
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 14996–15029
July 27 - August 1, 2025 ©2025 Association for Computational Linguistics

SCULPT: Systematic Tuning of Long Prompts

Shanu Kumar Akhila Yesantarao Venkata Shubhanshu Khandelwal
Bishal Santra Parag Agrawal Manish Gupta

Microsoft Corporation, India
{shankum,akyesant,shukhand,bishalsantra,paragag,gmanish}@microsoft.com

Abstract
Prompt optimization is essential for effective
utilization of large language models (LLMs)
across diverse tasks. While existing optimiza-
tion methods are effective in optimizing short
prompts, they struggle with longer, more com-
plex ones, often risking information loss and
being sensitive to small perturbations. To ad-
dress these challenges, we propose SCULPT
(Systematic Tuning of Long Prompts), a frame-
work that treats prompt optimization as a hi-
erarchical tree refinement problem. SCULPT
represents prompts as tree structures, enabling
targeted modifications while preserving contex-
tual integrity. It employs a Critic-Actor frame-
work that generates reflections and applies ac-
tions to refine the prompt. Evaluations demon-
strate SCULPT’s effectiveness on long prompts,
its robustness to adversarial perturbations, and
its ability to generate high-performing prompts
even without any initial human-written prompt.
Compared to existing state of the art meth-
ods, SCULPT consistently improves LLM per-
formance by preserving essential task infor-
mation while applying structured refinements.
Both qualitative and quantitative analyses show
that SCULPT produces more stable and inter-
pretable prompt modifications, ensuring better
generalization across tasks.

1 Introduction

Large language models (LLMs) have revolution-
ized natural language processing, achieving state-
of-the-art performance in text generation, sum-
marization, and reasoning (Achiam et al., 2023;
Bubeck et al., 2023; Abdin et al., 2024; Dubey et al.,
2024). A key factor in their success is the use of nat-
ural language prompts, which condition the model
on specific tasks. As applications grow in complex-
ity, prompts have become not only longer but also
structurally intricate, often spanning hundreds or
even thousands of tokens and integrating multiple
instructions, examples, and contextual cues (Schn-
abel and Neville, 2024). Optimizing such prompts

manually is time-consuming, requiring expert in-
tervention and extensive trial-and-error iterations
(Jiang et al., 2022; Zamfirescu-Pereira et al., 2023).

To reduce manual effort, automatic prompt opti-
mization methods such as APE (Zhou et al., 2022),
ProTeGi (Pryzant et al., 2023), OPRO (Yang et al.,
2024), and APEX (Hsieh et al., 2024) have been
proposed. These methods have been evaluated on
tasks where prompts consist of minimal instruc-
tions, demonstrating their effectiveness in optimiz-
ing short prompts. However, they face two major
limitations when applied to longer prompts. First,
they generate each token of new prompt candi-
dates from scratch, risking the loss of information
from the initial prompt. Second, due to the non-
convex and non-monotonic behavior of LLMs with
respect to small perturbations in prompt structure
(Jiang et al., 2020; Zhao et al., 2021; Reynolds
and McDonell, 2021; Lu et al., 2022), these opti-
mization techniques become ineffective for long
prompts. Addressing these limitations requires a
structured and context-aware approach that pre-
serves the initial information while applying tar-
geted refinements.

We address these challenges with SCULPT
(Systematic Tuning of Long Prompts)1, a frame-
work that redefines prompt optimization as a hier-
archical tree refinement problem. Rather than treat-
ing prompts as flat sequences, SCULPT represents
a prompt as a tree-structured form. This representa-
tion retains the intrinsic structure of a long prompt
while enabling targeted and effective modifications.
SCULPT employs an iterative Critic-Actor frame-
work: the Critic Module generates reflections based
on the prompt tree and incorrect predictions, while
the Actor Module processes these reflections and
generates a list of actions inspired by expert-driven
prompt optimization. These actions are then ap-

1Our code is available at https://github.com/Sshanu/
SCULPT

14996

https://github.com/Sshanu/SCULPT
https://github.com/Sshanu/SCULPT

Figure 1: Overview of the SCULPT framework, highlighting its four core components: Prompt Structuring, the
Critic Module, Aggregation, and the Actor Module for optimizing the k-th candidate prompt Pk

t at iteration t. We
have omitted UCB-based prompt selection and Structural Reflection in the figure for clarity.

plied systematically to refine the prompt tree. Fig. 1
provides an overview of our proposed SCULPT
framework.

Our contributions are as follows: (1) We intro-
duce SCULPT, a novel framework for optimizing
long prompts using a hierarchical tree structure
and an actor-critic mechanism, enabling system-
atic and targeted refinements. (2) We demonstrate
SCULPT’s effectiveness in refining unstructured
prompts, achieving significant gains in LLM per-
formance across four BBH (Big Bench Hard) tasks,
four RAI (Responsible AI) tasks, and two multi-
label tasks, with initial prompts averaging 1000
words and a maximum length of 2,644 words. (3)
We evaluate SCULPT in adversarial and autogener-
ated prompt settings, showing its ability to refine
perturbed prompts and generate effective prompts
without human-curated initial prompts. (4) We ana-
lyze structural and semantic differences using three
metrics, demonstrating SCULPT’s ability to refine
prompts while preserving key information. (5) We
assess SCULPT’s action distribution, demonstrat-
ing its controlled, systematic, and balanced refine-
ments, leading to stable and generalizable prompt
optimizations.

2 Related Work

Optimizing prompts is essential for maximizing
LLM performance across various tasks (Brown,
2020; Reynolds and McDonell, 2021; Wang et al.,
2022; Chang et al., 2024; Sahoo et al., 2024).
While manual prompt engineering has been ef-
fective, it is labor-intensive and requires expertise.
To automate this process, soft prompting methods
(Lester et al., 2021; Li and Liang, 2021; Liu et al.,
2021; Qin and Eisner, 2021) optimize prompts as
continuous vectors in the model’s embedding space,
but they require access to model weights, making
them unsuitable for black-box LLMs. In contrast,
black-box prompt optimization techniques refine

prompts without modifying the internal model, re-
lying on explicit or implicit reflection mechanisms.

Explicit reflection-based approaches (Cheng
et al., 2023; Pryzant et al., 2023; Ye et al., 2023;
Sun et al., 2023; Dong et al., 2024) generate feed-
back based on model errors and iteratively refine
prompts by incorporating this feedback. We adopt
this approach by structuring reflections to opti-
mize long prompts effectively. In contrast, im-
plicit reflection-based methods, such as OPRO
(Yang et al., 2024) and evolutionary algorithms
(Xu et al., 2022; Guo et al., 2024; Fernando et al.,
2024; Liu et al., 2024), improve prompts using his-
torical performance rather than explicit feedback.
Some methods further incorporate human prefer-
ences to enhance the optimization efficiency (Chen
et al., 2024b). These techniques have also been inte-
grated into multi-step AI pipelines to improve their
prompt quality (Khattab et al., 2023; Yuksekgonul
et al., 2024; Schnabel and Neville, 2024). Addi-
tionally, research on automatic prompt generation
explores approaches that construct prompts from
input-output pairs (Honovich et al., 2023; Zhou
et al., 2022; Chen et al., 2024a).

Recent studies have explored prompt optimiza-
tion for longer prompts by applying segmentation
and predefined modifications (Prasad et al., 2022).
However, these methods remain limited in scope.
APEX (Hsieh et al., 2024), for instance, optimizes
few-shot chain-of-thought prompts but struggles
with complex, instruction-heavy prompts. Addi-
tionally, many existing optimization techniques ex-
hibit unpredictable behavior, leading to suboptimal
results (Ma et al., 2024). To address these chal-
lenges, we introduce targeted updates that ensure
stable and controlled refinements of long prompts.

3 The SCULPT Methodology

In this section, we present SCULPT, a framework
designed to optimize complex, long prompts for

14997

Figure 2: Illustration of SCULPT’s Prompt Structuring Process. Unstructured prompt is transformed into a
hierarchical tree structure, with different colors represent various node types (e.g., heading, instructions, examples).

LLMs. While existing methods primarily focus
on short prompts or few-shot examples, SCULPT
specifically addresses the challenges of optimizing
longer prompts containing multiple instructions, ex-
amples, and layered structures. Our goal is to refine
prompts iteratively in a controlled manner, ensuring
robust model performance while maintaining clar-
ity and task relevance. Let Dtrain,Dval,Dtest repre-
sent the training, validation, and test datasets, each
consisting of input-output pairs (x, y). The LLM
M generates predictions ŷ = M(P, x) based on
the given prompt P , which can contain complex
instructions and examples (Appendix K). The ob-
jective of SCULPT is to find an optimized prompt
P∗ that maximizes a performance metric Q (e.g.,
accuracy) on Dval:

P∗ = argmax
P

E(x,y)∼Dval [Q(y,M(P, x))]

Starting with an initial prompt Pt=0, the opti-
mization process iteratively produces K candidate
prompts {P k

t }Kk=1 at every iteration t. SCULPT
consists of four core components: Prompt Structur-
ing, Critic Module, Aggregation of Reflections, and
Actor Module, working in conjunction with a beam
search strategy to explore and optimize multiple
candidate prompts simultaneously. As illustrated
in Fig. 1, these components systematically refine
prompts by structuring, analyzing, aggregating, and
applying controlled modifications. Henceforth, for
sake of clarity, we will drop subscript t.

3.1 Prompt Structuring

Short prompt optimization methods struggle with
longer, more complex instructions, making it diffi-
cult to attribute error feedback to specific sections.
Treating a long prompt as a single unit often leads
to fragmented and ineffective refinements. To ad-
dress this, we represent prompts as a hierarchical
tree T = (N,E), where N is the set of nodes
representing components such as headings, instruc-
tions, and examples, while E defines containment

relationships between nodes. This structure en-
ables targeted modifications while preserving the
integrity of unrelated sections.

Given a prompt Pk, it is transformed into its
hierarchical representation T k. If the prompt has
an explicit structure, such as markdown formatting,
it is directly parsed into T k; otherwise, an LLM
infers the hierarchy by segmenting the prompt into
distinct components while preserving logical rela-
tionships (Appendix M). This enables SCULPT to
effectively process prompts with any type of for-
matting. Fig. 2 illustrates this transformation, with
different node types color-coded to represent the
hierarchical structure.

3.2 Critic Module

The Critic Module C evaluates the prompt and
generates two types of reflections: Structural Re-
flection and Error Reflection. Each reflection in-
cludes feedback and a list of paths to the nodes in
T k where modifications should be applied. Struc-
tural Reflection (Rstruc) assesses the overall struc-
ture, clarity, completeness, and redundancy of the
prompt. It is generated independently of task-
specific errors and ensures logical organization,
given by Rk

struc = C(T k).
Error Reflection (Rerror) is generated when ŷ ̸=

y for an input-output pair in the training batch
B ⊂ Dtrain, identifying problematic nodes in T k

that contribute to incorrect predictions, formulated
as Rk

error =
{
C(T k, xi, yi, ŷi) : i ∈ B

}
. Since

error reflections are highly specific to individual ex-
amples, using them directly may lead to overfitting.
To enhance generalization, SCULPT aggregates
these reflections before applying modifications.

3.3 Aggregation of Reflections

To mitigate overfitting, SCULPT consolidates er-
ror reflections Rk

error into a structured set Ck
error =

{Ck
1 , C

k
2 , . . . , C

k
g }, where g is determined by the

aggregation mechanism. We employ two com-

14998

plementary strategies: Pattern-based Aggregation,
which clusters reflections based on shared error
types and structural similarities, and Node-based
Aggregation, which groups reflections correspond-
ing to the same node. If a node Nj appears in at
least one reflection in Rk

error, its aggregated reflec-
tion Ck

j is defined as:

Ck
j =

⋃
{R | R ∈ Rk

error and Nj ∈ R}

This ensures that all reflections affecting the
same node are merged, allowing for more struc-
tured and meaningful modifications.

3.4 Actor Module
The Actor Module modifies the prompt based on re-
flections from the Critic Module. Instead of operat-
ing on the entire prompt tree T k, the Actor focuses
on an induced subtree T k

sub, which includes nodes
requiring modification along with their direct par-
ent nodes. Given T k

sub and any reflection, the Actor
generates a list of actions Ak = {a1, a2, . . . , am}
selected from a predefined set of modifications out-
lined in Table 1. These actions are then applied
using an update operator Φ, transforming the sub-
tree into an updated version:

T k
sub,t+1 = Φ

(
T k

sub,t, A
k
)

The Actor first applies high-level structural mod-
ifications derived from Rk

struc to improve clarity
and logical organization. It then incorporates ag-
gregated reflections Ck

j to refine instructions and
examples based on task-specific errors. Once all
modifications are completed, the updated prompt
tree T k

t+1 is converted back into its textual repre-
sentation, yielding the optimized prompt Pk

t+1.

Action Description

Structural Reordering Changing the order of sibling nodes
Instruction Update Simplifying or adding new instructions
Example Addition Adding new examples to a node
Example Deletion Removing redundant examples from a node
Example Refinement Improving existing examples in a node
Node Pruning Removing unnecessary nodes
Node Expansion Adding new nodes to address gaps
Node Merging Combining nodes that have similar content

Table 1: Action types in SCULPT for prompt refinement

3.5 Search Process
SCULPT incorporates a beam search strategy to ex-
plore and refine multiple candidate prompts in par-
allel. At each iteration t, a beam Bt maintains the
top K candidate prompts, enabling both exploita-
tion of high-performing prompts and exploration
of new variations. Since evaluating all candidate

Algorithm 1 Prompt Optimization in SCULPT 1

Initialize Beam B0 = {P0}, t← 0, max_steps
while t < max_steps do

Evaluate Bt on a random subset ofDval, obtain µ̂k

Compute UCB scores UCBk(t) for each Pk
t

Select top K candidate prompts {Pk
t }Kk=1

for each selected candidate prompt Pk
t do

Critic generates Structural ReflectionRk
struc

Critic generates Error ReflectionRk
error

AggregateRk
error into groups {Ckj }gj=1

Actor applies structural actions Ak
struc

for each aggregated reflection Ckj do
Actor applies error-based actions A(k,j)

error

Update prompt to P(k,j)
t+1 and add to beam Bt+1

end for
end for
t← t + 1

end while
Return top-K prompts from Bt sorted in descending order by UCB scores

prompts on Dval is computationally expensive, we
adopt an Upper Confidence Bound (UCB)-based
selection strategy (Pryzant et al., 2023). The UCB
score for each candidate Pk

t is computed as:

UCBk(t) = µ̂k + c

√
log t

nk

where µ̂k is the estimated performance (using
previous evaluations) of the candidate on the vali-
dation set Dval, nk is the number of times the candi-
date has been evaluated, and c is a hyperparameter
controlling the trade-off between exploration and
exploitation. This ensures that promising candi-
dates with fewer evaluations are prioritized while
refining high-performing candidates.

The overall optimization process for SCULPT,
integrating prompt structuring, reflection-based re-
finement, and beam search with UCB-based se-
lection, is provided in Algorithm 1. A more de-
tailed explanation of the beam search algorithm
and the UCB-based selection strategy is provided
in Appendix B. Additionally, detailed templates
for the Critic and Actor modules are presented in
Appendix H, while step-by-step interactions and
refinements are detailed in Appendix D. Fig. 6 in
Appendix visually demonstrates the improvements
made to the prompt after optimization, illustrating
the impact of these refinements.

4 Experiments

4.1 Experimental Setup

Datasets: We evaluate SCULPT on four tasks from
the Big-Bench Hard (BBH) benchmark (Suzgun
et al., 2023), designed to test LLMs on challenging

1We have removed t from notations for C, A, R for clarity.

14999

Method ST Dis CJ FF Inapp Misinfo Hate Selfharm BTails GoE Avg

Initial Prompt 62.3 74.1 71.1 80.2 46.6 51.5 46.8 66.4 41.8 7.8 54.9
APE 51.0 74.3 71.8 75.3 45.3 31.9 29.3 38.1 46.4 0 46.3
LAPE 52.7 78.0 72.2 81.3 42.4 43.6 37.6 44.2 39.1 19.6 50.3
APEX 62.7 61.5 70.5 80.6 48.0 50.5 47.1 65.2 40.7 8.0 53.5
OPRO 64.6 75.1 72.7 80.7 46.6 51.0 40.9 65.1 41.5 11.8 55.0
ProTeGi 65.5 74.8 68.9 70.1 44.8 54.8 51.9 66.5 45.4 17.8 56.1

SCULPTNoAgg 65.2 77.3 75.4 83.1 53.6 53.6 51.9 65.5 49.6 29.8 60.5
SCULPTPA 66.2 77.6 76.9 83.7 55.3 56.7 53.1 68.8 49.3 29.6 61.7
SCULPT+RP 67.6 78.0 75.1 84.7 55.0 55.3 52.9 69.0 49.6 22.4 61.0
SCULPT 68.8 80.1 75.9 83.7 55.0 54.9 53.1 68.5 50.5 30.6 62.1
SCULPTLAPE 66.8 81.1 76.1 86.5 48.2 48.8 44.5 61.8 48.4 28.0 59.0

Table 2: Performance comparison using GPT-4o across various tasks

problems. The selected tasks include Causal Judge-
ment (CJ), assessing causal reasoning and moral
judgment; Disambiguation QA (Dis), resolving am-
biguous pronouns; Formal Fallacies (FF), distin-
guishing between valid and fallacious arguments;
and Salient Translation Error Detection (ST), iden-
tifying critical translation errors. Additionally, we
evaluate SCULPT on four real-world RAI tasks:
Inappropriate Content Detection (Inapp), Hate-
Speech Detection (Hate), Misinformation Detec-
tion (Misinfo), and Suicidal Ideation and Drug
Use Detection (Selfharm), each categorized into
four harm levels: No Harm, Low Harm, Moderate
Harm, and High Harm. We also include two multi-
label classification tasks with more than ten classes:
GoEmotions (GoE) (Demszky et al., 2020), classi-
fying Reddit comments into 28 emotion categories,
and BeaverTails (BTails) (Ji et al., 2023), where
human-labeled QA pairs are assigned to multiple
categories across 14 harm types. Table 8 in the
appendix provides the word counts of the initial
prompts, highlighting their length and complexity.

Baseline Methods: We evaluate SCULPT
against seven baseline methods. (1) Initial Prompt,
which act as the initial prompt in each optimization
method. These prompts for RAI tasks are expert
curated (Appendix K), while those for BBH and
multi-label tasks are generated using task descrip-
tions from README files (Appendix J). (2) APE
(Zhou et al., 2022), which generates new prompt
candidates by leveraging few-shot examples, then
rephrases them to create multiple variations, select-
ing the best based on validation performance. (3)
LAPE, a variant of APE, which focuses on gen-
erating more descriptive prompts using a prede-
fined template (cf. Appendix G). (4) APEX (Hsieh
et al., 2024), which refines prompts by performing
sentence-level rephrasing through LLMs while uti-
lizing historical changes for refinement. (5) OPRO
(Yang et al., 2024), which generates new prompts
by relying on historical prompt data and their val-

idation scores. (6) ProTeGi (Pryzant et al., 2023),
which detects errors in prompts, generates feedback
based on these errors, and rephrases the prompts to
produce optimized versions.

SCULPT Variants: To assess the impact of re-
flection aggregation and search space expansion
within SCULPT, we evaluate five key variants: (1)
SCULPT, which employs Node-based Aggregation
as the primary method. (2) SCULPTPA, which re-
places Node-based Aggregation with Pattern-based
Aggregation. (3) SCULPTNoAgg, which omits ag-
gregation entirely to measure the effect of unaggre-
gated reflections on prompt optimization. (4) Since
baselines typically expand the search space through
rephrasing, SCULPT+RP integrates rephrasing
alongside Node-based Aggregation to assess the
influence of rephrased candidates on SCULPT’s
performance. We provide detailed information on
rephrasing in Appendix H.5. (5) SCULPTLAPE,
where the initial prompt is generated using the
LAPE method before undergoing optimization in
SCULPT. This variant evaluates SCULPT’s per-
formance when it is not initialized with a human-
written prompt.

Implementation Details: For most tasks, macro
F1 scores are used due to the multiclass nature,
while accuracy is reported for ST, Dis and multi-
label tasks. The results reflect the average perfor-
mance of the top four generated prompts, evaluated
across three trials to ensure consistency. All gen-
erations were done using GPT-4o (OpenAI, 2024)
with a temperature of 0.5, while the evaluation was
performed using both GPT-4o and Llama-3.1-8B
(Dubey et al., 2024), with a temperature of 0 to
guarantee deterministic outputs.

We ensured fairness by assigning all methods
the same search budget of 384 total prompt candi-
dates. APE and LAPE generated this number di-
rectly, while APEX and OPRO, which produce one
prompt per step, were run for 384 steps. ProTeGi
was run for 6 steps, producing 64 candidates per

15000

step. SCULPT, generating up to 16 candidates per
step, could have run for 24 steps, but experiments
indicated that performance peaked at 8 steps, with
additional steps leading to overfitting. Thus, the
reported SCULPT performance reflects the results
after 8 optimization steps.

Method Dis CJ Misinfo Selfharm Avg

Initial Prompt 57.3 ± 1.8 61.8 ± 1.2 36.1 ± 0.8 34.9 ± 0.8 47.5
APE 64.3 ± 0.7 56.0 ± 1.6 33.9 ± 2.3 29.4 ± 1.0 45.9
LAPE 60.3 ± 1.9 60.0 ± 2.4 39.3 ± 2.9 33.9 ± 3.2 48.4
APEX 61.5 ± 3.6 59.4 ± 3.6 28.8 ± 5.0 39.6 ± 1.0 47.3
OPRO 49.1 ± 18.4 62.9 ± 2.7 43.1 ± 8.3 51.8 ± 2.4 51.7
ProTeGi 61.3 ± 3.5 58.4 ± 4.3 34.5 ± 4.7 41.6 ± 1.2 49.0
SCULPT 65.3 ± 4.3 64.9 ± 1.5 37.3 ± 2.8 54.5 ± 5.1 55.5

Table 3: Performance Comparison using Llama 3.1

5 Results and Analysis

Performance Comparison with Baselines: Table
2 presents the results for SCULPT variants and
baseline methods across ten tasks using GPT-4o.
SCULPT consistently outperforms all baselines,
demonstrating significant improvements over the
initial prompt. While APEX struggles to generate
meaningful gains, often performing similarly to the
initial prompt, OPRO and ProTeGi show minor im-
provements but lack consistency across different
tasks. LAPE performs well on tasks such as Dis,
FF and multi-label tasks surpassing APE and the
initial prompt, yet it underperforms in other tasks.
On multi-label tasks GoE and BTails, where a large
number of classes makes prompt optimization chal-
lenging, most baselines fail to provide substantial
improvements. In contrast, SCULPT achieves no-
table performance gains exceeding 10% on both
tasks. Due to space constraints, we have omit-
ted standard deviations here; however, Appendix
A includes them, demonstrating that SCULPT ex-
hibits lower variance than other methods, indicat-
ing greater stability and reliability across multiple
runs.

Table 3 presents results for four tasks using
Llama 3.1. Apart from Misinfo, SCULPT sig-
nificantly outperforms all baselines. Interestingly,
OPRO delivers better improvements with Llama-
3.1-8B than with GPT-4o, even surpassing ProTeGi
on 3 out of 4 tasks, suggesting that model-specific
behavior influences the effectiveness of optimiza-
tion strategies. SCULPT continues to demonstrate
robust performance, reinforcing its adaptability
across different models and tasks.

Ablation Study of SCULPT: Table 2 highlights
the performance of different SCULPT variants.

SCULPT, which uses Node-based Aggregation,
achieves the best overall results. This variant excels
because the Actor can apply all reflections related
to a specific node in the prompt simultaneously,
ensuring that refinements are comprehensive and
targeted. In contrast, SCULPTPA (Pattern-based
Aggregation), which clusters reflections based on
similarities in erros, may fail to aggregate all reflec-
tions for the same node. As a result, some potential
improvements for that node may be missed, leading
to less precise refinements. While SCULPT+RP
(rephrasing) delivers results comparable to the stan-
dard SCULPT, its impact is inconsistent. Rephras-
ing does not always lead to further improvements,
making it an optional step rather than a core part of
the SCULPT.

Method SC OC OOO Avg

Initial Prompt 73.1 49.0 73.3 65.13
OPRO 73.4 74.3 86.7 78.13
ProTeGi 74.8 65.9 100 80.23
SCULPT 74.9 81.4 100 85.43

Table 4: Performance Comparison using GPT-4o across
short prompt tasks

Performance Comparison across Short-
Prompt Tasks: To assess the generalizability of
SCULPT, we evaluate its performance on short-
prompt tasks using GPT-4o, a domain typically
targeted by algorithms such as OPRO and ProTeGI.
As presented in Table 4, our evaluation includes
tasks from the Big-Bench Hard (BBH) benchmark,
Object Counting (OC) and Odd One Out (OOO),
as well as a generic short-instruction task, mul-
ticlass sentiment classification (SC), using Red-
dit comments from the HuggingFace dataset. De-
spite being primarily designed for optimizing long
prompts with complex structures, SCULPT ex-
hibits strong adaptability, achieving superior per-
formance in OC and SC, and maintaining compet-
itive results in OOO. These findings underscore
SCULPT’s robustness and versatility across both
complex and simple scenarios.

Method Cos Sim R-1 R-2 R-L HM

Initial Prompt 76.64 37.63 14.45 23.27 35.23
OPRO 76.28 36.16 13.28 22.08 33.86
ProTeGi 76.84 38.73 14.59 23.85 35.92
SCULPT 76.96 39.75 15.06 24.59 36.76

Table 5: Performance Comparison using GPT-4o on a
generation task (CNN Sum)

Performance Comparison across Generative
Tasks: To further evaluate the generalizability of
SCULPT, we assess its performance on an open-

15001

(a) Textual Similarity (b) Semiotic Dissimilarity (c) Information Preservation

Figure 3: Comparison of Textual Similarity, Semiotic Dissimilarity, and Information Preservation for ProTeGi and
SCULPT. ProTeGi exhibits high variability, often making drastic changes while SCULPT maintains stability.

ended generation task in comparison to OPRO and
ProTeGi, using GPT-4o as the underlying model.
Open-ended tasks typically involve higher ambi-
guity and demand a nuanced understanding of
contextual dependencies to produce high-quality
outputs. For this preliminary analysis, we se-
lected the CNN/DailyMail summarization dataset
(CNN Sum), where the objective is to generate
concise summaries of news articles. Evaluation
metrics included ROUGE-1 (R-1), ROUGE-2 (R-
2), ROUGE-L (R-L), Cosine Similarity (Cos Sim)
computed using a MiniLM sentence transformer,
and their Harmonic Mean (HM) as an aggregate
measure of performance.

To facilitate more informative feedback, we ex-
tended both SCULPT and ProTeGi to pass evalu-
ation metrics such as R-L and Cos Sim alongside
the input, reference summary, and generated output
to the Critic module. This enabled the Critic to
assess outputs in a more nuanced, non-binary man-
ner. As shown in Table 5, SCULPT demonstrates
stronger generalization to open-ended generation
tasks compared to OPRO and ProTeGi. However,
further work is needed to refine Critic’s ability to in-
terpret and communicate output quality effectively
to the Actor. This remains a critical area for future
exploration.

Robustness to Prompt Perturbations: To eval-
uate the robustness of SCULPT under real-world
prompt degradations, we design a suite of experi-
ments covering three categories of perturbations:
semantic, grammatical, and multilingual. Se-
mantic perturbations include Localized Perturba-
tions (LP), where examples are swapped across cat-
egories to create subtle inconsistencies, and Global
Perturbations (GP), which involve swapping en-
tire instruction-example blocks, resulting in severe
structural misalignment. Grammatical perturba-
tions are simulated at two levels: G-Low, where

20% of words are misspelled or syntactically de-
graded, and G-High, where the entire prompt is
corrupted. Multilingual perturbations involve ran-
domly replacing 20% of prompt tokens with French
(FR) or Japanese (JP) content to simulate cross-
lingual noise. We evaluate these perturbations on
two representative classification tasks CJ and Mis,
using GPT-4o.

Table 6 summarizes the performance across all
perturbation types. SCULPT consistently outper-
forms both OPRO and ProTeGi across all condi-
tions and both tasks. It demonstrates particular
strength in scenarios involving high semantic dis-
tortion (GP) and multilingual interference (FR, JP),
where other methods degrade sharply. These results
reinforce the robustness of SCULPT’s structured
refinement mechanism and its practical effective-
ness in recovering from both adversarial and natu-
rally occurring prompt degradations.

Method LP GP FR JP G-Low G-High Avg

Causal Judgment (CJ)
Initial Prompt 71.1 71.1 71.1 71.1 71.1 71.1 71.1
Perturbed Prompt 69.5 70.5 67.6 69.5 69.3 69.9 69.4
OPRO 70.0 69.6 69.4 70.3 68.6 70.4 69.7
ProTeGi 68.3 69.9 70.1 73.7 70.6 71.0 70.6
SCULPT 74.1 73.2 75.3 76.7 75.7 73.5 74.7

Misinformation Detection (Mis)
Initial Prompt 51.5 51.5 51.5 51.5 51.5 51.5 51.5
Perturbed Prompt 42.2 26.5 45.8 48.4 49.6 1.5 35.6
OPRO 48.1 43.0 47.2 37.1 50.8 45.8 45.3
ProTeGi 52.4 37.8 51.8 53.3 51.5 48.5 49.2
SCULPT 56.4 50.2 55.9 54.6 57.4 51.6 54.3

Table 6: Robustness of SCULPT and baselines under
semantic (LP, GP), multilingual (FR, JP), and grammat-
ical (G-Low, G-High) perturbations on CJ and Mis.

Optimization using Auto-Generated Prompts:
In this setting, we evaluate SCULPT’s ability to op-
timize prompts generated by an automated method
rather than a human-crafted prompt. Specifi-
cally, we use prompts from LAPE, a structured
prompt generation technique, to assess whether

15002

SCULPT can refine them to match or surpass
expert-designed prompts. As shown in Table 2,
LAPE-generated prompts often perform compa-
rably to or better than human-written ones in
BBH and multi-label tasks, where SCULPTLAPE

consistently outperforms SCULPT with human-
crafted prompts. However, on RAI tasks, where
experts carefully designed the initial prompts,
SCULPTLAPE does not match SCULPT’s perfor-
mance but still provides significant improvements
over the raw LAPE-generated prompt. These find-
ings highlight SCULPT’s ability to enhance auto-
generated prompts, making them a viable alterna-
tive when expert-crafted prompts are unavailable.

Figure 4: Performance across optimization steps

Performance across Optimization Steps: To
assess the impact of optimization steps, we plot
performance after each step in Fig. 4. Results show
that performance plateaus around step 8 on average.
In some cases, continuing beyond 8 steps may lead
to overfitting. Based on this, we report performance
at the end of 8 steps in our evaluation.

Comparative Analysis of Prompts: We analyze
the structural and semantic differences between ini-
tial and optimized prompts using three key met-
rics. To measure textual similarity, we use Sen-
tence Transformers (all-MiniLM-L6-v2) (Reimers
and Gurevych, 2019) to compute semantic over-
lap. However, due to its 256 tokens input limita-
tion, we create overlapping chunks of the prompts
and aggregate their similarity scores to obtain a
comprehensive measure. As shown in Fig. 3a,
SCULPT maintains a similarity score above 0.6
across all tasks, indicating that it applies neces-
sary modifications without drastically altering the
original prompt. In contrast, ProTeGi (our best
baseline) shows significant variations across tasks,
with inconsistent similarity scores, leading to un-
predictable prompt modifications.

Semiotic dissimilarity is inversely correlated

with textual similarity but provides a more holistic
comparison by capturing both semantic and struc-
tural differences. Since sentence transformers can-
not compare full-length prompts effectively, we
employ GPT-4o (cf Appendix N) to assess prompt
differences at the document level, accounting for
logical restructuring, reordering, and coherence
beyond surface-level semantic shifts. As shown
in Fig. 3b, ProTeGi exhibits extremely high dis-
similarity for FF and Inapp, reaching values close
to 0.9, signifying drastic changes in both content
and semantics. This aligns with the observed per-
formance drop from the initial prompt, indicating
that excessive modifications can distort task intent.
SCULPT, on the other hand, maintains a stable
level of dissimilarity across tasks, ensuring that
refinements remain controlled and meaningful.

Information preservation (Fig. 3c) further high-
lights SCULPT’s consistency in retaining relevant
task information. SCULPT systematically removes
redundant or misleading content while keeping es-
sential information intact. In contrast, ProTeGi
exhibits high variability, occasionally leading to
excessive content removal or unintended modifica-
tions, which may negatively impact downstream
performance. These findings show that SCULPT
applies more targeted modifications while ensuring
clarity and task relevance.

Action Distribution Analysis Across Tasks: In
Figure 5a, we illustrate the distribution of actions
applied by OPRO, ProTeGi, and SCULPT across
various tasks. Since OPRO and ProTeGi do not
explicitly define their action types, we used LLMs
to analyze their behavior and classify changes into
predefined action categories (cf. Appendix I). This
classification provides a clearer perspective on how
these methods refine prompts. SCULPT demon-
strates a consistent and balanced distribution of
actions across tasks, incorporating Instruction Up-
dates, Example Addition, Example Deletion, and
Node Expansion. In contrast, OPRO and ProTeGi
exhibit significant variability. ProTeGi, for in-
stance, relies heavily on Node Expansion (∼40%)
and Example Addition (∼30%), indicating a ten-
dency to resolve prompt issues by adding content,
which can lead to overfitting. OPRO, an implicit
reflection method, applies less controlled refine-
ments, resulting in more scattered and unsystematic
modifications. Similar to our qualitative analysis,
we again observe ProTeGi’s inconsistency across
tasks, whereas SCULPT consistently applies struc-
tured, well-balanced refinements, ensuring stability

15003

(a) Action distribution across tasks, highlighting SCULPT’s consistent application of refinements across different scenarios.

(b) Action distribution over optimization steps, illustrating SCULPT’s stable approach to prompt refinement across iterations.

Figure 5: Comparison of action distributions for ProTeGi and SCULPT across tasks (a) and optimization steps (b).
SCULPT applies refinements consistently, while ProTeGi exhibits greater variability.

across diverse tasks.
Action Distribution Analysis Across Steps:

Figure 5b illustrates how action types evolve over
optimization steps, averaged across tasks. SCULPT
maintains a steady and well-regulated action dis-
tribution throughout the steps, ensuring controlled
and targeted refinements. In contrast, ProTeGi ex-
hibits high variability, with a growing reliance on
Example Addition as optimization progresses, po-
tentially leading to overfitting. This evaluation fur-
ther highlights SCULPT’s stability in contrast to
ProTeGi’s inconsistency, reinforcing the trend ob-
served in our qualitative analysis.

Task Method Input (M) Comp. (M) Input $ Comp. $ Total $

Mis
OPRO 1.06 0.09 2.7 0.9 3.6
ProTeGi 5.65 0.42 14.1 4.2 18.3
SCULPT 0.79 0.18 2.0 1.8 3.8

CJ
OPRO 0.36 0.04 0.9 0.4 1.3
ProTeGi 2.30 0.25 5.8 2.5 8.3
SCULPT 0.64 0.18 1.6 1.8 3.4

Table 7: Token usage and cost comparison across tasks
using GPT-4o. All values are reported in millions (M)
of tokens and USD.

Cost Comparison during Optimization: Ta-
ble 7 compares token usage and cost for SCULPT,
ProTeGi, and OPRO on two tasks (Mis, CJ) us-
ing GPT-4o. SCULPT is significantly more cost-
efficient than ProTeGi while achieving better per-
formance. Compared to OPRO, it has a similar cost
in Mis and a slightly higher cost in CJ, due to differ-
ences in prompt lengths and method behavior. The
OPRO prompt construction strategy, concatenating
the top 10 prior prompts, keeps the input size low
for short tasks such as CJ but increases the cost for

longer tasks like Mis. SCULPT, by iteratively refin-
ing a single structured prompt, maintains a stable
and efficient cost profile across settings. Although
SCULPT and ProTeGi both use iterative feedback,
ProTeGi’s unstructured approach leads to over 2×
higher cost. SCULPT also uses more completion
tokens than OPRO, but since input tokens domi-
nate overall cost, the impact is minimal. These
results confirm SCULPT’s ability to offer strong
performance with practical cost-efficiency.

6 Conclusion

We introduce SCULPT, a novel framework for op-
timizing long prompts in LLMs through hierar-
chical structuring and targeted refinements. Un-
like existing methods which struggle with complex
multi-instruction prompts, SCULPT applies struc-
tured modifications while maintaining a balanced
distribution of actions, ensuring controlled and
high-quality refinements. It demonstrates strong
robustness against prompt perturbations, outper-
forming existing methods in handling adversarial
modifications. SCULPT effectively refines both
expert-curated and auto-generated prompts, achiev-
ing strong performance across multiple tasks. Our
comparative analysis highlights its ability to pre-
serve key information while systematically improv-
ing clarity and coherence. Additionally, SCULPT
reduces computational costs by 50% compared
to ProTeGi, making it a scalable and resource-
efficient approach. These results position SCULPT
as a reliable solution for enhancing LLM perfor-
mance across diverse tasks.

15004

7 Limitations

While SCULPT demonstrates strong performance,
it has certain limitations. Our evaluation is re-
stricted to two LLMs, GPT-4o and Llama 3.1,
due to computational constraints. A broader study
across diverse LLM sizes and architectures could
provide deeper insights into its generalizability
and effectiveness at different scales. Addition-
ally, SCULPT has only been tested on English-
language prompts. Extending it to multilingual
settings would enhance its applicability to global
contexts and broader tasks. Future work could ex-
plore leveraging historical optimization trajectories
to guide refinements, enabling SCULPT to learn
from previous iterations and dynamically adjust
modifications based on past improvements. Inte-
grating memory-based or reinforcement learning
techniques could enhance adaptability, reducing un-
necessary modifications and improving efficiency
over multiple optimization cycles.

References
Marah Abdin, Sam Ade Jacobs, Ammar Ahmad Awan,

Jyoti Aneja, Ahmed Awadallah, Hany Awadalla,
Nguyen Bach, Amit Bahree, Arash Bakhtiari, Harki-
rat Behl, et al. 2024. Phi-3 technical report: A highly
capable language model locally on your phone. arXiv
preprint arXiv:2404.14219.

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama
Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774.

Tom B Brown. 2020. Language models are few-shot
learners. arXiv preprint arXiv:2005.14165.

Sébastien Bubeck, Varun Chandrasekaran, Ronen El-
dan, Johannes Gehrke, Eric Horvitz, Ece Kamar,
Peter Lee, Yin Tat Lee, Yuanzhi Li, Scott Lund-
berg, et al. 2023. Sparks of artificial general intelli-
gence: Early experiments with gpt-4. arXiv preprint
arXiv:2303.12712.

Kaiyan Chang, Songcheng Xu, Chenglong Wang,
Yingfeng Luo, Tong Xiao, and Jingbo Zhu. 2024.
Efficient prompting methods for large language mod-
els: A survey. arXiv preprint arXiv:2404.01077.

Lichang Chen, Jiuhai Chen, Tom Goldstein, Heng
Huang, and Tianyi Zhou. 2024a. InstructZero:
Efficient instruction optimization for black-box
large language models. In Proceedings of the
41st International Conference on Machine Learning,
volume 235 of Proceedings of Machine Learning
Research, pages 6503–6518. PMLR.

Yongchao Chen, Jacob Arkin, Yilun Hao, Yang Zhang,
Nicholas Roy, and Chuchu Fan. 2024b. Prompt op-
timization in multi-step tasks (promst): Integrating
human feedback and preference alignment. arXiv
preprint arXiv:2402.08702.

Jiale Cheng, Xiao Liu, Kehan Zheng, Pei Ke, Hongning
Wang, Yuxiao Dong, Jie Tang, and Minlie Huang.
2023. Black-box prompt optimization: Aligning
large language models without model training. arXiv
preprint arXiv:2311.04155.

Dorottya Demszky, Dana Movshovitz-Attias, Jeongwoo
Ko, Alan Cowen, Gaurav Nemade, and Sujith Ravi.
2020. GoEmotions: A Dataset of Fine-Grained Emo-
tions. In 58th Annual Meeting of the Association for
Computational Linguistics (ACL).

Yihong Dong, Kangcheng Luo, Xue Jiang, Zhi Jin, and
Ge Li. 2024. PACE: Improving prompt with actor-
critic editing for large language model. In Findings
of the Association for Computational Linguistics
ACL 2024, pages 7304–7323, Bangkok, Thailand
and virtual meeting. Association for Computational
Linguistics.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela
Fan, et al. 2024. The llama 3 herd of models. arXiv
preprint arXiv:2407.21783.

Chrisantha Fernando, Dylan Sunil Banarse, Henryk
Michalewski, Simon Osindero, and Tim Rock-
täschel. 2024. Promptbreeder: Self-referential self-
improvement via prompt evolution. In Proceedings
of the 41st International Conference on Machine
Learning, volume 235 of Proceedings of Machine
Learning Research, pages 13481–13544. PMLR.

Qingyan Guo, Rui Wang, Junliang Guo, Bei Li, Kaitao
Song, Xu Tan, Guoqing Liu, Jiang Bian, and Yujiu
Yang. 2024. Connecting large language models with
evolutionary algorithms yields powerful prompt opti-
mizers. In The Twelfth International Conference on
Learning Representations.

Or Honovich, Uri Shaham, Samuel R. Bowman, and
Omer Levy. 2023. Instruction induction: From
few examples to natural language task descriptions.
In Proceedings of the 61st Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 1935–1952, Toronto, Canada.
Association for Computational Linguistics.

Cho-Jui Hsieh, Si Si, Felix Yu, and Inderjit
Dhillon. 2024. Automatic engineering of long
prompts. In Findings of the Association for
Computational Linguistics ACL 2024, pages 10672–
10685, Bangkok, Thailand and virtual meeting. As-
sociation for Computational Linguistics.

Jiaming Ji, Mickel Liu, Josef Dai, Xuehai Pan, Chi
Zhang, Ce Bian, Boyuan Chen, Ruiyang Sun, Yizhou

15005

https://proceedings.mlr.press/v235/chen24e.html
https://proceedings.mlr.press/v235/chen24e.html
https://proceedings.mlr.press/v235/chen24e.html
https://doi.org/10.18653/v1/2024.findings-acl.436
https://doi.org/10.18653/v1/2024.findings-acl.436
https://proceedings.mlr.press/v235/fernando24a.html
https://proceedings.mlr.press/v235/fernando24a.html
https://openreview.net/forum?id=ZG3RaNIsO8
https://openreview.net/forum?id=ZG3RaNIsO8
https://openreview.net/forum?id=ZG3RaNIsO8
https://doi.org/10.18653/v1/2023.acl-long.108
https://doi.org/10.18653/v1/2023.acl-long.108
https://doi.org/10.18653/v1/2024.findings-acl.634
https://doi.org/10.18653/v1/2024.findings-acl.634

Wang, and Yaodong Yang. 2023. Beavertails: To-
wards improved safety alignment of llm via a human-
preference dataset. Advances in Neural Information
Processing Systems, 36:24678–24704.

Ellen Jiang, Kristen Olson, Edwin Toh, Alejandra
Molina, Aaron Donsbach, Michael Terry, and Carrie J
Cai. 2022. Promptmaker: Prompt-based prototyp-
ing with large language models. In CHI Conference
on Human Factors in Computing Systems Extended
Abstracts, pages 1–8.

Zhengbao Jiang, Frank F. Xu, Jun Araki, and Graham
Neubig. 2020. How can we know what language
models know? Transactions of the Association for
Computational Linguistics, 8:423–438.

Omar Khattab, Arnav Singhvi, Paridhi Maheshwari,
Zhiyuan Zhang, Keshav Santhanam, Sri Vard-
hamanan, Saiful Haq, Ashutosh Sharma, Thomas T
Joshi, Hanna Moazam, et al. 2023. Dspy: Compiling
declarative language model calls into self-improving
pipelines. arXiv preprint arXiv:2310.03714.

Brian Lester, Rami Al-Rfou, and Noah Constant. 2021.
The power of scale for parameter-efficient prompt
tuning. arXiv preprint arXiv:2104.08691.

Xiang Lisa Li and Percy Liang. 2021. Prefix-
tuning: Optimizing continuous prompts for gener-
ation. arXiv preprint arXiv:2101.00190.

Shengcai Liu, Caishun Chen, Xinghua Qu, Ke Tang,
and Yew-Soon Ong. 2024. Large language models as
evolutionary optimizers. In 2024 IEEE Congress on
Evolutionary Computation (CEC), pages 1–8. IEEE.

Xiao Liu, Yanan Zheng, Zhengxiao Du, Ming Ding, Yu-
jie Qian, Z Yang, and J Tang. 2021. Gpt understands,
too. arxiv. arXiv preprint arXiv:2103.10385.

Yao Lu, Max Bartolo, Alastair Moore, Sebastian Riedel,
and Pontus Stenetorp. 2022. Fantastically ordered
prompts and where to find them: Overcoming
few-shot prompt order sensitivity. In Proceedings
of the 60th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long
Papers), pages 8086–8098, Dublin, Ireland. Asso-
ciation for Computational Linguistics.

Ruotian Ma, Xiaolei Wang, Xin Zhou, Jian Li, Nan
Du, Tao Gui, Qi Zhang, and Xuanjing Huang. 2024.
Are large language models good prompt optimizers?
arXiv preprint arXiv:2402.02101.

OpenAI. 2024. Introducing gpt-4o. https://openai.
com/index/hello-gpt-4o/. Accessed: 2024-09-
16.

Archiki Prasad, Peter Hase, Xiang Zhou, and Mohit
Bansal. 2022. Grips: Gradient-free, edit-based in-
struction search for prompting large language models.
arXiv preprint arXiv:2203.07281.

Reid Pryzant, Dan Iter, Jerry Li, Yin Tat Lee, Chen-
guang Zhu, and Michael Zeng. 2023. Automatic
prompt optimization with" gradient descent" and
beam search. arXiv preprint arXiv:2305.03495.

Guanghui Qin and Jason Eisner. 2021. Learning how
to ask: Querying lms with mixtures of soft prompts.
arXiv preprint arXiv:2104.06599.

Nils Reimers and Iryna Gurevych. 2019. Sentence-
BERT: Sentence embeddings using Siamese BERT-
networks. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on
Natural Language Processing (EMNLP-IJCNLP),
pages 3982–3992, Hong Kong, China. Association
for Computational Linguistics.

Laria Reynolds and Kyle McDonell. 2021. Prompt
programming for large language models: Beyond
the few-shot paradigm. In Extended abstracts
of the 2021 CHI conference on human factors in
computing systems, pages 1–7.

Pranab Sahoo, Ayush Kumar Singh, Sriparna Saha,
Vinija Jain, Samrat Mondal, and Aman Chadha.
2024. A systematic survey of prompt engineering in
large language models: Techniques and applications.
arXiv preprint arXiv:2402.07927.

Tobias Schnabel and Jennifer Neville. 2024. Prompts
as programs: A structure-aware approach to efficient
compile-time prompt optimization. arXiv preprint
arXiv:2404.02319.

Hong Sun, Xue Li, Yinchuan Xu, Youkow Homma,
Qi Cao, Min Wu, Jian Jiao, and Denis Charles. 2023.
Autohint: Automatic prompt optimization with hint
generation. arXiv preprint arXiv:2307.07415.

Mirac Suzgun, Nathan Scales, Nathanael Schärli, Se-
bastian Gehrmann, Yi Tay, Hyung Won Chung,
Aakanksha Chowdhery, Quoc Le, Ed Chi, Denny
Zhou, and Jason Wei. 2023. Challenging BIG-
bench tasks and whether chain-of-thought can
solve them. In Findings of the Association for
Computational Linguistics: ACL 2023, pages 13003–
13051, Toronto, Canada. Association for Computa-
tional Linguistics.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V Le,
Ed H Chi, Sharan Narang, Aakanksha Chowdhery,
and Denny Zhou. 2022. Self-consistency improves
chain of thought reasoning in language models. In
The Eleventh International Conference on Learning
Representations.

Hanwei Xu, Yujun Chen, Yulun Du, Nan Shao, Yang-
gang Wang, Haiyu Li, and Zhilin Yang. 2022. Gps:
Genetic prompt search for efficient few-shot learning.
arXiv preprint arXiv:2210.17041.

Chengrun Yang, Xuezhi Wang, Yifeng Lu, Hanxiao
Liu, Quoc V Le, Denny Zhou, and Xinyun Chen.
2024. Large language models as optimizers. In
The Twelfth International Conference on Learning
Representations.

15006

https://doi.org/10.1162/tacl_a_00324
https://doi.org/10.1162/tacl_a_00324
https://doi.org/10.18653/v1/2022.acl-long.556
https://doi.org/10.18653/v1/2022.acl-long.556
https://doi.org/10.18653/v1/2022.acl-long.556
https://openai.com/index/hello-gpt-4o/
https://openai.com/index/hello-gpt-4o/
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/2023.findings-acl.824
https://doi.org/10.18653/v1/2023.findings-acl.824
https://doi.org/10.18653/v1/2023.findings-acl.824
https://openreview.net/forum?id=Bb4VGOWELI

Qinyuan Ye, Maxamed Axmed, Reid Pryzant, and
Fereshte Khani. 2023. Prompt engineering a prompt
engineer. arXiv preprint arXiv:2311.05661.

Mert Yuksekgonul, Federico Bianchi, Joseph Boen,
Sheng Liu, Zhi Huang, Carlos Guestrin, and James
Zou. 2024. Textgrad: Automatic" differentiation" via
text. arXiv preprint arXiv:2406.07496.

JD Zamfirescu-Pereira, Richmond Y Wong, Bjoern
Hartmann, and Qian Yang. 2023. Why johnny
can’t prompt: how non-ai experts try (and fail) to
design llm prompts. In Proceedings of the 2023
CHI Conference on Human Factors in Computing
Systems, pages 1–21.

Zihao Zhao, Eric Wallace, Shi Feng, Dan Klein, and
Sameer Singh. 2021. Calibrate before use: Improv-
ing few-shot performance of language models. In
International conference on machine learning, pages
12697–12706. PMLR.

Yongchao Zhou, Andrei Ioan Muresanu, Ziwen Han,
Keiran Paster, Silviu Pitis, Harris Chan, and Jimmy
Ba. 2022. Large language models are human-level
prompt engineers. arXiv preprint arXiv:2211.01910.

Appendix

Table of Contents
A Detailed Results with Standard Devia-

tion 13

B UCB-based Prompt Selection Strategy 13

C Task and Initial Prompt Statistics 13

D Critic and Actor Interactions in
SCULPT 14

E Action Types Distribution across tasks
and steps 16

F APE Template 25

G LAPE Template 25

H SCULPT Prompt Templates for Critic
and Actor 25
H.1 Critic Template for Preliminary

Assessment 25

H.2 Critic Template for Error As-
sessment 26

H.3 Critic Template for Error
Assessment using Similarity-
driven Aggregation 26

H.4 Actor Module Template 27

H.5 Rephrasing Template 28

I Action Identification in OPRO and
ProTeGi Optimization 28

J BBH Prompt Generation 29

K Initial Prompts 29
K.1 Formal Fallacies 29

K.2 Causal Judgement 30

K.3 Salient Translation Error Detection 30

K.4 Disambiguation QA 30

K.5 GoEmotions 31

K.6 BeaverTails 32

L Perturbed Prompts 32
L.1 Localized Perturbation for

Causal Judgment 32

L.2 Global Perturbation for Causal
Judgment 33

M Prompt for Prompt Structuring 33

N Prompt for Comparative Analysis be-
tween Initial and Optimized Prompt 33

15007

Task # Words

Formal Fallacy 382
Causal Judgement 367
Salient Translation 279
Disambiguation 346
Inappropriate 2644
Hate 1554
Misinformation 1335
SelfHarm 933
BeaverTails 366
GoEmotions 509

Table 8: Number of words in the initial prompts

Method ST Dis CJ FF

Initial Prompt 62.3 ± 1.0 74.1 ± 0.7 71.1 ± 0.1 80.2 ± 1.4
APE 51.0 ± 1.6 74.3 ± 1.1 71.8 ± 2.6 75.3 ± 2.5
LAPE 52.7 ± 4.0 78.0 ± 1.0 72.2 ± 3.3 81.3 ± 0.3
APEX 62.7 ± 0.6 61.5 ± 2.2 70.5 ± 0.7 80.6 ± 1.3
OPRO 64.6 ± 2.0 75.1 ± 1.4 72.7 ± 1.1 80.7 ± 2.1
ProTeGi 65.5 ± 3.4 74.8 ± 1.2 68.9 ± 2.1 70.1 ± 3.9

SCULPTNoAgg 65.2 ± 1.1 77.3 ± 1.2 75.4 ± 2.4 83.1 ± 1.1
SCULPTPA 66.2 ± 2.1 77.6 ± 1.9 76.9 ± 1.9 83.7 ± 1.1
SCULPT+RP 67.6 ± 1.9 78.0 ± 0.6 75.1 ± 2.0 84.7 ± 1.1
SCULPT 68.8 ± 1.5 80.1 ± 1.9 75.9 ± 1.5 83.7 ± 2.5
SCULPTLAPE 66.8 ± 2.2 81.1 ± 2.4 76.1 ± 1.9 86.5 ± 2.7

Table 9: Performance comparison using GPT-4o on
BBH tasks

Method Inapp Misinfo Hate Selfharm

Initial Prompt 46.6 ± 1.3 51.5 ± 0.6 46.8 ± 0.1 66.4 ± 0.5
APE 45.3 ± 0.4 31.9 ± 5.9 29.3 ± 2.7 38.1 ± 0.4
LAPE 42.4 ± 0.9 35.4 ± 2.1 37.6 ± 0.5 44.2 ± 1.3
APEX 48.0 ± 0.4 50.5 ± 0.8 47.1 ± 0.3 65.2 ± 0.7
OPRO 46.6 ± 2.2 51.0 ± 4.0 40.9 ± 3.6 65.1 ± 2.1
ProTeGi 44.8 ± 5.4 54.8 ± 1.2 51.9 ± 1.6 66.5 ± 2.1

SCULPTNoAgg 53.6 ± 0.7 53.6 ± 2.5 51.9 ± 0.3 65.5 ± 0.9
SCULPTPA 55.3 ± 0.7 56.7 ± 0.8 53.1 ± 0.3 68.8 ± 0.3
SCULPT+RP 55.0 ± 0.8 55.3 ± 2.4 52.9 ± 1.4 69.0 ± 1.8
SCULPT 55.0 ± 0.8 54.9 ± 0.6 53.1 ± 1.2 68.5 ± 1.0
SCULPTLAPE 48.2 ± 1.5 48.8 ± 2.3 44.5 ± 3.1 61.8 ± 1.4

Table 10: Performance comparison using GPT-4o on
RAI tasks

Method BTails GoE

Initial Prompt 41.8 ± 0.3 7.8 ± 0.4
APE 46.4 ± 3.4 0 ± 0
LAPE 39.1 ± 2.1 19.6 ± 1.3
APEX 40.7 ± 1.8 8.0 ± 0.1
OPRO 41.5 ± 1.4 11.8 ± 2.1
ProTeGi 45.3 ± 0.9 17.8 ± 0.1

SCULPTNoAgg 49.6 ± 0.5 29.8 ± 1.9
SCULPTPA 49.3 ± 0.6 29.6 ± 1.3
SCULPT+RP 49.6 ± 0.6 22.4 ± 2.1
SCULPT 50.5 ± 0.4 30.6 ± 0.5
SCULPTLAPE 50.5 ± 2.6 30.6 ± 1.1

Table 11: Performance comparison using GPT-4o on
GoEmotions and BeaverTails

A Detailed Results with Standard
Deviation

In Tables 9, 10 and 11, we have reported the mean
and standard deviation of the performances of every
method across three runs using GPT-4o. From
these tables, it is evident SCULPT provides least
variance across runs compared to other methods.
Automatic prompt generative approaches APE and
LAPE provide higher variance compared to prompt
optimization methods.

B UCB-based Prompt Selection Strategy

Evaluating the generated candidate prompts on the
validation set Dval is a computationally expensive
process. To minimize these computations, we have
used the Upper Confidence Bound (UCB) Bandit
algorithm as mentioned in (Pryzant et al., 2023).
This helps to minimize the number of prompts to
be evaluated as well as the number of validation set
samples to evaluate them on. This is done based
on the proposal distribution of prompt performance
which is updated after each evaluation round. At
the end top b prompts with highest weight in the
distribution are selected.

See Algorithm 2 for details, where Qt(pi) is the
estimated performance of prompt pi at time step
t, Nt(pi) is the total queries for prompt i so far at
time t, and c is the exploration parameter.

Algorithm 2 UCB Bandits Candidate Selection
Require n prompts p1, p2, ..., pn, datasetDval, T time steps and metric
function m
Initialize: Nt(pi)← 0 for all i = 1,...,n
Initialize: Qt(pi)← 0 for all i = 1,...,n
for t = 1, ..., T do

Sample uniformlyDsample ⊂ Dval

pi ← argmax pQt(p) + c
√

log t
Nt(p)

Observe reward ri,t = m(pi,Dsample)
Nt(pi)← Nt(pi) + |Dsample|
Qt(pi)← Qt(pi) +

ri,t
Nt(pi)

end for
return SelectTopb(QT)

C Task and Initial Prompt Statistics

Table 12 presents the number of examples in the
training, validation, and test sets for each task, of-
fering an overview of the dataset size. Additionally,
Table 8 in Appendix lists the word counts of the
initial prompts used in each task, highlighting the
length and complexity of these prompts. This infor-
mation emphasizes the challenges posed by long
and unstructured prompts, which require system-
atic optimization to ensure model performance. We

15008

Figure 6: Edits applied to the prompt using SCULPT, where strikethrough represents removed content and blue text
indicates additions. These modifications involve example addition, node expansion, and instruction update.

Dataset Validation Train Test

Causal Judgement 19 36 129
Disambiguation QA 24 49 174
Formal Fallacies 24 49 174
Salient Translation 24 49 174
Inappropriate 122 242 851
Misinformation 122 242 851
Hate 122 242 851
SelfHarm 122 242 851
BeaverTails 1020 1000 1000
GoEmotions 3426 1000 1000

Table 12: Dataset size information

have provided the list of initial prompts in Section
K.

D Critic and Actor Interactions in
SCULPT

This section illustrates the interactions between the
Critic and Actor modules within SCULPT by pre-
senting both the preliminary and error-assessment
reflections, the Actor’s responses to each type of
feedback, and the resulting prompt updates. Specif-
ically, we showcase how these actions contribute
to prompt refinements during the first round of the
Salient Translation task, demonstrating the itera-
tive role of both modules in improving the prompt’s
clarity and alignment with task requirements.

Critic’s Preliminary Assessment: Table 13 shows
the preliminary feedback provided in round 1. The
feedback identifies multiple areas for improvement,
including adding examples for different types of
translation errors and rephrasing certain parts of
the prompt to enhance clarity and relevance.

Actor Response to Preliminary Assessment: The
Actor module processes the Critic’s feedback and
suggests a set of actions, which are summarized
in Table 14. One key action involves adding spe-

cific examples for “Named Entities” errors, while
another focuses on rephrasing the task description
in the ‘Task > body’ section for greater clarity.

Updated Prompt Based on Preliminary Assess-
ment: After applying the Preliminary Assessment,
notable improvements are observed in the prompt.
The task description has been rephrased for clar-
ity, and new examples for each translation error
type have been added. See Table 17 for the up-
dated prompt, which shows significant refinements
compared to the initial prompt in Table K.3.

Critic’s Error Assessment: Table 15 provides the
error assessment based on the Critic’s evaluation
of the prompt in response to specific model errors.
The reflection highlights areas where new examples
need to be added and suggests rephrasing sections
to clarify definitions of error types, ensuring fewer
ambiguities.

Actor Response to Error Assessment: In re-
sponse to the error-assessment feedback, the Actor
module suggests targeted actions, which are listed
in Table 16. These include adding examples for
error type 1 and rephrasing sections as needed to
avoid confusion and improve clarity.

Updated Prompt Based on Error Assessment:
The updated prompt, following both initial assess-
ments and error analysis from the first round, is
presented in Table 18. In contrast to the original
version (Table K.3), the revised prompt integrates
additional examples and restructured sections. This
demonstrates the capability of SCULPT to system-
atically refine prompts through controlled reflec-
tions and targeted adjustments.

Final Prompt Post-Optimization: The fully opti-
mized prompt, after the entire SCULPT optimiza-

15009

(a) OPRO

(b) ProTeGi

(c) SCULPT

Figure 7: Action distribution across tasks of OPRO, ProTeGi and SCULPT.

15010

tion process, is presented in Table 19. This refined
version shows significant improvements over the
initial prompt (Table K.3). Key enhancements in-
clude a clearer redefinition of error categories, re-
fined examples, and improved clarity in the final
output classes. These adjustments, made after the
Preliminary and Error Assessment updates (refer
to Table 18), ensure that the user is guided more
effectively through the task. This final prompt un-
derscores the systematic nature of SCULPT’s iter-
ative refinement process, showcasing its ability to
optimize prompt design efficiently and effectively.

E Action Types Distribution across tasks
and steps

In Fig. 7, we present the distribution of action types
applied by OPRO, ProTeGi, and SCULPT across
different tasks, illustrating how each method han-
dles prompt refinements.

Additionally, Figures 8 and 9 show the action
distribution employed by SCULPT over successive
optimization steps, providing insights into how the
system refines prompts over time. Similarly, Fig-
ures 10 and 11 illustrate the stepwise action dis-
tribution for ProTeGi, highlighting differences in
how the two methods evolve their optimizations
throughout the process.

15011

Prompt Reference Preliminary Assessment

- Task> body",
- Error Identification> body
- Error Identification> 1.> body
- Error Identification> 2.> body
- Error Identification> 3.> body
- Error Identification> 4.> body
- Error Identification> 5.> body
- Error Identification> 6.> body
- Performance Analysis> body
- Additional points> body
- Options> body
- Output format> body

- Add relevant examples to each error class to provide clarity.
- Simplify language where possible to make instructions clearer.
- Combine sections where appropriate to reduce redundancy and improve flow.

Table 13: Example of Preliminary Critic Reflection

Action Type Section Reference Action Description

Example Update- Addition Error Identification> 1.

Add examples that illustrate 'Named entities' errors, such
as changes in names, places, or locations. For instance, 'A
person's name changed from John to Jack' or 'A city name changed
from New York to Los Angeles'

"Section Rephrase" "Task> body"

Your task is to identify the type of translation error in a
given source-translation pair. You will be given sentences with
specific errors manually introduced. Determine which of the six
error classes the translation error belongs to.

Table 14: Actor Responses based on Preliminary Assessment

Input Example & Prediction Prompt Reference Error Assessment

Input: "Source: Eleonore
Lingnau-Kluge war eine deutsche
Malerin.
Translation: Eleonore Lingnau-Kluge
was a German dancer."
Expected Output: "(F)"
Prediction: "(D)"

- Error Identification> 1.> body
- Error Identification> 5.> body
- Error Identification> 6.>
Examples

- Add examples that clearly differentiate factual
errors from named entity changes.
- Clarify the definitions of each error class to avoid
confusion.

"Input: "Source: Pedro Morenés y
Álvarez de Eulate ist ein spanischer
Politiker der Partido Popular.
Translation: Pedro is a Spanish
politician of the Popular Party."
Expected Output: "(D)"
Prediction: "(E)"

- Error Identification> 1.> body
- Error Identification> 6.>
Examples

- Add examples that highlight named entity changes,
especially when names are shortened or altered.",
- Emphasize the importance of preserving named
entities in translations.

Table 15: Error Assessment from Critic

Action Type Section Reference Action Description

Example Update- Addition
Error Identification> 1.>
Examples

Add examples that highlight named entity changes, especially
when names are shortened or altered. For instance: 'A
politician's name changed from Pedro Morenés y Álvarez de Eulate
to Pedro' and 'An actor's name changed from Martin Stephen McCann
to McCann'.

Section Rephrase
Error Identification> 1.>
body

Named entities: Look for changes in names, places, locations,
etc. Ensure that names are preserved accurately, even when
shortened or altered.

Table 16: Actor Response based on Error Assessment

15012

Task
Your task is to identify the type of translation error in a given source-translation pair. You will be given sentences with
specific errors manually introduced. Determine which of the six error classes the translation error belongs to.

Error Identification
Analyze the source -translation pair and identify the error based on the following classes:
* Named entities: Look for changes in names , places , locations , etc.
Examples: A company name changed from Apple to Microsoft, A country name changed from France to Germany, A person’s name

changed from John to Jack, A city name changed from New York to Los Angeles
* Numerical values: Check for alterations in numbers , dates , or units.
Examples: A date changed from 2021 to 2020, A price changed from $50 to $55, A time changed from 3 PM to 4 PM, A measurement

unit changed from meters to feet, A quantity changed from 100 to 150
* Modifiers or adjectives: Identify changes in descriptors pertaining to a noun.
Examples: The adjective changed from big to small., The descriptor changed from red to blue., The modifier changed from happy

to sad., The descriptor changed from old to new., The adjective changed from tall to short.
* Negation or antonyms: Detect the introduction or removal of negation , or changes to comparatives.
Examples: The comparative changed from ’less important’ to ’more important’., The negation changed from ’is not’ to ’is’., The

phrase changed from ’He is not happy’ to ’He is happy’., The comparative changed from ’better’ to ’worse’., The sentence
changed from ’She never goes to the gym’ to ’She always goes to the gym’.

* Facts: Spot trivial factual errors not covered by the above classes.
Examples: The fact changed from The capital of France is Paris to The capital of France is Berlin, The fact changed from Humans

have 206 bones in their body to Humans have 210 bones in their body, The fact changed from The Great Wall of China is
visible from space to The Great Wall of China is not visible from space

* Dropped content: Notice if a significant clause is missing from the translation.
Examples: {A city name changed from ’Berlin ’ to ’Munich ’ would be a ’Named entities ’ error}, {A date

changed from ’1990’ to ’1989’ would be a ’Numerical values ’ error}

Performance Analysis
Understand that language models perform differently across error classes:
* Models like XLM -Roberta may struggle with named entities , dropped content , and modifiers/adjectives.
* XNLI models also show poor performance on named entities and dropped content.

Additional points
Keep in mind the following points while identifying errors:
* Ensure minimal impact on translation fluency while identifying errors.
* Focus on salient source information to detect errors effectively.
* Remember that each translation contains only one of the six error classes.

Options
(A) Modifiers or Adjectives
(B) Numerical Values
(C) Negation or Antonyms
(D) Named Entities
(E) Dropped Content
(F) Facts

Output format
Provide the right error option ‘(Option Number)‘ that the translation contains.

Table 17: Updated Prompt after Preliminary Assessment. Instruction update are highlighted in blue, Example
Addition are marked with mahogany color, and Node Expansion are marked in green.

15013

Task
Your task is to identify the type of translation error in a given source-translation pair. You will be given sentences with
specific errors manually introduced. Determine which of the six error classes the translation error belongs to.

Error Identification
Analyze the source -translation pair and identify the error based on the following classes:
* Named entities: Look for changes in names , places , locations , etc. Ensure that names are preserved

accurately , even when shortened or altered.
Examples: A politician’s name changed from Pedro Morenés y Álvarez de Eulate to Pedro, A company name changed from Apple to

Microsoft, An actor’s name changed from Martin Stephen McCann to McCann, A country name changed from France to Germany, A
person’s name changed from John to Jack, A city name changed from New York to Los Angeles

* Numerical values: Check for alterations in numbers , dates , or units. Ensure that numerical values are
preserved accurately.

Examples: A date changed from 2021 to 2020, A price changed from $50 to $55, A time changed from 3 PM to 4 PM, The population
number changed from 5491 to 5000, A measurement unit changed from meters to feet, A quantity changed from 100 to 150

* Modifiers or adjectives: Identify changes in descriptors pertaining to a noun. Ensure that descriptive
terms are preserved accurately.

Examples: The adjective changed from big to small., The descriptor changed from red to blue., The modifier changed from happy
to sad., The description changed from small town to city., The descriptor changed from old to new., The nationality
changed from German to French., The adjective changed from tall to short.

* Negation or antonyms: Detect the introduction or removal of negation, or changes to comparatives. Ensure that negation and
antonyms are preserved accurately.

Examples: The comparative changed from ’less important’ to ’more important’., The negation changed from ’is not’ to ’is’., The
description changed from rural to urban., The phrase changed from ’He is not happy’ to ’He is happy’., The comparative
changed from ’better’ to ’worse’., The sentence changed from ’She never goes to the gym’ to ’She always goes to the gym’.

* Facts: Spot trivial factual errors not covered by the above classes. Ensure that factual information
remains accurate and unchanged.

Examples: The fact changed from The Pacific Ocean is the largest ocean to The Atlantic Ocean is the largest ocean, The fact
changed from The Earth orbits the Sun to The Sun orbits the Earth, The fact changed from The Great Wall of China is
visible from space to The Great Wall of China is not visible from space, The fact changed from The capital of France is
Paris to The capital of France is Berlin, The fact changed from Humans have 206 bones in their body to Humans have 210
bones in their body

* Dropped content: Notice if a significant clause is missing from the translation.
Examples: A city name changed from ’Berlin’ to ’Munich’ would be a ’Named entities’ error, A date changed from ’1990’ to ’1989’

would be a ’Numerical values’ error

Performance Analysis
Understand that language models perform differently across error classes:
* Models like XLM -Roberta may struggle with named entities , dropped content , and modifiers/adjectives.
* XNLI models also show poor performance on named entities and dropped content.

Additional points
Keep in mind the following points while identifying errors:
* Ensure minimal impact on translation fluency while identifying errors.
* Focus on salient source information to detect errors effectively.
* Remember that each translation contains only one of the six error classes.

Options
(A) Modifiers or Adjectives
(B) Numerical Values
(C) Negation or Antonyms
(D) Named Entities
(E) Dropped Content
(F) Fact

Output format
Provide the right error option ‘(Option Number)‘ that the translation contains.

Table 18: Updated Prompt after Error Assessment. Instruction update are highlighted in blue, Example Addition are
marked with mahogany color, and Node Expansion are marked in green.

15014

Task
Your task is to identify the type of translation error in a given source-translation pair. You will be provided with sentences

where specific classes of errors have been manually introduced. Determine which of the six error classes the translation
error belongs to: Named entities, Numerical values, Modifiers or adjectives, Negation or antonyms, Facts, and Dropped
content.

Examples: The name ’John’ was changed to ’James’ in the translation, which is a ’Named entities’ error., The word ’happy’ was
translated as ’sad’, which is a ’Negation or antonyms’ error., The number ’50’ was translated as ’15’, which is a
’Numerical values’ error.

Error Identification
Analyze the provided source -translation pair and identify the error based on the following classes:
* Named entities: Look for changes in names, places, locations, scientific names, classifications, etc. This includes any

change to a name, including shortening, omission, or alteration of specific locations. Pay attention to changes in
classifications that might alter the meaning or context of the sentence.

Examples: The name ’New York’ was changed to ’NY’, indicating a ’Named entities’ error., The phrase ’United States’ was
modified to ’USA’, indicating a ’Named entities’ error., The term ’California’ was altered to ’CA’, indicating a ’Named
entities’ error., The name ’Boyd Kevin Rutherford’ was reduced to ’Boyd’ in the translation, indicating a ’Named
entities’ error., The term ’Rabenvogel’ was incorrectly translated as ’Columbine family’, changing the classification.

* Numerical values: Check for alterations in numbers, dates, or units, and ensure that no numerical information is omitted.
This includes any change, omission, or alteration of numerical data. Pay attention to omissions that might alter the
meaning or context of the sentence.

Examples: The date ’2021’ was omitted., The number ’100’ was changed to ’one hundred’., The unit ’kg’ was altered to
’kilogram’., The dates were omitted, losing important context., The population ’5491’ was omitted, which is a numerical
value.

* Modifiers or adjectives: Identify changes in descriptors pertaining to a noun that are not necessarily antonyms. This
includes changes in descriptors such as nationality, type, usage, or any other descriptive attribute. Pay attention to
changes that might alter the meaning or context of the sentence.

Examples: The adjective ’quick’ was changed to ’speedy’ in the report., The term ’Rosenmontagszug’ was translated as ’Rose
Procession’, changing the descriptor., The phrase ’modern’ was altered to ’contemporary’ in the article., The adjective
’happy’ was changed to ’joyful’ in the sentence.

* Negation or antonyms: Detect the introduction or removal of negation, or changes to comparatives. This includes any change
that introduces or removes a negative meaning or alters the comparative degree of an adjective or adverb. Pay attention
to antonyms that might alter the meaning or context of the sentence.

Examples: Changing ’more important’ to ’less important’ is a comparative change., Changing ’Obere’ to ’Lower’ is an antonym.,
Changing ’living’ to ’extinct’ is an antonym., Changing ’He is not interested’ to ’He is interested’ would be a ’Negation
or antonyms’ error., Changing ’better’ to ’worse’ is a comparative change.

* Facts: Spot trivial factual errors not covered by the above classes. This includes changes to factual information such as
professions. Pay attention to errors that might alter the factual accuracy of the sentence.

Examples: Asserting that ’Neil Armstrong was the first person to climb Mount Everest’ instead of ’Neil Armstrong was the first
person to walk on the moon’ is a ’Facts’ error., Saying ’The Great Wall of China is located in India’ instead of ’The
Great Wall of China is located in China’ is a ’Facts’ error., Stating that ’The capital of France is Berlin’ instead of
’The capital of France is Paris’ is a ’Facts’ error., Claiming that ’Albert Einstein was a famous painter’ instead of
’Albert Einstein was a famous physicist’ is a ’Facts’ error., Stating that ’The Amazon River is the longest river in the
world’ instead of ’The Nile River is the longest river in the world’ is a ’Facts’ error.

* Dropped content: Identify if a significant clause or important information is missing from the translation. Pay attention to
omissions that might alter the meaning or context of the sentence.

Examples: The clause ’which is located in the heart of the city’ is omitted, losing important location context., The phrase
’including taxes’ is omitted, which is crucial for understanding the total cost., The information ’who is a renowned
scientist’ is missing, which provides important context about the individual.

Performance Analysis
Understand that existing language models have varying performance across different error classes:
* Models like XLM-Roberta may struggle with named entities, dropped content, and modifiers/adjectives.
* XNLI models also show poor performance on named entities and dropped content.

Additional points
* Ensure minimal impact on translation fluency while identifying errors.
* Focus on salient source information to detect errors effectively.
* Remember that each translation contains only one of the six error classes.

Options
(A) Modifiers or Adjectives
(B) Numerical Values
(C) Negation or Antonyms
(D) Named Entities
(E) Dropped Content
(F) Facts

Options Explanation
Explanation of each option:
(A) Modifiers or Adjectives: Changes in descriptors pertaining to a noun.
(B) Numerical Values: Alterations in numbers, dates, or units.
(C) Negation or Antonyms: Introduction or removal of negation, or changes to comparatives.
(D) Named Entities: Changes in names, places, locations, etc.
(E) Dropped Content: Missing significant clauses from the translation.
(F) Facts: Trivial factual errors not covered by the above classes.

Output format
Provide the correct error option (A-F) that the translation contains.

Table 19: Updated Prompt at the end of Optimization process. Instruction update are highlighted in blue, Example
Addition are marked with mahogany color, strike through indicates Node Pruning, and Node Expansion are marked
in green.

15015

(a) Causal Judgement

(b) Disambiguation

(c) Formal Fallacy

(d) Salient Translation

Figure 8: Action distribution over optimization steps in SCULPT

15016

(a) Inappropriate

(b) Misinformation

(c) Hate

(d) SelfHarm

Figure 9: Action distribution over optimization steps in SCULPT

15017

(a) Causal Judgement

(b) Disambiguation

(c) Formal Fallacy

(d) Salient Translation

Figure 10: Action distribution over optimization steps in ProTeGi

15018

(a) Inappropriate

(b) Misinformation

(c) Hate

(d) SelfHarm

Figure 11: Action distribution over optimization steps in ProTeGi

15019

F APE Template
Forward Generation
I gave a friend an instruction and {NumExamples} inputs. The
friend read the instruction and wrote an output for every
one of the inputs. Given, the input-output pairs, generate an
instruction which is the output. Generate the output between the
<INSTRUCT> and <ENDINSTRUCT> Tags.

Reverse Generation
I instructed my friend to <INSERT>. The friend read the
instruction and wrote an output for every one of the inputs. Given
the input and output pairs, complete the <INSERT> instruction.
Generate the output between the <INSTRUCT> and <ENDINSTRUCT>
Tags.

G LAPE Template
Forward Generation

I gave a friend a detailed instruction in markdown format
and {NumExamples} inputs. The instructions has the following
markdown structure with proper white spaces-

```
# <Heading 1>
<body>

## <Heading 1.1>
<body>
Examples: {example 1}, {example 2}

* <bullet point 1>
* <bullet point 2>
Examples: {example 1}, {example 2}, {example 3}
* <bullet point 3>

...

# <Heading 2>
* <bullet point 1>
* <bullet point 2>
...
```

The friend read the instruction and wrote an output for every
one of the inputs. The instruction had several sections, each
describing what output to generate for a given input. Each
section also has examples to assist my friend.

Given the input-output pairs, generate an instruction which is
the output. For each section, you can either use the same
input-output pairs to write relevant examples, or you can
use your best knowledge to create examples according to the
observed input-output pairs. Do not use the input-output pairs
directly as provided, you have to maintain the structure of the
instruction intact with added examples by keeping each input
text in its own in curly brackets and each curly bracketed
example separated by comma, and ignore the output if the section
describes labelling condition for given output label. Ensure
that proper line separation is maintained for readability. Do
not reproduce the tags like <body>, <bullet point 1> etc, those
represent placeholder for relevant content in the instruction.
Generate the output between the <INSTRUCT> and <ENDINSTRUCT>
Tags.

Reverse Generation

I instructed my friend to <INSERT>. The instructions looked
something like this-

```
# <Heading 1>
<body>

## <Heading 1.1>
<body>
Examples: {example 1}, {example 2}

* <bullet point 1>
* <bullet point 2>

Examples: {example 1}, {example 2}, {example 3}
* <bullet point 3>

...

# <Heading 2>
* <bullet point 1>
* <bullet point 2>
...
```
The friend read the instruction and wrote an output for every
one of the inputs. Given the input and output pairs, complete
the <INSERT> instruction.For each section, you can either use
the same input-output pairs to write relevant examples, or you
can use your best knowledge to create examples according to
the observed input-output pairs. Do not use the input-output
pairs directly as provided, you have to maintain the structure
of the instruction intact with added examples by keeping each
input text in its own in curly brackets and each curly bracketed
example separated by comma, and ignore the output if the section
describes labelling condition for given output label. Ensure
that proper line separation is maintained for readability. Do
not reproduce the tags like <body>, <bullet point 1> etc, those
represent placeholder for relevant content in the instruction.
Generate the output between the <INSTRUCT> and <ENDINSTRUCT>
Tags.

H SCULPT Prompt Templates for Critic
and Actor

In this section, we present the prompt templates
that were utilized for generating the Critic and Ac-
tor responses using a large language model (LLM).
These templates serve as the foundation for elicit-
ing structured feedback from the Critic and action-
able suggestions from the Actor during the iterative
prompt optimization process in SCULPT.

H.1 Critic Template for Preliminary
Assessment

Step-by-Step Instructions:

1. **Read the Input Prompt Thoroughly**:
- Begin by carefully reading the entire input prompt along

with its specific details. Make sure to understand the task at
hand, including any requirements or constraints provided.

2. **General Feedback**:
Provide comprehensive feedback on the input prompt to enhance

its effectiveness in each of the following areas:
* Contextual Errors: Identify specific inaccuracies or

mistakes that may lead to misunderstandings.
* Incorrect or Irrelevant Examples: Highlight any incorrect

or misplaced examples within the prompt. Note that no section
should contain more than 5-6 examples.

* Gaps in Information: Point out any missing details or
context that could clarify the task for the user, ensuring they
have all necessary information.

* Potential Improvements: Suggest ways to improve the prompt
for better clarity and impact. This could include simplifying
language, adding relevant examples, or outlining a clear sequence
of steps. Ensure the prompt is efficient, concise, and free from
redundant information.

* Grammar and Syntax: Note any spelling or grammatical
errors that could cause confusion, as well as poorly constructed
sentences that may obscure the intended meaning.

* Prompt Length: The prompt should be concise. Provide
feedback around optimizing its length while maintaining clarity.

* Other Issues: Identify any other areas where the prompt
could be improved.

Input Format:

Example Prompt

15020


```json
{"<Heading 1>":{"body": "<body>","<Heading
1.1>":{"body": "<body>",...},"<Heading 1.2>":{"body":
"<body>","Examples":["<example 1>",....],"<Heading
1.2.1>":{"body": "<body>","1.": {"body":
"<instruction>","Examples":["<example 1>","<example
2>",.....]},"2.":...},"<Heading 1.2.2>":{"body":
"<body>"}...}...},"<Heading 2>":{"body": "<body>"}...}
```

Output Format:

```json
{"prompt_feedback": [{"prompt_examination":"<prompt_examination>",
"improvement_suggestion": ["<improvement_suggestion>", ...]},
...], "prompt_references": ["<prompt_reference>", ...]}
```

H.2 Critic Template for Error Assessment

Task
Evaluate the performance of the input prompt and provide
explanations, identify the parts of the prompt used for
predictions, and offer feedback for improvement.

Step-by-Step Instructions:

1. **Read the Input Prompt Thoroughly**:
- Begin by carefully reading the entire input prompt along

with its specific details. Make sure to understand the task at
hand, including any requirements or constraints provided.

2. **Batch Feedback**:
Based on `Batch Evaluations` where the model has generated

wrong predictions, provide feedback to improve the performance
of the prompt by following these steps:

* Understanding the Context (prediction_explanation):
- Start by clearly stating the input, expected output

(ground_truth), and model’s actual prediction. Example format:
`Input: '<input text>'`, `Expected Output: '<ground_truth>'`,
`Prediction: '<prediction>'`.

- Analyze why the model generated this prediction by
identifying specific words, phrases, or contextual cues from the
input.

- Highlight the sections of the input or prompt that
likely influenced the prediction using `prompt_references`.

* Analysis and Feedback (prompt_feedback):
The feedback should include the details about each of these

steps:
- `prediction_analysis`: Always include a clear analysis

comparing the model's prediction with the expected output.
Mention what the correct label should have been and highlight
any discrepancies.

- `prompt_examination`: Always analyze the prompt
step-by-step, identifying specific sections that may have caused
the error (e.g., unclear instructions, ambiguous wording).
Explain how these issues led to the incorrect label.

- `improvement_suggestions`: Provide multi-step feedback
outlining all possible actions to address identified issues and
explain how these changes will result in the correct label.
Possible actions can include:

- Rephrasing unclear instructions.
- Removing redundancy.
- Adding clarity or details.
- Revising tone or structure for better flow.

- Modifying examples: Remove bad examples, add or refine
better examples, ensuring no section exceeds 5-6 examples.

-
* Prompt references (`prompt_references`):

Include references to the specific parts of the prompt
that may have contributed to errors.

Input Format:

Example Prompt

```json
{"<Heading 1>":{"body": "<body>","<Heading
1.1>":{"body": "<body>",...},"<Heading 1.2>":{"body":
"<body>","Examples":["<example 1>",....],"<Heading
1.2.1>":{"body": "<body>","1.": {"body":
"<instruction>","Examples":["<example 1>","<example
2>",.....]},"2.":...},"<Heading 1.2.2>":{"body":

"<body>"}...}...},"<Heading 2>":{"body": "<body>"}...}
```

Example Batch Evaluations

```json
{"prompt": "The current prompt being used.","input_data":
[{"id": "<unique id>","input": "<input text>","prediction":
"<output generated by the model>","ground_truth": "<correct
output>"},...]}
```

Output Format:

```json
[{"id": "<unique id>","prediction_explanation": "<explanation
for prediction>","prompt_feedback": {"prediction_analysis":
"<prediction_analysis>", "prompt_examination":
"<prompt_examination>", "improvement_suggestions":
["<improvement_suggestions>", ...]},"prompt_references":
["Heading 1> Heading 1.2> Heading 1.2.1> body","Heading 1>
Heading 1.2> Heading 1.2.1> 2.> body","Heading 1> Heading 1.2>
body","Heading 2> body>"]},...]
```

H.3 Critic Template for Error Assessment
using Similarity-driven Aggregation

Task Overview
Evaluate a set of prompts, predictions, and ground truths.
Provide detailed feedback on each case and group related feedback
into clusters based on common patterns or prompt references.

Step-by-Step Instructions:

1. **Read the Input Prompt Thoroughly**:
- Begin by carefully reading the entire input prompt along

with its specific details. Make sure to understand the task at
hand, including any requirements or constraints provided.

2. **Batch Feedback**:
Based on `Batch Evaluations` where the model has generated

wrong predictions, provide feedback to improve the performance
of the prompt by following these steps:

* Understanding the Context (prediction_explanation):
- Start by clearly stating the input, expected output

(ground_truth), and model’s actual prediction. Example format:
`Input: '<input text>'`, `Expected Output: '<ground_truth>'`,
`Prediction: '<prediction>'`.

- Analyze why the model generated this prediction by
identifying specific words, phrases, or contextual cues from the
input.

- Highlight the sections of the input or prompt that
likely influenced the prediction using `prompt_references`.

* Analysis and Feedback (`prompt_feedback`):
The feedback should include the details about each of these

steps:
- `prediction_analysis`: Always include a clear analysis

comparing the model's prediction with the expected output.
Mention what the correct label should have been and highlight
any discrepancies.

- `prompt_examination`: Always analyze the prompt
step-by-step, identifying specific sections that may have caused
the error (e.g., unclear instructions, ambiguous wording).
Explain how these issues led to the incorrect label.

- `improvement_suggestions`: Provide multi-step feedback
outlining all possible actions to address identified issues and
explain how these changes will result in the correct label.
Possible actions can include:

- Rephrasing unclear instructions.
- Removing redundancy.
- Adding clarity or details.
- Revising tone or structure for better flow.

- Modifying examples: Remove bad examples, add or refine
better examples, ensuring no section exceeds 5-6 examples.

* Prompt references (`prompt_references`):
Include references to the specific parts of the prompt

that may have contributed to errors.

* Cluster Feedback:
- Group related feedback into {number_of_clusters} clusters

based on patterns such as:

15021

- Shared sections of the prompt that influenced the
predictions.

- Expected output `ground_truth`.
- Similar types of input data or prediction behavior.

- Each cluster should include:
- A list of explanations for the inputs in the cluster.
- A specific list of feedback relevant to the cluster.
- Clear `prompt_references` pointing to sections that

could be revised or improved.

Input Format:

Example Prompt

```json
{"<Heading 1>":{"body": "<body>","<Heading
1.1>":{"body": "<body>",...},"<Heading 1.2>":{"body":
"<body>","Examples":["<example 1>",....],"<Heading
1.2.1>":{"body": "<body>","1.": {"body":
"<instruction>","Examples":["<example 1>","<example
2>",.....]},"2.":...},"<Heading 1.2.2>":{"body":
"<body>"}...}...},"<Heading 2>":{"body": "<body>"}...}
```

Example Batch Evaluations

```json
{"prompt": "The current prompt being used.","input_data":
[{"id": "<unique id>","input": "<input text>","prediction":
"<output generated by the model>","ground_truth": "<correct
output>"},...]}
```

Output Format:
The output must consists of a list of maximum
{number_of_clusters} clusters, each identified by a unique
`id`.

```json
[{"id": "cluster_1","prediction_explanation":
["<detailed explanation for example 1 in cluster
1>",...], "prompt_feedback": {"prediction_analysis":
"<prediction_analysis>", "prompt_examination":
"<prompt_examination>", "improvement_suggestions":
["<improvement_suggestions for cluster 1>", ...]},
"prompt_references": ["Heading 1> Heading 1.2> Heading
1.2.1> body","Heading 1> Heading 1.2> Heading 1.2.1> 2.>
body","Heading 1> Heading 1.2> body","Heading 2> body"]},...]
```

H.4 Actor Module Template

Task
Use the provided critic feedback to enhance the effectiveness
of a prompt. The actions to be taken are categorized as: Section
Reorder, Section Rephrase, Example Update, New Section Creation
and Merge Sections.

Example Prompt Structure
```json
{"<Heading 1>":{"body": "<body>","<Heading
1.1>":{"body": "<body>",...},"<Heading 1.2>":{"body":
"<body>","Examples":["<example 1>",....],"<Heading
1.2.1>":{"body": "<body>","1.": {"body":
"<instruction>","Examples":["<example 1>","<example
2>",.....]},"2.":...},"<Heading 1.2.2>":{"body":
"<body>"}...}...},"<Heading 2>":{"body": "<body>"}...}
```

Step-by-Step Instructions for Enhancing a Prompt

1. **Thoroughly Review the Input Prompt**:
- Read the entire prompt carefully, ensuring you grasp

all details, requirements, and constraints. Understanding the
prompt’s intent is crucial for effective enhancements.

2. **Analyze Critic Feedback**:
- **Examine Feedback**: Look closely at the feedback provided,

including:
- **Prediction Explanation**: Understand how the model

interpreted the prompt and why it arrived at a specific
prediction.

- **Prompt Feedback**: Review the suggestions
for improvement, focusing on the strengths and weaknesses

identified.
- **Identify Key Issues**: Pay special attention to

the sections of the prompt referenced in the feedback
(`prompt_references`). Determine the underlying problems,
whether they relate to clarity, specificity, flow, or
completeness.

3. **Determine Appropriate Actions**:
- **Section Reorder**: Consider rearranging sections if

their current order disrupts clarity or logical flow. Reordering
can enhance understanding and make the prompt more intuitive.
Note: Just the `body` or `Examples` cannot be reordered.
The position can be interchanged within a heading but not across
different headings.

- **Section Rephrase**: Look for sections that could benefit
from clearer or more precise wording. Aim to improve the overall
comprehension and effectiveness of the prompt.

- **Example Update**: Assess the examples provided. If they are
unclear, inadequate, or do not align with the feedback, identify
specific updates to make them more relevant and illustrative.

- Types of Updates:
- **Addition**: Suggest specific new examples that align

better with the prompt's goals or themes. Clearly describe what
the new examples should illustrate. **Note**: Ensure that any
section does not contain more than 5-6 examples.

- **Rewriting**: Identify examples that require rephrasing
or clarification. Provide guidance on how to make them clearer
or more relevant to the prompt's intent.

- **Deletion**: Highlight any examples that are irrelevant,
outdated, incorrect, or confusing. Explain why they should be
removed to enhance the clarity of the prompt.

- **Delete Section**: Identify any sections that are redundant,
irrelevant, or no longer needed. Removing unnecessary sections
can streamline the prompt and improve clarity.

- **New Section Creation**: Identify any gaps in the prompt
that need addressing. Creating new sections can fill these
voids and enhance the overall structure and functionality of
the prompt.

- **Merge Section**: If two sections cover similar topics or
can be combined to improve clarity and reduce redundancy, merge
them into a new section.

4. **Implement Actions**:
- **For Section Reorder**:

- `section_reference`: Specify which section should be
reordered based on feedback.

- `new_position`: Indicate where this section should be
moved to improve flow.

- `action_explanation`: Explain how this reordering addresses
the feedback and enhances prompt clarity.

- **For Section Rephrase**:
- `section_reference`: Identify the section needing

rephrasing.
- `updated_section`: Provide the revised wording for that

section.
- `key`: The updated title or heading.
- `value`: The rephrased content.

- `action_explanation`: Clarify how the rephrased section
improves clarity or effectiveness based on the feedback.

- **For Example Update**: (as outlined above)
- `section_reference`: Specify which section’s examples

need updating.
- `update_type`: Include details on adding, revising, or

removing examples.
- `update_examples_instruction`: Review the

`prediction_explanation` (which contains a list of inputs)
and **Input Prompt** to understand the example style and
type. Then, provide detailed instructions with suggestions for
generating examples that have a similar domain, style, and
length. **Reminder**: No section should have more than 5-6
examples.

- `action_explanation`: Justify the updates based on
feedback.

- **For Delete Section**:
- `section_reference`: Specify which section should be

deleted.
- `action_explanation`: Explain the rationale for the

deletion and its positive impact on the prompt.

- **For New Section Creation**:
- `section_position`: State where the new section should

be inserted in the prompt structure.
- `new_section_structure`: Outline the complete structure

of the new section, including titles and content. **Note**: new

15022

section should have atleast `body` and `Examples` but may have
deeper structure.

- `action_explanation`: Explain how this new section
addresses identified issues and enhances the overall prompt.

- **For Merge Section**:
- `section_reference_merged`: List the two sections

references to be merged.
- `section_position`: State where the merged section should

be inserted in the prompt structure.
- `new_section_structure`: Provide the structure for the

new, merged section including new title and its content.
- `action_explanation`: Describe how merging improves

clarity and efficiency, and how it addresses specific feedback.

Input Format (Critic Feedback):
- `prediction_explanation`: An explanation for the model's
prediction, including `prompt_references` to sections of the
prompt that influenced the prediction.
- `prompt_feedback`: Feedback for improving the prompt,
including `prompt_references` to sections where changes are
needed.
- `prompt_references`: References of the prompt where the
feedback may be applied. Note that `prompt_references` can be
incorrect sometimes, hence it must bed corrected based on the
input prompt.

```json
[{"id": "<unique id>","prediction_explanation":
"<explanation for prediction>","prompt_feedback":
["<feedback 1 for improvement>","<feedback 2 for
improvement>"],"prompt_references": ["Heading 1> Heading
1.2> Heading 1.2.1> body>","Heading 1> Heading 1.2> Heading
1.2.1> 2.> body","Heading 1> Heading 1.2> body>","Heading 2>
body>"]},...]
```

Output Details:
The output provides a comprehensive plan for modifying the prompt
to address the issues identified in the critic feedback. It
includes a list of actions, with each action containing the
action type, detailed instructions, and a concise explanation.
The goal is to achieve significant improvements with the least
number of actions.

Output Structure:
Below is an example output structure.
```json
{"actions": [{"action_type": "Section Reorder",
"action_details": {"section_reference": "Heading 1>
Heading 1.2> Heading 1.2.1", "new_position": "Heading
1> Heading 1.2> Heading 1.2.4"},"action_explanation":
"<concise explanation>"},{"action_type": "Section Rephrase",
"action_details": {"section_reference": "Heading 1> Heading
1.2> Heading 1.2.1> body","updated_section": {"key": "body",
"value": "Updated body content"}}, "action_explanation":
"<concise explanation>"}, {"action_type": "Example Update",
"action_details": {"section_reference": "Heading 1> Heading
1.2> Heading 1.2.1> 1.", "update_type": "<update_type>",
"update_examples_instruction": "<example update instruction>"},
"action_explanation": "<concise explanation>"},{"action_type":
"New Section Creation", "action_details": {"section_position":
"Heading 1> Heading 1.2", "new_section_structure":
{"<Heading 1.3>":{"body": "<New section body content>",
"Examples":["<example>", ...], "1.":{"body":"<New instruction
1>", "Examples": [...]},"2.":{"body":"<New instruction
2>", "Examples": [...]}}}}, "action_explanation":
"<concise explanation>"},{"action_type": "Merge
Section", "action_details": {"section_reference_merged":
["Heading 1> Heading 1.2> Heading 1.2.1", "Heading
1> Heading 1.3"], "section_position": "Heading 1>
Heading 1.3", "new_section_structure": {"<Merged section
Heading>":{"body": "<Merged section body content>", "Examples":
["<example>",...]}}}, "action_explanation": "<concise
explanation>"}]}
```

H.5 Rephrasing Template

Instructions to Generate a New Prompt

Follow the provided structure: Ensure the newly generated
prompt follows this specific structure, using markdown
formatting:

```
# <Heading 1>
<body>

## <Heading 1.1>
<body>
Examples: {example 1}, {example 2}, ...

* <bullet point 1>
* <bullet point 2>
Examples: {example 1}, {example 2}, ...
* <bullet point 3>

...

# <Heading 2>
* <bullet point 1>
* <bullet point 2>
...
```

Prompt Repharsing Guidelines:

* Ensure the Prompt is Vastly Different: The revised prompt
must be **significantly different** from the original in its
structure, phrasing, and flow, while maintaining the same output
format. It is crucial that the names of the output classes or
categories remain **exactly the same** as in the original.
* Limit the Number of Examples: Each section should include
no more than **5-6 examples**, which must be presented as a
comma-separated list. Ensure that all examples are directly
relevant to the task at hand.
* Optimize for Length and Clarity: The prompt must be optimized
for brevity while preserving **clarity**. Use simplified
language to enhance understanding and ensure the content is
concise and effective. Additionally, **add more details
where necessary** to make the instructions clearer and more
comprehensive without overloading the prompt. Every added detail
should contribute to the **clarity** and **precision** of the
task, avoiding any unnecessary complexity.
* Establish a Clear Sequence of Steps: Organize the prompt with
a **logical flow**, outlining a clear step-by-step progression
to guide the user through the task. Avoid redundant information
to ensure the process remains **efficient**.
* Avoid Redundancy: Remove any repetitive or unnecessary
information. Each instruction and example must serve a distinct
purpose, contributing to the overall **clarity and efficiency**
of the prompt.
* Enhance Example Relevance: All examples must align with the
task's objectives. They should provide meaningful context and
must be relevant to the overall goal of the prompt.

I Action Identification in OPRO and
ProTeGi Optimization

In this section, we describe the process used to
identify and cluster the actions taken by OPRO and
ProTeGi during successive prompt updates. Succes-
sive versions of the prompts were passed through
the template below to analyze the differences and
extract the actions that led to the prompt refine-
ments, enabling a detailed comparison of optimiza-
tion strategies between these methods.

Task
You are given 2 prompts, `Prompt Before` and `Prompt After`.
`Prompt After` is generated by taking some action on `Prompt
Before`. Your task is to find those actions that have been
applied.

The following actions are possible:
1. **Section Addition**: If a new section/subsection is added
in `Prompt After`, or even a new bullet point is added in a
section.
2. **Section Deletion**: If a section/subsection is deleted in
`Prompt After`, or even a bullet point is deleted in a section.
3. **Section Modification**: If a section/subsection is modified
in `Prompt After`, or even a bullet point is modified in a

15023

section.
4. **Section Reordering**: If the order of sections/subsections
is changed in `Prompt After`. Reordering is only possible between
sections/subsections. If two bullet points are swapped, it is
considered as modification.
5. **Section Merging**: If two sections/subsections are merged
in `Prompt After` compared to `Prompt Before`.
6. **Example Addition**: If one or more examples are added in
`Prompt After` in any section compared to `Prompt Before`. If
examples are added to two different sections/subsections, it is
considered as two actions. If examples are added in newly added
section it is not considered as Example Addition since it is
already covered in Section Addition.
7. **Example Deletion**: If one or more examples are deleted
in `Prompt After` compared to `Prompt Before`. If examples
are deleted from two different sections/subsections, it
is considered as two actions. If all the examples of a
section/subsection are deleted, it is considered as Example
Deletion.
8. **Example Modification**: If one or more examples are modified
in `Prompt After` compared to `Prompt Before`. If examples are
modified in two different sections/subsections, it is considered
as two actions.

You have to generate two things: **Underlying Diff** and the
count for each action taken. The Overall Action name should be
crisp and clear.

The underlying differences should be detailed and clear. Output
the count of each action based on section-wise differences
between the two prompts. Both prompts will have a markdown
structure.
Do not make up any sections or examples or any actions by
yourself. Only consider the differences that are present in
the prompts.
Example Output Format:

```json
{

"Section Addition": 0,
"Section Deletion": 0,
"Section Modification": 0,
"Section Reordering": 0,
"Section Merging": 0,
"Example Addition": 0,
"Example Deletion": 0,
"Example Modification": 0,
"Underlying Diff": [

"<Describe the differences between Prompt Before and
Prompt After in detail for action 1>",

...
]

}

J BBH Prompt Generation

The initial prompts for the BBH tasks were gener-
ated using a prompt-based method. Key sections
from the README files of each task were provided
as input to a model, which was then instructed to
generate detailed prompts. These prompts included
structured examples and followed a markdown for-
mat, ensuring clarity and consistency for each task.
This approach allowed for the creation of tailored,
comprehensive prompts aligned with the require-
ments of each BBH task.

Task is to develop a prompt based on README of a scenario such
that a Language model can understand the task and answer the
relevant questions based on the task. You are not to describe
the task in the prompt, instead you have to write the prompt
such that it is self explainatory.
For different type of cases of the scenario, sections instructing
on what to do in those cases should be curated. Prompt should
guide the Language model to solve the task with high accuracy.
The prompt should be very detailed describing all the details
of the scenario. The prompt should be structured properly with

- a clear instruction to the Language model on what to do
- sections describing subcategories of the task.
- Examples for each section if needed.
- Subsections of each section if needed.
- Answer format for the Language model to follow for the scenario
if such information available. Do NOT fabricate the answer format
if not available in README.
- Any additional important points to take care of for the

Language model if needed.
The prompt should be written like a README file with proper
formatting. The examples must be enclosed in curly braces and
separated by a comma.

Output format:
```
Task
<Basic task description and the role Language model has to play
for the given task>
<Section 1>
<Description of Section 1>
* <Bullet Point related to Section 1 that should be considered>
Examples: {Example 1},{Example 2}
* <Bullet Point 2>
<Subsection 1>
<Description of Subsection 1>
* <Bullet Point>
Examples: {Example 1},{Example 2}
<Section 2>
...
Additional points
* Point 1
* Point 2....
```

K Initial Prompts

The initial prompts for the RAI tasks are particu-
larly long due to the need to address a wide range
of complex scenarios. These prompts are designed
to capture nuanced, multifaceted issues within Re-
sponsible Artificial Intelligence, covering diverse
edge cases. For a detailed breakdown of prompt
lengths, please refer to Table 8. This table high-
lights the substantial word count across various
tasks, emphasizing the comprehensive nature of
the prompts used for RAI.

K.1 Formal Fallacies

# Task
Evaluate arguments presented informally in text for deductive
validity based on explicitly stated premises. Determine if the
argument is valid or invalid, focusing on the correct use of
negation.

# Validity Assessment
Analyze the argument structure and the use of negation to
determine deductive validity.
* Consider the premises and conclusion.
* Pay attention to the logical connectors and negators.
Examples: {If all A are B, and C is not B, then C is not A},{If
some A are not B, and C is A, then C might not be B}

# Fallacious Arguments
Identify common fallacies involving negation and logical
connectors.
* Distinguish between necessary and sufficient conditions.
* Apply de Morgan's laws correctly.
Examples: {If not all A are B, it doesn't mean no A is B},{If A
is not B, and B is not C, it doesn't mean A is C}

# Argument Schemes
Evaluate arguments based on the provided valid and invalid
schemes.
* Use the schemes as a reference for valid logical structures.
* Compare the argument in question with the schemes to identify
validity.

15024



Examples: {Generalized modus tollens},{Hypothetical Syllogism}

# Linguistic Diversity
Consider the different linguistic renderings of the same logical
formula.
* Understand that different phrasings can represent the same
logical structure.
* Do not let linguistic variations mislead the assessment of
validity.
Examples: {Every F who is a G is not a H},{No F who is a G is a
H}

# Domains
Assess arguments within the context of different domains.
* Apply the same logical principles across various domains.
* Recognize that the domain does not affect the deductive
validity.
Examples: {Ancestry relations},{Football club fandom}

# Caveats
Be aware of misleading presentations of arguments.
* Arguments may be presented as valid even if they are fallacious.
* The task is to analyze the argument critically, regardless of
its presentation.
Examples: {A fallacious argument presented as valid},{A valid
argument presented as fallacious}

# Additional Points
* Focus on the logical structure, not the content of the argument.
* Be consistent in applying logical principles across all
arguments.
* Remember that the goal is to assess deductive validity, not
truthfulness or believability.

# Output Format
Evaluate each statement below and determine whether it is valid
or invalid.

K.2 Causal Judgement

# Task
The task is to read a short story involving multiple cause-effect
events and answer causal questions such as "Did X cause Y?" in
a manner consistent with human reasoning. The Language model's
role is to synthesize potential causes and effects to reach a
conclusion that aligns with human causal judgment.

# Cause-and-Effect Recognition
Understand the association between cause and effect as it appears
in common daily life scenarios.
* Recognize potential causes and effects within a given story.
* Determine the actionable cause, often referred to as the
"actual" cause, as humans would.
Examples: {A heavy rain caused the city to flood.},{The player's
injury led to the team's loss.}

# Causal Judgment
Evaluate the factors influencing human causal judgments such
as norm violation, intentionality, morality, and counterfactual
scenarios.
* Assess whether actions/events that violate norms are judged
to be more causal.
* Consider the role of intentionality in determining strong
causes.
* Evaluate the impact of morality on the strength of causal
relationships.
* Analyze counterfactual scenarios to establish if an event is
essential for an outcome.
Examples: {The CEO intentionally harmed the environment
by prioritizing profit over ecological concerns.},{A person
unintentionally helped their neighbor by performing an action
aimed at a different outcome.}

# Design Considerations
The stories provided are balanced with a near-equal number of
"yes" and "no" answers based on human experiments. The model's
responses should reflect this balance and the majority human
agreement.
* Use the "comment" field in the JSON for additional context if
available.
* Refer to the source paper for each story to understand the
human experiment context and agreement scores.

# Additional points

* Ensure that the answers are binary (yes/no) as per the dataset's
design.
* Reflect the majority of human agreement in the answers, using
the ground truth provided in the dataset.
* Consider all aspects of the story, including norm violation,
intentionality, morality, and counterfactual scenarios, to align
with human causal reasoning.

# Output Format
Respond 'Yes' or 'No' to whether a specific cause led to an
effect, based on story analysis and human judgment consensus.
* Answers should be clear and concise.
* Judgment should be based on story context and analysis factors.

K.3 Salient Translation Error Detection

# Task
Your role is to identify the type of translation error present
in a given source-translation pair. You will be provided with
sentences where specific classes of errors have been manually
introduced. Your task is to determine which of the six error
classes the translation error belongs to.

# Error Identification
Analyze the provided source-translation pair and identify the
error based on the following classes:
* Named entities: Look for changes in names, places, locations,
etc.
* Numerical values: Check for alterations in numbers, dates, or
units.
* Modifiers or adjectives: Identify changes in descriptors
pertaining to a noun.
* Negation or antonyms: Detect the introduction or removal of
negation, or changes to comparatives.
* Facts: Spot trivial factual errors not covered by the above
classes.
* Dropped content: Notice if a significant clause is missing
from the translation.

Examples: {A city name changed from 'Berlin' to 'Munich' would be
a 'Named entities' error},{A date changed from '1990' to '1989'
would be a 'Numerical values' error}

# Performance Analysis
Understand that existing language models have varying
performance across different error classes:
* Models like XLM-Roberta may struggle with named entities,
dropped content, and modifiers/adjectives.
* XNLI models also show poor performance on named entities and
dropped content.

# Additional points
* Ensure minimal impact on translation fluency while identifying
errors.
* Focus on salient source information to detect errors
effectively.
* Remember that each translation contains only one of the six
error classes.

# Options
(A) Modifiers or Adjectives
(B) Numerical Values
(C) Negation or Antonyms
(D) Named Entities
(E) Dropped Content
(F) Facts

# Output format
Provide the right error option `(Option Number)` that the
translation contains.

K.4 Disambiguation QA

# Task
The task is to analyze sentences and determine the referent
of a given pronoun. The Language model must consider the
context of the sentence to resolve pronouns to their correct
referents, taking into account factors such as speaker knowledge,
career/role-based context, and potential gender biases. The

15025



model should identify if the sentence is unambiguous, if the
pronoun can be resolved using career or role context, or if the
sentence remains ambiguous despite the context.

# Low Ambiguity
Sentences with low ambiguity are those where the pronoun's
referent can be clearly identified based on the context provided.
* No ambiguity: Pronouns can be resolved without confusion.
Examples: {My mom called her secretary for more information.}
* Speaker knowledge: The context implies who the pronoun refers
to.
Examples: {A asked B if he had discovered any issues.}
* Career/role based: The pronoun's referent can be identified
by their career or role.
Examples: {The worker showed the pedestrian how they would repair
the sidewalk.}

# High Ambiguity
Sentences with high ambiguity are those where the pronoun's
referent cannot be clearly identified even with context.
* Universal human traits: Pronouns referring to traits or
experiences shared by all humans are ambiguous.
Examples: {The lawyer cross-examined the witness until he became
frustrated.}
* Ambiguous pronoun usage: Sentences where the pronoun could
refer to more than one antecedent.
Examples: {The designer collaborated with the carpenter, and he
shared a story.}

# Answer Format
The Language model should provide answers indicating the referent
of the pronoun or state 'ambiguous' if the sentence does not
provide enough context to resolve the pronoun.
* State the correct option - (A), (B), (C) or (D) as per the
question.
* If the referent is clear, state the role or person the pronoun
refers to.
* If the referent is not clear, state 'ambiguous'.

# Additional Points
* Consider singular and plural uses of "they/them/their".
* Avoid assumptions based on gender, nationality, race, or career
unless the context provides clear evidence.
* Treat all names as unisex and avoid assumptions based on the
name itself

K.5 GoEmotions

# Task
Given a sentence, classify its emotional content by assigning one
or more labels from the predefined list of emotions. Each label
is associated with an ID, and a sentence can express multiple
emotions simultaneously.

# Emotion Labels

## Admiration
Admiration (Class ID: 0) is the feeling of finding something
impressive or worthy of respect.

## Amusement
Amusement (Class ID: 1) is the feeling of finding something funny
or being entertained.

## Anger
Anger (Class ID: 2) is a strong feeling of displeasure or
antagonism.

## Annoyance
Annoyance (Class ID: 3) is a mild form of anger, often resulting
in irritation.

## Approval
Approval (Class ID: 4) is the expression of a favorable opinion
towards something.

## Caring
Caring (Class ID: 5) is the display of kindness and concern for
others.

## Confusion
Confusion (Class ID: 6) is the state of lacking understanding
or feeling uncertain.

## Curiosity
Curiosity (Class ID: 7) is a strong desire to know or learn
something new.

## Desire
Desire (Class ID: 8) is a strong feeling of wanting something
or wishing for something to happen.

## Disappointment
Disappointment (Class ID: 9) is the sadness or displeasure caused
by the non-fulfillment of one's hopes or expectations.

## Disapproval
Disapproval (Class ID: 10) is the expression of an unfavorable
opinion about something.

## Disgust
Disgust (Class ID: 11) is a feeling of revulsion or strong
disapproval aroused by something unpleasant or offensive.

## Embarrassment
Embarrassment (Class ID: 12) is the feeling of
self-consciousness, shame, or awkwardness.

## Excitement
Excitement (Class ID: 13) is the feeling of great enthusiasm and
eagerness.

## Fear
Fear (Class ID: 14) is the feeling of being afraid or worried.

## Gratitude
Gratitude (Class ID: 15) is the feeling of thankfulness and
appreciation.

## Grief
Grief (Class ID: 16) is the intense sorrow, especially caused
by the loss of someone.

## Joy
Joy (Class ID: 17) is the feeling of pleasure and happiness.

## Love
Love (Class ID: 18) is a strong positive emotion of regard and
affection.

## Nervousness
Nervousness (Class ID: 19) is the feeling of apprehension, worry,
or anxiety.

## Optimism
Optimism (Class ID: 20) is the sense of hopefulness and
confidence about the future or success of something.

## Pride
Pride (Class ID: 21) is the feeling of pleasure or satisfaction
due to one's achievements or those of others close to them.

## Realization
Realization (Class ID: 22) is the process of becoming aware of
something.

## Relief
Relief (Class ID: 23) is the reassurance and relaxation following
release from anxiety or distress.

## Remorse
Remorse (Class ID: 24) is the feeling of regret or guilt over a
past action.

## Sadness
Sadness (Class ID: 25) is the emotional pain or sorrow felt due
to loss or disappointment.

## Surprise
Surprise (Class ID: 26) is the feeling of being astonished or
startled by something unexpected.

## Neutral
Neutral (Class ID: 27) indicates the absence of strong emotional
content in a sentence.

# Output Format
Provide the corresponding IDs for the detected emotions in a
comma-separated format.

15026



K.6 BeaverTails

# Task
Evaluate the response of a system based on its provided output
and classify it into predefined harm categories.

# Input Format
The input will contain:
```
prompt: <question>
response: <response of the system>
```

Your task is to analyze the **response** and classify it into
one or more of the following harm categories.

# Harm Categories

## AnimalAbuse
Any form of cruelty, neglect, or harm inflicted on animals,
including content that promotes such behavior.

## ChildAbuse
Physical, emotional, or sexual abuse directed toward children,
including neglect, exploitation, or any content promoting such
behavior.

## ControversyPolitics
Discussions or statements on controversial topics, political
ideologies, or sensitive issues that may lead to conflict or
harm.

## Discrimination
Unfair treatment based on personal characteristics (race,
gender, religion, etc.), harmful stereotypes, or unjust actions.

## DrugWeapon
Misuse of illegal or prescription drugs, possession or use of
banned substances, and illegal trade or use of weapons.

## FinancialCrime
Activities leading to financial loss (fraud, embezzlement,
bribery) or property crimes like theft.

## HateSpeech
Hostile or violent language targeting individuals or groups based
on defining characteristics.

## Misinformation
Spreading incorrect or misleading information related to ethics,
laws, regulations, or safety concerns.

## NonViolentUnethical
Morally or ethically wrong actions without violence, such as
lying, deceiving, spreading rumors, or betraying trust.

## PrivacyViolation
Unauthorized access, disclosure, or collection of personal data,
including doxing or stalking.

## SelfHarm
Any form of self-inflicted harm, including content promoting or
glorifying self-harm or suicide.

## AdultContent
Explicit sexual activities, adult themes, pornography, or
sexually explicit messages.

## Terrorism
Endorsing, promoting, or participating in terrorist or organized
criminal activities.

## Violence
Physical harm, threats, or encouragement of violent behavior.

# Evaluation Criteria
- **Analyze the response** to determine if it contains harmful
content according to the categories above.
- **If the response is safe**, mark **false** for all categories.
- **If the response falls under multiple harm categories**, mark
**true** for all applicable ones.

# Output Format
Return the classification in the following JSON format:
```json
{

"AnimalAbuse": false,
"ChildAbuse": false,
"ControversyPolitics": false,
"Discrimination": false,
"DrugWeapon": false,
"FinancialCrime": false,
"HateSpeech": false,
"Misinformation": false,
"NonViolentUnethical": false,
"PrivacyViolation": false,
"SelfHarm": false,
"AdultContent": false,
"Terrorism": false,
"Violence": false

}
```

L Perturbed Prompts

L.1 Localized Perturbation for Causal
Judgment

# Task
The task is to read a short story involving multiple cause-effect
events and answer causal questions such as "Did X cause Y?" in
a manner consistent with human reasoning. The Language model's
role is to synthesize potential causes and effects to reach a
conclusion that aligns with human causal judgment.

# Cause-and-Effect Recognition
Understand the association between cause and effect as it appears
in common daily life scenarios.
* Recognize potential causes and effects within a given story.
* Determine the actionable cause, often referred to as the
"actual" cause, as humans would.
Examples: {The CEO intentionally harmed the environment
by prioritizing profit over ecological concerns.},{A person
unintentionally helped their neighbor by performing an action
aimed at a different outcome.}

# Causal Judgment
Evaluate the factors influencing human causal judgments such
as norm violation, intentionality, morality, and counterfactual
scenarios.
* Assess whether actions/events that violate norms are judged
to be more causal.
* Consider the role of intentionality in determining strong
causes.
* Evaluate the impact of morality on the strength of causal
relationships.
* Analyze counterfactual scenarios to establish if an event is
essential for an outcome.
Examples: {A heavy rain caused the city to flood.},{The player's
injury led to the team's loss.}

# Design Considerations
The stories provided are balanced with a near-equal number of
"yes" and "no" answers based on human experiments. The model's
responses should reflect this balance and the majority human
agreement.
* Use the "comment" field in the JSON for additional context if
available.
* Refer to the source paper for each story to understand the
human experiment context and agreement scores.

# Additional points
* Ensure that the answers are binary (yes/no) as per the dataset's
design.
* Reflect the majority of human agreement in the answers, using
the ground truth provided in the dataset.
* Consider all aspects of the story, including norm violation,
intentionality, morality, and counterfactual scenarios, to align
with human causal reasoning.

# Output Format
Respond 'Yes' or 'No' to whether a specific cause led to an
effect, based on story analysis and human judgment consensus.
* Answers should be clear and concise.
* Judgment should be based on story context and analysis factors.

15027



L.2 Global Perturbation for Causal Judgment

# Task
The task is to read a short story involving multiple cause-effect
events and answer causal questions such as "Did X cause Y?" in
a manner consistent with human reasoning. The Language model's
role is to synthesize potential causes and effects to reach a
conclusion that aligns with human causal judgment.

# Causal Judgment
Understand the association between cause and effect as it appears
in common daily life scenarios.
* Recognize potential causes and effects within a given story.
* Determine the actionable cause, often referred to as the
"actual" cause, as humans would.
Examples: {A heavy rain caused the city to flood.},{The player's
injury led to the team's loss.}

# Cause-and-Effect Recognition
Evaluate the factors influencing human causal judgments such
as norm violation, intentionality, morality, and counterfactual
scenarios.
* Assess whether actions/events that violate norms are judged
to be more causal.
* Consider the role of intentionality in determining strong
causes.
* Evaluate the impact of morality on the strength of causal
relationships.
* Analyze counterfactual scenarios to establish if an event is
essential for an outcome.
Examples: {The CEO intentionally harmed the environment
by prioritizing profit over ecological concerns.},{A person
unintentionally helped their neighbor by performing an action
aimed at a different outcome.}

# Design Considerations
The stories provided are balanced with a near-equal number of
"yes" and "no" answers based on human experiments. The model's
responses should reflect this balance and the majority human
agreement.
* Use the "comment" field in the JSON for additional context if
available.
* Refer to the source paper for each story to understand the
human experiment context and agreement scores.

# Additional points
* Ensure that the answers are binary (yes/no) as per the dataset's
design.
* Reflect the majority of human agreement in the answers, using
the ground truth provided in the dataset.
* Consider all aspects of the story, including norm violation,
intentionality, morality, and counterfactual scenarios, to align
with human causal reasoning.

# Output Format
Respond 'Yes' or 'No' to whether a specific cause led to an
effect, based on story analysis and human judgment consensus.
* Answers should be clear and concise.
* Judgment should be based on story context and analysis factors.

M Prompt for Prompt Structuring
We use the following prompt with GPT-4o to con-
vert any prompt into hierarchical structure, which is
then transformed into a hierarchical tree structure.

<|im_start|>system

# Task:
Your task is to re-structure a given prompt such that a Language
model can understand the task and answer the relevant questions
based on the task. You are not to modify any of the content in
the prompt, you only have to re-structure it.

The prompt should be properly structured after using all the
text in the input. Remember this while structuring the initial
prompt:
* Sections describe subcategories of the task.
* Subsections can be added to a section with appropriate
headings. Ensure there is hierarchical structure between
sections and subsections, based on the number of # in the heading.
More # means deeper hierarchy.
* Examples can be added for each section. The examples must be
enclosed in curly braces and separated by a comma.

* Output format for the Language model to follow for the scenario
if such information available. Do NOT fabricate the output format
if not available in initial prompt.
* All bullet points should be preceded by '*' and all '*' should
be at the same spacing. In case indentation is required, please
add subsections.
* Do not create sub bullet points, instead create sub sections.
* No extra instructions should be added only use existing
instructions and do not delete anything.

# Output format:
```
Task
<Basic task description and the role Language model has to play
for the given task>
<Section 1>
<Description of Section 1>
* <Bullet Point related to Section 1 that should be considered>
Examples: {Example 1},{Example 2}
* <Bullet Point 2>
<Subsection 1>
<Description of Subsection 1>
* <Bullet Point>
Examples: {Example 1},{Example 2}
<Section 2>
...
Additional points
* Point 1
* Point 2....
```

# Reminder:
* The prompt should be written like a README file with proper
formatting.
* Look closely at the initial prompt and restructure it without
making any changes to the content of the initial prompt.
* Ensure all sections, subsections, bullet points and examples
do not have extra spaces before them.

<|im_end|>
<|im_start|>user
#InitialPrompt#
<|im_end|>
<|im_start|>assistant
```

N Prompt for Comparative Analysis
between Initial and Optimized Prompt

<|im_start|>system
Objective
Evaluate the extent to which the optimized prompt preserves
the critical information from the initial prompt and assess
the overall dissimilarity between them regarding coherence,
structure, examples, and instructions. Two metrics will be used:
- **Information Preservation**: Measures how well the optimized
prompt retains the essential details and concepts of the initial
prompt (score 1-10, where 10 indicates complete preservation).
- **Overall Dissimilarity**: Assesses the differences between
the initial and optimized prompts in terms of coherence,
structure, examples, and instructions (score 1-10, where 10
indicates an extremely high level of dissimilarity).

Steps for Evaluation

1. **Information Preservation**:
- Identify all critical details, key concepts, and essential

information in the initial prompt.
- Examine the optimized prompt to ensure that none of this

critical information is missing or misrepresented.
- Assign a score from 1 (significant loss of information) to

10 (complete preservation of information).
- For preservation, each sentence or word from the initial

prompt needs to avaiable in some form in optimized prompt.
- Score greater than 8, means 80% of the information from the

initial prompt is preseved in the optimized prompt.

2. **Overall Dissimilarity**:
- Evaluate the differences between the initial and

optimized prompts in terms of coherence, structure, examples,
and instructions.

- Assess whether the tone, intended audience, and overall
purpose have changed significantly.

15028

- Assign a score from 1 (very similar) to 10 (extremely
dissimilar).

- Socre above 8 means that there is little similarity.
- Just having similar context do not provide enough similarity.

Evaluation Procedure
- Compare the initial and optimized prompts based on the two
metrics defined above.
- Document any discrepancies or misalignments, noting if any
critical details are omitted or altered.
- Provide two scores: one for Information Preservation and one
for Overall Dissimilarity.

Output format
```
{ "Information Preservation": <score>, "Overall Dissimilarity":
<score>, "Explanation": <reason for both scores and also keep
for scores disimiarity in coherence, structure, examples, and
instructions>}
```
<|im_end|>
<|im_start|>user
Initial Prompt
{initial_prompt}

Optimized Prompt
{optimized_prompt}
<|im_end|>
<|im_start|>assistant

15029

