

v ≡ 1/κ (3)

as a measure of contextual diversity in this paper.
To calculate v, we need to estimate κ. Baner-

jee et al. (2005) show that a simple approximate
solution of its maximum likelihood estimate is:

κ ≈ l(d− l2)

1− l2
, (4)

where d and l denote the dimension of the unit
vector (i.e., µ and x in Eq. (2)) and the norm of the
mean vector of x for a word type, respectively.

Now, we formulate the meaning-frequency law
as:

v ∝ fα. (5)

Eq. (5) states that the more frequent a word is, the
more contextual diversity it has and that the rela-
tionship follows a power law.

3.2 Overall Procedure for Examining
Meaning-Frequency Law

The overall procedure for examination follows
Bond et al.(2019). They (and also most previous
studies) examine the law by regression analysis
where the explanatory and dependent variables are
word frequency and meaning counts, respectively.
To be able to apply linear regression to this prob-
lem, Eq. (5) is turned into:

log(v) = α log(f) + c, (6)

by taking the log of both sides where c is a constant
depending on the size of the corpus in question.
Most previous studies use α > 0 as a criterion of
whether the meaning-frequency law holds or not,
together with the determination coefficient R2 as
a measure of model fit. Bond et al. (2019) also
use the t-Student test for the slope coefficient non-
zeroness.

This paper adopts this way to examine the deter-
mination coefficient R2 and the t-Student test for

the slope coefficient non-zeroness. It also provides
the scatter plots for the obtained f and v with their
regression lines.

Previous studies use averaged values of f and
m for regression. To calculate the averages, words
are divided into a certain number of bins according
to their frequency ranks. For example, Bond et al.
(2019) construct bins of the range λ such that a
word with ith frequency rank is fitted to the jth
bin if and only if the following inequalities are
fulfilled: λ(j − 1) + 1 ≤ i ≤ λj where j =
1, 2, 3, · · · round(nλ ), λ is a rank range (also, bin
size), and n is a maximum rank2. Throughout this
paper, λ = 100 is used. Bond et al. (2019) show
more results for this value of λ than the others.

To summarize, the overall procedure consists of
the following eight steps:

(1) Count frequency f of every word w in the
given corpus

(2) Obtain word vectors for every word w appear-
ing in it

(3) Normalize the obtained vectors so that their
norm is one

(4) For each word type, calculate the mean vector
of the word vectors and its norm

(5) Calculate v = 1/κ using Eq. (4)

(6) Average f and v over each bin

(7) Fit the averaged values of f and v to Eq. (6)

(8) Examine if the meaning-frequency law holds
or not with the determination coefficient R2

and the slope coefficient α.

4 Examination with Canonical Language
Data

We now examine the meaning-frequency law with
the new formulation of the meaning-frequency
law. We use two English corpora: the British
National Corpus (BNC)3 and the 2000s sub-
corpus in the cleaned version (Alatrash et al.,
2020) of Corpus of Historical American English

2To be precise, in Bond et al.’s (2019) study, the first 100
most frequent words are excluded and thus they use 100 +
λ(j − 1) + 1 ≤ i ≤ 100 + λj, instead.

3BNC Consortium, The British National Corpus, XML
Edition, 2007, Oxford Text Archive, http://hdl.handle.
net/20.500.14106/2554. The data were used following the
license: http://www.natcorp.ox.ac.uk/docs/licence.
html
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(CCOHA) (Davies, 2012); and two Japanese
corpora: Aozorabunko Corpus4, a collection of
Japanese literature, and Balanced Corpus of Con-
temporary Written Japanese (BCCWJ) (Maekawa
et al., 2014). Additionally, we use 27 corpora in
24 languages from five language families from the
Bible corpus (Christodouloupoulos and Steedman,
2014). The details of all corpora are shown in Ap-
pendix A.2.

We use BERT (Devlin et al., 2019) models to
obtain word vectors considering that researchers
such as Laicher et al. (2021) and Aida and
Bollegala (2023) have shown that BERT mod-
els are effective in meaning change detection.
Specifically, we use the hidden state of the
final layer of BERT (bert-large-uncased5,
cl-tohoku/bert-large-japanese-v26, and
bert-base-multilingual-uncased7 for the
English, Japanese, and Bible corpora, respectively)
as word vectors; we use the uncased models for
English, which will be denoted without -uncased
(e.g., bert-large), hereafter. We target words
satisfying the following two conditions: (i) its
frequency count is more than 100, and (ii) its
frequency rank is higher than 20,000. For words
split into multiple sub-words, we exclude their
middle and final sub-words from the investigation8.

Fig. 1 and Fig.2 respectively show the results for
the English and Japanese corpora; the horizontal
and vertical axes respectively correspond to the
logs of the frequency f and the contextual diversity
v; the line graphs correspond to the regression lines
fitted to the scatter plots.

The plots in Fig. 1 and Fig. 2 fit Eq. (6) well,
exhibiting a high determination coefficient R2 in
all cases; all slope coefficients are statistically sig-
nificant (p < 0.01, t-Student test). These results
show that the meaning-frequency law holds even if
meaning counts are measured through contextual
diversity. The meaning-frequency law, then, can

4https://github.com/aozorahack/aozorabunko_
text, accessed in 3.12.2023. The data were used following
the license: https://www.aozora.gr.jp/guide/kijyunn.
html

5https://huggingface.co/docs/transformers/
model_doc/bert, Apache license 2.0.

6https://huggingface.co/cl-tohoku/
bert-large-japanese-v2, Apache license 2.0.

7https://huggingface.co/google-bert/
bert-base-multilingual-uncased, Apache license
2.0.

8Actually, even with middle and final sub-words, the re-
sults are similar to those shown in this section. They are ex-
cluded here for vocabulary size comparison, which is shown
in Table 1.

Figure 1: Relationship between word frequency f and
word meaning measured as contextual diversity v in
English corpora. LM: bert-large.

Figure 2: Relationship between word fre-
quency f and word meaning measured as con-
textual diversity v in Japanese corpora. LM:
cl-tohoku/bert-large-japanese-v2.

be restated as the context-frequency law: the more
frequent a word is, the more contextual diversity it
has, following a power law. Although one might
predict this from Zipf’s meaning-frequency law
and Harris’s distributional hypothesis, the contribu-
tion of this study is that it provides a formulation
of this idea, and also empirically shows that word
frequency and contextual diversity follow a power
law.

Additionally, Table 5 in Appendix A.3 shows the
law holds in the 27 Bible sub-corpora; the average
R2 and slope coefficient are 0.85 and 0.043, re-
spectively. These results suggest that the meaning-
frequency law might be universal.

The proposed method has a practical advantage
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over the previous studies. Now that the proposed
method is free from the use of a dictionary, it is
applicable to words and language data even if their
meaning dictionaries are not available or difficult to
obtain; all it requires is a corpus of a fair size9. Ex-
amples of such cases include historical and learner
corpora where meanings of words appearing in
these corpora are not necessarily defined in stan-
dard dictionaries because they contain ancient or
erroneous usages. We will discuss the meaning-
frequency law with these corpora in Sect. 5. The
above investigations include high-frequency words,
function words, and inflected/conjugated forms,
which are excluded in the previous studies; Table 1
shows target vocabulary sizes in the previous and
present studies.

The slopes in Fig. 1 and Fig. 2 tend to be smaller
in a low frequency range (2 < log10(f) < 3),
especially for Aozorabunko corpus. That is, the
contextual diversity v for low-frequency words is
estimated to be larger than the regression line pre-
dicts. In other words, the MLMs used tend to assign
to them word vectors that result in a higher value
of contextual diversity than expected. Word vec-
tors for infrequent words might be of lower quality
than for frequent words. We will observe and dis-
cuss similar tendencies with historical and learner
corpora in Sect. 5 and with smaller LMs in Sect. 7.

5 Meaning-frequency Law in
Out-of-domain Data

With the new formulation, we explore the meaning-
frequency law in out-of-domain data. By out-of-
domain, we mean domains on which LMs (specif-
ically, BERT, here) were not trained10. We use
two historical corpora (the 1800s and 1900s sub-
corpora in CCOHA) and a learner corpus (texts
written by English learners, which are excerpts
from Lang-811); the details of these corpora are
shown in Appendix A.2. The proposed method is
applicable even to these corpora for which meaning
dictionaries are difficult to obtain for ancient us-

9As an example, we extracted about 700,000 words from
the first line of the 2000s CCOHA sub-corpus. It turned out
that the meaning-frequency law held with α = 0.12 and
R2 = 0.93 although the data points were only seven. In
practice, it would be better to use more data for statistically
reliability.

10Strictly, BERT is trained on Web and book data which
may contain historical and learner texts. The vast majority of
the data should be contemporary English texts produced by
native speakers of English.

11https://lang-8.jp/. This data was privately provided
to the authors for academic use.

Study Vocabulary Size
English
This study 18,450
Bond et al. (2019) 14,500
Casas et al. (2019) 16,200
Japanese
This study 20,000
Bond et al. (2019) 10,000

Table 1: Target vocabulary sizes in previous and present
studies.

ages in historical texts, and unnatural and erroneous
usages in the writings of non-native speakers. We
use bert-large to obtain word vectors as in Sect. 4.

Fig. 3 shows the results from the 1800s and
1900s sub-corpora in CCOHA. It also shows the
result from the 2000s sub-corpus for comparison.

It turns out that the deviation from the regression
line is slightly larger in the older sub-corpora than
in the 2000s, reflected in smaller values of R2. In
particular, the slope tends to be smaller in a low-
frequency range (log10(f) < 3) as in Aozorabunko
corpus in Sect. 4. BERT, which is trained on con-
temporary English data, may have difficulty in rec-
ognizing the meanings of infrequent words in older
texts. In such cases, it might assign to them vectors
with more diversity, which in turn increases the
value of v.

Nevertheless, the plots fit Eq. (6) well in the
higher-range (log10(f) > 3). Even in the entire
range (log10(f) > 2), the slope coefficient for the
entire range is statistically significant (p < 0.01,
t-Student test). These results suggest that the plots
follow the meaning-frequency law at least to a cer-
tain extent, suggesting that the BERT model cap-
tures the meanings of high-frequency words appear-
ing in texts as old as 200 years. Indeed, Aida and
Bollegala (2023) report that BERT is effective in
detecting lexical semantic change in the SemEval
2020 task 1 (Schlechtweg et al., 2020) where the
1810–1860 and 1960–2010 texts in CCOHA are
used, which are also included in our target sub-
corpora.

Fig. 4 shows the relationship between f and v
obtained from the original and corrected texts in the
learner corpus (Lang-8); Lang-8 contains correc-
tions made by volunteers of native speakers. It also
shows the relationship between f and v obtained
from the CCOHA 2000s sub-corpus for compari-
son.
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Figure 3: Relationship between f and v in historical
corpora. LM: bert-large.

Figure 4: Relationship between f and v in learner cor-
pora. LM: bert-large.

The plots for the learner corpora in Fig. 4 ex-
hibit a tendency similar to that found in Fig. 3,
only with a stronger tendency of small slopes in
a low-frequency range. This is again probably be-
cause BERT cannot recognize the different mean-
ings of these infrequent words well. For these de-
viations from the regression line, it is difficult to
tell whether the meaning-frequency law holds for
learner corpora or not. Interestingly, the original
corpus, which contains errors and unnatural lan-
guage usages, tends to exhibit a larger value of v
for almost all f than its corrected version, even
though they have similar sizes. This can be ex-
plained from the findings of Nagata et al. (2023)
that spelling and grammatical errors increase the
value of v; an example is the spelling error form
(correctly, from), which adds usages as the preposi-
tion to its noun and verb usages.

6 Meaning-frequency Law in Random
Corpora

It would be interesting to explore the meaning-
frequency law for random corpora considering that
other Zipf’s laws such as the frequency-rank law
hold even in certain random sequences (Li, 1992;
Zörnig, 2015).

To this end, we consider the following three
types of random corpus whose details are shown in
Appendix A.4:

(1) a shuffled version of the CCOHA 2000s sub-
corpus: the words in the sub-corpus are ran-
domly shuffled, and thus the resulting word se-
quences are mostly unfamiliar to LMs trained
on canonical English texts; in contrast, the
vocabulary set and the word frequencies are
identical to those of the original

(2) a uniformly sampled corpus: words are uni-
formly sampled from the vocabulary set of
the CCOHA 2000s sub-corpus to obtain a cor-
pus of the same size as that of the original
sub-corpus

(3) random vectors: in this virtual corpus, the d-
dimensional unit vector x is randomly gener-
ated on the (d − 1)-sphere; the numbers of
generated vectors are identical to the numbers
(frequencies) of words in the CCOHA 2000s
sub-corpus

These randomly generated corpora and vectors are
used to calculate f and v.

Fig. 5 shows the relationship between f and v ob-
tained from the random corpora together with those
from the original sub-corpus. Note that the plots
for the random vectors are shifted by −2 along the
vertical line for readability.

It turns out that the meaning-frequency law
holds only in the random vectors and the original
CCOHA 2000s sub-corpus. The former exhibits
the almost perfect fit to the regression line with
a slope coefficient of 0.5 while the latter shows a
slightly low fit with a much smaller slope coeffi-
cient. This suggests that words in human languages
use only a small fraction of the (d−1)-dimensional
sphere to convey meanings compared to the ran-
domly generated vectors.

In contrast, the shuffled corpus does not follow
the meaning-frequency law. The plots form a some-
what v-shape line. Most of the word sequences
in the shuffled corpus are unfamiliar to the LM
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Figure 5: Relationship between f and v in three types
of random corpus. LM: bert-large

bert-large. As a result, it likely produces consider-
ably different word vectors for each word instance
with a certain randomness. Then, the plots would
follow a line increasing with respect to f as dis-
cussed above. In reality, however, the line for the
low-frequency range log10(f) < 4 tends to be de-
creasing. This implies that there must be another
force to decrease the value of v with respect to f .
As discussed in Sect. 4, infrequent words will likely
introduce randomness into word vectors, which in
turn increases the value of v, deviating upward
from the regression line. The shuffled corpus simu-
lates this situation. The vocabulary set and the word
frequencies in the shuffled corpus are identical to
those in the original corpus. Therefore, words tend
to co-occur more often with high-frequency words
even after shuffling. Then, as the frequency of a
word increases, words in its local contexts12 coin-
cide with each other more often. Note here that the
norm of the mean vectors gets larger when there
are more similar vectors, which is reflected in a
smaller value of the contextual diversity v. As a re-
sult, infrequent words tend to receive a larger value
of v even in shuffled corpora; conversely more fre-
quent words exhibit the opposite tendency. This is
our hypothesis for the v-shape plots found in the
shuffle corpus.

The uniformly sampled corpus results in unique
plots. In the corpus, words are uniformly sampled
and thus, their frequencies are identical. Similarly,

12Here, local context refers to a few words around the word
in question. They tend to overlap as the frequency of the word
increases with a limited vocabulary set as in the case in this
section.

v converges to a certain value for all words because
their contexts are randomly generated and the de-
gree of their overlaps is similar. Indeed, Fig. 5 re-
flects this expectation well, showing a rather small
grouping of plots rather than a line.

The discussion so far is summarized as follows:
What makes the difference between human lan-
guage data and the random corpora is: (i) the
meaning-frequency does not hold in shuffled and
uniformly sampled corpora; (ii) it perfectly holds
in random vectors; (iii) human language data ex-
hibit a slight deviation from the regression line and
its slope coefficient is much smaller than that of
random vectors.

7 Meaning-Frequency Law with respect
to Model Size and Architecture

When the size of an LM is small, it might not be
able to recognize differences in word meanings
well. With such small LMs, the meaning-frequency
law might not be observable any more.

To investigate this, we compare BERT models
of six different sizes13 as shown in Table 2. Fig. 6
shows the relationships between f and v obtained
from the CCOHA 2000s sub-corpus by using the
six BERT models. The labels in the legend are
shown in descending order of their model sizes.

As expected, Fig. 6 shows that the law becomes
unobservable when the model size is small. The
slope coefficient gets smaller as the model size gets
smaller; bert-small and smaller exhibit a negative
value.

Looking deeper inside, Fig. 7 shows the results
for bert-base and bert-medium; the upper figure is
extracted as it is as in Fig. 6 and the lower figure
corresponds to regression for log10(f) > 3. At

13The following implementation was used: https://
huggingface.co/prajjwal1/bert-medium, MIT License.

Model Number of parameters
bert-large 340M
bert-base 110M
bert-medium 41.7M
bert-small 29.1M
bert-mini 11.3M
bert-tiny 4.4M
gpt2-medium 345M
gpt2-xl 1,558M

Table 2: Model sizes. The uncased versions are used
for all English BERT models (e.g., bert-large-uncased).
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Figure 6: Relationship between f and v calculated by
LMs of different sizes. Corpus: CCOHA 2000s.

first sight, the plot for bert-medium in the upper
figure does not follow the meaning-frequency law,
similar to those in the learner corpora, but with
almost zero R2 and slope coefficient. In contrast,
those in the lower figure fit Eq. (6) well. A possible
reason might be that bert-medium and smaller do
not have enough parameters to learn all the mean-
ings for all words in the training data. With this
limitation, during training, they would focus on
words appearing frequently in the training data to
reduce the entire loss, instead of trying to learn all
words. If so, they should be able to recognize mean-
ings of high-frequency words well, which results
in a better model fit in a high-frequency range. In
contrast, they are not capable of recognizing those
of low-frequency. For this, they would assign very
different word vectors to those that are superficially
different, but actually have similar meanings. This
would increase the variation of the directions of
word vectors. This agrees with the plots for bert-
medium and smaller models.

We can also explore the lexical capability of
LMs in terms of their architectures. Here, we com-
pare bert-base (MLM) with autoregressive LMs
that predict the next token. Specifically, we use
two autoregressive LMs (GPT-2 (Radford et al.,
2019), gpt2-medium and gpt2-xl14). Fig. 8 shows
the relationships between f and v obtained from
the CCOHA 2000s sub-corpus by these three LMs.

Fig. 8 reveals that f and v obtained by gpt2-
medium do not fit Eq. (6) at all. Surprisingly gpt2-
medium is approximately three times larger than

14https://huggingface.co/openai-community/gpt2,
MIT License.

Figure 7: Comparison between bert-base and bert-
medium. Upper: regression fitted to f and v where
log10(f) > 2. Lower: regression fitted to f and v
where log10(f) > 3. Corpus: CCOHA 2000s.

bert-base (see Table 2). Nevertheless, its slope co-
efficient exhibits a negative value; its R2 is very
small. With gpt2-xl, which is approximately 14
times larger than bert-base, the meaning-frequency
law is now observable. In other words, it requires
much more parameters to be able to observe the
meaning-frequency law with the autoregressive
LM.

These results suggest that MLMs have an ad-
vantage over autoregressive LMs in distinguishing
between differences in meaning through their word
vectors. This is mainly because GPT-2, and also
other autoregressive LMs, are a decoder that can
only use the token in question and its previous
context to predict the next token; the information
about the following context is not available in their
word vectors. In contrast, all the words in the input
passage are given to MLMs and thus the informa-
tion about previous and also following context is
available in their word vectors.

The findings in this section and in Sect. 5 suggest
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Figure 8: Relationship between f and v calculated by
BERT and GPT-2. Corpus: CCOHA 2000s.

that the meaning-frequency law might be used as a
sanity check for the lexical ability of LMs. Namely,
one can use it to see if LMs perform appropriately
on target data; if the meaning-frequency law is
not observed, the LM might not perform well on
the data in question. Then, it would be better to
conduct further checks.

To support this argument, we conducted two ad-
ditional investigations. In one investigation, we
calculated Pearson correlation coefficients between
the number of word meanings registered in Word-
net and the values of v obtained from the CCOHA
2000s sub-corpus by using the six models. In the
other investigation, we compared the slope coef-
ficients of the six models with their accuracy in
Multi-Genre Natural Language Inference (MNLI),
which is extracted from the previous study (Bhar-
gava et al., 2021).

Table 3 shows the results. The correlation be-
tween the number of word meanings and the con-
textual diversity v becomes higher as the size of
the model increases; their scatter plots are available
in Fig. 9 where words are put into bins just as in
Fig. 6. Similarly, the correlation between the slope
coefficient α and accuracy in MNLI is high.

8 Conclusions

This paper has presented a new formulation of
Zipf’s meaning-frequency law based on contextual
diversity measured using contextualized word vec-
tors. This formulation gives a new interpretation of
the law as a relationship between word frequency
and contextual diversity. It requires no dictionary,
unlike the previous studies, and thus overcomes
problems and limitations stemming from the use of
a dictionary. With this formulation, this paper has

Model size α # meanings MNLI
large 0.056 0.418 87.5
base 0.060 0.465 83.7
medium -6×10−5 0.312 79.6
small -0.008 0.252 76.5
mini -0.030 0.119 72.3
tiny -0.037 -0.051 64.5
γ — 0.92 0.92

Table 3: Relationship between slope coefficient α of six
BERT models and task performances. # meanings: Pear-
son correlation coefficients between the number of word
meanings in WordNet and the values of v estimated by
each model; MNLI: accuracy of each model in MNLI; γ:
Pearson correlation coefficient — correlation between
the slope coefficient α and model performances in the
two tasks (both statistically significant).

Figure 9: Relationship between meaning count m in
WordNet and v estimated from CCOHA 2000s using
BERT models of different sizes.

shown that the meaning-frequency law holds for a
wider range of words and corpora than the previous
studies have shown. This paper has also revealed
the differences between human language data and
various random sequences. Finally, this paper has
explored the meaning-frequency law with LMs of
different sizes and of different architectures, which
shows how it might be possible to use this method
to examine whether an LM will work well on a
given dataset.
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Limitations

As described in Sect. 3, the proposed method as-
sumes the von-Mises Fisher distribution behind
word vectors. This inevitably assumes that the dis-
tribution of word vectors is unimodal and isotropic.
The true distribution of vectors for certain words
may be multimodal and/or anisotropic. A more
sophisticated modeling (e.g., a mixture of the
von-Mises Fisher distribution (Banerjee et al.,
2005)) might achieve more accurate modeling and
thus more accurate investigations of the meaning-
frequency law, although it is already observable
with the von-Mises Fisher distribution.

Correlated with this, the use of the von-Mises
Fisher distribution discards norms of individual
word vectors. This does not necessarily mean that
norms of word vectors are not important for han-
dling word meanings; they might encode some
important aspects of word meanings. Therefore,
the same argument as above applies to this point.

Theoretically, the proposed method is applicable
to all words with certain frequency counts in any
language as long as a fair size of a corpus of that
language is available. However, the vocabulary size
is limited by the LM used to investigate the law. In
BERT, for example, its vocabulary size is 30,000
including middle and end sub-words. Words that
one desires to include in their investigation may
not be in the vocabulary set or be split into multiple
sub-words, and thus they may be excluded. One
could train an LM with an arbitrary vocabulary set,
but it would be costly to train a large LM from
scratch.
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A Appendix

A.1 Interpretation of Concentration
Parameter

To begin with, let us first note that the similarity
between two words are conventionally measured
by the cosine similarity between their word vectors.
This is equivalent to measuring the word similarity
based only on the directions of word vectors, or to
assuming that all word vectors are normalized so
that their norms become one.

Under this condition, any word vector appears
on the unit hypersphere. As a special case of this,
when the dimension of word vectors is two, word

Figure 10: Intuitive Illustration for Mean Norms.

vectors appear on the unit circle as in the dashed
arrows (vectors) in Fig. 10.

We now examine the norm of the mean word
vector for various cases. An extreme case would be
that a word is always used in the exact same context,
and thus with the same meaning. Its word vectors
appear at the same point on the unit hypersphere
as in Fig. 10 (a). Then, its mean vector is always
identical to the original word vectors, and thus its
norm is also always one; recall all word vectors
are normalized so that their norms equal one. The
other extreme case would be that a word type is rep-
resented by two opposite vectors as in Fig. 10 (b),
which should cover much wider meanings. In this
case, its mean vector becomes the zero-vector with
the zero norm. Other cases in between would give
a norm between zero and one. For instance, two
orthogonal vectors result in the mean word vector
whose norm is

√
2
2 as in Fig. 10 (c)15.

The discussion so far suggests that the concen-
tration of word vectors is related to the norm of
its mean vector. This is formalized by the von
Mises-Fisher distribution (Banerjee et al., 2005) as
described in Sect. 3.

A.2 Details of Used Corpora
Table 4 shows the sizes of the corpora used in the
examinations in Sect. 4 to Sect. 7. In Aozorabunko,
the size corresponds to the number of characters.

We conducted the following pre-processing for
the corpora:

CCOHA: We used the data following the
license16. Documents containing the string
“@@YEAR.txt” (e.g., @1525.txt), which seems to
be an erroneously included filename, were removed
as noise. The document tags (e.g., <P></P>)
were also removed. In CCOHA, 5% of ten consec-
utive tokens every 200 are replaced by ‘@’ due to

15Addition of two orthogonal vectors produces a vector
along the diagonal line with a norm of

√
2, and thus the norm

of the mean word vector is
√

2
2

.
16https://licenses.library.ubc.ca/

EnglishCorporaCOHA
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Corpus Size
CCOHA 1800s 111,048,657
CCOHA 1900s 262,200,025
CCOHA 2000s 68,678,659
BNC 109,369,848
Aozorabunko 198,755,598
BCCWJ 124,102,859
Lang-8 Original 127,864,912
Lang-8 Corrected 152,681,283

Table 4: Sizes of corpora used in investigations. Sizes
are measured by tokens except Aozorabunko where char-
acters are used instead.

copyright regulations. Sentences containing these
special tokens were also excluded from the analy-
ses. The remaining sentences were tokenized first
by spaCy17 and then again tokenized by the tok-
enizer of the corresponding LM.

BNC: We used the data following the license18.
Only the written part was used. Their sentences
were tokenized by the BERT tokenizer.

Lang-8: This data was privately provided from
the creator for academic use. It consisted of sen-
tences written by learners. Only English sentences
written between 2012 and 2019 were targeted in
the investigation. The corrected version of the orig-
inal sentences was also used as a target corpus; part
(but not all) of the sentences were corrected by vol-
unteers of native speakers of English. For those
without corrections, the corresponding original sen-
tences were used as correct sentences. The same
tokenization process as in CCOHA was applied to
these corpora.

Aozorabunko corpus: The data available at the
Github site19 were used. The documents were split
into sentences by pySBD20. Tokenization was done
by cl-tohoku/bert-large-japanese-v2.

BCCWJ: The data available at the site21 were
used. The same pre-processing as in Aozorabunko
was applied.

Bible corpora: They were used for the ad-
ditional investigation in Sect. 4. The data avail-

17https://spacy.io/, the en_core_web_sm model, MIT
License.

18http://www.natcorp.ox.ac.uk/docs/licence.html
19https://github.com/aozorahack/

aozorabunkotext, license: https://www.aozora.gr.
jp/guide/kijyunn.html

20https://github.com/nipunsadvilkar/pySBD, MIT
License.

21https://clrd.ninjal.ac.jp/bccwj/en/index.
html, license: Academic license.

able at the Github site22 were used. The
text data were extracted by using the accom-
panying tool. Tokenization was done by
bert-base-multilingual-cased.

A.3 Detailed Results with Bible Corpora

To augment the results in Sect. 4, we conducted
an additional experiment with the multilingual
BERT23 and the Bible corpora (Christodouloupou-
los and Steedman, 2014). The multilingual BERT
covered 69 languages in the Bible corpora. Of 69,
we targeted 27 corpora that had a vocabulary size of
1,000 or more as a result of the BERT tokenization
because the examination of the meaning-frequency
law requires a certain vocabulary size to be able to
conduct a regression analysis.

Table 5 shows the results. It turns out that the
meaning-frequency law holds for all 27 corpora.

A.4 Details of Random Corpora

In Sect. 6, we examined the meaning-frequency law
against three types of random corpus. The details
of the corpora are as follows:

Shuffle corpus: We created a shuffle corpus
from the CCOHA 2000s sub-corpus as follows: (1)
all texts in the original sub-corpus were split into
sentences and then tokenized into tokens by using
spaCy; (2) all sentences were concatenated as a
long sequence of words; (3) from the sequence, all
tokens were randomly chosen, one at a time, to
make another sequence of tokens with the same
length; (4) this random process was repeated five
times; (5) finally, the sequence was split into sen-
tences by either ‘.’, ‘?’, or ‘!’. Note that the length
and word frequencies of the shuffled sub-corpus are
identical to the original although the word orders
are considerably different.

Uniformly sampled corpus: We created a uni-
formly sampled corpus as follows: (1) the vocabu-
lary set was created from the CCOHA 2000s sub-
corpus; (2) words were sampled from the vocab-
ulary set of the CCOHA 2000s sub-corpus with
the same probability to obtain a word sequence of
the same length as that of the original sub-corpus;
(3) the sampled word sequence was split into sub-
sequences at the same locations of the sentence
boundaries of the original sub-corpus; (4) the re-

22https://github.com/christos-c/bible-corpus,
CC0-1.0 license.

23https://huggingface.co/google-bert/
bert-base-multilingual-uncased, bert-base-
multilingual-uncased, Apache license 2.0.
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Family Language Slope Coefficient R2 p-value
Indo-European Afrikaans 0.054 0.88 0.01
Indo-European Albanian 0.040 0.97 0.02
Indo-European Czech 0.030 0.80 0.01
Indo-European Danish 0.044 0.90 0.01
Indo-European English 0.047 0.87 0.00
Indo-European English (WEB) 0.051 0.93 0.00
Indo-European French 0.046 0.81 0.00
Indo-European German 0.036 0.88 0.01
Indo-European Italian 0.049 0.86 0.00
Indo-European Latin 0.035 0.74 0.00
Indo-European Lithuanian 0.036 0.86 0.02
Indo-European Norwegian 0.049 0.83 0.01
Indo-European Polish 0.038 0.81 0.02
Indo-European Portuguese 0.048 0.79 0.00
Indo-European Romanian 0.042 0.93 0.02
Indo-European Russian 0.037 0.95 0.02
Indo-European Slovak 0.028 0.87 0.01
Indo-European Slovene 0.028 0.74 0.01
Indo-European Spanish 0.051 0.84 0.00
Indo-European Swedish 0.038 0.75 0.01

Japonic Japanese 0.050 0.92 0.00
Japonic Japanese (tokenized) 0.045 0.94 0.01

Sino-Tibetan Chinese 0.072 0.87 0.00
Sino-Tibetan Chinese (tokenized) 0.072 0.87 0.00

Turkic Turkish 0.052 0.92 0.02
Uralic Finnish 0.042 0.91 0.02
Uralic Hungarian 0.013 0.44 0.02

Table 5: Regression results on 27 Bible corpora.

sulting sub-sequences were regarded as sentences
and were used as inputs to BERT to obtain their
word vectors.

Uniformly sampled vectors: In this virtual ran-
dom corpus, we randomly generated d-dimensional
vectors on the (d−1)-sphere; the numbers of gener-
ated vectors were identical to the numbers (frequen-
cies) of words in the CCOHA 2000s sub-corpus;
these randomly generated vectors were used to cal-
culate the values of v.
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