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Abstract

Large language models (LLMs) have shown
remarkable capabilities in natural language pro-
cessing. However, in knowledge graph ques-
tion answering tasks (KGQA), existing meth-
ods rely on entity vector matching, but the pur-
pose of the question is abstract and difficult
to match with specific entities. As a result,
it is difficult to efficiently establish reasoning
paths to the purpose, which leads to informa-
tion loss and redundancy. To address this is-
sue, inspired by human reverse thinking, we
propose Ontology-Guided Reverse Thinking
(ORT), a novel framework that constructs rea-
soning paths from purposes back to conditions.
ORT operates in three key phases: (1) using
LLM to extract purpose labels and condition
labels, (2) constructing label reasoning paths
based on the KG ontology, and (3) using the
label reasoning paths to guide knowledge re-
trieval. Experiments on the WebQSP and CWQ
datasets show that ORT achieves state-of-the-
art performance and significantly enhances the
capability of LLMs for KGQA.

1 Introduction

LLMs have made significant achievements in natu-
ral language processing, excelling in tasks such as
semantic understanding (Raiaan et al., 2024), text
generation (Shen et al., 2024), machine translation
(Hu et al., 2024a), dialogue systems (Zhang et al.,
2019), sentiment analysis (Li et al., 2025), and text
summarization (Basyal and Sanghvi, 2023). LLMs
have also been applied in various scenarios, such as
the medical field (Wu et al., 2024b) and scientific
research support (Wu et al., 2024a).

The rapid development of LLMs has sparked
interest in combining LLMs with knowledge
graphs to improve KGQA performance (Hu et al.,
2024b). Existing approaches typically adopt two
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Figure 1: Example of previous methods and ORT. Tra-
ditional methods are limited to entity-centric reasoning
through vector matching and path collection. In contrast,
ORT enables ontology-aware reasoning by identifying
conceptual intents, constructing reverse-label reasoning
paths, and guiding targeted traversal to the correct an-
swers.

paradigms. The first is fine-tuning methods, such
as LPKG (Wang et al., 2024) and RoG (Luo et al.,
2024). However, creating high-quality training
data is resource-intensive (Cao et al., 2023). Ad-
ditionally, knowledge graphs are highly structured
data, and when faced with questions that have not
been fine-tuned, the quality is difficult to guar-
antee (Jiang et al., 2024). The second is embed-
ding + search methods, such as MindMap (Wen
et al., 2024) and Think-on-Graph (Sun et al., 2023),
which rely on entity embeddings and graph traver-
sal but are unable to handle conceptual targets ab-
sent in KG entities. As shown in Figure 1, “sta-
dium” is a concept, not an entity in the knowl-
edge graph, so “Embedding + Search Strategy” can
only find paths between “1995 Rugby World Cup”
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Figure 2: The overall framework of ORT. Starting from a question, the LLM is used to identify conditions and aims
in the question, along with their corresponding labels. Using the aim label as the root node, the system iteratively
queries related labels on the knowledge graph ontology until the backward max-hop limit is reached. Paths that do
not contain condition labels, paths after the last condition label in each sequence, and loops are then pruned. The
reasoning paths are used as guidance to query the knowledge graph, and the LLM summarizes the entity paths to
derive the final answer.

and “Ireland Team” and their neighbors, but cannot
reach “Ellis Park Stadium”.

In this paper, we propose a novel method named
Ontology-guided Reverse Thinking (ORT). Our ap-
proach begins by extracting not only known entities
from the question but also its underlying aims us-
ing LLMs, where these aims are represented as
entity labels. Building upon these labels, we es-
tablish a reasoning framework that combines both
ontological structures and reverse thinking princi-
ples. Specifically, we construct a reasoning tree
that originates from the identified aims and pro-
gresses toward the known conditions, effectively
creating label reasoning paths with the knowledge
graph ontology. This reverse-oriented approach in-
corporates path pruning, eliminating unnecessary
branches during the reasoning process. The re-
fined reasoning paths then guide targeted knowl-
edge queries in the knowledge graph, followed by
using LLMs to aggregate knowledge and gener-
ate answers. This integrated methodology enables
precise knowledge retrieval while minimizing in-
terference from irrelevant information, ultimately
enhancing the accuracy of the LLM’s responses.

The experimental results demonstrate that our

method significantly improves the answer coverage
and quality of LLM KGQA. Compared to direct re-
sponses from LLMs, our method achieves a Hit@1
improvement of at least 25.43% and an F1 score
improvement of at least 25.82%. As a plug-and-
play approach, it greatly enhances the efficiency of
LLM KGQA.

In summary, our main contributions include: 1)
We first introduce a human-like problem-solving
approach for KGQA: Ontology-Guided Reverse
Thinking. 2) As a plug-and-play method, we
enable LLMs to efficiently understand the struc-
ture of the knowledge graph. 3) Experimental re-
sults demonstrate a significant improvement in the
LLM’s KGQA ability, achieving state-of-the-art
among the models studied.

2 Methodology

As shown in Figure 2, the entire algorithm is di-
vided into three steps:

1. Condition and Aim Recognition: Prompt
the LLM to understand the known conditions
and the solving aims of the question.

2. Ontology-Guided Reverse Thinking Rea-
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soning: Use the Reverse Thinking Reasoning
method to construct label reasoning paths on
the knowledge graph ontology.

3. Guided Answer Mining: Use the label rea-
soning paths to guide querying and prompt
the LLM to generate the final answer.

2.1 Aim and Condition Recognition

Your task is to extract conditional entities and
their types and target entities and their types
from the user’s input question.
The user’s question is: {question}
### Please choose the entity types from the
following table:
{label_description}
Each row describes an entity type in the format
- Entity Type (Description)
### Extracting Rules:
- Conditional entities are the known information
provided in the question.
- Target entities are the content the user wants
to query in the question.
### Example:
{entity_extract_example}

Figure 3: Prompt template for condition and aim recog-
nition.

This step extracts the condition entities CE =
{c1, c2, . . . , cn}, labels of condition entities
CL = {cl1, cl2, . . . , cln}, aim entities AE =
{a1, a2, . . . , an}, and labels of aim entities AL =
{al1, al2, . . . , aln} from the question by prompting
LLM.

Condition is defined as the known key informa-
tion in the question, while aim is defined as the
content the user wants to query through the ques-
tion. The aim entity refers to the entity in the user
question that conveys the intended purpose. In fact,
the aim entity is not used in the subsequent pro-
cessing steps. It serves as an intermediate step for
obtaining its corresponding labels. The aim entity
labels represent a set of related labels of the aim
entity in the knowledge graph, play a crucial role
in establishing a mapping from the user question to
the knowledge graph ontology. This label identifi-
cation process effectively addresses the limitations
of relying solely on vector-based matching.

We provide the LLM with a Label List of the
knowledge graph, prompting the LLM to first ex-
tract CE and AE , and then assign labels to the

respective entities. The main content of the prompt
template is shown in Figure 3, and the complete
content of the prompt can be found in Appendix D.

2.2 Ontology-Guided Reverse Thinking
Reasoning

Knowledge graph reasoning differs from document
reasoning in that its data is structured, making
the effective use of structural information particu-
larly important (Thambi and Reghuraj, 2022). We
propose for the first time the use of a knowledge
graph ontology (KG ontology) to construct label
reasoning paths, thereby guiding KG queries to
enhance the reasoning ability of LLM with knowl-
edge graphs.

The way we construct paths on KG ontology is
Reverse Thinking Reasoning. The constructed path
is named as label reasoning path RP , or abstract
reasoning path.

2.2.1 Step I. Construct the Neighbor Label
Dictionary

The ontology of the knowledge graph consists of
several relation-defined triples. For each label li in
a triple, we collect all other labels lk, lk+1, . . . that
appear in the same relation-defined triple.

To express this, we introduce a function N (li),
which denotes the set of labels lk that appear in the
same triple as li:

N (li) = {lk | (li, relationship, lk) ∈ G} (1)

where G represents the set of all triples in the knowl-
edge graph. Then, we construct a neighbor label
dictionary, denoted as D, where li is the key, and
N (li) is the value associated with it:

D = {li : N (li)} (2)

For example, given the following relationships
in the knowledge graph ontology: l1 → l2, l1 → l3,
and l3 → l1, the neighbor label dictionary D will
be:

D =





l1 : [l2, l3],
l2 : [l1],
l3 : [l1]

2.2.2 Step II. Construct the Reverse
Reasoning Tree

First, since the length of AL may be greater than 1,
we create a virtual root node and add all aim labels
AL = {al1, al2, . . . , alm} as its child nodes.
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Then, we recursively traverse all child nodes,
querying the neighbor label dictionary D to add
all neighboring labels N (li) as child nodes of each
current node.

This process continues recursively until the max-
imum recursion depth max_pop is reached. The
maximum recursion depth is determined based on
the number of hops of the question.

The reverse reasoning tree, denoted as T , is built
as a recursive structure where the nodes represent
labels from the knowledge graph, and the edges
represent the relationships between them. Due to
the limited space in the image, the relationships
between the entity labels are not explicitly shown.

2.2.3 Step III. Prune By Conditions

Starting from the root node, we perform a depth-
first search (DFS) and record the current path.

When a leaf node is reached, we check if any
node in the path matches the condition labels CL.
The pruning is performed as follows:

• If the path contains no condition label nodes,
the entire path is removed.

• If the path contains condition label nodes, only
the last condition node and its preceding nodes
are retained, while the subsequent nodes are
deleted.

The pruning algorithm is recursively applied to
each child node, using a copy of the path to avoid
contaminating the original path. The output is
the tree after pruning by conditions, denoted as
TCondition.

2.2.4 Step IV. Prune Cycle Sub-paths

Due to the possibility of bidirectional relationships
between two labels, cycles may exist in the reason-
ing paths.

A depth-first search (DFS) is performed on
TCondition, adding the current node’s name to the
visited set visited. The pruning algorithm is re-
cursively called for each child node of the current
node. If the current node’s name already exists in
the visited set visited, the edge between the current
node and its parent is removed, effectively elimi-
nating the cycle. During backtracking, the current
node’s name is removed from the visited set so that
other paths can access it. The output is the tree
after pruning cycles, denoted as TCycle.

Algorithm 1: Prune Paths by Conditions
Input: RP ←

all label reasoning paths by DFS,
CL ← condition labels

Output: TCondition
1 Function PrunePathsByConditions(RP ,
CL):

2 TCondition ← ∅;
3 foreach path ∈ RP do
4 condition_indices←

[i | nodei ∈ path and nodei ∈ CL];

5 if condition_indices ̸= ∅ then
6 last_condition_index←

last element of condition_indices;

7 TCondition.append(path[:
last_condition_index+ 1]);

8 return TCondition;

2.2.5 Step V. Prune By Semantics

As shown in Figure 2, after pruning by conditions
and cycles, interference paths such as “team →
conference → venue” may still exist. To remove
these irrelevant paths, semantic information is used
for pruning.

A depth-first search (DFS) is performed on all
paths of TCycle, and the paths are reversed to for-
ward paths. These paths, together with the problem,
are input into LLM. The model is prompted using
a template to output the paths that are beneficial
for answering the question. The main content of
the prompt template is shown in Figure 4, and the
complete content can be found in Appendix D.

Please filter the reasoning paths based on the 
user question and the given possible reasoning 
paths.
User question: {question}
Possible reasoning paths: {paths}
Please return the filtered reasoning paths.

Figure 4: Prompt template for prune by semantics with
LLM.
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2.3 Guided Answer Mining

Through Ontology-Guided Reverse Thinking Rea-
soning, abstract reasoning paths for solving the
problem are obtained. They are then used to guide
the forward knowledge graph query process to col-
lect entity reasoning paths.

A tree structure is used to store the results of
each query step. The process is driven by travers-
ing the abstract path, which consists of a sequence
of labels. For each reasoning path, the first node is
a condition node, and all entities that satisfy the la-
bel of this node are added as child nodes to the tree.
Then, for each of these child nodes, the next label
in the abstract path is used to query the neighboring
entities of the current entity. Only those neighbors
whose label matches the next label in the abstract
path are retained and added as children of the cur-
rent child node. This process continues iteratively,
following the order of labels in the abstract path.

If there are many neighboring entities satisfying
the next label, and the number exceeds the limit,
top_k neighboring entities are randomly selected
and added to the tree. This process is recursively
applied until the reasoning path is fully traversed.

After the forward entity tree is built, a depth-first
search (DFS) is performed to collect all entity paths,
which are then input into LLM along with the prob-
lem to generate the final answer. The complete
content of the prompt can be found in Appendix D.

3 Experiments

3.1 Experimental Setup

Benchmarks We conducted experiments on two
widely used KGQA datasets: WebQuestionSP (We-
bQSP) (tau Yih et al., 2016) and ComplexWe-
bQuestions (CWQ) (Talmor and Berant, 2018).
Both datasets are constructed by extracting data
from the Freebase knowledge graph. In our exper-
iments, we follow RoG (Luo et al., 2024) to con-
struct knowledge graphs for WebQSP and CWQ.
More details can be found in Appendix A.

Evaluation Metrics Following previous work
(Luo et al., 2024; Zhang et al., 2022; Li et al., 2024;
Tan et al., 2024), we use Hit@1 and F1 as eval-
uation metrics. We also provide detailed results
for accuracy, precision, and recall in Appendix C.
Hit@1 refers to selecting the top-1 prediction and
checking whether the true answer is included. If
yes, the score is 1; otherwise, it is 0. This measures
the answer coverage. Since the prediction may con-

65.49%
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0

Question hops

1 hop 2 hop ≥3 hop

40.91%

38.34%
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Question hops

1 hop 2 hop ≥3 hop

WebQSP CWQ

Figure 5: Statistics of the question hops in WebQSP and
CWQ.

tain invalid content, the F1 score is also used as an
evaluation metric to balance precision and recall.

Baselines We compared a total of five categories
of baselines, including:

• Embedding-based: KV-Mem (Miller et al.,
2016) and NSM (He et al., 2021);

• Retrieval-based: GraphNet (Sun et al., 2018)
and SR (Zhang et al., 2022);

• LLM: GPT-4, DeepSeek-v3 (DeepSeek-AI
et al., 2024), and Qwen-max;

• Fine-tuned LLM knowledge graph reason-
ing methods (KGR FT): KD-CoT (Wang
et al., 2023) and RoG (Luo et al., 2024);

• Non-fine-tuned LLM knowledge graph rea-
soning methods (KGR w/o FT): MindMap
(Wen et al., 2024) and KG-Retriever.

Details of these baselines can be found in Ap-
pendix A.

3.2 ORT Achieves SOTA
As shown in Table 1, ORT achieves state-of-the-art
performance on both WebQSP and CWQ. The base
LLM for all LLM+KGs(non-Fine-tuned) meth-
ods including our method shown in Table 1 is
DeepSeek-v3.

Compared to small-scale models based on em-
bedding or retrieval, on WebQSP, Hit@1 improves
by 20% to 42.7%, and F1 improves by 7.7% to
37.3%; on CWQ, Hit@1 improves by 22.7% to
54.5%, and F1 improves by 15.5% to 46.9%.

ORT also outperforms partially KGR FT meth-
ods such as KD-CoT and RoG. This demon-
strates that our method not only enhances question-
answering performance but also reduces costs, im-
proves model scalability, and enhances adaptability
to different knowledge graphs.
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Table 1: The result of our method and other baseline methods on the WebQSP dataset and the CWQ dataset.

Type Method
WebQSP CWQ

Hit@1 F1 Hit@1 F1

Embedding
KV-Mem (Miller et al., 2016) 46.7 34.5 18.4 15.7
NSM (He et al., 2021) 68.7 62.8 47.6 42.4

Retrieval
GraftNet (Sun et al., 2018) 66.4 60.4 36.8 32.7
SR+NSM (Zhang et al., 2022) 68.9 64.1 50.2 47.1
SR+NSM+E2E (Zhang et al.,
2022)

69.5 64.1 49.3 46.3

LLMs
GPT-4o 61.8 43.6 38.2 32.9
Qwen-max 59.0 40.0 36.4 29.5
DeepSeek-v3 (DeepSeek-AI
et al., 2024)

64.0 43.9 41.1 33.8

LLM+KGs(Fine-tuned)
KD-CoT (Wang et al., 2023) 68.6 52.5 55.7 -
RoG (Luo et al., 2024) 85.7 70.8 62.6 56.2

LLM+KGs(non-Fine-tuned)
KG Retriever 63.0 42.9 46.7 40.2
MindMap (Wen et al., 2024) 64.9 47.1 48.8 43.3

ORT 89.4 71.8 72.9 62.6

Besides, compared to pure LLM and KGR w/o
FT methods, ORT also achieves significant im-
provements, which will be discussed later.

Furthermore, as shown in Figure 5, WebQSP
primarily focuses on single-hop questions, with
65.49% requiring only one hop and no questions
exceeding three hops, whereas CWQ contains more
complex multi-hop questions, with 20.75% requir-
ing three or more hops. The inferior performance
of current methods on CWQ compared to WebQSP
further underscores the limitations of existing ap-
proaches in addressing multi-hop reasoning tasks.

3.3 Soars LLM’s KGQA Ability

As shown in Figure 6, we conducted comparative
experiments on three LLMs: GPT-4o, DeepSeek-
v3, and Qwen-Max. Compared to direct answers,
LLMs using ORT led to more than a 25% improve-
ment in Hit@1 and F1 scores across both datasets.

On WebQSP, Hit@1 of the three LLM respec-
tively improved by 25.7%, 25.3%, and 29.14%,
and F1 score increased by 28.23%, 27.96%, and
31.69%. On CWQ, Hit@1 improved by 27.23%,
31.79%, and 31.45%, and F1 score increased by
25.82%, 28.83%, and 28.30%. Details can be

found in Table 2.
This not only demonstrates that ORT effectively

enhances the performance of LLMs on KGQA
tasks but also highlights that ORT is not limited to a
specific LLM. It serves as a universal enhancement
strategy and can be directly used for improving
LLM performance. It has the potential to become
an effective, convenient, and important tool in such
a domain.

3.4 ORT Outperforms Peers

ORT achieves better performance compared to
other methods of the same type. Using the same
base LLM (GPT-4, DeepSeek-v3, and Qwen-max),
ORT was compared with MindMap and KG Re-
triever, as shown in Table 3. On WebQSP, ORT
achieved an average improvement of 26.56% in
Hit@1 and 26.27% in F1 over MindMap across the
three base models. On CWQ, ORT outperformed
MindMap with an average improvement of 20.18%
in Hit@1 and 16.86% in F1.

3.5 Ablation Study

Through ablation study, we aim to demonstrate
the effectiveness and necessity of Reverse Think-
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Table 2: Comparison of LLM vs. LLM+Our Method on WebQSP and CWQ Datasets

Method
WebQSP CWQ

Hit@1 F1 Hit@1 F1

GPT-4o 61.79 43.56 38.20 32.87
GPT-4o + ORT 87.67 (↑25.7) 71.79 (↑28.23) 65.43 (↑27.23) 58.69 (↑25.82)

QWen-max 59.00 40.04 36.42 29.45
QWen-max + ORT 88.14 (↑29.14) 71.73 (↑31.69) 67.87 (↑31.45) 57.75 (↑28.3)

DeepSeek-v3 64.0 43.9 41.12 33.80
DeepSeek-v3 + ORT 89.43 (↑25.43) 71.83 (↑27.93) 72.91 (↑31.79) 62.63 (↑28.83)

Table 3: The results of non-Fine-Tuned LLM KG Rea-
soning methods on WebQSP and CWQ

Method
WebQSP CWQ

Hit@1 F1 Hit@1 F1

ORT + GPT-4o 87.67 71.79 65.43 58.69
MindMap + GPT-4o 61.17 46.09 51.33 44.84
KG Retriever + GPT-4o 60.15 42.44 46.67 41.14
ORT + DeepSeek-v3 89.43 71.83 72.91 62.63
MindMap + DeepSeek-v3 64.92 47.14 48.83 43.30
KG Retriever + DeepSeek-v3 63.01 42.87 47.67 40.20
ORT + QWen-max 88.14 71.73 67.87 57.75
MindMap + QWen-max 59.46 43.31 45.50 40.35
KG Retriever + QWen-max 57.16 39.91 45.00 38.99

ing Reasoning, Knowledge Graph Structure-Based
Reasoning, and Rule-Guided Reasoning. We de-
signed it in three parts:

1. w/o LLM Filter: In this part, we removed us-

ing LLMs for pruning based on the semantics
of questions and paths.

2. Trace Forward: We additionally designed a
forward reasoning algorithm, which collects
reasoning paths starting from the conditions
and iterating towards the goals.

3. w/o Rules: In this part, label reasoning paths
are not constructed, and instead, LLM directly
generates answers.

The experimental results are shown in Table 4,
including Hit@1, F1, Precision, and Recall. Preci-
sion measures the proportion of correct predictions
among all predicted results, while Recall measures
the proportion of correct predictions identified from
all ground truth instances.

w/o LLM Filter Analysis As seen in Table 4,
on WebQSP, Hit@1 and Precision decreased, but
Recall and F1 improved. To ensure the reliability
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Table 4: Ablation Experiment Results

Method
WebQSP CWQ

Hit@1 Precision Recall F1 Hit@1 Precision Recall F1

ORT 89.43 80.92 74.51 71.83 72.91 65.57 66.03 62.63
w/o LLM Filter 86.58 75.10 78.54 73.01 62.58 57.45 54.76 53.24
Trace Forward 77.82 71.92 61.91 58.73 60.73 51.50 54.18 49.30

w/o Rules 64.00 56.91 46.55 43.87 41.12 36.42 36.40 33.80

of predictions and reduce hallucinations, we still
choose to retain the use of LLM to filter abstract
paths.

Trace Forward Analysis To contrast with Trace
Back, we designed the Trace Forward method,
which performs forward reasoning starting from
the conditions. The basic pipeline is to extract the
conditions from the question, and then iteratively
perform a breadth-first search from several condi-
tions on the KG ontology to construct a reason-
ing tree. A depth-first search from the conditions
outputs all paths, which, along with the question,
are given to LLM to filter abstract paths that se-
mantically match. Then, abstract paths are used
to retrieve entity paths from the knowledge graph,
which are passed to LLM to generate the final an-
swer.

The potential drawback of this method is that it
may collect irrelevant abstract paths, and overly de-
pends on LLM to generate reasoning paths. As seen
in Table 4, on WebQSP, Trace Forward’s Hit@1
decreased by 11.61%, and F1 decreased by 13.10%.
One CWQ, Trace Forward’s Hit@1 decreased by
12.18%, and F1 decreased by 13.33%. However,
this method still performed better than MindMap,
which highlights the necessity of utilizing the KG
ontology and using abstract paths to guide knowl-
edge retrieval.

w/o Rules Analysis Finally, to demonstrate the
necessity of Rule-Guided Reasoning, we conducted
experiments without rule guidance, i.e., directly
using LLM to generate answers without generating
abstract paths. The experimental results show that
this method’s performance significantly decreased.

4 Related Work

Small-scale models for KGQA Small-scale
methods for knowledge graph question answer-
ing (KGQA) can be divided into two categories:
embedding-based and retrieval-based methods.

Embedding-based methods, such as KV-Mem
(Miller et al., 2016) and NSM (He et al., 2021), rep-
resent entities and relations in a low-dimensional
vector space, performing well on simple, single-
hop queries. However, they struggle with com-
plex, multi-hop queries due to difficulty in cap-
turing intricate path information. To address this,
retrieval-based models like GraphNet (Sun et al.,
2018) and SR (Zhang et al., 2022) construct sub-
graphs or paths for reasoning, showing improve-
ments in multi-hop tasks by better leveraging struc-
tural relationships. Yet, both methods are limited
by incomplete utilization of the full structural in-
formation in the knowledge graph.

Fine-tuning LLMs for KGQA In recent years,
the rapid development of large language models
(LLMs) has sparked interest in combining LLMs
with knowledge graphs to improve KGQA perfor-
mance. Models like RoG (Luo et al., 2024), KD-
CoT (Wang et al., 2023), UniKGQA (Jiang et al.,
2022), and DeCAF (Yu et al., 2022) have demon-
strated impressive results by fine-tuning LLMs
to generate reasoning paths and produce answers.
These models excel at tackling complex KGQA
tasks, where multi-hop reasoning is required. How-
ever, fine-tuning LLMs often demands vast com-
putational resources and labeled datasets, making
it challenging to scale these methods for practical,
real-world applications.

Non-fine-tuning LLMs for KGQA Some recent
approaches focus on methods that utilize LLMs
for KGQA without requiring additional training.
MindMap Wen et al. (2024) is one such method
that extracts entities from the query and performs
a breadth-first search in the knowledge graph to
generate reasoning paths. Additionally, Chen et al.
(2024) proposes a model that feeds all the relations
in the knowledge graph to the LLM to help gener-
ate relational paths. Although these methods can
avoid the high computational costs associated with
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fine-tuning, they often suffer from a lack of deep
understanding of the underlying structure of the
knowledge graph, which can lead to the generation
of lower-quality reasoning paths.

5 Conclusion

In this paper, we simulate the cognitive paradigm
that humans use to solve complex problems and
propose the Ontology-Guided Reverse thinking
method for knowledge graph question answering.
We use LLMs to understand the intent of the ques-
tion and generate the corresponding labels. By
leveraging the knowledge graph ontology, we use
Reverse-Thinking Reasoning to form label reason-
ing paths, followed by guided knowledge graph
queries and answer aggregation. Experimental re-
sults show that our method significantly improves
the accuracy and answer coverage.

Limitations

For this work, we want to address two areas for
improvement in the future. First, when querying
the knowledge graph along reasoning paths, there
may be a large number of entities satisfying the
label constraints, which could lead to irrelevant re-
sults. Second, when generating the final answer,
inputting all entity paths into the LLMs may in-
troduce irrelevant paths, potentially lowering the
accuracy of the answer.
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A EXPERIMENT DETAILS

A.1 Datasets
To evaluate the performance of ORT on knowledge
graph question and answer tasks, we conducted
experiments on two multi-hop datasets (CWQ (Tal-
mor and Berant, 2018) and WebQSP (Devlin et al.,
2019)). The questions in both datasets cover vari-
ous domains, including people, places, events, etc.
Due to the complexity of the questions, traditional
question answering systems and search-based en-
gines often struggle to provide valuable knowledge.
FreeBase (Bollacker et al., 2008) serves as the back-
ground knowledge graph for both datasets, con-
taining approximately 88 million entities, 20,000
relationships, and 126 million triples.

Similar to the datasets used in ROG, we ex-
tracted 3,531 question-answer pairs from the CWQ
dataset as the test set, which includes 2,294,264
triples and 4,726 relationships. We also extracted
1,628 question-answer pairs from the WebQSP
dataset as the test set, which includes 2,277,228
triples and 5,051 relationships. For details, see
Table 5.

A.2 Metrics
Accuracy is the ratio of the number of correct pre-
dictions to the total number of predictions. The
formula is as follows:

Accuracy =

∑N
i=1 I(ŷi ∈ Agold,i)

N
(3)

Hit@1 is whether the most probable prediction
among the model’s multiple outputs contains the
ground truth. If yes, the Hit@1 score is 1; other-
wise, the score is 0. Because our method has only
one output, there is no need to select the prediction
with the highest probability. For example, consider
the question “What religion does India follow?”
The correct answer is "Hinduism," and the model’s
predicted answers are "Christianity, Hinduism, Is-
lam." In this case, since "Hinduism" appears in
the model’s predicted answers and it is the correct
answer, the Hit@1 score is 1. The formula is as
follows:

Hit@1 = I(∃ŷi ∈ Agold) (4)

Precision is the ratio of the number of correct
predictions to the total number of predictions. The
formula is as follows:

Precision =

∑N
i=1 I(ŷi ∈ Agold,i)

Npred
(5)

Recall measures how many of the standard an-
swers the model can correctly predict. The calcula-
tion method is the same as that of accuracy.

F1 score is the harmonic mean of precision and
recall. The formula is as follows:

F1 =
2× Precision×Recall

Precision+Recall
(6)

A.3 Baselines
Baselines are grouped into 12 baseline methods
into 5 categories: 1) Embedding-based meth-
ods, 2) Retrieval-augmented methods, 3) LLM,
4) LLM+KGs (Fine-tuned), and 5) LLM+KGs
(non-Fine-tuned). The detailed information for
each baseline is as follows:

Embedding-based methods

• KV-MEM (Miller et al., 2016) employs a key-
value memory network to store triples and
performs multi-hop reasoning by iterating op-
erations over memory.

• NSM(He et al., 2021) uses a sequential model
to mimic the multi-hop reasoning process.

Retrieval-augmented methods

• GraftNet (Sun et al., 2018) retrieves relevant
subgraphs from knowledge graphs with entity
linking.

• SR+NSM (Zhang et al., 2022) introduces a
relation-path retrieval mechanism to fetch sub-
graphs for multi-hop reasoning.

• SR+NSM+E2E (Zhang et al., 2022) further
adopts an end-to-end training strategy to
jointly train the retrieval and reasoning mod-
ules of SR+NSM.

LLM methods

• GPT-4 is a large language model developed
by OpenAI, renowned for its excellent perfor-
mance across a wide range of natural language
processing tasks.

• DeepSeek-v3 (DeepSeek-AI et al., 2024) is an
advanced model designed for deep reasoning
and retrieval-augmented tasks, focusing on
domain-specific knowledge extraction.

• Qwen-max is a large model optimized for mul-
tilingual and multi-task learning, known for
its strong capabilities in both generative and
analytical tasks.
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Table 5: The statistics of the used datasets.

Datasets Complex WebQuestions WebQuestionSP

Domain English General Q&A English General Q&A
KG dataset FreeBase FreeBase
Question 3531 1628

Node 684846 781490
Triple 2294264 2277228

Relationship 4726 5051

LLM+KGs (Fine-tuned) methods

• KD-COT (Wang et al., 2023) retrieves rele-
vant knowledge from KGs to formulate faith-
ful reasoning plans for LLMs.

• ROG (Luo et al., 2024) combines knowl-
edge graphs (KGs) and large language mod-
els (LLMs) to achieve reliable and in-
terpretable reasoning through a planning-
retrieval-reasoning framework.

LLM+KGs (non-Fine-tuned) methods

• KG Retriever aims to find the shortest path
between each pair of question entities, and
then retrieves the final prompt from the KG
to guide the LLM in answering the question.
The key difference between MindMap and
KG Retriever is that they do not use diverse
multiple pieces of evidence in the LLM, nor
do they ORT the evidence sources.

• MindMap (Wen et al., 2024) integrates knowl-
edge graphs (KGs) and large language mod-
els (LLMs) by using KGs to provide explicit
knowledge and reasoning paths, enhancing
the LLM’s reasoning ability and transparency
while revealing the thought process of the
LLM.

B Implementation Details

B.1 Label List Construction
We utilize the datasets provided by RoG to con-
duct our experiments. The relations in the triples
of the knowledge graph contain label informa-
tion. For example, in the triple [Jamaica, me-
teorology.cyclone_affected_area.cyclones, Tropi-
cal Storm Keith], the entity “Jamaica” is assigned
the label cyclone_affected_area, while “Tropical
Storm Keith” is labeled as cyclones.

B.2 Ontology Construction
We traverse the dataset triples and extract entity la-
bel information in a normalized format, construct-
ing abstract triples of the form [label, relation, la-
bel]. These abstract triples collectively form the
knowledge graph ontology.

B.3 Hyperparameter Settings
The hyperparameters used in our experiments are
as follows:

• Maximum reasoning hops: MAX_POP = 5.
The maximum hop count for the WebQSP and
CWQ datasets is 4, so the maximum reasoning
hops are set to 5 to ensure sufficient reasoning
depth.

• Maximum number of neighbors: TOP_K =
10. Here, neighbors refer to entities in the
Guided Answer Mining phase that satisfy the
next_label constraint.

C ADDITIONAL RESULTS

We have added Accuracy, Precision, and Recall
to further observe the Model Improvement Com-
parison between WebQuestionSP and ComplexWe-
bQuestions. You can find the details in Table 6.

D PROMPTS

We demonstrate all the prompt templates used,
including “Aims and Conditions Recognition”,
“Prune by Semantics” and “Generate Final Answer
With LLMs”, as shown in Figure 7, Figure 8, and
Figure 9.

E CASES

We will present two cases in Table 7 and Table 8 to
illustrate the process of our method.
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Extract Aims and Conditions Template

I am developing a knowledge graph enhanced question answering system.
Your task is to extract conditional entities and their types and destination entities and their types from user input 
questions.

Please select the type of entity from the following table:
Each line describes an entity type, in the format of - entity type (description information)
{label_description}

Rules:
-The conditional entity is the known information provided in the problem;
-The target entity is the content that the user wants to query in the problem;
-If there is no suitable entity, please use 'none' to indicate.

Output format:
-Separate the conditional entity and the destination entity with a period;
-The format of each entity is * * "Entity Name, Entity Type" * *;
-If there are multiple conditional entities or destination entities, use * * ";" * * (semicolons) to separate them;
-If there is only one of the conditions and purposes, for example:
-Output when there is only a conditional entity and no destination entity: ce1,cl1; ce2,cl2.none,none
-Output when there is only a destination entity and no conditional entity: none,none.ae1,al1; ae2,al2
-Only output the final answer, without including unnecessary explanations, clarifications, or text.

Example:
Example1: 
Input: Lou Seal is the mascot for the team that last won the World Series when?
Output: Lou Seal,mascot. championship, championship
......

The user's question is: {question}
Please generate an answer that conforms to the above format:

Figure 7: The prompt template for "Aim and Condition Recognition"

Prune By Semantics Template

Please filter the reasoning paths based on the user question and the given possible reasoning paths.

User question: {question}
Possible reasoning paths: {paths}

Explanation:
- I have used a LLM to extract known conditions from the user question.
- Starting from these known conditions, I performed a depth-first search in the domain knowledge graph to extract all 
reasoning paths that start with the labels of these conditions.
- Each path begins with a condition entity, and the path connects multiple entity labels.

Filter criteria:
-Try to filter out paths that are helpful for the answer as much as possible. If the user asks' What could be the problem? 
', then the pathways for diseases, medical examinations, and medication should be preserved. A separate pathway to the 
disease should also be kept.
-Ensure that the output paths are not duplicated.

Please return the filtered reasoning paths.

Figure 8: The prompt template for "Prune by Semantics"
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Generate Final Answer Template

The user has input the following question: {question}

I can provide you with some reference content, where each set of content consists of two parts: conditions and 
objectives.
- Conditions: The known information from the question.
- Objectives: The goals that the question seeks to address.

Below is the conditions and objectives: {last_node_str}

I can also provide you the complete reasoning paths which maybe useful for you. I wish you cloud utilize your 
reasoning ability to answer users' question
- Each path is described by nodes and edges in the following format: [Entity Type] Entity Name -> (Relation) [Entity 
Type] Entity Name -> ...
- Each node includes [Entity Type] Entity Name.
- Each edge is represented by an arrow ->, with the edge information enclosed in parentheses, e.g., (Relation).
- Starting from the root node, the path is described step by step, including nodes and their relationships, until reaching 
the leaf node.

The abstract paths are as follows: {rules_string}
Below is the reasoning paths: {reasoning_path_str}

The output can refer to the following format requirements: {ReferenceTemplate}

Please follow the reference content to answer the question, applying logical reasoning as needed to generate the final 
answer.

Figure 9: The prompt template for "Guided Answer Mining"

Table 6: Detailed Experiment Results of Model Improvement Comparison between WebQSP and CWQ

Method
WebQSP CWQ

Accuracy Hit@1 Precision Recall F1 Accuracy Hit@1 Precision Recall F1

GPT-4o 43.29 61.79 61.07 43.29 43.56 33.61 38.20 36.56 33.61 32.87

GPT-4o + ORT 71.86 87.67 88.00 71.86 71.79 58.99 65.43 63.21 58.99 58.69

GPT-4o + MindMap 47.81 61.17 50.33 47.81 46.09 45.52 51.33 49.50 45.52 44.84

GPT-4o + KG Retriever 44.72 60.15 46.64 44.72 42.44 40.82 46.67 45.77 40.82 41.14

QWen-max 41.39 59.00 55.65 41.39 40.04 31.66 36.42 32.29 31.66 29.45

QWen-max + ORT 74.30 88.14 81.00 74.30 71.73 61.61 67.87 58.97 61.61 57.75

QWen-max + MindMap 46.09 59.46 46.57 46.11 43.31 40.59 45.50 44.04 40.59 40.35

QWen-max + KG Retriever 42.23 57.16 43.93 42.25 39.91 40.03 45.00 42.31 40.03 38.99

DeepSeek-v3 46.55 64.00 56.91 46.55 43.87 36.40 41.12 36.42 36.40 33.80

DeepSeek-v3 + ORT 74.51 89.43 80.92 74.51 71.83 66.03 72.91 65.57 66.03 62.63

DeepSeek-v3 + MindMap 50.68 64.92 50.10 50.68 47.14 44.07 48.83 46.79 44.07 43.30

DeepSeek-v3 + KG Retriever 47.88 63.01 46.18 47.88 42.87 42.95 47.67 41.87 42.95 40.20
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Table 7: Two cases for better understanding of our method: Case 1.

Question:
Lou Seal is the mascot for the team that last won the World Series when?

Aims:
[["championship", "championship"]]

Conditions:
[["Lou Seal", "mascot"]]

Rule_Paths:
mascot -> game -> season -> championship
mascot -> team -> season -> championship
mascot -> team -> championship
mascot -> school -> team -> championship
mascot -> brand -> team -> championship
mascot -> team -> league -> championship
mascot -> team -> relationship -> championship
mascot -> brand -> relationship -> championship
mascot -> game -> event -> championship
mascot -> team -> event -> championship

Selected_Rule_Paths:
mascot -> team -> championship
mascot -> team -> event -> championship
mascot -> team -> season -> championship

Reasoning_Paths:
reasoning path 1: [mascot] Lou Seal -> team [team] San Francisco Giants -> champion
[championship] 2010 World Series
reasoning path 2: [mascot] Lou Seal -> team [team] San Francisco Giants ->
championship [championship] 2014 World Series
reasoning path 3: [mascot] Lou Seal -> team [team] San Francisco Giants -> champion
[championship] 2012 World Series
. . .
reasoning path 82: [mascot] Lou Seal -> team_mascot [team] San Francisco Giants ->
league [season] m.0crt4b6
reasoning path 83: [mascot] Lou Seal -> team_mascot [team] San Francisco Giants
-> team [season] National League West -> championship [championship] National
League Division Series

Final_Answer:
2014 World Series
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Table 8: Two cases for better understanding of our method: Case 2.

Question:
What is the predominant religion where the leader is Ovadia Yosef?

Aims:
[["religion", "religion"]]

Conditions:
[["Ovadia Yosef", "person"]]

Rule_Paths:
person -> religion
person -> party -> celebrity -> religion
person -> language -> region -> religion
person -> title -> membership -> religion
person -> group -> membership -> religion
person -> leadership -> organization -> religion
person -> child -> organization -> religion
person -> location -> organization -> religion
person -> parent -> organization -> religion
person -> title -> leader -> religion
person -> leadership -> leader -> religion
person -> location -> choice -> religion

Selected_Rule_Paths:
person -> leadership -> leader -> religion
person -> title -> leader -> religion
person -> leadership -> organization -> religion

Reasoning_Paths:
reasoning path 1: [person] Ovadia Yosef -> leader [leadership] m.048bcbz -> leader
[leader] Ovadia Yosef -> religion [religion] Judaism
reasoning path 2: [person] Ovadia Yosef -> leader [leadership] m.048bcbz -> leader
[leader] Ovadia Yosef -> religion [religion] Haredi Judaism
reasoning path 3: [person] Ovadia Yosef -> leader [leadership] m.048bcbz ->
religious_leadership [leader] Ovadia Yosef -> religion [religion] Judaism
reasoning path 4: [person] Ovadia Yosef -> leader [leadership] m.048bcbz ->
religious_leadership [leader] Ovadia Yosef -> religion [religion] Haredi Judaism
. . .
reasoning path 20: [person] Ovadia Yosef -> religious_leadership [leadership]
m.048bcbz -> religious_leadership [organization] Ovadia Yosef -> religion
[religion] Haredi Judaism
reasoning path 21: [person] Ovadia Yosef -> religious_leadership [leadership]
m.048bcbz -> organization [organization] Chief Rabbinate of Israel

Final_Answer:
Judaism
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