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Abstract

Multimodal Large Language Models (MLLMs)
enhance visual tasks by integrating visual repre-
sentations into large language models (LLMs).
The textual modality, inherited from LLMs, en-
ables instruction following and in-context learn-
ing, while the visual modality boosts down-
stream task performance through rich seman-
tic content, spatial information, and grounding
capabilities. These modalities work synergisti-
cally across various visual tasks. Our research
reveals a persistent imbalance between these
modalities, with text often dominating output
generation during visual instruction tuning, re-
gardless of using full or parameter-efficient
fine-tuning (PEFT). We found that re-balancing
these modalities can significantly reduce train-
able parameters, inspiring further optimiza-
tion of visual instruction tuning. To this end,
we introduce Modality Linear Representation-
Steering (MoReS), which re-balances intrin-
sic modalities by steering visual representa-
tions through linear transformations in the vi-
sual subspace across each model layer. We
validated our approach by developing LLaVA
Steering, a suite of models using MoReS. Re-
sults show that LLaVA Steering requires, on
average, 500 times fewer trainable parame-
ters than LoRA while maintaining comparable
performance across three visual benchmarks
and eight visual question-answering tasks. Fi-
nally, we introduce the LLaVA Steering Fac-
tory, a platform that enables rapid customiza-
tion of MLLMs with a component-based ar-
chitecture, seamlessly integrating state-of-the-
art models and evaluating intrinsic modality
imbalance. This open-source project facili-
tates a deeper understanding of MLLMs within
the research community. Code is available at
https://github.com/bibisbar/LLaVA-Steering.
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1 Introduction

Recent advancements in Multimodal Large Lan-
guage Models (MLLMs) (Liu et al., 2024b; Xue
et al., 2024; Zhou et al., 2024a; Bi et al., 2025a)
have demonstrated impressive capabilities across
a variety of visual downstream tasks (zhou chang-
shi et al., 2025; Wang et al., 2025a; Huang et al.,
2025a,c; Cui et al., 2025; Li et al., 2024c,a; Yue
et al., 2025; Zhao et al., 2025; Zhang et al., 2023a).
These models integrate visual representations from
pretrained vision encoders via various connectors
(Liu et al., 2024a; Li et al., 2023a; Alayrac et al.,
2022) into LLMs, leveraging the latter’s sophisti-
cated reasoning abilities (Zhang et al., 2024a; Ab-
din et al., 2024; Zheng et al., 2023a).
To better integrate visual representations into
LLMs, the most popular MLLMs adopt a two-stage
training paradigm: pretraining followed by visual
instruction tuning. In the pretraining stage, a con-
nector is employed to project visual representations
into the textual representation space. We define
these two modalities—text and vision—as intrinsic
to MLLMs, each carrying rich semantic informa-
tion that serves as the foundation for further visual
instruction tuning on downstream tasks such as im-
age understanding (Sidorov et al., 2020), visual
question answering (Goyal et al., 2017a; Lu et al.,
2022; Hudson and Manning, 2019), and instruction
following (Liu et al., 2023a).
In the visual instruction tuning stage, due to its
high computational cost, researchers have pursued
two primary strategies. One approach focuses on
refining data selection methodologies (Liu et al.,
2024e; McKinzie et al., 2024) to reduce redundancy
and optimize the training dataset, though this pro-
cess remains expensive and time-consuming. A
more common strategy goes to employ Parameter-
Efficient Fine-Tuning (PEFT) methods (Huang
et al., 2025b; Zhang et al., 2025), such as LoRA
(Hu et al., 2021), aiming to reduce the number
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Figure 1: Left: Attention score distributions across layers for three MLLM fine-tuning methods (Full, LoRA, and
MoReS), sampled from 100 instances each. Green represents visual representations, while grey indicates other
(primarily textual) representations. Full fine-tuning and LoRA show strong reliance on textual representations across
most layers. In contrast, the proposed MoReS method demonstrates significantly improved visual representation
utilization, particularly in the middle and lower layers, addressing the intrinsic modality imbalance in MLLMs.
Right: Average visual attention score distribution versus model size for different MLLM fine-tuning methods. The
plot suggests that methods achieving better balanced intrinsic modality tend to require fewer trainable parameters.

of trainable parameters, thereby making visual
instruction tuning more computationally feasible
(Liu et al., 2024a; Zhou et al., 2024a). However,
even with PEFT methods like LoRA, large-scale
MLLMs remain prohibitively expensive to fine-
tuning.

This raises a critical question: is there any further
possibility to reduce more trainable parameters so
that the visual instruction tuning can be further im-
proved? Our research offers a novel viewpoint by
focusing on the intrinsic modality imbalance within
MLLMs. A closer analysis uncovers an imbal-
ance in output attention computation (Chen et al.,
2024a), where textual information tends to domi-
nate the attention distribution during output gener-
ation. Specifically, we investigate this issue by an-
alyzing attention score distributions, which evalu-
ates the balance between text and visual modalities.
As shown in Figure 1, visual representations are
significantly underutilized during visual instruction
tuning. More importantly, our analysis reveals that
achieving a better balance between these modalities
can substantially reduce the number of trainable
parameters required for fine-tuning. Hereby we
suppose that intrinsic modality rebalance is the
Midas touch to unlock further reductions in the
number of trainable parameters.

To address this challenge, we introduce Modality
Linear Representation-Steering (MoReS) to opti-
mize visual instruction tuning, significantly reduc-
ing the number of trainable parameters while main-
taining equivalent performance. Unlike full fine-
tuning, which modifies the entire model, or other

popular PEFT methods such as LoRA (Hu et al.,
2021), OFT (Qiu et al., 2023), Adapter (Houlsby
et al., 2019), and IA3 (Liu et al., 2022a), MoReS
focuses solely on steering the visual representa-
tions. Specifically, our approach freezes the entire
LLM during visual instruction tuning to preserve
its capabilities in the textual modality. Instead of
fine-tuning the full model, we introduce a simple
linear transformation to steer visual representations
in each layer. This transformation operates within
a subspace after downsampling, where visual rep-
resentations encode rich semantic information in a
compressed linear subspace (Zhu et al., 2024; Shi-
momoto et al., 2022; Yao et al., 2015). By continu-
ously steering visual representations across layers,
MoReS effectively controls the output generation
process, yielding greater attention inclined to visual
modality.

To validate the efficacy of our proposed MoReS
method, we integrated it into MLLMs of vary-
ing scales (3B, 7B, and 13B parameters) during
visual instruction tuning, following the LLaVA
1.5 (Liu et al., 2024a) training recipe. The result-
ing models, collectively termed LLaVA Steering,
achieved competitive performance across three vi-
sual benchmarks and six visual question-answering
tasks, while requiring 287 to 1,150 times fewer
trainable parameters than LoRA, depending on the
specific training setup.

In our experiments, we observed the need for a
comprehensive framework to systematically ana-
lyze and compare various model architectures and
training strategies in MLLMs. The wide range of
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design choices and techniques makes it difficult to
standardize and understand the interplay between
these components. Evaluating each method across
different open-source models is time-consuming
and lacks consistency due to implementation differ-
ences, requiring extensive data preprocessing and
careful alignment between architectures and train-
ing recipes. To address this issue, we developed the
LLaVA Steering Factory, a flexible framework that
reimplements mainstream vision encoders, multi-
scale LLMs, and diverse connectors, while offering
customizable training configurations across a vari-
ety of downstream tasks. This framework simpli-
fies pretraining and visual instruction tuning, min-
imizing the coding effort. Additionally, we have
integrated our attention score distribution analy-
sis into the LLaVA Steering Factory, providing a
valuable tool to the research community for further
studying intrinsic modality imbalance in MLLMs.
Our work makes the following key contributions to
the field of MLLMs:

1. First of all, we propose Modality Linear
Representation-Steering (MoReS), a novel
method that addresses intrinsic modality im-
balance in MLLMs by steering visual rep-
resentations through linear transformations
within the visual subspace, effectively miti-
gating the issue of text modality dominating
visual modality.

2. In addition, we present LLaVA Steering,
where with different sizes (3B/7B/13B), three
real-world LLaVA MLLMs consisting of dif-
ferent model components are composed by in-
tegrating the proposed MoReS method into vi-
sual instruction tuning. LLaVA Steering mod-
els based on MoReS method achieve compa-
rable performance across three visual bench-
marks and six visual question-answering tasks,
while requiring 287 to 1, 150 times fewer
trainable parameters.

3. Last but not least, we develop the LLaVA
Steering Factory, a flexible framework de-
signed to streamline the development and eval-
uation of MLLMs with minimal coding effort.
It offers customizable training configurations
across diverse tasks and incorporates tools
such as attention score analysis, facilitating
systematic comparisons and providing deeper
insights into intrinsic modality imbalance.

2 Related Work

Integrating Visual Representation into LLMs:
Existing approaches for integrating visual represen-
tations into LLMs broadly fall into three categories:
(1) Cross-attention architectures (e.g., Flamingo
(Awadalla et al., 2023), IDEFICS (Laurençon et al.,
2023)) that inject image features through adapter
layers while keeping LLM weights frozen; (2)
Decoder-only architectures like LLaVA (Liu et al.,
2024b) and Qwen-VL (Bai et al., 2023) that train
visual projectors during pretraining and often un-
freeze LLMs during fine-tuning; and (3) Vision-
encoder-free methods (Chen et al., 2024b; Diao
et al., 2024) that process raw pixels directly. Hybrid
approaches like NVLM (Dai et al., 2024) combine
elements of these paradigms. While effective, these
methods incur substantial computational costs dur-
ing visual instruction tuning due to large-scale mul-
timodal alignment requirements.
Visual Instruction Tuning: Fine tuning of multi-
modal large language models (MLLMs) for down-
stream tasks has gained considerable attention, but
remains computationally expensive due to large-
scale visual instruction datasets and model sizes
(Wang et al., 2022). To tackle this challenge, recent
advancements have introduced parameter-efficient
fine-tuning (PEFT) methods (Houlsby et al., 2019;
Li and Liang, 2021), such as LoRA (Hu et al.,
2021), enabling more efficient visual instruction
tuning.
However, many of these PEFT methods primarily
focus on optimizing weights but ignore the intrin-
sic representation imbalance during visual instruc-
tion tuning, thus cannot further reduce the required
trainable parameters. This means to look for other
novel approaches that can improve the efficiency
and effectiveness of visual instruction tuning.
Representation Steering: Recent studies (Singh
et al., 2024; Avitan et al., 2024; Li et al., 2024b;
Subramani et al., 2022) have demonstrated that the
representations induced by pre-trained language
models (LMs) encode rich semantic structures.
Steering operations within this representation space
have shown to be effective in controlling model
behavior. Unlike neuron-based or circuit-based
approaches, representation steering manipulates
the representations themselves, providing a clearer
mechanism for understanding and controlling the
behavior of MLLMs and LLMs. For example, (Zou
et al., 2023) explores representation engineering
to modify neural network behavior, shifting the

15232



1 7 13 19 25 31
Layer Number

10 2

10 1

100
LM

AR
Full
LoRA
Adapter

IA3
OFT
MoReS

Figure 2: Layer-wise Modality Attention Ratio (LMAR)
comparison across training methods, including Full fine-
tuning, LoRA, Adapter, IA3, and our MoReS. Our
MoReS method (red line) consistently demonstrates
the highest LMAR across most layers, with a notable
spike in the final layers. Compared with full fine-tuning
and mainstream PEFT methods, our MoReS needs the
least parameters during visual instruction tuning while
achieving superior modality balance.

focus from neuron-level adjustments to transfor-
mations within the representation space. Similarly,
(Wu et al., 2024a) applies scaling and biasing op-
erations to alter intermediate representations. Fur-
thermore, (Wu et al., 2024b) introduces a family
of representation-tuning methods that allows for
interpretable interventions within linear subspaces.
In this work, we leverage the concept of repre-
sentation steering to introduce a novel approach,
MoReS, which enhances attention to visual repre-
sentations, thereby demonstrating superior parame-
ter efficiency compared to baseline PEFT methods
(Hu et al., 2021; Houlsby et al., 2019; Liu et al.,
2022a; Qiu et al., 2023).

3 Intrinsic Modality Imbalance

This section explores how the two intrinsic modali-
ties—text and vision—are imbalanced during out-
put generation across each layer in MLLMs, as
reflected in the attention score distribution. Further-
more, we demonstrate that addressing this modality
imbalance effectively during visual instruction tun-
ing can guide the design of methods that require
fewer trainable parameters.
We begin with calculating the attention score distri-
bution across both modalities in each layer, as de-
rived from the generated output. In auto-regressive
decoding, which underpins decoder-only MLLMs,
output tokens are generated sequentially, condi-
tioned on preceding tokens. The probability dis-

tribution over the output sequence ŷ is formalized
as:

p(ŷ) =
L∏

i=1

p(ŷi|ŷ<i, Rtext, Rimage, Rsys) (1)

where ŷi represents the i-th output token, ŷ<i de-
notes the preceding tokens, Rtext is the textual rep-
resentation, Rimage is the visual input representa-
tion, Rsys accounts for system-level contextual in-
formation, and L is the output sequence length.
To quantify modality representation imbalance, we
calculate the sum of attention scores allocated to
visual representations across all layers in MLLMs.
Figure 1 illustrates this imbalance across full fine-
tuning, LoRA, and our proposed MoReS method.
The results indicate that textual representations of-
ten dominate the output generation process in both
full fine-tuning and LoRA.
Further examination of this imbalance across mul-
tiple PEFT methods reveals an intriguing trend:
methods that make better use of visual represen-
tations tend to require fewer trainable parameters
during visual instruction tuning.
To validate this observation, we introduce the
Layer-wise Modality Attention Ratio (LMAR), for-
mulated as:

LMARl =
1

N

N∑

i=1

α
image,i
l

αtext,i
l

, (2)

where l denotes the layer index, N is the total
number of samples, and α

image,i
l and αtext,i

l are the
mean attention scores allocated to visual and tex-
tual tokens, respectively, in layer l for the i-th
sample. LMAR thus provides a robust measure
of the attention distribution between modalities,
averaged over multiple samples to capture gen-
eral trends in modality representation across lay-
ers. This value reflects balanced per-token attention
allocation between visual and textual modalities,
rather than total attention mass. Since visual in-
puts typically consist of hundreds of tokens (e.g.,
576 for a 24×24 patch grid), while textual inputs
often include only dozens of tokens, simply sum-
ming attention weights across modalities can ob-
scure imbalance. By normalizing attention at the
per-token level, LMAR more accurately captures
whether each modality is being fairly attended to,
regardless of token count disparity. Therefore, an
LMAR close to 1.0 implies that, on average, each
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Figure 3: Schematic Overview of Modality Linear Representation-Steering (MoReS): Left: The architectural
diagram depicts the integration of textual and visual tokens through transformer layers, leading to output token
generation. Right: The mathematical formulation of MoReS illustrates the steering of visual representations
within a subspace, highlighting its impact on output generation. During visual instruction tuning, the parameters
of the LLM remain frozen, allowing only the parameters associated with the linear transformation in the steering
mechanism to be trainable. With MoReS, the distribution of attention scores becomes more balanced, achieving
intrinsic modality balance.

visual token receives comparable attention to each
text token, which we interpret as a strong signal of
modality balance within the model.

In our experiments comparing various existing
PEFT methods and full fine-tuning, IA3 (Liu et al.,
2022a) consistently achieves the highest average
LMAR score across all layers while requiring the
fewest trainable parameters. IA3’s superior per-
formance can be attributed to its unique design,
which introduces task-specific rescaling vectors
that directly modulate key components of the Trans-
former architecture, such as the keys, values, and
feed-forward layers. Unlike methods that intro-
duce complex adapters or fine-tune all parameters,
IA3 optimizes a small but crucial set of parameters
responsible for attention and representation learn-
ing. By applying element-wise scaling to the atten-
tion mechanisms, IA3 effectively re-balances the
attention distribution across two intrinsic modali-
ties. This design is particularly beneficial during
visual instruction tuning, as it allows the model to
dynamically reallocate more attention to visual rep-
resentations without requiring many trainable pa-
rameters. The identified relationship inspires that if
the intrinsic modality imbalance can be addressed,
the required number of trainable parameters can be

potentially reduced further during visual instruc-
tion tuning. This offers a new direction for future
improvements in PEFT methods for MLLMs.

4 MoReS Method

Based on insights gained from intrinsic modal-
ity imbalance, we introduce Modality Linear
Representation-Steering (MoReS) as a novel
method for visual instruction tuning which can
rebalance visual and textual representations and
achieve comparable performance with fewer train-
able parameters.
Our approach is grounded in the linear subspace
hypothesis, originally proposed by Bolukbasi et al.
(2016), which suggests that information pertain-
ing to a specific concept is encoded within a linear
subspace in a model’s representation space. This
hypothesis has been rigorously validated across nu-
merous domains, including language understand-
ing and interpretability (Lasri et al., 2022; Nanda
et al., 2023; Amini et al., 2023; Wu et al., 2024c).
Building upon the intervention mechanisms de-
scribed in Geiger et al. (2024) and Guerner et al.
(2023), we introduce a simple linear transforma-
tion that steers visual representations within sub-
space while keeping the entire LLM frozen during
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visual instruction tuning. This approach ensures
that the language model’s existing capabilities are
preserved, while continuously guiding the MLLM
to better leverage the underutilized visual modal-
ity. By steering visual representations across each
layer, MoReS effectively rebalances the intrinsic
modality and influences the output generation pro-
cess. Figure 3 provides an illustration of the overall
concept and architecture behind MoReS.
Formally, MoReS method can be formulated as
follows: Let H = {hi}Ni=1 ⊂ RD denote the
set of visual representations in the original high-
dimensional space. We define our steering function
MoReS as:

MoReS(h) = Wup · ϕ(h) (3)

where h ∈ RD is an input visual representation,
ϕ : RD → Rd is a linear transformation function
that steers h into a lower-dimensional subspace
Rd (d < D), and Wup ∈ RD×d is an upsampling
matrix that projects from Rd back to RD. The
steering function ϕ is defined as:

ϕ(h) = Linear(h)−Wdownh (4)

where Wdown ∈ Rd×D is a downsampling matrix.
To preserve representational fidelity and ensure ap-
proximate invertibility, we impose the constraint
WdownW

T
up = ID.

This residual form disentangles the learnable mod-
ulation from the identity projection. Specifically,
Wdownh projects the original representation into
a lower-dimensional subspace, Linear(h) learns
task-specific modulation, and the subtraction iso-
lates the residual semantic shift. This design en-
sures a controlled, low-rank steering of the orig-
inal representation, aligning with MoReS’s goal
of minimally altering the pretrained structure. No-
tably, this steering method can dynamically be ap-
plied to specific visual tokens. Further exploration
of the impact of different steered token ratios is
discussed in Section 5.7. In Section A.4, we fur-
ther provide theoretical justification that elucidates
how MoReS effectively rebalances the intrinsic
modalities while continuously controlling output
generation. Additionally, we provide a preliminary
estimation of the trainable parameters involved dur-
ing visual instruction tuning. In the following sec-
tions, we first compose real-world MLLMs (i.e.,
LLaVA Steering) with three different scales and
integrate the proposed MoReS method. Based on
the composed real-world models, we then evalu-
ate how our MoReS method performs within the

- SciQA-IMG - POPE

- MM-Vet - MMMU

Figure 4: Comparison of parameter count vs. perfor-
mance for MoReS and other PEFT methods across four
benchmarks.

composed models across several popular and pres-
tigious datasets.

5 Experiments

We incorporate MoReS into each layer of the LLM
during visual instruction tuning, developing LLaVA
Steering (3B/7B/13B) based on the training recipe
outlined in (Liu et al., 2024a). During visual in-
struction tuning on the LLaVA-665k dataset, we
apply MoReS to a specific ratio of the total visual
tokens, specifically using it on only 1% of the to-
kens. Further details about the model architectures
and baseline training methods are provided in Ap-
pendix A.1.

5.1 Multi-Task Supervised Fine-tuning

To assess the generality of our method, we compare
it with the baselines using the LLaVA-665K mul-
titask mixed visual instruction dataset (Liu et al.,
2024a). Our evaluation covers several benchmarks,
including VQAv2, GQA, VizWiz, ScienceQA,
TextVQA, MM-Vet, POPE, and MMMU, to evalu-
ate the performance across a range of tasks, from
visual perception to multimodal reasoning. Further
details can be found in Appendix A.2.
Following (Zhou et al., 2024b), we define Sci-
enceQA as an unseen task, while VQAv2, GQA,
and VizWiz are categorized as seen tasks in LLaVA-
665k. To provide a comprehensive evaluation of
our MoReS capabilities, we design three configu-
rations: MoReS-Base, MoReS-Large, and MoReS-
Huge, each based on different ranks.

15235



We present the results in Table 1, where our MoReS
method achieves the highest scores on POPE (88.2)
and MMMU (35.8), as well as the second-best per-
formance on ScienceQA (71.9) and MM-Vet (33.3).
Notably, MoReS accomplishes these results with
287 to 1150 times fewer trainable parameters com-
pared to LoRA. The scatter plots in Figure 4 further
illustrate that MoReS variants (highlighted in red)
consistently achieve Pareto-optimal performance,
offering an ideal balance between model size and
effectiveness.

5.2 Task-Specific Fine-tuning

We evaluate the task-specific fine-tuning capabili-
ties of our MoReS method in comparison to other
tuning methods on multiple visual question an-
swering datasets: (1) ScienceQA-Image (Lu et al.,
2022), (2) VizWiz (Gurari et al., 2018), and (3)
IconQA-txt and IconQA-blank (Lu et al., 2021).
We present the results in Table 2, showing that
MoReS achieves 1200 times fewer trainable param-
eters compared to LoRA and 3 times fewer than the
previous best, IA3, while maintaining comparable
performance or an acceptable decline of less than
3%. These results show that MoReS can succeed
at Task-Specific Fine-tuning, even unseen tasks
during its multitask visual instruciton tuning stage.

5.3 Multi-scale Data Fine-tuning

During visual instruction tuning, the scale of spe-
cific task datasets can vary significantly. To gain a
comprehensive understanding of our method com-
pared to other training approaches, we follow the
methodology of (Chen et al., 2022) and randomly
sample 1K, 5K, and 10K data points from each
dataset, defining these as small-scale, medium-
scale, and large-scale tasks, respectively. Given
the limited resources available, we choose MoReS-
L for fine-tuning.
Table 3 demonstrates that MoReS exhibits strong
capabilities across all scales. Notably, in small-
scale tasks, MoReS outperforms full fine-tuning
performance while using only 575 times fewer pa-
rameters than LoRA and 8,475 fewer than full fine-
tuning. In contrast, methods like OFT and IA3 fail
to surpass full fine-tuning despite utilizing signif-
icantly more parameters. This result underscores
the practicality of MoReS in real-world scenarios
where data collection can be challenging, suggest-
ing that MoReS is suitable for multi-scale visual
instruction tuning.

5.4 Text-only Tasks

MoReS preserves 100% of the pre-trained world
knowledge in the LLM by neither modifying its
parameters nor interfering with textual token in-
ference. This design allows MoReS to excel in
understanding both visual and textual information.
Unlike many existing methods, which often al-
ter model weights and risk degrading pre-trained
knowledge (Zhang et al., 2024c), MoReS employs
a representation-steering approach to selectively
enhance the performance of the visual modality.
Table 4 clearly demonstrate that MoReS excels in
text-only tasks, further emphasizing its ability to
retain and effectively leverage the inherent world
knowledge stored in LLMs. This capability show-
cases MoReS’ generalizability not only for multi-
modal tasks but also for text-dominant tasks.

5.5 Hallucination Mitigation

Hallucination remains a critical challenge in
MLLMs, largely due to their strong linguistic bias,
which can overshadow visual information and lead
to outputs misaligned with the provided visual con-
text. MoReS significantly outperforms existing
tuning approaches in mitigating hallucinations, as
demonstrated through evaluations on two widely
recognized benchmarks: POPE and Hallucination-
Bench. Key metrics include Acc, Hard Acc, Figure
Acc, and Question Acc. Further details can be found
in Appendix A.3.
Table 6 highlights the robustness of MoReS in re-
ducing hallucination and enhancing the balance be-
tween linguistic and visual information in MLLMs.

5.6 Dynamic Steering Ratio

To explore the adaptability of MoReS across tasks
of varying complexity, we introduce a dynamic
steering ratio mechanism that allows the proportion
of modulated visual tokens to vary during training.
For each downstream task, we predefine a range of
steering ratios and enable the model to dynamically
select among them.

As shown in Table 9, performance trends dif-
fer across tasks. On SQA and IconQA, increas-
ing the steering ratio beyond 25% leads to perfor-
mance degradation, likely due to oversteering that
disturbs the pretrained visual subspace. In con-
trast, VizWiz—a visually complex and low-quality
dataset—benefits from higher steering ratios, sug-
gesting that more intensive modulation is needed to
adapt to noisy or ambiguous visual inputs. These
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Method TP* VQAv2 GQA TextVQA SciQA-IMG POPE MM-Vet MMMU Avg

FT 2.78B 79.2 61.6 57.4 71.9 87.2 35.0 38.2 61.5

Adapter 83M 77.1 58.9 53.5 68.1 86.7 29.4 34.2 58.2
LoRA 188.7M 77.6 59.7 53.8 71.6 87.9 33.3 35.6 59.9
OFT 39.3M 75.1 55.3 52.9 69.1 87.6 31.0 35.6 58.3
IA3 0.49M 74.5 52.1 49.3 72.2 86.9 30.9 34.3 57.1

MoReS-B 0.164M 74.1 52.1 48.5 70.0 87.6 30.3 35.3 56.9
MoReS-L 0.328M 74.0 51.6 49.3 71.6 87.2 33.3 34.4 57.3
MoReS-H 0.655M 74.2 51.8 48.3 71.9 88.2 31.1 35.8 57.4

Table 1: Experimental results of Multi-Task Supervised Fine-tuning. TP* denotes the number of trainable parameters
within the LLM. All models share the same training recipe for the vision encoder and connector for fair comparison.

Model Method TP* SciQA-IMG VizWiz IconQA-text IconQA-blank

LLaVA
Steering-3B

Adapter 83M 92.3 62.9 93.5 95.8
LoRA 188.7M 93.9 61.6 93.9 96.5
OFT 39.3M 86.3 42.0 87.8 42.0
IA3 0.492M 90.2 58.4 84.5 94.7
MoReS-B 0.164M 89.7 59.2 84.0 94.2

LLaVA
Steering-7B

Adapter 201.3M 82.7 59.7 72.1 71.6
LoRA 319.8M 87.6 60.6 77.7 70.2
OFT 100.7M 78.3 55.1 19.4 22.7
IA3 0.614M 83.8 54.3 65.1 70.4
MoReS-B 0.262M 83.6 54.2 64.2 70.2

LLaVA
Steering-13B

Adapter 314.6M 87.9 61.4 78.2 73.0
LoRA 500.7M 92.1 62.0 80.2 73.2
OFT 196.6M 82.7 59.5 3.4 22.3
IA3 0.963M 90.5 54.6 73.8 71.7
MoReS-B 0.410M 89.5 54.3 74.9 71.5

Table 2: Task-specific fine-tuning results for different
LLaVA Steering scales. TP* denotes trainable parame-
ters within the LLM.

results indicate that dynamically adjusting the steer-
ing ratio based on task characteristics is a promis-
ing direction. It allows MoReS to maintain mini-
mal intervention when possible, while scaling up
adaptation for more challenging scenarios.

5.7 Ablation Studies

To gain deeper insights into our MoReS method,
we conduct ablation studies focusing on its sub-
space choice and steered visual token ratio. We
use LLaVA Steering-3B model as our baseline for
comparison. Table 7 and 8 summarize the results
of two types of ablations.
First, concerning the choice of subspace rank, we
found that a rank of 1 achieves the highest average
performance of 81.8 across four visual tasks while
also requiring the fewest parameters, specifically
0.164M. Second, regarding the steered visual token
ratio, we varied this parameter from 100% (dense
steering) to 1% (sparse steering). The results in-
dicate that a ratio of 1% is optimal, yielding the
best or near-optimal performance on four bench-
marks while also significantly reducing inference

Scale Method TP* SciQA-IMG VizWiz IconQA

Small

FT 2.78B 33.8 51.2 68.1
Adapter 83M 81.0 57.4 72.4
LoRA 188.7M 84.0 58.5 74.2
OFT 39.3M 79.2 43.2 35.9
IA3 0.492M 79.9 50.5 73.0
MoReS-L 0.328M 78.2 55.0 69.7

Medium

FT 2.78B 78.2 58.9 92.2
Adapter 83M 92.1 60.6 93.2
LoRA 188.7M 92.9 60.5 92.7
OFT 39.3M 86.4 44.4 45.5
IA3 0.492M 91.9 57.1 90.6
MoReS-L 0.328M 92.1 56.6 89.9

Large

FT 2.78B 88.9 59.4 95.7
Adapter 83M 92.4 61.3 95.2
LoRA 188.7M 93.9 61.8 96.0
OFT 39.3M 86.4 44.2 43.7
IA3 0.492M 90.3 57.9 93.8
MoReS-L 0.328M 89.8 57.7 93.5

Table 3: Results of multi-scale tasks. TP* denotes train-
able parameters within the LLM.

Task LoRA Adapter OFT IA3 MoReS (Ours)

HellaSwag 70.5 66.4 69.1 71.8 71.9
MMLU 55.3 52.9 54.7 56.8 57.0

Table 4: Performance comparison of PEFT methods on
text-only tasks.

overhead due to its sparse steering approach.

5.8 Discussion on Optimization

While MoReS is proposed as a standalone repre-
sentation steering strategy, its design is inherently
compatible with other model compression tech-
niques such as sparse training and quantization.
These methods have shown great promise in re-
ducing the memory and computational footprint
of large-scale models. However, MoReS is fun-
damentally distinct in its design philosophy. It
preserves the full parameter set of the pretrained
language model by freezing all original weights
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Factory Multi-scale LLMs Diverse Vision Encoders PEFTs Text-only Tasks Multimodal Tasks Computational Optimization Multiple Training Strategies

TinyLLaVA ✗ ✓ ✗ ✗ ✓ ✗ ✓

Prismatic ✓ ✓ ✗ ✗ ✓ ✗ ✗

LLaVA Steering (Ours) ✓✓ ✓ ✓ ✓ ✓✓ ✓ ✓

Table 5: Comparison of functionality across different factories.

Metric Full LoRA Adapter OFT IA3 MoReS

POPE Acc↑ 87.2 86.7 87.9 85.1 86.9 88.2
HallucinationBench Hard Acc↑ 37.4 34.6 36.2 33.9 39.3 42.6
HallucinationBench Figure Acc↑ 18.5 16.7 18.2 14.1 18.5 19.4
HallucinationBench Question Acc↑ 44.4 43.0 44.8 36.2 45.0 46.1

Table 6: Comparison of MoReS against other tuning
methods on POPE and HallucinationBench benchmarks.

Subspace Rank TP* SciQA-IMG VizWiz IconQA-txt IconQA-blank Avg
1 0.164M 89.6 59.2 84.0 94.2 81.8
2 0.328M 89.7 59.2 83.9 94.0 81.7
4 0.655M 89.5 58.7 83.8 94.1 81.5
8 1.340M 89.6 58.9 83.7 93.9 81.5

Table 7: Results of the subspace rank choice. The grey
shading indicates the best results and our selected pa-
rameters.

and steering only a small number of visual token
representations through lightweight subspace pro-
jections. This stands in contrast to sparsity- or
quantization-based methods, which typically in-
volve structural pruning or reduced-precision rep-
resentations that may alter the internal behavior of
the model. To maintain a clear analysis of modality
rebalancing via representation steering, we inten-
tionally do not integrate these additional techniques
in this work. Nevertheless, due to the modularity
and non-intrusive nature of MoReS (e.g., the use
of linear transformation layers), such combinations
are feasible. Early-stage experiments on integrating
MoReS with sparsity and quantization are under-
way, and we consider this a promising direction for
future research in building efficient and compact
multimodal systems.

6 LLaVA Steering Factory

The LLaVA Steering Factory addresses the need for
a comprehensive framework to systematically ana-
lyze and compare various MLLM architectures and
training strategies. Standardizing the evaluation
of these models is challenging due to implementa-
tion differences and diverse design choices. The
LLaVA Steering Factory offers standardized train-
ing pipelines, flexible data preprocessing, and cus-
tomizable model configurations. It supports main-
stream LLMs, vision encoders, and PEFT methods,
including our MoReS technique, and integrates in-

Steered Visual Token Ratio SciQA-IMG VizWiz IconQA-txt IconQA-blank
1% 89.7 59.2 84.0 94.1

25% 89.9 59.0 80.2 93.8
50% 88.9 59.0 79.8 92.6

100% 85.8 60.5 67.7 87.8

Table 8: Results of the steered visual token ratio. The
grey shading indicates the best results and our selected
parameters.

trinsic modality imbalance evaluation. The frame-
work aims to optimize visual instruction tuning and
simplify the development process for researchers.
A detailed comparison with other frameworks, such
as TinyLLaVA Factory (Jia et al., 2024) and Pris-
matic VLMs (Karamcheti et al., 2024), is shown
in Table 5. And an overview of its components is
provided in Figure 7 (see Appendix A.8).

7 Conclusion

This paper introduces Modality Linear
Representation-Steering, which significantly
reduces trainable parameters while maintaining
strong performance across downstream tasks by
rebalancing visual and textual representations.
Integrating MoReS into LLaVA models validates
its effectiveness, supporting the potential of
intrinsic modality rebalance for optimizing visual
instruction tuning. To support future research,
we present the LLaVA Steering Factory, a ver-
satile framework enabling customizable training
configurations and integrated analytical tools.

Limitations

MoReS shows promising results, but there are ar-
eas for improvement. A more detailed analysis of
its underlying mechanisms is needed to enhance
interpretability and provide better insight into how
it balances visual and textual representations. Ad-
ditionally, further testing is required to evaluate
its performance in more complex, real-world sce-
narios and to assess its robustness against noisy
data.
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A Appendix

A.1 Experiment Settings
A.1.1 LLaVA Steering Architectures
As illustrated in Figure 3, the architecture of the
LLaVA Steering models (3B/7B/13B) consists of
three essential components: a vision encoder, a
vision connector responsible for projecting visual
representations into a shared latent space, and a
multi-scale LLM. The three modules are introduced
below.
In our experiments, we utilize the Phi-2 2.7B model
(Li et al., 2023c) alongside Vicuna v1.5 (7B and
13B) (Zheng et al., 2023b), sourced from our fac-
tory, to evaluate the generalizability of our ap-
proach across models of varying scales. For vision
encoding, we employ CLIP ViT-L/14 336px (Rad-
ford et al., 2021) and SigLIP-SO400M-Patch14-
384 (Zhai et al., 2023), while a two-layer MLP
serves as the connector. Given the inefficiencies of
Qformer in training and its tendency to introduce
cumulative deficiencies in visual semantics (Yao
et al., 2024), it has been largely replaced by more
advanced architectures, such as the BLIP series
(Xue et al., 2024), Qwen-VL series (team, 2024),
and InternVL series (Chen et al., 2024c), which
were previously reliant on Qformer.

A.1.2 Baseline Training Methods
For comparison, four widely adopted PEFT meth-
ods (Adapter, LoRA, OFT and IA3) are selected as
baselines. These methods establish a comparative
framework to assess both the performance and effi-
ciency of our proposed approach. Essentially, our
MoReS method replaces these four PEFT methods
during visual instruction tuning in LLaVA Steering.
Adapter: Building on the framework of effi-
cient fine-tuning (Houlsby et al., 2019), we in-
troduce adapter layers within Transformer blocks.
These layers consist of a down-projection matrix
Wdown ∈ Rr×d, a non-linear activation function
σ(·), and an up-projection matrix Wup ∈ Rd×r,
where d is the hidden layer dimension and r is
the bottleneck dimension. The adapter output is
computed as:

Adapter(x) = Wupσ(Wdownx) + x, (5)

where the residual connection (+x) preserves the
pre-trained model’s knowledge. This formulation
enables efficient parameter updates during fine-
tuning, offering a balance between computational
efficiency and adaptation capacity while minimally
increasing the model’s complexity.
LoRA: We employ the low-rank adaptation method
(LoRA) proposed by (Hu et al., 2021), which effi-
ciently updates the network’s weights with a mini-
mal parameter footprint by leveraging a low-rank
decomposition strategy. For a pre-trained weight
matrix W0 ∈ Rd×k, the weight update is achieved
through the addition of a low-rank decomposition,
as shown in Equation 6:

W0 +∆W = W0 +BA (6)

where B ∈ Rd×r and A ∈ Rr×k are trainable
low-rank matrices, and r ≪ min(d, k).
OFT: We utilize the Orthogonal Finetuning (OFT)
method, which efficiently fine-tunes pre-trained
models by optimizing a constrained orthogonal
transformation matrix (Qiu et al., 2023). For a
pre-trained weight matrix W0 ∈ Rd×n, OFT modi-
fies the forward pass by introducing an orthogonal
matrix R ∈ Rd×d, as illustrated in Equation 7:

z = W⊤x = (R ·W0)
⊤x (7)

where R is initialized as an identity matrix I to
ensure that fine-tuning starts from the pre-trained
weights.
IA3: Building on the framework established by
(Liu et al., 2022a), we introduce three vectors vk ∈
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Rdk , vv ∈ Rdv , and vff ∈ Rdff into the attention
mechanism. The attention output is computed as:

Attention = softmax
(
Q(vk ⊙KT )√

dk

)
(vv ⊙ V ),

(8)
where ⊙ denotes multiplication by element.

A.2 Benchmarks Overview

Recent advances in deep learning (Wan et al.,
2025a,b,c; Huang et al., 2023; Lu et al., 2024b,a,
2023; Lu and Chen, 2023; zhou changshi et al.,
2025; Liu et al., 2023b, 2022b; Guan et al., 2024;
Guan and Greene, 2024; Guan et al., 2025) have led
to the emergence of large language models (LLMs)
(Zhang et al., 2024b; Liu et al., 2024d; Ye et al.,
2025; Xuankun et al., 2025; Yang et al., 2025a;
Zhang et al., 2023b; Bi et al., 2025b; Yuan et al.,
2025; Wang et al., 2024a,b, 2025b; Lin et al., 2025;
Zhao and Zhang, 2024; Hu et al., 2024; Du et al.,
2024, 2025b,a; Zhong et al., 2023, 2024), which
demonstrate remarkable capabilities across a broad
range of NLP tasks. Building upon these successes,
multimodal large language models (MLLMs) have
been developed to extend this capability to visual-
linguistic tasks by integrating image understanding
with natural language reasoning . To comprehen-
sively evaluate the performance of such models,
various benchmarks have been proposed that as-
sess different aspects of multimodal understanding
(Zhou et al., 2025; Cheng et al., 2022; Liu et al.,
2024c, 2025; Cui et al., 2025; Yang et al., 2025b,c;
Li et al., 2025a,b; Huang et al., 2024; Zhang et al.,
2023a; Ma et al., 2024; Zeng et al., 2024; Guo et al.,
2025), including perception, reasoning, grounding,
and hallucination. In parallel, several recent works
have emphasized the need for efficient multimodal
adaptation and task-specific evaluation , highlight-
ing the importance of standardized benchmarks.
Below, we provide a brief overview of the bench-
marks used in our study.
VQAv2 (Goyal et al., 2017b): A benchmark for
evaluating visual perception through open-ended
short answers to visual questions.
GQA (Hudson and Manning, 2019): A dataset for
assessing visual reasoning and question answering.
VizWiz (Gurari et al., 2018): Consists of 8,000
images designed for zero-shot generalization
in visual questions posed by visually impaired
individuals.
ScienceQA (Lu et al., 2022): A benchmark

focusing on zero-shot scientific question answering
with multiple-choice questions.
TextVQA (Singh et al., 2019): Evaluates perfor-
mance on text-rich visual questions.
MM-Vet (Yu et al., 2023): Assesses the model’s
ability to engage in visual conversations, with
correctness and helpfulness evaluated by GPT-4.
POPE (Li et al., 2023b): Quantifies hallucination
in MLLMs.
MMMU (Yue et al., 2024): Evaluates core multi-
modal skills, including perception, knowledge, and
reasoning.

A.3 Hallucination Evaluation Details
POPE (Li et al., 2023b) specifically focuses on
object hallucination, using accuracy (Acc) as the
primary evaluation metric. By assessing whether
the generated outputs accurately correspond to ob-
jects present in the visual input, POPE provides a
clear measure of hallucination mitigation.
HallucinationBench (Guan et al., 2023) offers a
broader assessment by covering diverse topics and
visual modalities. This benchmark includes two
categories of questions: (1) Visual Dependent (VD)
Questions, which require detailed understanding
of the visual input for correct responses, and (2)
Visual Supplement (VS) Questions, where answers
depend on contextual visual support rather than
direct visual grounding.
To evaluate model performance comprehensively,
we focus on three main metrics: Hard Acc, which
assesses correctness based on strict adherence to
the visual context; Figure Acc, measuring accuracy
on a per-figure basis; and Question Acc, evaluating
the overall accuracy across all questions.

A.4 Theoretical Justification
Let xtext ∈ Rdt be the text input embedding,
ximage ∈ Rdv be the visual input embedding,
Rtext ∈ RD be the hidden representation for text,
and Rimage ∈ RD be the hidden representation for
the visual input. Define Wq,Wk,Wv ∈ RD×D as
the query, key, and value projection matrices, and
Wo ∈ RD×D as the output projection matrix. Let
A ∈ RN×N represent the attention matrix, and
y ∈ RV be the output logits.

We present a theoretical analysis of the MoReS
transformation and its effect on attention redistri-
bution in multimodal models. The hidden repre-
sentations for text and image inputs are computed
as:
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htext = ftext(xtext), himage = fimage(ximage) (9)

where ftext and fimage are encoding functions.
The attention mechanism is characterized by
scores:

Aij = softmax
(
(hiWq)(hjWk)

T

√
D

)
(10)

with Wq,Wk ∈ RD×D being query and key pro-
jection matrices. Output generation follows:

y = Wo(Ctext + Cimage) (11)

where Ctext =
∑

iAi,text(hiWv) and Cimage =∑
iAi,image(hiWv).
The core of our approach is the MoReS transfor-

mation, defined as:

MoReS(h) = Wup · ϕ(h), (12)

where ϕ(h) = Linear(h)−Wdownh (13)

Here, Wup ∈ RD×d, Wdown ∈ Rd×D, and d <
D. When applied to the image representation, we
obtain h′image = MoReS(himage) + himage, leading
to updated attention scores:

A′
i,image = softmax

(
(hiWq)(h

′
imageWk)

T

√
D

)

(14)
This transformation is key to redistributing atten-

tion towards visual inputs. The effect of MoReS
on the output can be quantified by examining the
change magnitude:

∥∆y∥2 = ∥Wo(C
′
image − Cimage)∥2 (15)

≤ ∥Wo∥2∥C ′
image − Cimage∥2 (16)

where C ′
image =

∑
iA

′
i,image(h

′
imageWv). The

significance of this change stems from the MoReS
transformation’s ability to amplify key visual fea-
tures. Specifically, ϕ(h) extracts salient visual in-
formation in a subspace, which is then amplified
by Wup in the original space. This process en-
sures ∥h′image∥2 > ∥himage∥2, leading to increased
A′

i,image values for relevant visual features and
larger magnitudes for (h′imageWv) terms in C ′

image.

To ensure stability while allowing for this sig-
nificant attention redistribution, we consider the
Lipschitz continuity of the model:

∥f(h′image)− f(himage)∥2 ≤ L∥h′image − himage∥2
(17)

where L is the Lipschitz constant. This property
bounds the change in the model’s output, guarantee-
ing that the attention redistribution, while substan-
tial, remains controlled and does not destabilize the
overall model behavior.

A key advantage of the MoReS approach lies
in its parameter efficiency. The transformation in-
troduces O(Dd) parameters, primarily from Wup,
Wdown, and the linear transformation in ϕ(h). This
is significantly less than the O(D2) parameters re-
quired for fine-tuning all attention matrices in tra-
ditional approaches. The reduction in trainable pa-
rameters not only makes the optimization process
more efficient but also mitigates the risk of overfit-
ting, especially in scenarios with limited training
data.

In conclusion, our theoretical analysis demon-
strates that our MoReS effectively redistributes at-
tention to visual inputs by operating in a carefully
chosen subspace. This approach achieves a signif-
icant change in output generation while maintain-
ing model stability and requiring fewer parameters
than full fine-tuning, offering a balance between
effectiveness and efficiency in enhancing visual
understanding in MLLMs.

A.5 Implementation Detail

Steered Visual Token

+𝑈𝑃!"#$!(𝐿𝑖𝑛𝑒𝑎𝑟 							 − 𝐷𝑜𝑤𝑛!"#$!(							))=

sys vision question

MoReS

Figure 5: MoReS module flowchart.

Regarding the implementation, we have adopted
a highly modular design for the LLM, integrating
it with MoReS to enable precise steering at specific
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Steering Ratio Dataset LR Accuracy (%)

0–1% SQA 2e-4 86.7
1–25% SQA 2e-4 87.7
25–50% SQA 2e-4 84.1
50–100% SQA 2e-4 81.0

0–1% VizWiz 2e-4 58.1
1–25% VizWiz 2e-4 58.6
25–50% VizWiz 2e-4 58.3
50–100% VizWiz 2e-4 59.1

0–1% IconQA-Text 2e-4 81.2
1–25% IconQA-Text 2e-4 81.3
25–50% IconQA-Text 2e-4 76.4
50–100% IconQA-Text 2e-4 77.1

0–1% IconQA-Blank 2e-4 93.9
1–25% IconQA-Blank 2e-4 91.2
25–50% IconQA-Blank 2e-4 87.4
50–100% IconQA-Blank 2e-4 84.1

Table 9: Effect of varying steering ratio across different
tasks.

token locations. This modular approach ensures
that the steering process operates with minimal
computational overhead, making it both efficient
and scalable. Additionally, the modular nature of
this design allows for seamless integration with
existing architectures and enables easy customiza-
tion of steering strategies tailored to specific down-
stream tasks. To provide further clarity, we include
a MoReS module flowchart (Figure 5) and an UML
diagram (Figure 6) here, which detail the imple-
mentation process.

LlavaSteeringForConditionalGeneration

language_model
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connector

forward()

SteerDataloader
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image_processor
steer_pos_getter

encode()

MoresModelShell

llm
mores

moresModelProxy

forward()

MoresModelProxy

get_adapted_args()

SiglipVisionModel
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LlamaForCausalLM

forward()

Connector

forward()

input_ids
image
steer_pos

question
image

image

img_feature

input_embed
steer_pos

Mores

forward()

steered_embedding

Data Flow Direction

Data Exchange by hook()

Figure 6: The UML diagram for MoReS

A.6 Full Attention Maps
In this section, we provide the attention maps (Fig-
ure 8) during the decoding process across each
layer. Notably, the distribution of visual attention
remains sparse in these layers, with only a few to-
kens carrying the majority of the attention. This

sparsity presents an opportunity for token prun-
ing strategies, which can be leveraged to reduce
inference overhead and improve computational ef-
ficiency. By selectively pruning tokens with lower
attention scores, unnecessary computations can be
avoided, leading to faster and more efficient infer-
ence while maintaining the essential information
needed for accurate predictions.

A.7 Runtime Overhead

Unlike LoRA, where the learned weights can be
merged into the model’s original parameters to
achieve zero computational overhead during infer-
ence, MoReS requires the linear transformation
layers to remain in the computation graph of the
MLLM. While this introduces a small overhead,
we have worked to minimize it effectively.

To mitigate runtime overhead, we performed sev-
eral experiments focusing on key factors: Subspace
Rank, Steered Visual Token Rate and Steering
Layer Configuration. These experiments helped us
reduce the additional computational burden. Specif-
ically, by choosing a 1% Steered Visual Token Rate,
a Subspace Rank of 1, and employing a sparse
Steering Layer Configuration, we achieved the min-
imum runtime overhead of about 0.08 seconds each
sample. This is significantly lower compared to
other PEFT methods, such as Adapter (0.3 seconds)
and OFT (2.8 seconds).

A.8 LLaVA Steering Factory

An overview of the main components of the LLaVA
Steering Factory is provided in Figure 7.

LLaVA Steering Factory

LLMs

PEFT

LoRA QLoRA IA3

OFT Adapter MoReS

Benchmark

CLIP DINO SigLIP MoF

Vision Encoder

Phi Llama Vicuna Gemma Qwen

SQAGQAVQATQA

VizWizPOPEMM-VetMMMU

Figure 7: Architectural overview of the proposed
LLaVA Steering Factory: A Modular Codebase for
MLLMs.

A.9 Impact of Removing Linear
Transformations

As shown in Table 10 and 11, we conducted exper-
iments applying MoReS with different fixed inter-
vals and also evaluated its performance when ap-
plied exclusively to the shallow, middle, and deep
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layers. These experiments highlight that the choice
of steering layers can effectively balance compu-
tational efficiency and performance. We suggest
that, when using MoReS, it is optimal to apply it to
all layers initially to achieve the best performance.
Then, by skipping fixed intervals, we can further
reduce inference overhead while maintaining per-
formance. Regarding the choice of shallow, middle,
and deep layers, we found that applying MoReS
to the deep layers yields better performance. We
believe that deep layers encode more abstract con-
cepts and are more suitable for steering in the sub-
space.

Steering Layer VQAv2 GQA TextVQA SciQA-IMG POPE MM-Vet MMMU Avg

[0,2,4,...] 74.1 52.0 48.3 71.6 87.1 32.8 35.3 57.3
[0,3,6,...] 74.1 51.7 48.1 70.7 87.0 32.7 33.2 56.8
[0,4,8,...] 74.1 51.9 48.5 71.2 87.2 31.5 34.4 57.0
All Layer 74.0 51.6 49.3 71.6 87.2 33.3 34.4 57.3

Table 10: Performance of different steering layer strate-
gies across benchmarks.

Steering Layer VQAv2 GQA TextVQA SciQA-IMG POPE MM-Vet MMMU Avg

Shallow (0-15) 74.3 51.6 48.6 70.3 87.5 34.9 34.4 57.3
Middle (8-23) 74.3 52.3 48.3 71.5 87.1 32.0 32.6 56.9
Deep (16-31) 74.2 51.5 48.2 71.8 87.1 33.3 36.7 57.7
All Layer 74.0 51.6 49.3 71.6 87.2 33.3 34.4 57.3

Table 11: Performance comparison of shallow, middle,
and deep steering layers.
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Figure 8: Full Attention Maps of Each Layer
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