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Abstract

Fine-tuned Large Language Models (LLMs)
often demonstrate poor calibration, with their
confidence scores misaligned with actual per-
formance. While calibration has been exten-
sively studied in models trained from scratch,
the impact of LLMs’ prior knowledge on cali-
bration during fine-tuning remains understud-
ied. Our research reveals that LLMs’ prior
knowledge causes potential poor calibration
due to the ubiquitous presence of known data in
real-world fine-tuning, which appears harmful
for calibration. Specifically, data aligned with
LLMs’ prior knowledge would induce overcon-
fidence, while new knowledge improves cali-
bration. Our findings expose a tension: LLMs’
encyclopedic knowledge, while enabling task
versatility, undermines calibration through un-
avoidable knowledge overlaps. To address this,
we propose CogCalib, a cognition-aware frame-
work that applies targeted learning strategies
according to the model’s prior knowledge. Ex-
periments across 7 tasks using 3 LLM families
prove that CogCalib significantly improves cali-
bration while maintaining performance, achiev-
ing an average 57% reduction in ECE com-
pared to standard fine-tuning in Llama3-8B.
These improvements generalize well to out-of-
domain tasks, enhancing the objectivity and re-
liability of domain-specific LLMs, and making
them more trustworthy for critical human-AI
interaction applications.

1 Introduction

Large Language Models (LLMs) have enabled pow-
erful domain-specific applications through super-
vised fine-tuning (Zhuang et al., 2023; Imani et al.,
2023; Yang et al., 2024a). However, fine-tuning of-
ten leads to poor-calibrating LLM, where models’
predictive confidence fails to reflect their true per-
formance, manifesting as overconfidence (Achiam
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Figure 1: LLMs’ prior knowledge leads to poor calibra-
tion. As LLMs grow stronger, lots of domain-specific
fine-tuning data inevitably overlaps with the LLMs’
prior knowledge. We reveal that data aligned with
the model’s prior knowledge (i.e., known data) tend
to cause overconfidence, while data exhibiting bias (i.e.,
unknown data) contribute to better alignment between
confidence and accuracy, resulting in more objective
predictions.

et al., 2023; Zhu et al., 2023; Shen et al., 2024;
Yang et al., 2023). This is particularly concerning
in high-stakes scenarios where LLMs’ incorrect
yet confident predictions could lead to reliability
and trustworthiness issues, such as medical diagno-
sis (Xu et al., 2024; Zhang et al., 2024; Wei et al.,
2024) or safety-critical domain (Sarabadani, 2019).

Prior studies (Mukhoti et al., 2020; Wei et al.,
2022; Guo et al., 2017a) investigating the causes
of poor calibration mainly focus on simple mod-
els (ResNet) trained from scratch, where prior
knowledge is absent. However, in the fine-tuning
paradigm of LLMs, the training data is typically
domain-incremental (Shi et al., 2024), encompass-
ing both knowledge aligned with the pre-training
corpus and novel domain-specific information (Gu-
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rurangan et al., 2020). This knowledge bias be-
tween LLMs’ prior knowledge and fine-tuning
knowledge has been shown as a critical factor af-
fecting model adaptation (Gekhman et al., 2024;
Kung et al., 2023; Huang et al., 2024; Seedat et al.,
2023; Chen et al., 2024). Therefore, we try to ex-
tend previous research by investigating the underly-
ing mechanisms of poor calibration specifically in
the context of fine-tuning, particularly considering
the impact of models’ prior knowledge.

We reveal that LLMs’ extensive prior knowledge,
while enabling remarkable few-shot generalization,
paradoxically causes their poor calibration in fine-
tuning paradigms. Through empirical analysis, we
discover that during fine-tuning, data aligned with
the model’s prior knowledge (i.e. known data)
tend to cause overconfidence, while data exhibit-
ing knowledge bias (i.e. unknown data) contribute
to better calibration as shown in Figure 1. This
disparity stems from the distinct learning dynam-
ics between known and unknown data: the model
quickly assimilates known data, leading to contin-
ued confidence growth even after accuracy plateaus.
In contrast, unknown data, inherently more chal-
lenging for LLMs to learn (Zhang and Wu, 2024;
Gekhman et al., 2024), results in more synchro-
nized increases in both accuracy and confidence.
This phenomenon becomes increasingly problem-
atic as LLMs’ prior knowledge expands, making
it nearly impossible to avoid overlap between fine-
tuning data and their prior knowledge.

However, existing approaches (Yang et al., 2023;
Shen et al., 2024; Liu et al., 2023) are insufficient
to handle this issue, primarily because they rely on
post-hoc calibration methods. They typically intro-
duce additional learnable modules after fine-tuning
to reconstruct the mapping between model outputs
and probabilities, which incurs extra computational
overhead during deployment. On the other hand,
the influence of LLMs’ prior knowledge on calibra-
tion provides a promising opportunity to address
poor calibration during fine-tuning.

Therefore, we introduce CogCalib, a real-time
fine-tuning calibration framework compatible with
various training-based calibration methods. Specif-
ically, CogCalib dynamically evaluates knowledge
bias during fine-tuning and applies targeted learn-
ing strategies accordingly, regulating confidence
fitting and maintaining task learning. Moreover,
CogCalib introduces no additional computational
overhead during deployment.

We conduct comprehensive experiments across

7 commonly used downstream tasks (including
multiple-choice and open-ended QA tasks) using 3
popular LLM families, to demonstrate CogCalib’s
effectiveness. CogCalib successfully preserves
fine-tuning performance while achieving substan-
tial improvements in calibration across all tasks
and models, without incurring additional computa-
tional overhead during deployment. For instance,
Llama3-8B achieves average ECE reductions of
55.92% and 65.02% compared to TS and SFT on
multiple-choice QA tasks. Notably, these improve-
ments generalize well to out-of-domain tasks, in-
dicating that models trained with CogCalib con-
sistently demonstrate enhanced objectivity across
diverse scenarios. The main contributions of our
work can be summarized as follows:

• As far as we know, we are the first to reveal
the neglected negative impacts of LLMs’ prior
knowledge on calibration during fine-tuning.
Specifically, data aligned with the model’s
prior knowledge tends to induce overconfi-
dence, while new knowledge is beneficial for
calibration.

• We propose CogCalib, a real-time calibra-
tion framework that employs distinct learning
strategies for data with different knowledge
biases during fine-tuning, aiming to achieve
more objective fine-tuning.

• We conduct extensive experiments on domain-
specific multiple-choice and open-ended QA
tasks with multiple models, using different
fine-tuning methods, which demonstrate the
effectiveness and generality of CogCalib in
enhancing calibration.

2 Related Works

2.1 Confidence Calibration

Confidence calibration methods can be categorized
into three main approaches (Gawlikowski et al.,
2023): post-processing adjustments (Guo et al.,
2017b), training-based optimization (Szegedy
et al., 2016), and uncertainty estimation (Laksh-
minarayanan et al., 2017). For LLMs specifically,
recent efficient post-processing techniques have
emerged, including Bayesian LoRA (Yang et al.,
2023), LLM-oriented temperature scaling (Shen
et al., 2024), and distribution adjustment meth-
ods (Liu et al., 2023). While these approaches
address calibration computational complexity, they
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Calibration Deterioration

Figure 2: Accuracy and ECE of Llama3-8B fine-tuned
with different knowledge biases. We fine-tune Llama3-
8B using OBQA, with ARC-C and MathQA as OOD
tests. The ratio varies from 5:0 to 0:5 (unknown
data:known data), with equal dataset sizes. Calibra-
tion deteriorates as the knowledge bias lowers, while a
higher knowledge bias helps improve calibration.

do not investigate the underlying causes of calibra-
tion degradation. Previous studies have identified
negative log-likelihood (NLL) overfitting as a key
factor in poor calibration (Mukhoti et al., 2020;
Wei et al., 2022; Guo et al., 2017a). However,
these findings were based on models without prior
knowledge, whereas the unique pre-trained nature
of LLMs (Shi et al., 2024) necessitates a fresh ex-
amination of calibration.

2.2 Impact of Knowledge Bias in Fine-tuning

Fine-tuning LLMs presents several critical chal-
lenges, including hallucinations (Huang et al.,
2025), generalization problems (He et al., 2021),
and calibration degradation (Zhu et al., 2023), with
the bias between LLMs’ prior knowledge and fine-
tuning knowledge emerging as a contributing fac-
tor (Kung et al., 2023; Huang et al., 2024; See-
dat et al., 2023; Yang et al., 2024b). Gekhman
et al. (Gekhman et al., 2024) demonstrate that in-
troducing new knowledge during fine-tuning can
trigger hallucinations. Effective generalization can
be achieved through knowledge selection strate-
gies based on knowledge bias (Albalak et al., 2024;
Chen et al., 2024). Regarding calibration, the im-
pact of knowledge bias during fine-tuning warrants
further investigation.

3 Prior Knowledge Affects Calibration?

In this section, we investigate how LLMs’ prior
knowledge affects calibration during fine-tuning.
To quantify the overlap between fine-tuning data
and the model’s prior knowledge, we first reintro-
duce the concept of knowledge bias, which rep-
resents the discrepancy between the model’s prior
knowledge domain and the downstream task knowl-
edge domain. Following the framework proposed
by SliCK (Gekhman et al., 2024) (details shown in
Appendix G.1), we categorize the data into two dis-
tinct types: known data that aligns with the model’s
prior knowledge, and unknown data that deviates
from this knowledge base. Finally, we simulate
varying knowledge bias by adjusting the ratio be-
tween unknown and known data in the fine-tuning
dataset, where a higher proportion of known data
indicates a lower knowledge bias (i.e., greater align-
ment with prior knowledge). The details of data
construction are shown in Appendix B.1.

3.1 Minimal Bias, Maximal Overconfidence

To simulate varying knowledge biases, we con-
struct fine-tuning datasets with six ratios of un-
known to known data in OBQA. While Figure 2
reveals irregular performance trends across knowl-
edge bias levels, the calibration exhibits a clear
directional pattern: lower knowledge bias consis-
tently degrades calibration, whereas higher bias
improves it, a phenomenon persistent across both
in-domain and out-of-domain. Notably, the intro-
duction of even a small fraction of known data leads
to calibration deterioration (from pure unknown
data to 4:1 ratio). This suggests that the model’s
pre-existing knowledge dominance for calibration
begins immediately upon exposure to aligned data.
We observed the same phenomenon across other
models and datasets (further experimental results
and analyses are provided in the Appendix B.2).

Furthermore, our tracking for accuracy and confi-
dence reveals divergent learning dynamics: in low-
bias fine-tuning (Figure 3a), accuracy of OBQA
test set plateaus early (200 steps) while confi-
dence escalates continuously, creating widening
calibration error. Conversely, high-bias condi-
tions maintain synchronized accuracy-confidence
growth, minimizing discrepancies — a pattern po-
tentially rooted in gradual new knowledge assimila-
tion (Zhang and Wu, 2024; Gekhman et al., 2024).
The different confidence patterns persist in OOD
detection (Berger et al., 2021) (Figure 3b): low-
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AUROC: 0.85

AUROC: 0.77

Figure 3: (a) Accuracy and confidence of Llama3-8B
during fine-tuning on known and unknown data sam-
pled from OBQA. The asymmetric fitting rates between
accuracy and confidence in known fine-tuning result
in model overconfidence. Conversely, unknown fine-
tuning exhibits synchronized fitting of both, minimizing
their disparity. (b) Average confidence of correct and in-
correct predictions. Unknown fine-tuning yields distinct
confidence separation between correct and incorrect
samples, facilitating OOD detection.

bias models show compressed confidence distribu-
tions for correct and incorrect predictions (both cor-
rect/incorrect > 85%), whereas high-bias models
develop discriminative confidence gaps (AUROC
0.85 vs 0.77 at step 600), enhancing OOD detec-
tion. More results, including standard deviations
are shown in Appendix B.2.

These findings collectively demonstrate how
LLMs’ prior knowledge induces poor calibration:
pre-existing knowledge enables rapid confidence
inflation on aligned data, while insufficient ex-
posure to new knowledge prevents calibration
improvement — a harmful interaction ampli-
fied by the near-ubiquitous presence of known
data in the real-world fine-tuning. Additionally,
we examine this phenomenon in realistic scenarios
(details are shown in Figure 16 of Appendix B.2).

3.2 Analysis and a Potential Solution

An intuitive explanation is that known samples
closely align with pre-trained models’ prior dis-
tribution, while unknown samples represent the tar-
get distribution. Therefore, fine-tuning in low-bias
scenarios leads to rapid confidence overfitting. In
contrast, high-bias fine-tuning requires the model

to adjust its decision boundaries to accommodate
new distributions, resulting in better calibration.

A potential solution is to increase the bias be-
tween the fine-tuning data and the model’s prior
knowledge, specifically by eliminating known data.
However, we reveal that simple bias adjustment
through data removal is insufficient, as it fails
to consistently improve calibration performance
across different datasets. As shown in Figure 4, re-
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Figure 4: Differences in ACC and ECE compared
to baseline (delete 0%) under various percentages of
known data deletion. The results from in-domain tests
indicate that simple bias adjustment fails to achieve con-
sistent calibration improvements across all tasks.

moving 25% of low-bias data improves calibration
in ARC-C but degrades it in OBQA. This inconsis-
tency may stem from the inherent characteristics
of different datasets, making it challenging to find
a universal optimal adjustment ratio. Addition-
ally, accuracy consistently improves with known
data reduction, aligning with findings new knowl-
edge enhances task performance (Kung et al., 2023;
Swayamdipta et al., 2020). This necessitates meth-
ods that decouple knowledge retention from cali-
bration, preserving fine-tuning performance while
improving calibration.

4 Cognition-aware Calibration

In this section, we propose CogCalib, a Cognition-
aware Calibration framework for fine-tuning, de-
signed to achieve an optimal balance between fine-
tuning performance and calibration. CogCalib is
motivated by the above observation that known and
unknown data exhibit distinct fitting characteristics
during the fine-tuning process, necessitating dif-
ferent learning strategies. To develop an effective
solution, we mainly address two challenges: (1)
How to evaluate knowledge bias, particularly as
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the model’s internal states are continuously evolv-
ing? (2) What specific learning strategies should
be applied to achieve objective fine-tuning?

Knowledge Bias Evaluation Adaptive Learning Strategy

LLM 𝜽(𝒊)

…
Final ModelBase LLM LLM 𝜽(𝒊$𝟏)

Calibration Set

Threshold (t) Unknown,		𝒊𝒇	𝑳𝑵𝑳𝑳 > 𝒕	

Known, 𝒐𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆 𝑳 = 𝑳𝑪𝑬 + 𝜶𝑳𝒄𝒂𝒍

𝑳 = 𝑳𝑪𝑬

Adaptation
Fine-tuning Phase

CogCalib

Figure 5: CogCalib’s framework. CogCalib dynami-
cally assesses knowledge bias during training through
NLL, employing customized learning strategies with
distinct loss functions to enhance calibration. Addition-
ally, CogCalib incorporates a style adaptation process
to improve the knowledge bias evaluation performance.

4.1 Knowledge Bias Evaluation

In section 3, we evaluate knowledge bias based
on the correctness of the model’s output through
multiple inferences. However, during training, this
method faces limitations due to the inability to
perform multiple sampling iterations.

Therefore, we propose a more efficient method
for knowledge bias assessment based on negative
log-likelihood (NLL). Our hypothesis posits that
known data aligns with the pre-trained model’s
prior knowledge bias, while unknown data repre-
sents novel information from the target distribu-
tion. From a distributional perspective, as shown
in Equation (1), known data should exhibit lower
NLL values compared to unknown data:

LNLL = Eq [p] = −
C∑

k=1

qk log pk, (1)

where q is the target one-hot distribution, p is the
vocabulary distribution output by LLM, and pk and
qk represent the probabilities for the k-th class in
p and q, respectively. Based on this, we evaluate
knowledge bias during training, using Equation (2),

I(p,q) =

{
1, if LNLL ≤ t

0, otherwise
, (2)

where t denotes the threshold, and I = 1 indicates
the model has already mastered this knowledge. In
addition, t requires adjustment to accommodate the
evolving knowledge distribution during training.

Algorithm 1: Adaptive Threshold Update

Data: Calibration set Sc = {(xi, yi)}Ni=1,
grid size M

Result: Updated threshold t∗

1 foreach update step (e.g., every epoch) do
2 for i← 1 to N do
3 (ci, ni)← Inference(xi);

// ci=1 if correct else 0
// ni = − log pθ(yi|xi)

4 end
// Generate candidate thresholds

5 T ← linspace
(
minni, maxni, M

)
;

// Grid-search for optimal t
6 t∗ ← argmaxt∈T

(
TPR(t) + TNR(t)

)
;

// TPR: true positive rates
// TNR: true negative rates

7 end

To solve this, we establish a calibration set to iden-
tify the optimal t according to Algorithm 1 (details
of the calibration set are shown in Appendix A).

However, the discrepancy in LLMs’ linguistic
style and label formats prevents NLL from accu-
rately assessing knowledge bias. Thus, the model
requires a style adaptation process for calculating
the initial threshold t0, based on findings (Zhang
and Wu, 2024; Mai et al., 2024) that LLMs rapidly
adapt to downstream task syntax during early fine-
tuning (details are shown in Appendix D).

4.2 Adaptive Learning Strategy

Our previous analysis reveals that during fine-
tuning, model confidence increases rapidly for
known data, while unknown data contributes posi-
tively to both calibration and downstream task per-
formance. Therefore, we moderate confidence fit-
ting for known data while preserving the learning
dynamics for unknown data as Equation (3),

L = LCE + I(p,q) · αLcal, (3)

where α represents the regularization strength
and Lcal denotes the calibration loss during train-
ing. The calibration term could be Label Smooth-
ing (LS) (Szegedy et al., 2016), Margin-based
Label Smoothing (MbLS) (Liu et al., 2022), or
ECP (Pereyra et al., 2017), which have been proved
to be helpful for confidence overfitting (details
shown in Appendix C). In CogCalib, we call these
methods CoLS, CoMbLS, and CoECP.
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4.3 Integrated Framework

Building on our previous analysis, we propose an
integrated framework aiming to achieve objective
fine-tuning. Figure 5 illustrates the architecture
of CogCalib. Initially, LLM undergoes style adap-
tation to align with the grammatical patterns of
downstream tasks. Subsequently, CogCalib dy-
namically assesses knowledge bias using NLL and
adaptive t. For low-bias data, we incorporate a
calibration term to mitigate confidence overfitting,
while cross-entropy loss is applied to new knowl-
edge to maintain task alignment.

Type Dataset Accuracy TPR TNR

Multi-Choice

OBQA 99.44 99.44 99.52
ARC-C 99.51 99.54 99.15
WG-S 98.83 98.77 99.52
WG-M 99.13 99.10 99.55
BoolQ 98.69 98.63 98.21

Open-End HotpotQA 83.64 79.43 90.59
MedMCQA 83.69 79.77 87.78

Table 1: Accuracy, True Positive Rate (TPR), and True
Negative Rate (TNR) for identifying known/unknown
data using NLL in the fine-tuning process of Llama3-
8B.

5 Experiments

In this section, we will evaluate the universality of
CogCalib across 3 aspects: diverse datasets (from
multiple-choice to open-ended), various LLM fam-
ilies and sizes, and different fine-tuning approaches
(LoRA and FFT). Complete experimental results
are presented in Appendix F, and hyperparameters
settings are shown in Appendix G.3.

5.1 Experimental Setup

Datasets. To ensure the universality of CogCalib,
we select a wide range of tasks, including Hot-
potQA (Yang et al., 2018) MedMCQA (Pal et al.,
2022) for open-ended QA tasks, while utilizing
OpenBookQA (OBQA) (Mihaylov et al., 2018),
ARC-Challenge (ARC-C) (Clark et al., 2018),
Winogrande-small (WG-S), Winogrande-medium
(WG-M) (Sakaguchi et al., 2021) and BoolQ (Clark
et al., 2019) for multiple-choice QA scenarios. Ad-
ditionally, we extend our evaluation of CogCalib to
various OOD tasks, including MMLU (Hendrycks
et al., 2021) and ARC-E (Clark et al., 2018). See
Appendix A for more details.
Models. We validate CogCalib across models
of diverse families and scales, including Llama3-

8B, Llama2-13B, Mistral-7B, and Qwen2.5-7B.
All models employed in our experiments are
instruction-tuned variants of their respective base
models.
Evaluation Metrics. In addition to evaluating the
accuracy of fine-tuned models, we also select ECE
with a bin size of 10 to assess calibration. See
Appendix E for more details of ECE.
Baselines. We consider 4 baseline methods: (1)
Vanilla SFT: We use standard LoRA or FFT as
a lower performance bound. (2) MC-Dropout
(MCD) (Gal and Ghahramani, 2016): We use a
dropout rate of 0.02 during fine-tuning and per-
form sampling 4 times. (3) Deep Ensemble (En-
semble) (Lakshminarayanan et al., 2016): We
use 3 fine-tuned LLMs. (4) Temperature Scaling
(TS) (Guo et al., 2017b): The optimal temperature
is calculated on the ID validation set and applied to
both the ID and OOD datasets. See Appendix G.2
for more details.

5.2 Main Results

In this section, we validate the effectiveness of Cog-
Calib through comprehensive experiments. First,
we demonstrate the validity of using NLL for as-
sessing knowledge bias, which enhances the inter-
pretability of our framework. Subsequently, we
evaluate CogCalib’s performance on both multiple-
choice and open-ended tasks, showing that it not
only maintains fine-tuning performance but also
significantly improves calibration.

5.2.1 Effectiveness Evaluation of Knowledge
Bias via NLL

In this section, we aim to validate the effective-
ness of using NLL for evaluating knowledge bias.
Table 1 presents accuracy in distinguishing be-
tween unknown/known data using NLL during
training (average accuracy throughout the training
process). The high accuracy proves NLL-based
method aligns well with SliCK (Gekhman et al.,
2024), validating NLL as an effective knowledge
bias evaluation metric. Moreover, we demonstrate
our threshold calculation method outperforms al-
ternative approaches in Appendix F.8.

5.2.2 Calibration of Multi-Choice Task

To verify CogCalib’s robustness and generalizabil-
ity, our evaluation for CogCalib consists of two
dimensions: in-domain performance assessment
and out-of-domain evaluation.
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Dataset Metric Vanilla SFT MCD Ensemble TS CoLS (∆TS) CoMbLS (∆TS) CoECP (∆TS)

OBQA ACC↑ 84.80 83.60 88.00 84.80 85.60 (+0.80) 86.20 (+1.40) 86.20 (+1.40)
ECE↓ 11.20 9.10 6.02 9.90 2.50 (-7.40) 3.70 (-6.20) 7.30 (-2.60)

ARC-C ACC↑ 81.40 80.70 81.14 81.40 81.60 (+0.20) 81.70 (+0.30) 81.60 (+0.20)
ECE↓ 16.50 13.80 13.08 12.30 4.80 (-7.50) 4.20 (-8.10) 7.40 (-4.90)

WG-S ACC↑ 78.00 78.21 80.27 78.00 80.10 (+2.10) 79.20 (+1.20) 80.30 (+2.30)
ECE↓ 20.50 17.77 14.81 15.40 8.90 (-6.50) 9.40 (-6.00) 7.00 (-8.40)

WG-M ACC↑ 84.50 84.37 85.16 84.50 84.50 (+0.0) 84.70 (+0.20) 84.70 (+0.20)
ECE↓ 14.80 13.51 10.09 11.50 4.10 (-7.40) 3.10 (-8.40) 1.00 (-10.50)

BoolQ ACC↑ 90.09 90.15 90.86 90.09 90.15 (+0.06) 89.63 (-0.46) 89.54 (-0.55)
ECE↓ 9.54 8.95 6.69 7.70 1.97 (-5.73) 2.36 (-5.34) 7.68 (-0.02)

Table 2: Comparison of our method’s performance against baselines on in-domain (ID) datasets. Results are
evaluated on Llama3-8B model fine-tuned by LoRA on 5 widely used domain-specific datasets. We integrate LS,
MbLS, and ECP as calibration terms in CogCalib, resulting in 3 variants: CoLS, CoMbLS, and CoECP.

Metric Methods In Domain Smaller Distribution Shift Larger Distribution Shift
OBQA ARC-C ARC-E Business Culture History Psychology

ECE↓

Vanilla SFT 11.20 18.00 13.50 18.40 17.61 19.22 23.38
MCD 9.10 14.56 11.11 13.54 15.70 17.87 20.42

Ensemble 6.02 14.59 8.92 14.09 15.33 15.99 18.76
TS 9.90 15.90 10.40 16.10 16.70 17.40 21.30

CoLS (∆TS) 2.50 (-7.4) 7.50 (-8.4) 2.40 (-8.0) 9.80 (-6.3) 10.30 (-6.4) 12.07 (-5.3) 14.75 (-6.6)
CoMbLS (∆TS) 3.70 (-6.2) 5.80 (-10.1) 1.40 (-9.0) 8.20 (-7.9) 9.48 (-7.2) 9.83 (-7.6) 14.41 (-6.9)
CoECP (∆TS) 7.30 (-2.6) 2.80 (-13.1) 4.90 (-5.5) 3.80 (-12.3) 3.46 (-13.2) 6.27 (-11.1) 9.51 (-11.8)

ACC↑

Vanilla SFT 84.80 79.10 84.10 79.20 79.52 77.63 73.47
MCD 83.60 78.92 84.22 80.78 79.22 76.24 73.38

Ensemble 88.00 79.35 87.37 80.32 79.52 78.39 75.11
TS 84.80 79.10 84.10 79.20 79.52 77.63 73.47

CoLS (∆TS) 85.60 (+1.8) 79.30 (+0.2) 86.30 (+2.2) 79.40 (+0.2) 78.92 (-0.6) 76.24 (-1.4) 73.64 (+0.2)
CoMbLS (∆TS) 86.20 (+2.4) 80.00 (+0.9) 86.70 (+2.6) 81.70 (+2.5) 80.12 (+0.6) 78.92 (+1.3) 74.50 (+1.0)
CoECP (∆TS) 86.20 (+2.4) 79.00 (-0.1) 84.60 (+0.5) 80.80 (+1.6) 81.02 (+1.5) 77.96 (+0.3) 74.50 (+1.0)

Table 3: Comparison of our method’s performance against baselines on distribution shift datasets is presented.
Results are evaluated on Llama3-8B model which is fine-tuned on the OBQA dataset.

In-Distribution Performance. We first conduct in-
domain tests on CogCalib across 5 commonsense
reasoning datasets. On the one hand, our cognitive
methods maintain competitive accuracy compared
to baselines as shown in Table 2, such as CoECP
achieving 86.20% and 80.30% accuracy on OBQA
and WG-S datasets, respectively. On the other
hand, our cognitive methods achieve substantial
calibration improvements across all datasets. These
indicate that CogCalib achieves more objective fine-
tuning on ID tasks.
Performance Under Distribution Shift. Real-
world applications demand robust model perfor-
mance across different scenarios. We evaluate Cog-
Calib under various distribution shifts, including
ARC-C and ARC-E datasets for smaller shifts, and
4 MMLU subjects (Business, Culture, History, Psy-
chology) for larger domain shifts. Table 3 indi-
cates that CogCalib maintains competitive accuracy

compared to the baselines under distribution shifts
and achieves overall superior ECE. These findings
demonstrate the robustness of the CogCalib in tasks
with distribution shifts.

More experiments based on other LLMs. To val-
idate the generalizability of CogCalib, we also con-
duct experiments on Mistral-7B, Qwen2.5-7B, and
Llama2-13B in Appendix F. The results demon-
strate that CogCalib consistently achieves signifi-
cant calibration improvements across these models
while maintaining fine-tuning performance, prov-
ing the cross-model generalizability of CogCalib.

More experiments based on FFT. To explore the
applicability of CogCalib to other fine-tuning meth-
ods, we validate CogCalib with FFT on Llama3-
8B, demonstrating its effectiveness beyond LoRA-
based approaches (see Appendix F.5).
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Figure 6: Comparison of our method’s performance against baseline approaches on OOD datasets is presented. The
results are evaluated on the Llama3-8B model, which is fine-tuned on the open-ended HotpotQA dataset.

5.2.3 Calibration of Open-End Task

In addition, we evaluate CogCalib on open-ended
datasets HotpotQA (experiments on MedMCQA
are presented in Appendix F.1). As shown in Fig-
ure 6, CogCalib maintains accuracy on ID and
OOD tasks while providing larger accuracy gains
on some datasets, e.g., the CoECP shows a 10.8%
ACC gain over Vanilla SFT on ARC-C. Regarding
calibration, our cognitive methods exhibit compre-
hensive improvement. These further demonstrate
the task-agnostic nature of CogCalib.

5.3 Ablation Study

Comparision to Vanilla and Random Calibra-
tion. In this section, we validate the necessity of
employing different learning strategies for known
and unknown data within CogCalib. As baseline
methods, we select (1) Vanilla calibration, which
uniformly applies calibration loss to all data. (2)
Random calibration, which randomly distinguishes
between known and unknown data while maintain-
ing a consistent number of known samples.

As shown in Figure 7, in these tasks, our cogni-
tive methods achieved optimal results in both fine-
tuning performance and calibration, thereby vali-
dating the necessity of employing distinct learning
strategies within CogCalib. Whether using Vanilla
Calibration or Random Calibration, the accuracy
of downstream tasks declined (see more results in
Appendix F.7). Further research revealed that ap-
plying calibration loss to unknown data impairs
the model’s performance on downstream tasks (de-
tailed analysis is presented in the Appendix F.6),
namely that unknown data are critical for aligning
the model with downstream tasks.

Figure 7: Comparison of CogCalib against baselines
(Vanilla and Dynamic random) in terms of fine-tuning
performance and calibration. Since a lower ECE is bet-
ter, we normalize ECE to [0, 1] using ECEmax−ECE

ECEmax−ECEmin

(ECEmax = 0.2, ECEmin = 0.01). ECP’s results are
shown in Figure 19 of Appendix F.7.

Sensitivity to Hyperparameters We investigate
the impact of hyperparameter choices for CogCalib
on performance. As illustrated in Figure 8, both
LS and MbLS consistently demonstrate lower ECE
across various hyperparameter configurations com-
pared to the temperature scaling baseline, while
maintaining comparable accuracy. More results
regarding ECP are provided in the Appendix F.9.
These findings demonstrate the robustness of Cog-
Calib, with multiple hyperparameter configurations
yielding calibration improvements.
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Figure 8: Sensitivity to Hyperparameters. We adjust
the hyperparameters of CogCalib and compare its per-
formance with the temperature scaling baseline on both
ARC-C and WG-S datasets. The experimental results
demonstrate the robustness of our method, showing con-
sistent gains across various configurations.

6 Conclusion

In this work, we reveal that LLMs’ prior knowledge
causes potential poor calibration due to the ubiq-
uitous presence of known data in real-world fine-
tuning, which we discover would induce overcon-
fidence. To address this, we propose CogCalib, a
real-time cognition-aware calibration, which could
achieve more objective fine-tuning. Through exten-
sive experiments, we demonstrate that CogCalib
effectively improves calibration while maintaining
model performance without additional computa-
tional overhead during deployment, enabling more
objective and trustworthy fine-tuning in safety-
critical applications.

Limitations

Our research focuses on how prior knowledge in
large language models (LLMs) leads to poor cali-
bration during the fine-tuning process, and we pro-
pose a real-time calibration framework to address
this issue. However, our study has only investi-
gated models up to 13B parameters, and larger-
scale models remain unexplored. Given additional
GPU resources, we can conduct more comprehen-
sive experiments to validate our findings on larger
models. Furthermore, our framework incorporates
some calibration terms, and new calibration terms
may potentially achieve better performance in the

future. Nevertheless, our research provides a novel
perspective on the problem of poor calibration dur-
ing fine-tuning and offers a real-time solution.
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A Details of Datasets and Calibration Set

Dataset Train Test Val Calibration

HotpotQA 16k 2k 1k 1k
MedMCQA 10k 2k 1k 1k

OBQA 4452 500 500 500
BoolQ 8427 3270 1k 1k
ARC-C 1119 1172 299 200
WG-S 580 1267 80 80
WG-M 2258 1267 300 300

Table 4: Configuration of datasets for fine-tuning. The
validation set is utilized for Temperature Scaling to
search for optimal temperature for calibration, while
the calibration set is employed for threshold updating
during finetuning.

We present detailed statistics of the finetuning tasks
in Table 4. For test-only tasks, including MMLU
subtasks (Business, Culture, History, Psychology,
Physics, Economics, Health, and Law) and the
ARC-E task, we strictly adhered to their official
dataset configurations. For datasets that originally
lacked validation sets in Table 4, we partitioned a
portion of their training data to create validation
sets specifically for Temperature Scaling. The cal-
ibration set was designed to have a comparable
size to the validation set, with samples randomly
selected from the training set at fixed intervals for
threshold updates. Notably, MedMCQA (Pal et al.,
2022), a comprehensive medical multiple-choice
dataset, was restructured into an open-ended format
where option texts were directly used as answers,
following the same question-answering format as
HotpotQA.

B Addendum to Section 3

B.1 Construction of Datasets with Varying
Knowledge Bias

In Section 3, we simulate varying knowledge
bias by adjusting the ratio of unknown to known
samples in the fine-tuning set. Specifically, Nk

and Nunk denote the number of known and un-
known samples in the original dataset, and N =
min{Nk, Nunk} represents the total data volume.

When Nk ≤ Nunk, we first form D0:r by includ-
ing all known samples (where the subscript indi-
cates the ratio of unknown to known data, r = 5 in
our experiments). We then construct the dataset
Di:(r−i)

r
i=1

according to these rules: randomly re-
move N

r known samples from Di:(r−i) and add N
r

randomly selected unknown samples from the orig-
inal dataset to form D(i+1):(r−i−1). For the case

where Nk > Nunk, the process follows the same
principle.

B.2 Additional Results of Section 3
In Section 3.1, we demonstrated that low-bias leads
to overconfidence, while high-bias data contributes
to better calibration. This section presents addi-
tional experimental evidence supporting this phe-
nomenon across multiple datasets, following the
experimental protocol established in Section 3.1.
Figure 9 illustrates the ECE metrics and fine-
tuning performance obtained from experiments on
MathQA, where we constructed scenarios with
varying degrees of knowledge bias. Figure 10
presents our test results on MedMCQA, a domain-
specific open-ended dataset which is restructured
by us as explained in Appendix A. Both figures
clearly demonstrate that calibration performance
deteriorates significantly as bias decreases. These
findings further corroborate our conclusion from
Section 3.1, supporting the principle of "minimal
bias, maximal overconfidence". Furthermore, addi-
tional experiments are conducted on Llama2-13B
(Figure 13), Qwen2.5-7B (Figure 14), and Mistral-
7B (Figure 15), following the same setup described
in Figure 2. The results substantiate that calibration
degradation is a consistent phenomenon observed
across various LLMs, regardless of their architec-
ture or parameter scale.

To examine whether this phenomenon extends
to Full Fine-Tuning (FFT) scenarios, we conducted
additional experiments using Llama3-8B model on
both MathQA and ARC-C datasets. The results,
visualized in Figure 11 and Figure 12, reveal that
the pattern persists in FFT settings. Low-bias data
consistently leads to model overfitting, while the
introduction of new knowledge helps mitigate this
effect and improves calibration. The observation of
this pattern in FFT scenarios further strengthens our
findings, suggesting that the relationship between
bias and calibration is a robust phenomenon that
transcends specific training approaches.

As a supplement, to ensure the stability and con-
sistency of the experiments in Figure 3b, standard
deviations from three trials with different random
seeds are presented in Table 5. These values demon-
strate the consistency and reliability of the results.

Additionally, to investigate the potential inter-
actions between different knowledge bias levels
across datasets in realistic scenarios, we conducted
a comparative analysis using the OBQA dataset.
We randomly sampled equal portions of pure
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Steps 50 100 150 200 250 300 350 400 450 500 550 600

Conf of CS (known) 0.34 1.16 0.71 1.34 0.66 1.05 0.71 0.88 0.45 0.65 0.36 0.66
Conf of IS (known) 1.76 3.24 0.17 3.15 3.47 3.11 1.33 0.58 1.10 0.88 1.73 1.76
Conf of CS (unknown) 5.48 6.67 5.26 2.89 5.01 0.51 3.01 4.97 2.88 4.24 2.87 1.82
Conf of IS (unknown) 3.66 5.61 3.03 2.29 3.76 0.63 3.57 4.24 4.65 4.51 3.72 1.19

Table 5: Standard deviation of confidence values at different steps. Standard deviations are recorded from three
trials with different random seeds. These values demonstrate the consistency and reliability of the results.

Calibration Deterioration

Figure 9: Accuracy and ECE of Llama3-8B fine-tuned
with different knowledge biases in MathQA. The ra-
tio varies from 5:0 to 0:5 (unknown data:known data),
with equal dataset sizes. Calibration deteriorates as the
knowledge bias lowers, while higher knowledge bias
helps improve calibration aligning with findings in Sec-
tion 3.1.

known data (low bias), pure unknown data (high
bias), and mixed data. Figure 16 illustrates the cali-
bration results after fine-tuning the model on these
3 dataset categories. The ECE curve for models
fine-tuned on the mixed dataset consistently main-
tains an intermediate position between the other
two curves throughout the fine-tuning process. This
observation suggests that low-bias data effectively
dilutes the calibration benefits achieved through
high-bias fine-tuning.

C Details of LS, MbLS and ECP

C.1 Label Smoothing

Label Smoothing (LS) (Szegedy et al., 2016) re-
places one-hot encoded labels with smoothed dis-
tributions by allocating small probabilities to non-
target classes, effectively reducing model overcon-
fidence and improving calibration performance in

deep neural networks, as follows:

LI.S = −
∑

k

((1− ϵ)qk +
ϵ

K
) log pk, (4)

where ϵ is label smoothing factor, K denotes the
numbers of total classes, p is the softmax proba-
bility predictions by model, which is computed as
follows:

p = (pk)1≤k≤K ∈ RK ; pk =
explk

∑K
j explj

, (5)

where l = (lk)1≤k≤K ∈ RK denotes logits vectors.
Furthermore, the loss function of LS can be written
as (Liu et al., 2022):

LLS ≜ LCE +
ϵ

1− ϵ
DKL (u||p) , (6)

where LCE denotes Cross-Entropy loss, u denotes
uniform distribution u = 1

K , ≜ stands for equality
up to additive and/or nonnegative multiplicative
constants.

C.2 Margin-based Label Smoothing
Margin-based Label Smoothing (MbLS) (Liu et al.,
2022) addresses the calibration issue in deep neu-
ral networks by imposing inequality constraints on
logit distances, unlike traditional methods that use
equality constraints. This approach provides a bet-
ter balance between model discrimination and cali-
bration performance. MbLS introduces inequality
constraints with controllable margins as follows:

LMbLS = LCE+γ
∑

k

max(0,max
j

(lj)−lk−m),

(7)
where γ is the label smoothing factor, and m is the
logits margin.

C.3 ECP
ECP (Pereyra et al., 2017) is a neural network
regularization technique that works by penalizing
low entropy output distributions as follows:

LECP = LCE − βH(p), (8)
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Calibration Deterioration

Figure 10: Accuracy and ECE of Llama3-8B fine-tuned with different knowledge biases in the open-ended dataset
MedMCQA restructured by us. The ratio varies from 5:0 to 0:5 (unknown data:known data), with equal dataset sizes.
Calibration also deteriorates as the knowledge bias lowers, while higher knowledge bias helps improve calibration
in open-ended fine-tuning scenarios, aligning with findings in Section 3.1.

Calibration Deterioration

Figure 11: ECE of Llama3-8B fine-tuned with dif-
ferent knowledge biases in MathQA using Full Fine-
Tuning (FFT). The ratio varies from 5:0 to 0:5 (unknown
data:known data), with equal dataset sizes. Calibration
deteriorates as the knowledge bias lowers, while higher
knowledge bias helps improve calibration aligning with
findings in Section 3.1.

Calibration Deterioration

Figure 12: ECE of Llama3-8B fine-tuned with dif-
ferent knowledge biases in ARC-C using Full Fine-
Tuning (FFT). The ratio varies from 5:0 to 0:5 (unknown
data:known data), with equal dataset sizes. Calibration
deteriorates as the knowledge bias lowers, while higher
knowledge bias helps improve calibration aligning with
findings in Section 3.1.
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Calibration Deterioration

Figure 13: ECE of Llama2-13B fine-tuned with differ-
ent knowledge biases following the same setup as Figure
2. The results confirm that calibration degradation is a
consistent phenomenon across models.

Calibration Deterioration

Figure 14: ECE of Qwen2.5-7B fine-tuned with differ-
ent knowledge biases following the same setup as Figure
2. The results confirm that calibration degradation is a
consistent phenomenon across models.

Calibration Deterioration

Figure 15: ECE of Mistral-7B fine-tuned with different
knowledge biases following the same setup as Figure
2. The results confirm that calibration degradation is a
consistent phenomenon across models.

Figure 16: ECE of Llama3-8B after fine-tuning on
unknown (high-bias), mixed, and known (low-bias)
datasets, where the mixed dataset is randomly sampled
from OBQA with an equal size. ECE curve for models
fine-tuned on the mixed dataset maintains an intermedi-
ate position, indicating low-bias data would dilute the
calibration benefits of high-bias data.

where β is ECP factor, andH denotes the Shannon
entropy of the softmax prediction given by:

H(p) = −
∑

k

pk log(pk). (9)

D Details of Style Adaptation

As shown in Table 6, the AUROC scores for t0 dis-
crimination demonstrate significant improvement
with style adaptation. This improvement can be
attributed to better alignment between the model’s
output style and fine-tuning data patterns after style
adaptation, which enhances the model’s capability
to utilize NLL for distinguishing between known
and unknown samples.

Dataset t0 w/o sa t0 w/ sa

HotpotQA 0.729 0.888
MedMCQA 0.712 0.908

Table 6: AUROC scores for t0 discrimination in Llama3-
8B with/without style adaptation (sa) on Open-End
tasks.

E Details of ECE and Reliability Diagram

Expected Calibration Error (ECE) serves as one of
the primary metrics for assessing calibration, mea-
suring the alignment between model confidence
and accuracy. As demonstrated in Equation (10),
ECE operates by partitioning model confidence
(maximum output probabilities) into m bins, then
computing a weighted sum of the discrepancies
between accuracy and confidence across all bins.

ECE =
M∑

m=1

|Bm|
N
|acc(Bm)− conf(Bm)|,

(10)
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(a) known, OBQA, ECE=0.134 (b) known, ARC-C, ECE=0.148 (c) known, MathQA, ECE=0.330

(d) unknown, OBQA, ECE=0.047 (e) unknown, ARC-C, ECE=0.032 (f) unknown, MathQA, ECE=0.102

Figure 17: Reliability diagrams of models fine-tuned on OBQA known data or unknown data, evaluated on both
ID test and OOD test (ARC-C, MathQA). Models trained on unknown data demonstrate better alignment between
confidence and accuracy, further validating the conclusions drawn in Section 3.1.

where |Bm| represents the number of samples in
bin m, N denotes the total number of samples,
while acc(Bm) and conf(Bm) are the average ac-
curacy and average confidence in bin m, respec-
tively.

In addition to ECE, calibration property can be
visualized through Reliability Diagram (Bröcker
and Smith, 2007). As illustrated in the Figure 17,
there are significant differences in the reliability di-
agrams between models fine-tuned with unknown
data versus known data. This distinction is evident
in both ID and OOD scenarios, further corroborat-
ing the findings presented in Section 3.

F Additional Experimental Analysis

In this section, we demonstrate the versatility of
the CogCalib through extensive experiments across
a broader range of models and fine-tuning ap-
proaches. Our experiments encompass models of
varying architectures and sizes, along with full-
parameter fine-tuning methods (FFT). Addition-
ally, we present supplementary experiments that
evaluate the potential damage of calibrating un-
known data on downstream tasks performance and

assess the robustness of our method under different
hyperparameter settings and threshold computa-
tion. Meanwhile, we provide complementary re-
sults comparing CoECP with Vanilla and Random
Calibration approaches there.

F.1 Results of Llama3-8B on MedMCQA

We modified the question-answering format of
MedMCQA and transformed it into an open-ended
dataset for the medical domain, as explained in Ap-
pendix A. Table 7 presents the comprehensive ex-
perimental results of Llama3-8B on OOD datasets.
The cognitive methods demonstrated superior cal-
ibration performance while maintaining compara-
ble accuracy relative to baseline approaches. Dif-
ferent cognitive methods exhibited varying advan-
tages across distinct datasets. Specifically, CoECP
achieved optimal ECE on 4 datasets: Physics, Eco-
nomics, Health, and Law. Meanwhile, CoMbLS
showed superior ECE on both OBQA and ARC-
C datasets. Notably, CoECP not only excelled in
calibration but also maintained leading accuracy
scores across almost all test sets.

It’s worth noting that for a fairer comparison of
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Metric Methods Physics Economics Health Law OBQA ARC-C

ECE↓

Vanilla SFT 22.87 18.44 20.00 28.82 12.71 15.87
MCD 18.15 15.44 15.94 24.88 6.93 10.72

Ensemble 20.43 15.52 17.68 25.45 7.49 10.11
TS 25.22 28.53 26.17 21.39 40.71 37.89

CoLS 11.51 7.88 8.89 15.14 5.39 4.24
CoMbLS 18.52 14.14 14.26 22.28 3.83 2.99
CoECP 9.14 6.26 6.58 14.89 11.50 13.49

ACC↑

Vanilla SFT 55.78 67.78 68.70 52.30 59.20 64.84
MCD 55.46 65.22 67.43 49.63 59.00 64.50

Ensemble 55.00 67.78 68.90 50.70 64.00 69.02
TS 55.78 67.78 68.70 52.30 59.20 64.84

CoLS 54.37 66.30 68.35 51.27 67.00 70.64
CoMbLS 55.15 66.84 69.08 50.31 70.60 74.57
CoECP 56.71 68.46 69.69 50.76 71.00 75.60

Table 7: Comparison of our method’s performance against baseline approaches on out-of-domain (OOD) datasets is
presented. The results are evaluated on the Llama3-8B model, which is fine-tuned on the open-ended HotpotQA
dataset.

Metric Methods Physics Economics Health Law OBQA ARC-C

ECE↓

Vanilla SFT 18.14 14.07 16.49 22.55 8.00 6.87
MCD 15.35 11.16 13.61 19.82 5.81 5.19

Ensemble 15.26 9.27 12.51 21.53 5.60 5.50
TS 34.80 40.10 36.80 34.20 54.80 58.60

CoLS 10.39 6.01 8.84 14.08 4.96 2.75
CoMbLS 9.81 5.28 7.90 14.70 3.11 2.85
CoECP 13.39 7.82 9.42 16.98 5.30 2.44

ACC↑

Vanilla SFT 51.72 59.16 59.21 48.21 65.20 73.55
MCD 53.13 59.03 59.15 48.44 65.20 72.27

Ensemble 53.75 64.02 61.95 48.67 67.60 74.49
TS 51.72 59.16 59.21 48.21 65.20 73.55

CoLS 53.13 59.03 59.15 48.44 65.20 72.27
CoMbLS 51.72 58.63 57.20 47.65 65.00 72.01
CoECP 51.72 60.51 60.49 48.72 65.40 73.46

Table 8: Comparison of our method’s performance against baseline approaches on out-of-domain (OOD) datasets is
presented. The results are evaluated on the Llama3-8B model, which is fine-tuned on the open-ended MedMCQA
dataset.

all methods in the OOD scenario, the temperature
scaling baseline uses the best temperature found on
the ID data when applied to OOD data. For long
texts, we used the geometric mean of probabilities
as confidences (Liu et al., 2023) to find the optimal
calibration temperature.

Table 8 presents the experimental results of
Llama3-8B on another open-ended dataset, MedM-
CQA. Across all OOD test sets, CogCalib demon-
strates superior calibration performance, achieving
the ECE compared to all baseline methods. While
Deep Ensemble maintains a slight lead in ACC,
CogCalib achieves comparable accuracy metrics
with other baseline approaches. These findings sug-
gest that CogCalib exhibits universal applicability
across open-ended datasets.

F.2 Results of Llama2-13B

Table 9 and Table 10 demonstrate the experimental
results of CogCalib on the Llama2-13B model. For
this model size, CogCalib achieves significant im-
provements in calibration performance while main-
taining baseline accuracy. Furthermore, it demon-
strates superior accuracy across multiple datasets.
These experimental findings validate that CogCalib
maintains its robustness when applied to larger-
scale models, effectively preserving fine-tuning per-
formance while enhancing calibration under both
ID and distribution shift scenarios.

F.3 Results of Qwen2.5-7B

We conducted comprehensive evaluations on the
Qwen2.5-7B model, with results presented in Ta-
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Dataset Metric Vanilla SFT MCD Ensemble TS CoLS CoMbLS CoECP

OBQA ACC↑ 73.60 73.40 77.20 73.60 76.20 78.60 77.40
ECE↓ 20.91 16.70 10.10 18.90 7.55 6.10 2.62

ARC-C ACC↑ 70.90 70.73 72.10 70.90 71.16 71.50 70.56
ECE↓ 25.98 22.14 18.21 24.70 13.34 13.36 14.43

WG-S ACC↑ 74.59 74.35 74.98 74.59 73.56 72.45 72.63
ECE↓ 16.96 15.73 15.95 14.90 7.99 8.34 16.00

WG-M ACC↑ 82.08 81.61 82.40 82.08 80.82 81.22 81.06
ECE↓ 16.63 14.58 12.43 15.60 7.44 7.17 6.71

BoolQ ACC↑ 89.85 89.94 89.85 89.85 89.72 90.06 89.17
ECE↓ 9.59 8.69 7.58 9.40 2.04 2.47 4.49

Table 9: Comparison of our method’s performance against baselines on in-domain (ID) datasets. Results are
evaluated on Llama2-13B model fine-tuned by LoRA on 5 widely used domain-specific datasets.

Metric Methods ID Smaller Distribution Shift Larger Distribution Shift
OBQA ARC-C ARC-E Business Culture History Psychology

ECE↓

Vanilla SFT 20.91 26.93 21.12 20.86 22.41 22.41 30.40
MCD 16.70 23.78 18.07 17.50 20.26 15.41 27.22

Ensemble 10.10 18.87 14.27 17.76 18.26 14.07 25.80
TS 18.90 25.00 19.70 20.90 21.00 22.70 28.80

CoLS 7.55 13.48 8.51 11.65 13.73 12.45 20.78
CoMbLS 6.10 12.10 7.00 11.42 13.90 11.72 19.98
CoECP 2.62 8.60 3.30 12.49 14.63 9.77 19.78

ACC↑

Vanilla SFT 73.60 67.32 74.37 75.06 72.89 69.89 63.61
MCD 73.40 66.72 74.03 75.51 72.89 68.49 63.70

Ensemble 77.20 68.86 76.47 75.51 73.19 67.31 64.30
TS 73.60 67.32 74.37 75.06 72.89 69.89 63.61

CoLS 76.20 68.94 76.18 75.51 74.10 70.97 64.39
CoMbLS 78.60 69.20 76.98 75.51 73.19 71.61 64.30
CoECP 77.40 67.83 75.34 75.29 72.89 71.08 65.25

Table 10: Comparison of our method’s performance against baselines on distribution shift datasets is presented.
Results are evaluated on Llama2-13B model which is fine-tuned on the OBQA dataset.
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Dataset Metric Vanilla SFT MCD Ensemble TS CoLS CoMbLS CoECP

OBQA ACC↑ 90.60 90.80 91.80 91.60 91.60 91.80 91.20
ECE↓ 8.48 8.09 5.05 7.50 5.65 3.77 7.51

ARC-C ACC↑ 87.46 88.57 87.54 88.48 87.63 87.97 88.48
ECE↓ 11.41 8.89 9.76 9.90 4.24 3.22 9.37

WG-S ACC↑ 78.37 78.93 79.87 79.40 76.95 78.37 78.45
ECE↓ 19.50 14.84 14.89 14.40 11.06 10.41 13.64

WG-M ACC↑ 83.90 83.50 85.16 83.90 84.53 83.74 84.61
ECE↓ 15.17 11.44 10.21 14.70 4.20 4.84 6.77

BoolQ ACC↑ 89.72 90.28 90.61 90.21 90.37 90.09 89.91
ECE↓ 9.71 7.91 7.10 8.80 1.45 4.22 7.19

Table 11: Comparison of our method’s performance against baselines on in-domain (ID) datasets. Results are
evaluated on Qwen2.5-7B model fine-tuned by LoRA on 5 widely used domain-specific datasets.

Metric Methods ID Smaller Distribution Shift Larger Distribution Shift
OBQA ARC-C ARC-E Business Culture History Psychology

ACC↑

Vanilla SFT 90.60 87.54 90.82 88.10 85.24 85.48 83.32
MCD 90.80 87.12 90.49 86.96 84.04 84.85 82.89

Ensemble 91.80 88.05 91.04 88.79 83.43 85.48 83.75
TS 91.60 87.54 90.82 88.10 85.24 85.48 83.32

CoLS 91.60 87.63 90.15 87.41 83.73 85.70 82.54
CoMbLS 91.80 87.63 90.91 88.10 81.63 85.27 83.23
CoECP 91.20 87.29 90.99 87.41 85.24 85.91 83.75

ECE↓

Vanilla SFT 8.48 11.51 8.60 10.78 13.66 12.65 15.09
MCD 8.09 7.54 8.29 9.09 9.90 9.00 11.63

Ensemble 5.05 9.27 7.38 8.51 12.17 10.51 13.08
TS 7.50 11.20 8.30 9.90 13.00 12.10 14.60

CoLS 5.05 0.75 2.43 6.34 5.95 4.80 5.10
CoMbLS 3.77 2.56 1.99 6.34 8.17 4.90 6.90
CoECP 7.51 8.36 8.33 7.66 6.18 6.75 6.66

Table 12: Comparison of our method’s performance against baselines on distribution shift datasets is presented.
Results are evaluated on Qwen2.5-7B model which is fine-tuned on the OBQA dataset.

ble 11 and Table 12. Although Qwen demon-
strated superior accuracy across all datasets and
inherently low ECE compared to other LLMs, our
CogCalib framework still achieved significant cal-
ibration improvements over the baseline. In the
in-distribution (ID) testing (Table 11), both CoLS
and CoMbLS consistently outperformed other ap-
proaches, while maintaining accuracy comparable
to the best-performing Ensemble methods. For out-
of-distribution (OOD) scenarios (Table 12), CoLS
and CoMbLS achieved optimal performance across
all distribution shift conditions. Notably, CoECP
exhibited competitive accuracy performance under
multiple larger distribution shift scenarios.

F.4 Results of Mistral-7B-v0.3

We evaluated CogCalib’s performance on Mistral-
7B-v0.3, with results presented in Table 13 and
Table 14. For in-domain testing (Table 13), our
approach demonstrated superior calibration met-

rics compared to all baselines. While the Ensem-
ble method achieved optimal accuracy in most
cases, our method maintained competitive accu-
racy scores. In out-of-distribution (OOD) scenarios
(Table 14), our approach outperformed the base-
lines in both ECE and accuracy metrics.

F.5 Results of Llama3-8B Using FFT

In addition to LoRA, we validated CogCalib using
Full-parameter Fine-Tuning (FFT) on the Llama3-
8B model. Table 15 and Table 16 present the results
for ID and OOD evaluations, respectively, demon-
strating that CogCalib is effectively applicable to
FFT. The method not only significantly enhances
calibration performance but also improves model
generalization. Specifically, the model trained on
ARC-C achieved an average accuracy of 70.67%
across other tasks, surpassing the conventional SFT
baseline (67.13%). We hypothesize that the intro-
duction of the calibration term mitigates overfitting
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Dataset Metric Vanilla SFT MCD Ensemble TS CoLS CoMbLS CoECP

OBQA ACC↑ 68.40 67.60 65.40 68.40 72.60 70.20 69.00
ECE↓ 25.85 22.65 18.01 23.70 9.61 12.70 14.43

ARC-C ACC↑ 77.13 77.47 79.18 77.13 78.24 77.47 77.30
ECE↓ 20.99 17.86 13.16 20.10 8.22 9.39 8.90

WG-S ACC↑ 77.11 77.43 80.19 77.11 78.06 78.14 77.74
ECE↓ 21.34 19.41 13.36 20.40 11.17 9.48 10.84

WG-M ACC↑ 83.11 83.27 83.90 83.11 82.95 83.35 82.24
ECE↓ 15.47 14.35 10.47 14.70 6.27 4.70 6.10

BoolQ ACC↑ 89.57 89.60 90.89 89.57 89.94 89.48 90.21
ECE↓ 10.22 9.31 6.09 10.00 1.28 0.56 1.45

Table 13: Comparison of our method’s performance against baselines on in-domain (ID) datasets. Results are
evaluated on Mistral-7B model fine-tuned by LoRA on 5 widely used domain-specific datasets.

Metric Methods ID Smaller Distribution Shift Larger Distribution Shift
OBQA ARC-C ARC-E Business Culture History Psychology

ECE↓

Vanilla SFT 20.91 26.93 21.12 20.86 22.41 22.41 30.40
MCD 16.70 23.78 18.07 17.50 20.26 15.41 27.22

Ensemble 10.10 18.87 14.27 17.76 18.26 14.07 25.80
TS 18.90 25.00 19.70 20.90 21.00 22.70 28.80

CoLS 7.55 13.48 8.51 11.65 13.73 12.45 20.78
CoMbLS 6.10 12.10 7.00 11.42 13.90 11.72 19.98
CoECP 2.62 8.60 3.30 12.49 14.63 9.77 19.78

ACC↑

Vanilla SFT 73.60 67.32 74.37 75.06 72.89 69.89 63.61
MCD 73.40 66.72 74.03 75.51 72.89 68.49 63.70

Ensemble 77.20 68.86 76.47 75.51 73.19 67.31 64.30
TS 73.60 67.32 74.37 75.06 72.89 69.89 63.61

CoLS 76.20 68.94 76.18 75.51 74.10 70.97 64.39
CoMbLS 78.60 69.20 76.98 75.51 73.19 71.61 64.30
CoECP 77.40 67.83 75.34 75.29 72.89 71.08 65.25

Table 14: Comparison of our method’s performance against baselines on distribution shift datasets is presented.
Results are evaluated on Mistral-7B model which is fine-tuned on the OBQA dataset.

Dataset Metric Vanilla SFT MCD TS CoLS CoMbLS CoECP

ARC-C ACC↑ 66.81 65.96 66.81 70.82 72.18 70.22
ECE↓ 29.84 28.31 28.61 13.09 14.19 8.66

ARC-E ACC↑ 75.04 74.71 75.04 72.85 73.99 74.92
ECE↓ 17.38 16.18 14.14 13.04 11.54 4.28

Table 15: Comparison of our method’s performance against baselines on in-domain (ID) datasets. Results are
evaluated on Llama3-8B model using full parameter fine-tuning (FFT) on 2 widely used domain-specific datasets.
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Metric Methods ID OOD
ARC-C ARC-E OBQA Business History Psychology

ACC↑

Vanilla SFT 66.81 74.87 68.40 72.31 64.52 55.57
MCD 65.96 74.71 69.40 72.31 63.23 55.14

TS 66.81 74.87 68.40 72.31 64.52 55.57
CoLS 70.82 72.85 73.80 71.85 70.97 67.42

CoMbLS 72.18 73.99 67.60 72.31 72.37 64.82
CoECP 70.22 74.92 65.60 75.74 69.14 66.64

ECE↓

Vanilla SFT 29.84 22.63 27.99 22.29 30.29 40.19
MCD 28.31 20.87 23.59 20.10 28.67 37.72

TS 28.61 21.60 26.20 20.90 28.60 38.40
CoLS 13.09 13.04 8.00 9.60 12.73 16.14

CoMbLS 14.19 11.54 15.72 11.45 13.32 20.69
CoECP 8.66 4.28 9.47 7.90 10.66 11.07

Table 16: Comparison of our method’s performance against baselines on OOD datasets. Results are evaluated on
Llama3-8B model using full parameter fine-tuning (FFT) on OOD scenarios.

during fine-tuning, thereby enhancing the model’s
generalization capabilities.

F.6 Effects of Calibrating Unknown Data

We investigated the impact of calibrating unknown
data on the model’s downstream task performance.
Beyond the adverse effects on OOD tasks ob-
served with multiple-choice data in Section 5.3,
we found that this negative impact was even more
pronounced when using open-ended data as the
fine-tuning dataset.

In our experimental setup, we utilized equal
amounts (1k samples) of known or unknown data
from MedMCQA as fine-tuning datasets, imple-
menting various calibration enhancement methods.
As illustrated in the Figure 18, while using calibra-
tion methods on known data did not significantly
affect performance on OOD tasks, applying cali-
bration methods to unknown data led to a consis-
tent decline in OOD performance. These findings
underscore the critical importance of thoroughly
learning from unknown data during the fine-tuning
process.

F.7 Comparision to Vanilla and Random
Calibration.

We present a comparative analysis of CoECP
against its corresponding variants: Vanilla calibra-
tion and Random Calibration. As illustrated in
Figure 19, CoECP consistently outperforms both
baseline methods across most datasets in terms of
calibration and fine-tuning performance. These
results further support our findings in Section 3,
which emphasize that unknown data plays a cru-
cial role in aligning the model with downstream
tasks. The effective utilization of such data simul-

taneously enhances fine-tuning performance and
improves calibration metrics.

F.8 Sensitivity to Threshold Computation.

We compare our threshold calculation called Bal-
anced, with the Accuracy-based method seeking
threshold t which achieves best known/unknown
data classification accuracy using negative log-
likelihood.

Figure 20 reveals that these 2 calculations have
similar calibration effects, but our method attains
a higher accuracy. This improvement can be at-
tributed to the higher TNR achieved by our ap-
proach (Table 17). Accuracy-based calculation
tends to misclassify unknown samples, conse-
quently applying calibration to these samples as
well, which prevents LLM from effectively learn-
ing critical knowledge.

In detail, Table 17 presents the classification re-
sults for both known and unknown data during the
fine-tuning under different threshold calculation
methods. The results demonstrate that when using
our method, both TPR and TNR are well-balanced.
In contrast, when employing the highest accuracy
for threshold calculation, the TNR exhibits notably
lower values. This discrepancy indicates that the
latter method incorrectly classifies unknown data
as known data and subsequently applies calibration
methods, preventing the model from effectively
learning crucial patterns in unknown data during
the fine-tuning process. This limitation explains the
consistently inferior performance of this method
compared to the former approach, as illustrated in
Figure 20.
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Figure 18: Comparison of accuracy on downstream tasks with and without calibration methods when fine-tuning on
MedMCQA known or unknown data. It is observed that calibrating on unknown data significantly deteriorates the
performance of other out-of-distribution (OOD) tasks.

Dataset argmax(TNR+TPR) argmax(Accuracy)

Accuracy TPR TNR Accuracy TPR TNR

ARC-C 99.51 99.54 99.15 99.58 99.95 95.18
OBQA 99.44 99.44 99.52 99.78 99.91 96.82
WG-S 98.83 98.77 99.52 99.49 99.83 96.41

Table 17: Performance metrics (Accuracy, True Positive Rate (TPR), and True Negative Rate (TNR)) for different
optimization criteria on the ARC-C, OBQA, and WG-S datasets.

Figure 19: Comparsion between CogECP, vanilla ECP,
and dynamic random ECP. Our proposed method, Co-
ECP, consistently outperforms all baseline methods in
terms of both calibration and accuracy across multiple
datasets.

Dataset Metrics ECP factor
0.05 0.075 0.1 0.125

ARC-C ACC 82.20 81.80 81.50 80.90
ECE 15.38 15.66 7.21 15.85

wino-S ACC 80.20 78.70 79.20 79.20
ECE 17.05 18.72 2.38 6.28

Table 18: Performance metrics (ACC and ECE) for dif-
ferent ECP factors on the ARC-C and wino-S datasets.

F.9 Sensitivity to Hyperparameters.

We demonstrated additional robustness results re-
garding CogCalib hyperparameters in Table 18, Ta-
ble 19 and Table 20. By varying the ECP Factor
from 0.05 to 0.125 and MbLS Factor from 0.05
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Figure 20: Sensitivity to Threshold Computation. Our
method demonstrates robust performance across dif-
ferent threshold calculation approaches, while employ-
ing our proposed threshold computation methodology
yields superior fine-tuning performance.

to 0.125 (with margins of 0 and 5), our method
consistently achieved improved calibration perfor-
mance compared to the Temperature Scaling base-
line, which showed ECE values of 12.3 on ARC-C
and 15.4 on Wino-S. These results across multiple
parameter settings validate the robustness of our
approach. However, it is worth noting that the ECP
parameters may require more fine-grained tuning
for optimal performance.

Dataset Metrics MbLS Factor (Margin=0)
0.05 0.075 0.1 0.125

ARC-C ACC 80.30 81.90 81.60 82.30
ECE 12.55 8.87 6.22 2.37

WG-S ACC 77.30 78.10 79.60 78.60
ECE 15.55 12.01 9.94 8.06

Table 19: Performance metrics (ACC and ECE) for
different MbLS factors with Margin=0 on the ARC-C
and WG-S datasets.

Dataset Metrics MbLS Factor (Margin=5)
0.05 0.075 0.1 0.125

ARC-C ACC 81.20 81.10 81.40 82.20
ECE 11.35 9.63 5.86 2.53

WG-S ACC 78.10 78.20 78.80 79.30
ECE 15.09 11.87 11.04 6.19

Table 20: Performance metrics (ACC and ECE) for
different MbLS factors with Margin=5 on the ARC-C
and WG-S datasets.

G Implementation Details

In this section, we present a detailed analysis of the
SliCK method, the implementation of Temperature
Scaling for both open-ended and multiple-choice
data, along with our specific hyperparameter con-
figurations.

G.1 Details of SliCK

In Section 3, we employed the SliCK (Gekhman
et al., 2024) to classify known and unknown data.
Specifically, the SliCK method concatenates 10
different randomly selected 4-shot prompts for each
question-answer pair and performs 16 sampling
iterations with temperature settings of either 0 or
0.5.

The prediction accuracy under greedy decod-
ing is denoted as P (T = 0), while P (T > 0)
represents the prediction accuracy when T = 0.5.
Based on the accuracy calculations from multiple
sampling iterations, the data is categorized into
4 classes: HighlyKnown, MaybeKnown, Weakly-
Known, and Unknown as shown in Table 21. For
the experiments conducted in Section 3, we treated
HighlyKnown samples as known data and main-
tained the Unknown classification as is.

Type Definition

HighlyKnown P (T = 0) = 1
MaybeKnown P (T = 0) ∈ (0, 1)
WeaklyKnown P (T = 0) = 0 ∧ P (T > 0) > 0

Unknown P (T ≥ 0) = 0

Table 21: SliCK’s definition of different type of data.

G.2 Details of Temperature Scaling

For multiple-choice datasets, we employ the max-
imum probability of the first output token as the
confidence. In contrast, for long-text datasets, we
adopt the geometric mean probability as the con-
fidence for long-text generation, following the ap-
proach proposed in LITCAB (Liu et al., 2023), as
illustrated in the Equation (11),

p(y|x) = L

√√√√
L∏

t=1

p(yt|x, y<t). (11)

To determine the optimal temperature for indi-
vidual tokens, we implement the method developed
by Guo et al.1 , which utilizes gradient descent
to minimize the ECE loss and identify the optimal

1https://github.com/gpleiss/temperature_scaling
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temperature parameter. For long-text confidence,
we employ a grid search strategy to determine the
optimal temperature. The resulting optimal temper-
ature is then applied to enhance calibration for both
ID and OOD samples, ensuring a fair comparison.

Hyperparamter value

LS ϵ 0.1
MbLS γ 0.1

MbLS Margin 0
ECP β 0.1

Table 22: Calibration term’s hyperparameters for multi-
choice QA task.

It is important to note that the optimal tempera-
ture discovered on the validation set typically fails
to improve OOD calibration, which represents a
significant limitation of Temperature Scaling. This
limitation becomes particularly critical in the con-
text of LLMs, which are required to handle diverse
tasks effectively.

G.3 Hyperparameters

In CogCalib‘s framework, we experiment with 3
calibration losses: Label Smoothing (LS), Margin-
based Label Smoothing (MbLS), and ECP. Consid-
ering the distinct nature of tasks we experimented
on: multiple-choice QA with concentrated proba-
bility distributions and open-ended QA with inher-
ently higher uncertainty in outputs, we adopted 2
sets of calibration loss hyperparameters. Specifi-
cally, the hyperparameter settings for multi-choice
QA and open-ended QA are presented in Table 22
and Table 23, respectively. All experiments repeat
three times, and the average results are recorded.
Models smaller than 13B parameters are trained on
an NVIDIA RTX-4090 GPU, while the 13B model
is trained on an NVIDIA A100 GPU.

Hyperparamter value

LS ϵ 0.15
MbLS γ 0.15

MbLS Margin 10
ECP β 0.15

Table 23: Calibration term’s hyperparameters for open-
ended QA task.

In our experimental setup, we fine-tune the LLM
using both LoRA and FFT approaches. For LoRA
implementation, we incorporate LoRA adapters
into all linear layers of the LLM, maintaining the
default PEFT configurations from Huggingface, as

detailed in Table 24. The FFT parameters are
specified in Table 25.

Hyperparamter value

LoRA r 8
LoRA α 16

LoRA target all
Learning Rate 6.0× 10−5

Batch size 2
Learning Rate scheduler Linear

Max Sequence Length 1024

Table 24: Experimental hyperparameters used for LoRA
fine-tuning.

Hyperparamter value

Learning Rate 1.0× 10−5

Batch size 4
Learning Rate scheduler Cosine

Warmup Ratio 0.1
Max Sequence Length 1024

Table 25: Experimental hyperparameters used for FFT
fine-tuning.
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