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Abstract

Large Language Models (LLMs) can assist
multimodal fake news detection by predict-
ing pseudo labels. However, LLM-generated
pseudo labels alone demonstrate poor perfor-
mance compared to traditional detection meth-
ods, making their effective integration non-
trivial. In this paper, we propose Global
Label Propagation Network with LLM-based
Pseudo Labeling (GLPN-LLM) for multimodal
fake news detection, which integrates LLM
capabilities via label propagation techniques.
The global label propagation can utilize LLM-
generated pseudo labels, enhancing predic-
tion accuracy by propagating label information
among all samples. For label propagation, a
mask-based mechanism is designed to prevent
label leakage during training by ensuring that
training nodes do not propagate their own la-
bels back to themselves. Experimental results
on benchmark datasets show that by synergiz-
ing LLMs with label propagation, our model
achieves superior performance over state-of-
the-art baselines. Our code is available online 1.

1 Introduction

Detecting and mitigating the spread of multimodal
fake news is a critical task for safeguarding the au-
thenticity of information in the digital age (Zhang
and Ghorbani, 2020), as shown in Figure 1(a). In
recent years, the rapid growth of social media plat-
forms has significantly accelerated the spread of
misinformation, underscoring the urgent need for
effective detection techniques (Shu et al., 2017;
Zhou and Zafarani, 2020; Shu et al., 2019; Pérez-
Rosas et al., 2017; Zhou et al., 2019). Large Lan-
guage Models such as GPT-4 (Achiam et al., 2023;
Brown et al., 2020) have demonstrated strong ca-
pabilities in language understanding and reasoning
tasks (Xiong et al., 2024; Xu et al., 2024; Chu
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(a) Traditional Multimodal Fake News Detection

(b) Straightforward LLM Integration

(c) Label Propagation for LLM Integration
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Figure 1: Illustrations of different methods.

et al., 2024; Bai et al., 2024), making them promis-
ing tools for enhancing fake news detection sys-
tems (Wu et al., 2024; Sun et al., 2024; Hu et al.,
2024a; Su et al., 2023).

A straightforward approach to leveraging LLMs
for multimodal fake news detection involves di-
rectly combining predictions from existing models
with LLM outputs, as illustrated in Figure 1(b).
However, LLM-generated pseudo labels may sig-
nificantly underperform compared to existing mul-
timodal fake news detection models (see Table 1),
indicating that this direct combination approach re-
quires further refinement. Therefore, it is essential
to explore more effective methods for integrating
LLM capabilities into fake news detection tasks.

To address these limitations, we propose a
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novel framework that integrates LLM-generated
pseudo labels via Label Propagation (LP) (Zhu and
Ghahramani, 2002) techniques, as shown in Fig-
ure 1(c). LP enhances classification performance
by propagating labels or pseudo labels between
samples (Zhu and Ghahramani, 2002; Iscen et al.,
2019; Zhao et al., 2023). Importantly, LP can re-
main effective even when pseudo label accuracy is
moderate (Sun et al., 2025), making it well-suited
for incorporating LLM-generated pseudo labels in
fake news detection, where individual LLM predic-
tions may be imperfect.

Our framework, Global Label Propagation Net-
work with LLM-based Pseudo Labeling (GLPN-
LLM), introduces a mask-based global label propa-
gation module that works alongside an LLM-based
pseudo label generation module. The global la-
bel propagation module can utilize LLM-generated
pseudo labels, enhancing prediction accuracy by
propagating label information among all samples.
For label propagation, a mask-based mechanism is
designed to prevent label leakage during training
by ensuring that training nodes do not propagate
their own labels back to themselves. Experimental
results on benchmark datasets show that by syn-
ergizing LLMs with label propagation, our model
achieves superior performance over state-of-the-art
baselines, demonstrating its effectiveness for fake
news detection.

In summary, our contributions are threefold:

• We propose Global Label Propagation Net-
work with LLM-based Pseudo Labeling
(GLPN-LLM), a novel multimodal fake news
detection framework that integrates LLM ca-
pabilities via label propagation techniques.

• We introduce a mask-based global label propa-
gation mechanism that prevents label leakage
during training while effectively propagating
label information across all samples.

• We conduct experiments on three benchmark
datasets, demonstrating that our framework
achieves superior performance compared to
state-of-the-art baselines with significant im-
provements in accuracy and F1 scores.

2 Related work

In this section, we review related work in multi-
modal fake news detection and label propagation
techniques.

2.1 Multimodal Fake News Detection

Early fake news detection methods primarily fo-
cused on text-based classification (Shu et al., 2017;
Wang et al., 2018). Recent work in fake news de-
tection has also benefited from multimodal learn-
ing (Jin et al., 2017), which has achieved success
in many applications (Gao et al., 2025; Hu et al.,
2025; Zhang et al., 2023; Yang et al., 2024; Fang
et al., 2023). Recent studies show growing atten-
tion on multimodal representations (Yang et al.,
2021; Singhal et al., 2019) and various multimodal
methods have been proposed, such as adversar-
ial training for modality-invariant feature learn-
ing (Wang et al., 2018), multimodal attention mech-
anisms (Qian et al., 2021), and multimodal graph-
based approaches (Wang et al., 2020; Zhao et al.,
2023).

2.2 Label Propagation

Label Propagation (LP) (Zhu and Ghahramani,
2002) spreads label information across a graph to
predict unlabeled nodes, assuming connected nodes
may share labels (Zhu et al., 2003). It has been ex-
tended to improve performance, such as kernelized
LP for non-linear relationships (Zhou et al., 2003)
and post-processing approaches that correct predic-
tions through error correlation (Huang et al., 2021).
Some recent work (Zhang et al., 2022; Yang et al.,
2023) combines LP with Graph Neural Networks
(GNNs) (Kipf and Welling, 2016; Velickovic et al.,
2018; Mao et al., 2023; Hu et al., 2024b)—which
show promising performance for social media ap-
plications (Liang et al., 2024; Hu et al., 2024c,
2021; Zhang et al., 2024; Sun et al., 2023; Sang
et al., 2025b,a; Qiao et al., 2024; Zhang and He,
2025)—achieving encouraging results.

3 Method

In this section, we introduce our Global Label Prop-
agation Network with LLM-based Pseudo Labeling
(GLPN-LLM) framework.

3.1 Global Label Propagation Network with
LLM-based Pseudo Labeling

LLM-generated pseudo labels underperform com-
pared to existing multimodal fake news detection
models. This underperformance makes their effec-
tive integration into detection systems a significant
challenge. Therefore, as simpler direct combina-
tion methods require further refinement, we explore
more advanced strategies to fully leverage the po-
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[SEP]
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Figure 2: Overview of the GLPN-LLM framework for fake news detection. The framework synergizes LLM-
generated pseudo labels with a global label propagation mechanism, leveraging multimodal features.

tential of LLMs. To address these limitations, we
propose the Global Label Propagation Network
with LLM-based Pseudo Labeling (GLPN-LLM)
framework. This novel framework enables compre-
hensive label propagation across the entire graph
and leverages Large Language Models to gener-
ate pseudo labels for the test set. By integrating
these components, GLPN-LLM ensures full data
utilization and improves label alignment between
text-image representations and their corresponding
labels, thereby significantly enhancing the effec-
tiveness of fake news detection.

3.2 Multimodal Feature Extraction
To effectively capture the multimodal character-
istics of news items, we employ CLIP (Radford
et al., 2021) for feature extraction. CLIP is a pow-
erful model that jointly learns visual and textual
representations by aligning them in a shared em-
bedding space. Given a news item comprising an
image and its corresponding text, we utilize CLIP’s
dual encoders to generate high-dimensional feature
vectors for both modalities.

Specifically, the image encoder produces the vi-
sual feature vector vi ∈ Rdv , while the text encoder
yields the textual feature vector ti ∈ Rdt . These
feature vectors are then concatenated to form a
unified representation xi ∈ Rdt+dv , where:

xi = ti ⊕ vi (1)

Here, ⊕ denotes the concatenation operation. By
leveraging CLIP’s robust feature extraction capa-
bilities, our framework generates unified feature

vectors that effectively integrate textual (semantic)
and visual information from each news item. En-
suring these modalities are well-represented and
aligned is crucial for enhancing the overall perfor-
mance of fake news detection.

3.3 Cross-Modal Graph Construction

We construct a cross-modal graph following the
graph construction method proposed in FCN-
LP (Zhao et al., 2023). Each node in the graph
represents a distinct news item, characterized by
a unified feature vector. Edges between nodes are
established based on multiple similarity metrics to
encapsulate both intra- and inter-modal relation-
ships. These similarity measures include: 1) con-
catenated feature similarity: This integrates both
textual and visual embeddings by calculating the
cosine similarity between the concatenated feature
vectors of two news items. 2) image-to-text similar-
ity: This measures the semantic similarity between
the image feature of one news item and the text
feature of another. 3) text-to-image similarity: This
assesses the similarity from text to image across
different news items. 4) image-to-image similarity:
This captures the similarity within the same modal-
ity by comparing image features of different news
items. 5) text-to-text similarity: This evaluates the
similarity between text features of different news
items. An edge is created between two nodes i and
j if any of the aforementioned similarity scores
exceed a predefined threshold (θ = 0.95). This
threshold ensures that only strongly related news
items are connected.
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By constructing the graph using these compre-
hensive similarity measures, we ensure that label
information can be effectively propagated across
multimodally related news items. This cross-modal
graph structure leverages the full spectrum of avail-
able data, enabling robust and accurate alignment
between text-image representations and their corre-
sponding labels. Consequently, the Global Label
Propagation Network can maximize data utilization
and enhance the overall performance.

3.4 Label Integration into Node Features
To facilitate effective label propagation across the
entire dataset, it is essential to integrate label infor-
mation directly into the node features within the
cross-modal graph. This involves incorporating
both the ground truth labels available for training
data and the pseudo labels generated for unlabeled
or test data. We introduce the Label Integration
Module to achieve this, which seamlessly embeds
these varied label types into node feature represen-
tations, thereby enhancing the semantic alignment
between labels and multimodal data.

The core of this module is the construction of an
augmented feature vector for each node i. Specif-
ically, the label-based feature y′

i, whose composi-
tion is detailed in Section 3.5, is concatenated with
the original node features xi:

x′
i = xi ⊕ y′

i (2)

This integration ensures that both feature and la-
bel information are jointly represented within each
node, enabling the model to leverage label seman-
tics during the propagation process.
Mixed-Initiative Labeling To further enhance the
label propagation process and ensure the inclusion
of high-confidence pseudo labels, we introduce the
Mixed-Initiative Labeling approach. This method
leverages a pre-trained LLM to generate reliable
pseudo labels for unlabeled data, thereby augment-
ing the label information available for propagation
within the graph.

The Mixed-Initiative Labeling process begins
with constructing a structured prompt that incorpo-
rates both the context and the specific task require-
ments. The prompt is formulated as

X = [cls] <prompt> [SEP] <cleaned Twitter text>
(3)

Y = [detection], ŷ, [confidence], c (4)

The <prompt> provides the necessary context for
the LLM to perform the detection task, while the

<cleaned Twitter text> represents the prepro-
cessed content of the news item. Detailed examples
of the prompts used are provided in Table 3.

Upon receiving the structured input, the LLM
processes the prompt and generates two key out-
puts: 1) Detection Label (ŷ) indicates the authen-
ticity of the news item, categorizing it as either
true or fake. 2) Confidence Score (c) reflects the
LLM’s confidence in its prediction, quantifying the
probability associated with the generated label.

To ensure the reliability of the propagated la-
bels, we employ a confidence-based filtering mech-
anism. Specifically, pseudo labels are selected for
integration into the graph based on their associated
confidence scores (c). Once selected, the pseudo
labels (ŷ) are converted into one-hot encoded vec-
tors and integrated into the graph’s node features.
This integration is performed as follows:

ỹi =





yi if node i is truly labeled,

ŷi if unlabeled node i is high-confidence,

0 otherwise.

(5)

where nodes without high-confidence pseudo labels
retain zero vectors as label embeddings, ensuring
only reliable label information is propagated.

3.5 Global Random Mask for Optimization

During inference, we set the label-based features
y′
i = ỹi. However, during training, y′

i is obtained
via a Global Random Mask (GRM) to prevent label
leakage. Without a mechanism like the Global Ran-
dom Mask, if a node’s label is included in its input
features (due to label integration), the model might
learn to predict this label trivially during training,
without sufficiently leveraging the graph structure
or original content features. This is a form of label
leakage. Using these propagated labels as part of
the node input features can inadvertently leak label
information into the training process, resulting in
biased training outcomes. GRM addresses this is-
sue by randomly masking the label information of
a subset of nodes and computing the loss only for
these nodes during each training iteration, where
label masking prevents label leakage.

The GRM operates by selectively masking the
label embeddings of a randomly chosen subset of
nodes in the unified graph during each training
epoch. Specifically, given a mask ratio ρ (e.g.,
ρ = 0.3), a proportion of ρ×N nodes are randomly
selected, where N is the total number of nodes
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in the graph. For each selected node i, its label
embedding ỹi is replaced with a zero vector:

y′
i = ỹi ·mi (6)

where mi is a binary mask scalar defined as:

mi =

{
0 if node i is selected for masking,
1 otherwise.

(7)

Note that this masking operation only affects the
label embeddings, leaving the original feature vec-
tors xi unchanged. This masking prevents label
leakage during training by ensuring that training
nodes do not propagate their own labels back to
themselves, thus preventing the model from relying
on this information for classification.

Given y′
i, we obtain x′

i using Equation 2 as each
node’s feature vector, then apply a GCN (Kipf and
Welling, 2016) on the graph to predict labels for
each node. Since x′

i contains both multimodal con-
tent features and label information, both types of
information are propagated through the graph by
the GCN for fake news detection. The GCN out-
put is optimized using cross-entropy loss with the
Adam optimizer (Kingma, 2014).

4 Experiment

In this section, we conduct experiments on public
benchmark datasets to verify the effectiveness of
GLPN-LLM and perform detailed analysis to as-
sess the contribution of each proposed component.

4.1 Datasets
We evaluate our method on three widely-used
benchmark datasets: Twitter (Boididou et al.,
2015), PHEME (Zubiaga et al., 2017), and
Weibo (Jin et al., 2017). The Twitter dataset con-
tains 17,000 tweets (15,000 for training, 2,000 for
testing). PHEME consists of 1,414 training tweets
and 608 testing tweets related to five major news
events. The Weibo dataset includes 4,141 train-
ing samples and 1,125 test samples from the Sina
Weibo platform. Details of these datasets are pro-
vided in Appendix A.

4.2 Baselines
We compare our GLPN-LLM framework against
several state-of-the-art methods, including LLM
(GPT-4o) (Hurst et al., 2024), EANN (Wang
et al., 2018), SpotFake (Singhal et al., 2019), and
MVAE (Khattar et al., 2019), which leverage multi-
modal features for fake news detection. We also in-
clude SAFE (Zhou et al., 2020), MCAN (Wu et al.,

2021), HMCAN (Qian et al., 2021), FCN (Zhao
et al., 2023), FCN-LP (HMCAN), FCN-LP (CLIP),
FCN-LP (HMCAN) + LLM, and FCN-LP (CLIP)
+ LLM (Zhao et al., 2023), where HMCAN and
CLIP in parentheses denote the multimodal fea-
ture encoders. FCN-LP + LLM is a naive solu-
tion, where FCN-LP directly uses LLM-generated
pseudo labels. For our method, we report the re-
sults of GLPN-LLM (HMCAN) and GLPN-LLM
(CLIP), which use different multimodal encoders
HMCAN and CLIP, respectively. For experiments
in ablation studies and detailed analysis, we use
CLIP by default and omit the parentheses.

4.3 Evaluation Metrics

We use Accuracy, Precision, Recall, and F1 Score
to evaluate detection performance. Following stan-
dard practice, F1 metrics are reported as macro
averages, where higher values indicate better per-
formance.

4.4 Overall Evaluation

The performance results on the three datasets are
shown in Table 1. Based on the results, we have
the following observations:

• Among the baselines that do not use label
propagation techniques, HMCAN and FCN
consistently outperform the others. Note that
LLM also shows poorer performance com-
pared to these methods.

• By incorporating label propagation tech-
niques, FCN-LP achieves a noticeable im-
provement in performance across all datasets
over baselines that do not use LP, which vali-
dates the efficacy of label propagation on this
task.

• FCN-LP + LLM leverages LLM-generated
pseudo labels in a naive way, and only
achieves marginal performance improvement
over FCN-LP, showing that it is non-trivial to
synergize LLMs with label propagation for
fake news detection.

• Our framework, GLPN-LLM, introduces a
mask-based global label propagation module
that works alongside an LLM-based pseudo
label generation module, outperforming pre-
vious methods with substantial performance
improvement. Specifically, GLPN-LLM (HM-
CAN) demonstrates substantial improvements
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Methods
Twitter PHEME Weibo

Accuracy ↑ Precision ↑ Recall ↑ F1 ↑ Accuracy ↑ Precision ↑ Recall ↑ F1 ↑ Accuracy ↑ Precision ↑ Recall ↑ F1 ↑

LLM 75.39±3.32 75.66±3.44 80.92±2.83 78.20±5.66 74.38±6.68 78.66±5.31 75.16±4.32 76.87±5.65 80.86±3.11 82.16±2.86 81.33±3.66 81.75±2.95

EANN 71.53±0.91 71.38±1.23 63.82±2.11 68.91±1.58 70.17±0.79 71.28±1.32 67.36±2.17 69.10±1.83 79.18±0.76 80.31±1.23 78.52±0.32 79.44±2.13

SpotFake 77.16±1.57 75.32±1.14 87.83±0.63 85.14±0.07 81.37±2.38 79.53±2.27 81.22±2.43 79.43±0.75 86.39±2.51 86.12±0.53 87.17±2.63 83.22±1.41

MVAE 74.56±1.58 80.15±2.69 76.34±0.83 81.57±1.98 77.83±1.27 73.82±2.05 73.45±2.62 72.21±0.54 71.86±0.25 70.32±0.69 70.32±2.84 70.53±1.60

SAFE 76.66±3.00 76.32±1.94 75.41±2.12 76.37±2.85 81.25±1.34 79.22±2.76 79.11±1.45 79.69±2.67 84.91±2.12 83.81±1.58 82.19±1.16 83.01±1.70

MCAN 80.91±2.33 82.68±2.48 76.67±0.94 82.26±1.32 80.74±1.89 79.21±2.23 79.64±1.53 80.15±0.86 86.50±3.00 88.10±2.10 84.60±1.80 86.15±1.60

HMCAN 83.91±1.49 81.68±2.08 84.67±1.21 82.57±1.62 86.36±1.83 83.18±1.41 83.81±2.51 83.49±1.07 86.75±2.95 88.40±3.00 84.65±1.80 87.20±1.20

FCN 82.86±1.27 78.64±1.68 87.39±0.85 82.78±0.47 80.36±1.93 84.43±1.27 89.12±0.12 86.71±1.88 82.92±0.54 83.17±1.00 88.45±2.13 86.74±0.41

FCN-LP (HMCAN) 84.57±1.62 83.58±1.66 85.22±2.06 84.04±0.82 87.25±1.18 84.48±1.91 84.78±1.95 84.50±0.85 87.15±1.32 88.82±2.56 86.55±1.98 88.11±1.66

FCN-LP (CLIP) 85.32±2.56 81.52±2.82 89.32±0.99 85.24±1.93 84.68±0.81 86.32±1.55 89.85±1.22 87.97±0.88 84.47±1.66 88.41±0.26 91.18±0.69 89.78±0.84

FCN-LP (HMCAN) + LLM 85.30±1.88 84.70±2.25 86.30±2.53 85.10±0.98 87.35±1.37 84.55±2.76 85.85±2.19 84.60±1.28 87.55±1.94 89.30±2.85 88.60±2.39 88.75±1.97

FCN-LP (CLIP) + LLM 85.93±1.83 81.92±2.64 90.44±2.17 85.97±2.72 84.89±2.81 87.80±2.36 90.55±2.28 89.21±2.59 84.88±2.78 88.55±2.43 91.68±1.95 89.85±2.67

GLPN-LLM (HMCAN) 87.60±1.23 86.52±0.92 88.88±1.88 86.86±0.85 88.29±0.38 86.92±0.88 88.14±1.11 86.87±1.32 90.66±1.32 89.06±0.13 92.20±0.17 91.46±0.16

GLPN-LLM (CLIP) 88.83±2.23 84.02±2.43 92.68±2.81 89.03±2.18 86.47±1.97 89.24±2.74 92.13±2.56 90.66±2.32 86.74±1.32 89.83±0.88 93.27±0.65 91.52±0.66

Table 1: Performance comparison of different methods on the Twitter, PHEME, and Weibo datasets. The highest
value in each column is marked in bold.

over FCN-LP (HMCAN) + LLM, and GLPN-
LLM (CLIP) also shows considerable gains
compared to FCN-LP (CLIP) + LLM. These
consistent improvements are observed across
all three datasets. This shows that GLPN-
LLM can effectively integrate LLM capabili-
ties via label propagation techniques for mul-
timodal fake news detection.

4.5 Ablation Study

To assess the contribution of each component in
our GLPN-LLM framework, we conduct an abla-
tion study, summarized in Table 2. By introducing
our mask-based global label-propagation module,
GLPN surpasses FCN-LP, which utilizes basic la-
bel propagation techniques, demonstrating the su-
periority of our label propagation strategy. GLPN-
LLM extends GLPN by coupling our mask-based
global label-propagation module with an LLM-
based pseudo-label generation module, effectively
integrating LLMs to achieve superior performance
in multimodal fake news detection.

4.6 Detailed Analysis

4.6.1 Effect of Mask Rate
We examine the impact of the mask rate on the
performance of GLPN-LLM, as shown in Figure 3.
The mask rate determines the proportion of label
information that is masked during each training
iteration, influencing how much label data is avail-
able for propagation. As illustrated in Figure 3, we
vary the mask rate from 0.1 to 0.9 and observe the
corresponding changes in accuracy, precision, and

recall. Our results indicate that a mask rate of 0.5
yields the best performance, with the model achiev-
ing an accuracy of 86.80%, precision of 86.3%, and
recall of 91.8%. This optimal mask rate suggests
that balancing the availability and masking of label
information is crucial for effective label propaga-
tion, allowing the model to generalize well without
overfitting to specific label patterns.

4.6.2 Impact of the Quantity of
LLM-Generated Pseudo Labels

We analyze how the number of LLM-generated
pseudo labels affects detection performance, as
shown in Figure 3. We experiment with varying
the percentage of pseudo labels integrated into the
graph, ranging from the top 1% to the top 90%
based on confidence scores. The results, depicted
in Figure 3, demonstrate that incorporating pseudo
labels up to the top 5% of confidence scores yields
the highest performance improvements. Increasing
the percentage beyond 5% does not lead to further
gains and may even degrade performance due to
the inclusion of lower-confidence labels, which can
introduce noise into the label propagation process.
Therefore, selecting a top 5% threshold ensures that
only high-confidence pseudo labels are utilized, en-
hancing the reliability and effectiveness of label
propagation within the graph.

4.6.3 Analysis of Prompt Designs
We analyze the effect of prompt specificity by vary-
ing the level of contextual information provided, as
shown in Table 3 and Table 4 in the appendix. In
general, more detailed prompts tend to yield better
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Method
Twitter PHEME Weibo

Accuracy ↑ Precision ↑ Recall ↑ F1 ↑ Accuracy ↑ Precision ↑ Recall ↑ F1 ↑ Accuracy ↑ Precision ↑ Recall ↑ F1 ↑
FCN-LP 85.32 81.52 89.32 85.24 84.68 86.32 89.85 87.97 84.47 88.41 91.18 89.78
GLPN 85.47 82.27 90.57 86.30 85.58 87.58 89.99 86.96 85.07 88.95 91.61 90.76
GLPN-LLM 88.83 84.02 92.68 89.03 86.47 89.24 92.13 90.66 86.74 89.83 93.27 91.52

Table 2: Ablation study of different components of GLPN-LLM for multimodal fake news detection. The highest
value in each column is marked in bold.
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Figure 3: The effect of the mask rate and the impact of the quantity of LLM-generated pseudo labels. The first
row shows how the mask rate parameter affects Accuracy, Precision, and Recall. The second row investigates how
incorporating different proportion of LLM-generated pseudo labels from the test set into the label propagation
process affects performance. The presented results are averaged across the three benchmark datasets.

performance as they provide clearer and more com-
prehensive guidance for the model. Prompts with
sufficient detail ensure higher confidence scores
and more reliable pseudo-label generation, result-
ing in improved recall rates and F1 scores, as shown
in Figure 4. In contrast, simple prompts, which
lack necessary contextual information, often lead to
poorer performance, lower confidence, and reduced
label accuracy. However, it is important to strike a
balance—while detailed prompts are beneficial, ex-
cessive complexity or overly intricate phrasing may
introduce noise, potentially confusing the model
and diminishing the effectiveness of label genera-
tion. Clear, concise, and well-structured prompts
remain optimal for achieving consistent and reli-
able results.

4.7 Case Study

We present a case study demonstrating the clas-
sification process of our GLPN-LLM framework
for real and fake news. As shown in Figure 5, the
model relies on textual content, image features ex-
tracted using CLIP, and LLM-generated pseudo
labels. Real news is labeled ‘R’, Fake news ‘F’.

Twitter PHEME Weibo Twitter PHEME Weibo

Accuracy F1
90

88

86

84

82

92

90

88

86

84

91.52

89.85
90.66

88.3289.03

86.85

86.74

85.81

86.47
85.93

88.83

87.66

Figure 4: Effect of prompt detail on performance. De-
tailed prompts achieve higher accuracy and F1 scores
than simple prompts. Yellow bars represent simple
prompts, while blue bars represent detailed prompts.

We report the model’s predicted probability for the
challenging instances.

In the first example, the original model misclassi-
fies real news as fake. However, after applying the
GLPN-LLM framework, the global label propaga-
tion module successfully corrects the classification,
identifying the news as real. The model relied
on the consistency of features across the dataset,
ultimately leading to the correct classification de-
spite initially low credibility scores for individual
features. In the second example, the model ini-
tially misclassifies fake news as real. With the
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MPs, eyewitnesses describe 
Ottawa shooting scene.

URGENT: 3 gunmen involved in 
deadly attack on #CharlieHebdo - 
French interior minister
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Figure 5: Case study - examples of challenging in-
stances with their corresponding images and text.

GLPN-LLM framework, the integration of text, im-
age features, and LLM-generated pseudo labels
helps the model accurately identify the news as
fake. The label propagation mechanism ensures
that the fake news label is correctly spread across
related data points, rectifying the original misclas-
sification. The model’s decision is reinforced by
the alignment between multiple features, resulting
in the correct classification outcome.

4.8 Visualization
Figure 6 presents t-SNE visualizations of the fea-
ture embeddings on the test set for three model
configurations. The first column shows the em-
beddings produced by FCN; real and fake-news
clusters largely overlap, indicating that the model
struggles to distinguish the two classes. This
overlap suggests that relying solely on FCN
does not capture the nuanced differences be-
tween real and fake news. The second col-
umn depicts the embeddings from GLPN. With
our mask-based global label propagation mod-
ule, the separation between real and fake news
becomes more pronounced—particularly on the
Weibo dataset—demonstrating that GLPN yields
embeddings in which the two classes are more dis-
tinct. The most substantial improvement appears
when we integrate LLM-generated pseudo-labels
(GLPN-LLM, third column). In this configuration
the clusters are clearly separated, with minimal
overlap, as illustrated on the Twitter dataset. This

(a) Weibo

(b) Twitter

(c) PHEME

Figure 6: t-SNE visualizations of feature embeddings on
the test set. The first column shows t-SNE embeddings
from FCN, the second column shows embeddings from
GLPN, and the third column shows embeddings from
GLPN-LLM. Each point is color-coded according to its
label.

observation underscores the synergistic effect of
combining label propagation with the rich semantic
signals provided by LLM-generated labels.

5 Conclusion

In this paper, we present a framework, Global La-
bel Propagation Network with LLM-based Pseudo
Labeling (GLPN-LLM), for multimodal fake news
detection. While LLM-generated pseudo labels
alone demonstrate poor performance compared to
traditional detection methods, our approach effec-
tively integrates LLM capabilities via label prop-
agation techniques. Experiments on three bench-
mark datasets demonstrate that GLPN-LLM consis-
tently outperforms state-of-the-art baselines with
significant improvements, highlighting the effec-
tiveness of synergizing LLMs with label propaga-
tion for fake news detection. In the future, our
work will focus on exploring approaches to im-
prove GLPN-LLM’s scalability to larger and more
complex datasets, while examining its adaptability
across diverse social media platforms and content
modalities to enhance practical applicability in real-
world deployment scenarios.
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Limitation

Dependency on Backbone Models The effective-
ness of our GLPN-LLM framework is closely tied
to the performance of the underlying backbone
models, namely FCN. While these models provide
strong feature representations, any limitations in
their ability to capture comprehensive semantic
relationships can directly impact the label propaga-
tion process. Consequently, the overall detection
accuracy is highly dependent on the quality and
robustness of these backbone models. Addition-
ally, the reliance on specific backbones may limit
the adaptability of our framework to other feature
extraction architectures that might offer different
advantages.
Reliance on High-Confidence Pseudo Labels
Our approach relies on the generation of high-
confidence pseudo labels by the LLM to enhance
label propagation. However, the accuracy of these
pseudo labels is contingent upon the LLM’s abil-
ity to produce reliable predictions. Inaccurate or
biased pseudo labels can introduce noise into the
label propagation process, potentially degrading
the model’s performance. Ensuring the reliability
of pseudo labels is crucial, and future work may
explore more robust methods for pseudo label veri-
fication and refinement to mitigate this limitation.

References
Josh Achiam, Steven Adler, Sandhini Agarwal, Lama

Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774.

Jiaxin Bai, Yicheng Wang, Tianshi Zheng, Yue Guo,
Xin Liu, and Yangqiu Song. 2024. Advancing abduc-
tive reasoning in knowledge graphs through complex
logical hypothesis generation. In Proceedings of the
62nd Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), ACL
2024, Bangkok, Thailand, August 11-16, 2024, pages

1312–1329. Association for Computational Linguis-
tics.

Christina Boididou, Katerina Andreadou, Symeon Pa-
padopoulos, Duc Tien Dang Nguyen, Giulia Boato,
Michael Riegler, Yiannis Kompatsiaris, et al. 2015.
Verifying multimedia use at mediaeval 2015. In Me-
diaEval 2015, volume 1436. CEUR-WS.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877–1901.

Yuqi Chu, Lizi Liao, Zhiyuan Zhou, Chong-Wah Ngo,
and Richang Hong. 2024. Towards multimodal emo-
tional support conversation systems. arXiv preprint
arXiv:2408.03650.

Quan Fang, Xiaowei Zhang, Jun Hu, Xian Wu, and
Changsheng Xu. 2023. Contrastive multi-modal
knowledge graph representation learning. IEEE
Trans. Knowl. Data Eng., 35(9):8983–8996.

Junyu Gao, Mengyuan Chen, and Changsheng Xu. 2025.
Learning probabilistic presence-absence evidence
for weakly-supervised audio-visual event perception.
IEEE Transactions on Pattern Analysis and Machine
Intelligence.

Beizhe Hu, Qiang Sheng, Juan Cao, Yuhui Shi, Yang
Li, Danding Wang, and Peng Qi. 2024a. Bad actor,
good advisor: Exploring the role of large language
models in fake news detection. In Proceedings of
the AAAI Conference on Artificial Intelligence, vol-
ume 38, pages 22105–22113.

Jun Hu, Bryan Hooi, and Bingsheng He. 2024b. Effi-
cient heterogeneous graph learning via random pro-
jection. IEEE Trans. Knowl. Data Eng., 36(12):8093–
8107.

Jun Hu, Bryan Hooi, Bingsheng He, and Yinwei Wei.
2025. Modality-independent graph neural networks
with global transformers for multimodal recommen-
dation. In AAAI-25, Sponsored by the Association for
the Advancement of Artificial Intelligence, February
25 - March 4, 2025, Philadelphia, PA, USA, pages
11790–11798. AAAI Press.

Jun Hu, Bryan Hooi, Shengsheng Qian, Quan Fang, and
Changsheng Xu. 2024c. MGDCF: distance learning
via markov graph diffusion for neural collaborative
filtering. IEEE Trans. Knowl. Data Eng., 36(7):3281–
3296.

Jun Hu, Shengsheng Qian, Quan Fang, Youze Wang,
Quan Zhao, Huaiwen Zhang, and Changsheng Xu.
2021. Efficient graph deep learning in tensorflow
with tf_geometric. In MM ’21: ACM Multimedia
Conference, Virtual Event, China, October 20 - 24,
2021, pages 3775–3778. ACM.

1434



Qian Huang, Horace He, Abhay Singh, Ser-Nam Lim,
and Austin R. Benson. 2021. Combining label prop-
agation and simple models out-performs graph neu-
ral networks. In 9th International Conference on
Learning Representations, ICLR 2021, Virtual Event,
Austria, May 3-7, 2021. OpenReview.net.

Aaron Hurst, Adam Lerer, Adam P Goucher, Adam
Perelman, Aditya Ramesh, Aidan Clark, AJ Os-
trow, Akila Welihinda, Alan Hayes, Alec Radford,
et al. 2024. Gpt-4o system card. arXiv preprint
arXiv:2410.21276.

Ahmet Iscen, Giorgos Tolias, Yannis Avrithis, and
Ondrej Chum. 2019. Label propagation for deep
semi-supervised learning. In Proceedings of the
IEEE/CVF conference on computer vision and pat-
tern recognition, pages 5070–5079.

Zhiwei Jin, Juan Cao, Han Guo, Yongdong Zhang, and
Jiebo Luo. 2017. Multimodal fusion with recurrent
neural networks for rumor detection on microblogs.
In Proceedings of the 25th ACM international con-
ference on Multimedia, pages 795–816.

Dhruv Khattar, Jaipal Singh Goud, Manish Gupta, and
Vasudeva Varma. 2019. Mvae: Multimodal varia-
tional autoencoder for fake news detection. In The
world wide web conference, pages 2915–2921.

Diederik P Kingma. 2014. Adam: A method for stochas-
tic optimization. arXiv preprint arXiv:1412.6980.

Thomas N Kipf and Max Welling. 2016. Semi-
supervised classification with graph convolutional
networks. arXiv preprint arXiv:1609.02907.

Yuxuan Liang, Wentao Zhang, Zeang Sheng, Ling
Yang, Jiawei Jiang, Yunhai Tong, and Bin Cui. 2024.
HGAMLP: heterogeneous graph attention MLP with
de-redundancy mechanism. In 40th IEEE Interna-
tional Conference on Data Engineering, ICDE 2024,
Utrecht, The Netherlands, May 13-16, 2024, pages
2779–2791. IEEE.

Qiheng Mao, Zemin Liu, Chenghao Liu, and Jian-
ling Sun. 2023. Hinormer: Representation learning
on heterogeneous information networks with graph
transformer. In Proceedings of the ACM Web Confer-
ence 2023, WWW 2023, Austin, TX, USA, 30 April
2023 - 4 May 2023, pages 599–610. ACM.

Verónica Pérez-Rosas, Bennett Kleinberg, Alexandra
Lefevre, and Rada Mihalcea. 2017. Automatic detec-
tion of fake news. arXiv preprint arXiv:1708.07104.

Shengsheng Qian, Jinguang Wang, Jun Hu, Quan Fang,
and Changsheng Xu. 2021. Hierarchical multi-modal
contextual attention network for fake news detection.
In Proceedings of the 44th international ACM SIGIR
conference on research and development in informa-
tion retrieval, pages 153–162.

Hezhe Qiao, Hanghang Tong, Bo An, Irwin King, Charu
Aggarwal, and Guansong Pang. 2024. Deep graph
anomaly detection: A survey and new perspectives.
arXiv preprint arXiv:2409.09957.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sas-
try, Amanda Askell, Pamela Mishkin, Jack Clark,
et al. 2021. Learning transferable visual models from
natural language supervision. In International confer-
ence on machine learning, pages 8748–8763. PMLR.

Lei Sang, Honghao Li, Yiwen Zhang, Yi Zhang, and
Yun Yang. 2025a. Adagin: Adaptive graph interac-
tion network for click-through rate prediction. ACM
Trans. Inf. Syst., 43(1):3:1–3:31.

Lei Sang, Yu Wang, Yi Zhang, Yiwen Zhang, and Xin-
dong Wu. 2025b. Intent-guided heterogeneous graph
contrastive learning for recommendation. IEEE
Trans. Knowl. Data Eng., 37(4):1915–1929.

Kai Shu, Amy Sliva, Suhang Wang, Jiliang Tang, and
Huan Liu. 2017. Fake news detection on social me-
dia: A data mining perspective. ACM SIGKDD Ex-
plorations Newsletter, 19(1):22–36.

Kai Shu, Suhang Wang, and Huan Liu. 2019. Beyond
news contents: The role of social context for fake
news detection. In Proceedings of the Twelfth ACM
International Conference on Web Search and Data
Mining, pages 312–320. ACM.

Shivangi Singhal, Rajiv Ratn Shah, Tanmoy
Chakraborty, Ponnurangam Kumaraguru, and
Shin’ichi Satoh. 2019. Spotfake: A multi-modal
framework for fake news detection. In 2019 IEEE
fifth international conference on multimedia big data
(BigMM), pages 39–47. IEEE.

Jinyan Su, Claire Cardie, and Preslav Nakov. 2023.
Adapting fake news detection to the era of large lan-
guage models. arXiv preprint arXiv:2311.04917.

Chuxiong Sun, Jie Hu, Hongming Gu, Jinpeng Chen,
Wei Liang, and Mingchuan Yang. 2025. Scalable
and adaptive graph neural networks with self-label-
enhanced training. Pattern Recognit., 160:111210.

Peijie Sun, Le Wu, Kun Zhang, Xiangzhi Chen, and
Meng Wang. 2023. Neighborhood-enhanced super-
vised contrastive learning for collaborative filtering.
IEEE Transactions on Knowledge and Data Engi-
neering, 36(5):2069–2081.

Yanshen Sun, Jianfeng He, Limeng Cui, Shuo Lei, and
Chang-Tien Lu. 2024. Exploring the deceptive power
of llm-generated fake news: A study of real-world de-
tection challenges. arXiv preprint arXiv:2403.18249.

Petar Velickovic, Guillem Cucurull, Arantxa Casanova,
Adriana Romero, Pietro Liò, and Yoshua Bengio.
2018. Graph attention networks. In 6th International
Conference on Learning Representations, ICLR 2018,
Vancouver, BC, Canada, April 30 - May 3, 2018,
Conference Track Proceedings. OpenReview.net.

Yaqing Wang, Fenglong Ma, Zhiwei Jin, Ye Yuan,
Guangxu Xun, Kishlay Jha, Lu Su, and Jing Gao.
2018. Eann: Event adversarial neural networks for
multi-modal fake news detection. In Proceedings of

1435



the 24th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, pages 849–
857. ACM.

Youze Wang, Shengsheng Qian, Jun Hu, Quan Fang,
and Changsheng Xu. 2020. Fake news detection via
knowledge-driven multimodal graph convolutional
networks. In Proceedings of the 2020 on Interna-
tional Conference on Multimedia Retrieval, ICMR
2020, Dublin, Ireland, June 8-11, 2020, pages 540–
547. ACM.

Jiaying Wu, Jiafeng Guo, and Bryan Hooi. 2024. Fake
news in sheep’s clothing: Robust fake news detection
against llm-empowered style attacks. In Proceedings
of the 30th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining, pages 3367–3378.

Yang Wu, Pengwei Zhan, Yunjian Zhang, Liming Wang,
and Zhen Xu. 2021. Multimodal fusion with co-
attention networks for fake news detection. In Find-
ings of the association for computational linguistics:
ACL-IJCNLP 2021, pages 2560–2569.

Siheng Xiong, Ali Payani, Ramana Kompella, and Fara-
marz Fekri. 2024. Large language models can learn
temporal reasoning. In Proceedings of the 62nd
Annual Meeting of the Association for Computa-
tional Linguistics (Volume 1: Long Papers), ACL
2024, Bangkok, Thailand, August 11-16, 2024, pages
10452–10470. Association for Computational Lin-
guistics.

Yifan Xu, Xiaoshan Yang, Yaguang Song, and Chang-
sheng Xu. 2024. Libra: Building decoupled vision
system on large language models. In Forty-first In-
ternational Conference on Machine Learning, ICML
2024, Vienna, Austria, July 21-27, 2024. OpenRe-
view.net.

Xiaocheng Yang, Mingyu Yan, Shirui Pan, Xiaochun Ye,
and Dongrui Fan. 2023. Simple and efficient hetero-
geneous graph neural network. In Thirty-Seventh
AAAI Conference on Artificial Intelligence, AAAI
2023, Thirty-Fifth Conference on Innovative Applica-
tions of Artificial Intelligence, IAAI 2023, Thirteenth
Symposium on Educational Advances in Artificial In-
telligence, EAAI 2023, Washington, DC, USA, Febru-
ary 7-14, 2023, pages 10816–10824. AAAI Press.

Xiaoshan Yang, Baochen Xiong, Yi Huang, and Chang-
sheng Xu. 2024. Cross-modal federated human ac-
tivity recognition. IEEE Trans. Pattern Anal. Mach.
Intell., 46(8):5345–5361.

Xiaoyu Yang, Yuefei Lyu, Tian Tian, Yifei Liu, Yudong
Liu, and Xi Zhang. 2021. Rumor detection on social
media with graph structured adversarial learning. In
Proceedings of the twenty-ninth international confer-
ence on international joint conferences on artificial
intelligence, pages 1417–1423.

Huaiwen Zhang, Zihang Guo, Yang Yang, Xin Liu, and
De Hu. 2023. C2st: Cross-modal contextualized
sequence transduction for continuous sign language

recognition. In IEEE/CVF International Conference
on Computer Vision, ICCV 2023, Paris, France, Oc-
tober 1-6, 2023, pages 20996–21005. IEEE.

Huaiwen Zhang, Xinxin Liu, Qing Yang, Yang Yang,
Fan Qi, Shengsheng Qian, and Changsheng Xu. 2024.
T3rd: Test-time training for rumor detection on social
media. In Proceedings of the ACM on Web Confer-
ence 2024, WWW 2024, Singapore, May 13-17, 2024,
pages 2407–2416. ACM.

Wentao Zhang, Ziqi Yin, Zeang Sheng, Yang Li, Wen
Ouyang, Xiaosen Li, Yangyu Tao, Zhi Yang, and Bin
Cui. 2022. Graph attention multi-layer perceptron.
In KDD ’22: The 28th ACM SIGKDD Conference on
Knowledge Discovery and Data Mining, Washington,
DC, USA, August 14 - 18, 2022, pages 4560–4570.
ACM.

Xichen Zhang and Ali A Ghorbani. 2020. An overview
of online fake news: Characterization, detection, and
discussion. Information Processing & Management,
57(2):102025.

Zhen Zhang and Bingsheng He. 2025. Aggregate to
adapt: Node-centric aggregation for multi-source-
free graph domain adaptation. In Proceedings of the
ACM on Web Conference 2025, WWW 2025, Sydney,
NSW, Australia, 28 April 2025- 2 May 2025, pages
4420–4431. ACM.

Wanqing Zhao, Yuta Nakashima, Haiyuan Chen, and
Noboru Babaguchi. 2023. Enhancing fake news de-
tection in social media via label propagation on cross-
modal tweet graph. In Proceedings of the 31st ACM
International Conference on Multimedia, pages 2400–
2408.

Dengyong Zhou, Olivier Bousquet, Thomas Lal, Jason
Weston, and Bernhard Schölkopf. 2003. Learning
with local and global consistency. Advances in neural
information processing systems, 16.

Xinyi Zhou, Jindi Wu, and Reza Zafarani. 2020. :
Similarity-aware multi-modal fake news detection.
In Pacific-Asia Conference on knowledge discovery
and data mining, pages 354–367. Springer.

Xinyi Zhou and Reza Zafarani. 2020. A survey of fake
news: Fundamental theories, detection methods, and
opportunities. ACM Computing Surveys (CSUR),
53(5):1–40.

Xinyi Zhou, Reza Zafarani, Kai Shu, and Huan Liu.
2019. Fake news: Fundamental theories, detection
strategies and challenges. In Proceedings of the
twelfth ACM international conference on web search
and data mining, pages 836–837.

Xiaojin Zhu and Zoubin Ghahramani. 2002. Learning
from labeled and unlabeled data with label propaga-
tion. ProQuest number: information to all users.

Xiaojin Zhu, Zoubin Ghahramani, and John D Laf-
ferty. 2003. Semi-supervised learning using gaussian
fields and harmonic functions. In Proceedings of the

1436



20th International conference on Machine learning
(ICML-03), pages 912–919.

Arkaitz Zubiaga, Maria Liakata, and Rob Procter. 2017.
Exploiting context for rumour detection in social
media. In Social Informatics: 9th International
Conference, SocInfo 2017, Oxford, UK, September
13-15, 2017, Proceedings, Part I 9, pages 109–123.
Springer.

A Datasets

We validate the proposed methods on three real so-
cial media datasets: Twitter (Boididou et al., 2015),
PHEME (Zubiaga et al., 2017), and Weibo (Jin
et al., 2017):
Twitter (Boididou et al., 2015) is used to detect
fake content on social media by analyzing approxi-
mately 17,000 unique tweets. The tweets are origi-
nally from the widely-used fake news dataset Medi-
aEval Verifying Multimedia Use benchmark (Boi-
didou et al., 2015). Each tweet includes textual con-
tent and a related image, with labels for real/fake.
Following the benchmark (Zhao et al., 2023), we
split the dataset into train and test sets with 15,000
and 2,000 tweets, respectively.
PHEME (Zubiaga et al., 2017) includes tweets
sourced from Twitter, specifically targeting five sig-
nificant breaking news events. Each event includes
a substantial collection of tweets, along with their
textual content, associated images, and real/fake
labels. Following the setup in the benchmark (Zhao
et al., 2023), we adopt 1,414 and 608 tweets as the
training and test sets, respectively.
Weibo (Jin et al., 2017) originates from Sina Weibo,
a widely used microblogging platform in China.
Following the setup in the benchmark (Zhao et al.,
2023), we adopt 4,141 and 1125 tweets as the train-
ing and test sets, respectively.

B Baselines

We benchmark our proposed GLPN-LLM frame-
work against several state-of-the-art methods that
utilize multimodal features and label propagation
techniques. The combined effectiveness of the
backbone and label propagation is significantly in-
fluenced by the backbone’s ability to extract and
integrate features, with weaker backbones limit-
ing overall performance. Building upon recent ad-
vancements in label propagation (Zhao et al., 2023),
we include only methods that employ state-of-the-
art backbone architectures.

We provide a comprehensive comparison with

leading multimodal and label propagation ap-
proaches.

• EANN (Wang et al., 2018) employs atten-
tion mechanisms to integrate textual and vi-
sual features for fake news detection, focusing
on attention-based fusion of modalities to en-
hance prediction accuracy.

• SpotFake (Singhal et al., 2019) utilizes mul-
timodal information to identify fake news by
analyzing both textual content and accompa-
nying images, optimizing feature alignment
across text and images for effective detection.

• MVAE (Khattar et al., 2019) is a multimodal
variational autoencoder that captures the joint
distribution of text and image data, improving
fake news classification through the combina-
tion of textual and visual information.

• MCAN (Wu et al., 2021) is a multi-modal
contextual attention network that fuses inter-
modality and intra-modality relationships, en-
hancing fake news detection by modeling the
dependencies between text and image modali-
ties.

• SAFE (Zhou et al., 2020) combines multi-
modal feature extraction with cross-modal
similarity measures to learn tweet representa-
tions, directly measuring the similarity across
modalities to achieve effective alignment for
detecting fake news.

• HMCAN (Qian et al., 2021) utilizes a hierar-
chical multi-modal contextual attention net-
work to capture rich hierarchical semantics,
enhancing fake news detection by modeling
both high-level and fine-grained relationships
in the data.

• FCN (Zhao et al., 2023) utilizes CLIP for fea-
ture extraction. It constructs a cross-modal
tweet graph to unify text and image features
and then employs a Graph Convolutional Net-
work (GCN) for classification.

• FCN-LP (Zhao et al., 2023) uses CLIP for fea-
ture extraction, followed by fixed label propa-
gation. It builds a cross-modal tweet graph to
unify text and image features, utilizing itera-
tive label propagation to refine predictions.
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To ensure fairness in our comparisons, we follow
the benchmark setup of FCN-LP (Zhao et al., 2023)
and use the same similarity threshold θ across all
datasets to construct the cross-modal tweet graph.

C Implementation Details

For our GLPN-LLM framework, the core graph
neural network is a Graph Convolutional Net-
work (GCN) (Kipf and Welling, 2016). We adopt
Adam (Kingma, 2014) as the optimizer with a 1e-
3 learning rate. The hyperparameters for label
propagation mask rate λmask and LLM pseudo rate
λpseudo are set to 0.50 and 0.05, respectively. The
multimodal common space dimension learned by
GCN is set to 512. To enable a consistent compar-
ison with the baseline, we follow the settings of
previous work FCN-LP (Zhao et al., 2023) and set
the similarity threshold to θ = 0.95 for the Twit-
ter, PHEME and Weibo datasets when building the
cross-modal tweet graph. We train the model 5
times and report the average and standard deviation
for accuracy, precision, recall, and F1 score.

D Efficiency

The LLM module operates independently of the
Label Propagation module and utilizes an API to
significantly reduce computational overhead. Its
computational complexity is O(Ntest · Tavg), where
Ntest is the size of the test set and Tavg is the av-
erage number of tokens per sample (input + out-
put). Taking the Twitter dataset as an example, the
LLM exclusively processes tweets from the test set.
Based on GPT-4o API rates, the processing cost per
tweet is approximately $0.00074, which renders
the module highly efficient for deployment. This
high efficiency ensures that the module is both cost-
effective and scalable for practical deployment.

The LP module introduces minimal additional
cost. This is achieved by injecting pseudo labels
(converted to one-hot vectors) into node features
and then propagating them across the graph. Its
complexity for K iterations on a graph with M
edges is O(K ·M). Consequently, the label propa-
gation step increases the overall computation time
by only about 2%, while substantially boosting
performance.

Overall, the framework’s computational costs,
both in time and monetary terms, remain low and
are more than justified by the resulting accuracy
improvements, making the approach practical for
real-world scenarios.
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Table 3: Prompts for Mixed-Initiative Labeling

Role Content

system You are a professional misinformation evaluation expert with extensive experience in
detecting and evaluating fake news. Your primary task is to assess the authenticity of
the provided news content.
You must adhere to the following strict evaluation guidelines:

• If the news is clearly true, label it as 1 (true).

• If the news contains ambiguity, unverifiable information, or suspicious claims,
you must classify it as 0 (false).

• Alongside your classification, provide a confidence score (between 0% and 100%)
that reflects your certainty in the decision.

• Your confidence score should be lower (e.g., 50%-70%) when the news includes
unclear or mixed signals, and higher (e.g., 80%-100%) when you are certain.

Output format: Result: R, Confidence: C%, where R is 1 (true) or 0 (false), and C
is the confidence score. Be precise, concise, avoid unnecessary explanations, and give
me the reason.

user BREAKING: SkyBusiness reports another five hostages seen escaping #sydneysiege.
Additional context: The event is unfolding in Sydney’s central business district. Initial
unverified reports mention hostages being rescued, but official statements have not yet
been released.

system Result: 1, Confidence: 85%
Reason: Based on credible news reports and consistent information across major media
outlets, the claim of hostages escaping appears highly plausible. Minor uncertainty
remains due to the absence of official verification.

user CONFIRMED: NASA discovers alien life on Mars.

system Result: 0, Confidence: 30%
Reason: This claim lacks supporting evidence from verified scientific sources, and
NASA has not released any official confirmation regarding such a discovery. The
headline seems sensationalized or misleading.

user ALERT: Severe storms expected to hit California tomorrow, warns National Weather
Service.

system Result: 1, Confidence: 95%
Reason: The information originates from the National Weather Service, a highly
reliable and authoritative source. Severe weather forecasts for tomorrow are consistent
across official meteorological channels.
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Table 4: Simple Prompt for Mixed-Initiative Labeling

Role Content

system You are tasked with determining whether the provided news content is true or false.
Output format: Result: R, Confidence :c, where R is 1 (true) or 0 (false).

user BREAKING: SkyBusiness reports another five hostages seen escaping #sydneysiege.

system Result: 1, Confidence: 49%

user CONFIRMED: NASA discovers alien life on Mars.

system Result: 0, Confidence: 20%

user ALERT: Severe storms expected to hit California tomorrow.

system Result: 1, Confidence: 63%
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