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Abstract

Small language models (SLMs) have emerged
as a promising solution for deploying resource-
constrained devices, such as smartphones and
Web of Things. This work presents the first
comprehensive study of over 60 SLMs such
as Microsoft Phi and Google Gemma that are
publicly accessible. Our findings show that
state-of-the-art SLMs outperform 7B models in
general tasks, proving their practical viability.
However, SLMs’ in-context learning capabil-
ities remain limited, and their efficiency has
significant optimization potential. We identify
key SLM optimization opportunities, including
dynamic task-specific routing, model-hardware
co-design, and vocabulary/KV cache compres-
sion. Overall, we expect the work to reveal
an all-sided landscape of SLMs, benefiting the
research community across algorithm, model,
system, and hardware levels.

1 Introduction

The evolution of language models is diverging. On
one hand, in the pursuit of artificial general intelli-
gence, increasingly large language models (LLM)
have been born in datacenters that host hundreds of
thousands of GPUs (Kaplan et al., 2020; Xu et al.,
2024c). The aim of this path is to demonstrate
that machines can solve the most challenging lan-
guage tasks, with the ultimate goal of advancing
human civilization by pushing the boundaries of
science and technology. On the other hand, there is
a growing focus on small language models (SLM),
designed for resource-efficient and ubiquitous de-
ployment on scenarios such as mobile devices and
robotics. The vision behind SLMs is to democra-
tize access to machine intelligence, making it both
accessible and affordable to a wider range of users.
This approach seeks to make intelligence ubiqui-
tous and practical, available to anyone, anywhere,

†Zhenyan Lu and Xiang Li contributed equally to this
work.

at any time – much like the human brain, which
everyone possesses.

Both LLM and SLM are important in reshaping
our daily lives, yet the latter receives significantly
less attention in academia. There has been very
few literature exploring SLM capabilities (Lepag-
nol et al., 2024; Schick and Schütze, 2020; Zhou
et al., 2023) or their runtime cost on devices (Li
et al., 2024b; Laskaridis et al.; Xu et al., 2024b),
often with limited scale or depth. In industrial,
however, SLMs have already been integrated into
commercial off-the-shelf (COTS) devices on a mas-
sive scale (Yuan et al., 2023; Dubiel et al., 2024).
For instance, almost every popular browser has
built-in access to local SLM capability, including
Google Chrome (chr, 2024), Microsoft Edge (edg,
2024) and Opera (ope, 2024). At system level, the
latest Google/Samsung smartphones have built-in
LLM services (Gemini Nano), allowing third-party
mobile apps to leverage LLM capabilities through
prompts and LoRA modules (goo, 2024).

This work presents the first in-depth, systematic
investigation of SLMs, thoroughly discussing their
capabilities and runtime performance. The scope
of this work is limited to those language models
with 100M–5B parameters in decoder-only trans-
former architecture for their wide deployment on
edge devices, which covers the range from low-
end WoT/wearable gadgets like smartwatches to
high-end mobile devices such as smartphones and
tablets. In total, we collected 68 popular SLMs
released by 24 organizations, spanning from OPT
(2022.05) to Llama3.2 (2024.09). The details of
those models are shown in Table 1.

We then built up an end-to-end benchmark that
comprehensively evaluates the model capabilities
(mainly commonsense reasoning and in-context
learning) through 10 widely used datasets, as well
as their runtime costs (prefill and decode speed,
memory footprint, etc.) on two real development
edge boards. Through such investigation, we try to
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answer the following crucial questions concerning
SLMs: “Can SLMs catch up to LLMs in terms of
intelligence?” “What datasets are more likely to
produce a highly capable SLM?” “How different
SLM architecture (e.g., depth, width, atten type)
and the deployment environments (quantization
algorithms, hardware type, etc) impact runtime per-
formance?”

Based on the benchmarking results, we obtain
valuable insights of SLMs. Here, we summarize
a few of them. (1) SLMs capabilities are fast
evolving, closing the gap with Llama-7B/8B se-
ries (§2.3). (2) Not all SLMs benefit from in-
context learning (§2.3). (3) SLMs are typically
trained on way more tokens than what Chinchilla
recommends (“over trained”) (§2.4). (4) Dataset
quality is more crucial than dataset size (§2.4). (5)
Model architecture has non-trivial impacts on in-
ference speed (§3.1). (6) Quantization gains di-
minish in long context (§3.2). We will explain
how these insights create opportunities for the ad-
vancement of SLMs. Overall, our findings paint a
promising picture of on-device ubiquitous SLMs,
yet also highlight the challenges towards resource
efficiency. Specifically, the findings show strong
implications for multiple stakeholders of the SLM
development pipeline. We expect the work to re-
veal an all-sided landscape of SLM and benefit the
research community, including those working on
the algorithm, model, system, and hardware levels.

In summary, we make the following contribu-
tions in this work.

• We exhaustively review 68 small language
models released in recent years, benchmark
their capability as well as on-device cost.

• To this end, we have developed the first mobile
SLM evaluation suite, which handles down-
loading, quantizing, deploying, and measur-
ing the performance of SLMs across hetero-
geneous edge devices. A leaderboard website
is created as well to advance and facilitate the
SLM research.

• Through such in-depth experimental investiga-
tion combined with comprehensive literature
review, we obtain valuable insights from open-
sourced SLMs, fostering future light-weight
SLM research. We also summarize a few po-
tential research topics in SLM.

2 SLM Overview and Benchmarking

2.1 Collecting Popular SLMs

Affiliation Model
name Size Date Attention Activation

Open
training
datasets

Max
context
window

Meta

OPT (Facebook, 2022.05)

125M

2022.05 MHA ReLU ✓ 2k350M
1.3B
2.7B

Galactica (Facebook, 2022.11) 125M 2022.11 MHA GELU 2k1.3B

Llama 3.2 (Meta, 2024.09) 1B 2024.09 MHA GELU 128k3B

BigScience
Bloom (BigScience, 2022.11a) 560M 2022.11 MHA

GELUtanh ✓ 2k1.1B

Bloomz (BigScience, 2022.11b) 1.1B 2022.11 MHA560M

EleutherAI Pythia (EleutherAI, 2023.03)

160M

2023.03 MHA GELU ✓ 2k
410M

1B
1.4B
2.8B

Cerebras Cerebras-GPT (Cerebras, 2023.03)

111M

2023.03 MHA GELU ✓ 2k
256M
590M
1.3B
2.7B

Microsoft

Phi-1 (Microsoft, 2023.09a) 1.3B 2023.09 MHA GELUtanh 2kPhi-1.5 (Microsoft, 2023.09b) 1.3B 2023.09 MHA GELUtanh
Phi-2 (Microsoft, 2023.12) 2.7B 2023.12 MHA GELUtanh 2k

Phi-3-mini* (Microsoft, 2024.04) 3.8B 2024.04 MHA SiLU 4k
Phi-3.5-mini* 2.7B 2024.09 MHA SiLU 4k

StabilityAI StableLM-zephyr* (StabilityAI, 2023.11) 3B 2023.11 MHA SiLU ✓ 1k
StableLM-2-zephyr* (StabilityAI, 2024.01) 1.6B 2024.01 MHA SiLU ✓ 4k

TinyLlama TinyLlama (Unknown, 2023.12) 1.1B 2023.12 GQA SiLU ✓ 2k
Meituan MobileLLaMA (Meituan, 2023.12) 1.4B 2023.12 GQA SiLU ✓ 2k

Alibaba

Qwen 1 (Alibaba, 2023.11) 1.8B 2023.11 MHA SiLU 8k
Qwen 1.5 (Alibaba, 2024.02a) 0.5B 2024.02 MHA SiLU 32k

Qwen 2 (Alibaba, 2024.02b) 1.8B 2024.06 MHA SiLU 32k
4B 32k

Qwen 2.5 (Alibaba, 2024.09)
0.5B

2024.09 GQA SiLU 32k1.5B
3B

MBZUAI
MobiLlama (MBZUAI, 2024.02) 0.5B 2024.02 GQA SiLU ✓ 2k1B

LaMini-GPT (MBZUAI, 2023.04) 774M 2023.04 MHA GELUtanh 1k1.5B

Google
Gemma (Google, 2024.02) 2B 2024.02 MQA GELU 8k

recurrentGemma (Google, 2024.04) 2B 2024.04 MQA GELUtanh 8k
Gemma-2 (Google, 2024.07) 2B 2024.07 GQA GELUtanh 8k

OpenBMB MiniCPM (OpenBMB, 2024.04) 1B 2024.04 GQA SiLU 128k
2B 131k

MiniCPM3 (OpenBMB, 2024.09) 4B 2024.09 MLA SiLU

Apple OpenELM (Apple, 2024.04)

270M

2024.04 GQA SiLU ✓ 2k450M
1.1B
3B

H2O danube3 (H2O.ai, 2024) 0.5B 2024.07 GQA SiLU 8k
4B 8k

TensorOpera AI Fox (TensorOpera, 2024) 1.6B 2024.07 GQA SiLU 8k

HuggingFace SmolLM (HuggingFace, 2024.07)
135M

2024.07
GQA

SiLU ✓ 2k360M GQA
1.7B MHA

Toyota DCLM (Toyota, 2024.08) 1.4B 2024.08 MHA SiLU ✓ 50k
DataBricks Dolly-v2* (DataBricks, 2023.04) 3B 2023.04 MHA GELU 2k

AllenAI OLMo (AllenAI, 2024.04) 1.18B 2024.04 MHA SiLU ✓ 50k

Princeton Sheared-LLaMA (Princeton, 2023.11) 1.3B 2023.11 MHA SiLU 4k
2.7B 2023.11 MHA SiLU 4k

Xiaohongshu MiniMA (Xiaohongshu, 2023.11) 3B 2023.11 UKN SiLU 4096
MiniMA2 (Xiaohongshu, 2024.07) 1B 2024.07 SiLU 4k

Nvidia Minitron (Nvidia, 2024.07) 4B 2024.07 GQA ReLU2 4k
M.A.P. CT-LLM (M.A.P., 2024.04) 2B 2024.04 MHA SiLU 4k
AMD AMD-Llama (AMD, 2024.08) 135M 2024.08 MHA SiLU 2k

Table 1: Detailed configurations of SLMs benchmarked.
We mainly use the base models in experiments, with ex-
ceptions of StableLM, Phi-3/3.5, and Dolly-v2 (marked
with *) that only provide the instruct version.

SLMs have gained increasing attention from
both the research and industrial communities. No-
tably, since the end of 2023, the number of SLM
models has surged significantly. To understand
their capability and cost, we comprehensively col-
lect SLMs based on the following criteria: (1)
Decoder-Only Transformer Architecture. (2) Open
Weights to evaluate them freely. (3) Parameter
Range between 100M and 5B parameters. (4) Base
Model Focus: Only base pre-trained models are
included, except for cases where only instruct ver-
sions exist (e.g., Microsoft Phi, StabilityAI Sta-
bleLM).

These models, detailed in Table 1, encom-
pass a broad spectrum from both industry and
academia, differing in hyperparameters and train-
ing datasets. While they share similar architectures,
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Figure 1: SLM capabilities over time. Performance is
the average of all tasks (except for Math). The size of
the circle is proportional to the model size. Red dashed
lines show the state-of-the-art model at different time,
indicating the trend that SLMs are getting better over
time. Instruction-tuned models are highlighted with
bold borders. LLaMA-7B series models are shown in
horizontal blue dashed lines for comparison.

some datasets remain closed-source, leading to per-
formance variations across tasks, as discussed in
following sections. The details about our evalua-
tion suite are shown in Appendix A.

2.2 Evaluation Datasets and Metrics

Dataset Description
HellaSwag (Zellers et al., 2019) Tests narrative completion.
TruthfulQA (Lin et al., 2022) Assesses truthfulness.
Winogrande (Sakaguchi et al., 2020) Evaluates pronoun resolution.
CommonsenseQA (Talmor et al., 2019) Commonsense multiple-choice questions.
PIQA (Bisk et al., 2020) Physical commonsense reasoning.
OpenBookQA (Mihaylov et al., 2018) Open-book science questions.
BoolQ (Clark et al., 2019) Yes/no questions requiring reasoning.
ARC Easy (Clark et al., 2018) Simple science questions.
ARC Challenge (Clark et al., 2018) Complex science questions.
MMLU (Hendrycks et al., 2021) Problem-solving across disciplines.

Table 2: Datasets used to evaluate SLM capabilities.

We used 10 datasets as described in Table 2 to
evaluate the SLM performance. Following (Gao
et al., 2024), we use accuracy as the primary eval-
uation metric. Accuracy measures the compute
log-likelihood of generating a continuation from a
context. The default shown accuracy is instructed
by 5 shots, as it is the most common setting in the
released model.

2.3 SLM Capabilities

Figure 1 illustrates the progress of small language
models (SLMs) in commonsense reasoning and
problem-solving. From March 2023 to Septem-
ber 2024, SLM performance improved by 12.5%
on average, surpassing the 7.5% improvement of
LLaMA models over the same period. Notably,
SLMs have outpaced LLaMA-7B series (v1–3.1),
highlighting their growing potential for on-device
tasks.

The Phi family, trained on closed-source
datasets, leads in performance, reaching 70% av-
erage accuracy, comparable to LLaMA 3.1 (7B
parameters). As of September 2024, Phi-3.5-
mini (2.7B) achieves the highest accuracy, rivaling
LLaMA 3.1 (8B). This advantage likely stems from
careful data engineering, instruction tuning, and
potential dataset overfitting (Zhang et al., 2024a).
These findings suggest that SLMs are rapidly clos-
ing the gap with LLMs in general reasoning tasks.

While larger models generally perform better,
exceptions exist. Qwen2-1.5B outperforms many
3B-parameter SLMs, demonstrating that smaller
models can excel in specific tasks.

The gap between open-source and closed-source
SLMs is narrowing, driven by high-quality datasets
like DCLM and FineWeb-Edu. Notably, SmolLM
(64.2%) and DCLM-1B (63.8%) achieve strong
performance in commonsense reasoning, highlight-
ing the impact of high-quality training data.

Insight#1: We draw following key insights
from the evolvement of SLMs: (1) From
March 2023 to September 2024, SLMs exhib-
ited significant performance improvements
across various language tasks, outpacing the
improvements of the LLaMA-7B/8B series.
Among them, the Phi family consistently
achieves state-of-the-art performance across
most tasks. (2) Smaller models like Qwen 2-
1.5B can excel in specific tasks despite having
fewer parameters. (3) SLMs trained on open-
source datasets are closing the gap, thanks to
high-quality datasets.
Opportunity#1 State-of-the-art SLMs have
surpassed 7B models in general tasks, demon-
strating that their capabilities for real-world
deployment. Moreover, the exceptional per-
formance of certain SLMs on specific tasks
highlights their potential for task-specific
model routing, where different models are
dynamically assigned based on task require-
ments to optimize efficiency and accuracy.

In-context Learning Capabilities. We evalu-
ate various SLMs and their 2B-parameter variants
(or the closest available ones) on 8 tasks, includ-
ing commonsense reasoning and problem-solving.
In-context learning (ICL) generally improves per-
formance, with five-shot ICL increasing zero-shot
accuracy by 2.1% on average.

However, HellaSwag and PIQA show minimal
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(a) SLM in-context capabilities across tasks.
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(b) Average accuracy improvement after in-context learning
across different SLM model size.

Figure 2: In-context learning performance with different
tasks and models. Red line in (b) highlights the trend
of the average score improvement with the increase of
model size.

improvement, likely due to their lower complexity
compared to datasets like ARC Challenge. LaMini
is the only model with a performance drop of over
2%, possibly due to overfitting, where additional
context introduces noise. Gemma 2 exhibits the
most significant improvement, with accuracy in-
creasing by 4.8%. Notably, ICL effectiveness im-
proves with model size.

Insights#2: We draw two key insights from
the in-context learning capacity of SLMs: (1)
Most SLMs exhibit in-context learning ability,
but its effectiveness varies by task. Signifi-
cant gains are observed in ARC Challenge,
while HellaSwag and PIQA show minimal
benefits across all models. (2) Larger models
generally perform better in in-context learn-
ing, while some smaller SLMs experience
performance declines.
Opportunity#2: Due to the smaller parame-
ter size of SLMs, the effectiveness of ICL is
limited. Combining ICL with supervised fine-
tuning (SFT) may yield better performance
(Zhu et al., 2024).

2.4 Training Datasets

We investigate how the open-sourced pre-training
datasets are used in training the SLMs. Overall, we
find 12 such datasets being used and show them in
Table 3.

Subcaption Model Date Tokens (B) Datasets Acc ↓

<1B

SmolLM-360M 24.07 600 FineWeb-
Edub,StarCoder,Cosmopediaa

0.448

OpenELM-450M 24.04 1500 RefinedWeb, The Pile, Red-
Pajama, Dolma

0.417

SmolLM-135M 24.07 600 FineWeb-
Edub,StarCoder,Cosmopediaa

0.416

MobiLlama-0.5B 24.02 1259 RedPajama, RefinedWeb 0.405
OpenELM-270M 24.04 1500 RefinedWeb, The Pile, Red-

Pajama, Dolma
0.393

Pythia-410M 23.03 300 The Pile 0.388
BLOOMZ-560M 22.11 350 WuDaoCorpora 0.366
BLOOM-560M 22.11 350 WuDaoCorpora 0.363
OPT-125M 22.05 180 RoBERTa, The Pile,

PushShift.io Reddit
0.361

Cerebras-GPT-590M 23.03 12 The Pile 0.358
OPT-125M 22.05 180 RoBERTa, The Pile,

PushShift.io Reddit
0.349

Pythia-160M 23.03 300 The Pile 0.347
Cerebras-GPT-111M 23.03 2 The Pile 0.330

1B–1.4B

DCLM-1B 24.08 4300 DCLM-baselineb 0.577
OpenELM-1.1B 24.04 1500 RefinedWeb, The Pile, Red-

Pajama, Dolma
0.463

TinyLlama-1.1B 23.12 3000 SlimPajama, StarCoder 0.436
MobiLlama-1B 24.02 1259 RedPajama, RefinedWeb 0.434
MobileLLaMA-1.4B 23.12 1300 RedPajama 0.428
Pythia-1.4B 23.03 300 The Pile 0.423
OPT-1.3B 22.05 180 RoBERTa, The Pile,

PushShift.io Reddit
0.413

Pythia-1B 23.03 300 The Pile 0.406
Bloom-1B1 22.11 350 WuDaoCorpora 0.394
Bloomz-1B1 22.11 350 WuDaoCorpora 0.384
Cerebras-GPT-1.3B 23.03 26 The Pile 0.383

1.5B–2B
StableLM-2-zephyr-1.6B 24.01 2000 RefinedWeb, RedPajama,

The Pile, StarCoder, Cul-
turaX

0.556

SmolLM-1.7B 24.07 1000 FineWeb-
Edub,StarCoder,Cosmopediaa

0.503

2.5B–3B
StableLM-zephyr-3B 23.11 400 RefinedWeb, RedPajama,

The Pile, StarCoder
0.582

Pythia-2.8B 23.03 300 The Pile 0.448
OPT-2.7B 22.05 180 RoBERTa, The Pile,

PushShift.io Reddit
0.439

Cerebras-GPT-2.7B 23.03 53 The Pile 0.405

Table 3: Classify according to the model parameter
quantity and sort in descending order according to av-
erage normalized accuracy. Acc(Avg) is the average of
the accuracies of the two types of tasks, Commonsense
reasoning/understanding and Problem solving. a indi-
cates that this dataset is generated by LLM. b indicates
that this dataset has been filtered by LLM.

Comparing the quality of pre-training
datasets. We analyzed the quality of open-source
pre-training datasets by evaluating SLM perfor-
mance across models trained on them. SLMs from
the past three years were grouped by parameter
size (<0.5B, 1B, 2B, and 3B) and ranked by av-
erage accuracy on Commonsense Reasoning/Un-
derstanding and Problem Solving tasks (Table 3).
The results highlight DCLM and FineWeb-Edu
as the top-performing datasets, both employing
model-based data filtering. Additionally, many pre-
training datasets, including StarCoder, contain cod-
ing data, despite SLMs on edge devices not priori-
tizing coding tasks. This inclusion is likely driven
by the belief that coding data enhances reasoning
ability (Zhang et al., 2024b).

The number of training tokens vs. the size of
model parameters. The Chinchilla law (Hoff-
mann et al., 2022) suggests an optimal parameter-
to-token ratio of 1:20 (e.g., a 1B model with 20B
tokens). We analyzed SLMs under 4B parameters
from 2022 to 2024, as shown in Figure 3(a) and
found that recent models use significantly more to-
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size. According to scaling law (Chinchilla), that SLMs
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kens (typically over 1.5T) than this guideline (Fig-
ure 3(a)). Typically, larger models are trained on
more tokens , but some smaller SLMs exceed larger
ones (e.g., Qwen 2-0.5B with 12T tokens vs. Qwen
2-1.5B with 7T tokens), indicating over-training.
This strategy aims to enhance SLM performance
for resource-constrained deployment by increasing
training-time FLOPs. However, over-training can
lead to performance saturation (Godey et al., 2024).

The amount of training tokens vs. model accu-
racy. Figure 3(b) shows the relationship between
the number of training tokens and the accuracy of
the model. In general, there is a positive correlation
between the two metrics, especially for those with
less than 700B tokens. However, the correlation
is weak, since the data quality often outweighs the
impacts of more training tokens, especially when
the training tokens exceed 1T.

Insights#3: We make two key observations
in SLM training. (1) Data quality plays a
crucial role in SLM capability, often out-
weighing data quantity and model architec-
ture. A key trend in dataset research is model-
based filtering, leading to state-of-the-art
open-source pre-training datasets: FineWeb-
Edu (1.3T/5.4T) (Penedo et al., 2024) and
DCLM-baseline (4T) (Li et al., 2024a). (2)
Recent SLMs are trained over large amount of
tokens (typically >1.5T), disregarding their
parameter sizes. In some cases, smaller SLMs
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Figure 4: Latency and memory overview.

are trained over even more data (e.g., Qwen2-
0.5B at 12T tokens but Qwen2-1.5B at 7T
tokens).
Opportunity#3 SLMs trained on model-
based filtering datasets achieve competitive
performance with those using closed datasets,
significantly improving research reproducibil-
ity. Additionally, over-training can cause satu-
ration and performance degradation. Defining
an edge-optimized Chinchilla law is essential
to ensure that additional tokens contribute to
performance gains rather than diminishing
returns.

3 SLM Runtime Cost

Setup In this section, we measure models of dif-
ferent sizes on robotic platform (Jetson Orin) and
smartphone. We first analyze the latency and mem-
ory usage of models with different parameter sizes.
Next, we assess the impact of quantization methods
and hardware on model latency. Finally, we break
down the latency and memory usage to identify the
key factors influencing these metrics across various
parts of the model. To eliminate the impact of in-
ference engine implementations, we evaluated 20
models supported by llama.cpp, a widely recog-
nized open-source inference engine.

We set a standard prompt length of 50 and a
token generation length of 50 unless specified oth-
erwise. To measure larger models, we applied 4-bit
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Device Name Specifications Release Time
Jetson Orin NX 1024-core, 16G DRAM Feb. 2023

Pixel 7Pro GoogleTensor G2,12G RAM Oct. 2022
Xiaomi 12S Snapdragon 8Gen1+ ,12G RAM Jul. 2022

MEIZU 18Pro Snapdragon 888,8G RAM Mar. 2021

Table 4: Testing devices.

quantization to all models before conducting exper-
iments in all sections except § 3.2.1.

3.1 Cost Overview

3.1.1 Inference Latency
Figure 4 presents inference latency, including first
token time and per-token decode latency, for mod-
els ranging from 0.1B to 3B parameters. Latency
scales with model size across three categories: 0.1-
1B, 1-2B, and 2-3B. For models of similar size but
different architectures, first token time varies sig-
nificantly. For example, Qwen2-0.5B’s first token
time is 1.46× that of Qwen1.5-0.5B and compara-
ble to OpenELM-1.1B, which has 2.18× the param-
eters. Qwen2’s architecture shares the embedding
layer and LM head, allocating more parameters
to attention and FFN, increasing computational
cost. Notably, Pythia-1.4B has higher latency than
SmolLM-1.7B, Qwen2-1.5B, and Qwen-1.8B de-
spite being smaller. Phi-2 also exhibits 1.11× the
latency of OpenELM-3B, a larger model. The pre-
fill stage dominates on-device LLM inference due
to long-context processing for personalization on
edge (Xu et al., 2024a).

Decode-stage latency generally follows a linear
trend with model size and is primarily memory-
bound, unlike the compute-bound prefill stage.
Qwen2-0.5B and Qwen1.5-0.5B show similar de-
code latency, while Pythia-1.4B has lower latency
than larger models. Among 2-3B models, Gemma-
2B, Phi-2, and OpenELM-3B show a positive cor-
relation between latency and model size. Archi-
tectural differences impact compute-bound stages
more significantly, with wider, shallower models
benefiting from higher parallelism.

3.1.2 Memory Footprint
Figure 4 evaluates memory footprint using
llama.cpp on Jetson for models ranging from
0.1B to 3B parameters, with memory usage be-
tween 275MB and 2456MB. Since llama.cpp allo-
cates KV cache and compute buffer based on max-
imum context length, we standardized it to 2048
across all models. Memory usage generally scales
linearly with model size, but some models devi-
ate. Gemma-2B, with a vocabulary of 256,000, and
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Figure 5: The relationship between the latency and
quantization methods

Bloom-560M/Bloom-1B1, with 250,880, consume
more memory than expected due to their large vo-
cabularies. In contrast, OpenELM models use less
memory than similarly sized models, benefiting
from a smaller 32,000-token vocabulary (compared
to the typical 50,000) and GQA instead of MHA,
reducing KV cache requirements. The impact of
vocabulary size on memory usage is detailed in
§ 3.3.2.

Insights#4: We draw following insights re-
garding the runtime cost of SLMs on devices.
(1) Model architecture has a greater impact
on inference latency than model size, espe-
cially for smaller models (<1B). The corre-
lation is likely hardware-dependent. (2) The
impacts of model architecture on inference
speed is more significant at prefill stage than
decode stage because the compute bound of
prefill stage. (3) Memory footprint scales
with model size, but vocabulary size has a
disproportionate impact.
Opportunity#4: SLM architectures should
align with hardware design, optimizing vo-
cabulary size, FFN width, and layer depth
for efficiency. Given different bottlenecks in
prefill and decode, cloud systems adopt PD-
separated clusters, while edge devices should
leverage hardware heterogeneity, using NPUs
for prefill and CPUs for decode.

3.2 Impact of Quantization and Hardware

3.2.1 Impact of Quantization
On Jetson and similar mobile devices without low-
bit hardware support, quantization improves effi-
ciency by reducing memory access overhead. On
server GPUs, it lowers inference latency through
higher Tensor Core throughput for int8 operations,
lower memory usage leading to higher batch size,
and lower memory access overhead.

We evaluated five quantization methods for Phi-
1.5 (Figure 5). Qn_K (and Qn_K_M) apply n-bit
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Figure 7: Latency on different smartphones.

quantization using the k-quants method, with Qn_0
denoting symmetric quantization. In the prefill
stage, quantization reduces latency by at least 25%
for short prompts, but the benefit diminishes with
longer inputs. At a prompt length of 50, even the
best-performing Q4_K_M achieves only a 13% re-
duction. This is because weights are shared across
tokens, diluting the per-token benefit as prompt
length increases. In the decode stage, quantization
provides more consistent improvements, reducing
latency by 17% to 75%, as weights are accessed
per token, benefiting memory efficiency. Among
methods, Q4_K_M consistently outperforms oth-
ers, reducing latency by an average of 50%. In
contrast, Q6_K and Q3_K become ineffective for
long prompts, with latency matching or exceeding
FP16. The inferior performance is due to irreg-
ular bit-widths, leading to higher overhead from
alignment and padding.

Insights#5: We draw following insights re-
garding the quantization technique on SLM
deployment. (1) Quantization is more effec-
tive in the bandwidth-bound decode stage
than in the compute-bound prefill stage, es-
pecially when prompt length increasing. (2)
Regular quantization precision enhances effi-
ciency by avoiding extra hardware overhead.
Opportunity#5: Reducing memory access
through quantization is not enough to signif-
icantly lower latency in edge deployments.
Hardware designed for low-bit computation
are essential.

3.2.2 Impact of Hardware
We tested Bloom-1B1 on two edge devices: Jetson
Orin NX 16GB (GPU) and Meizu 18 Pro (CPU).
The GPU is 40× faster than the CPU in the pre-
fill stage but only 1.84× faster in decode. Pre-
fill benefits from high parallelism, leveraging the
GPU’s numerous computing units, while decode
is sequential, limiting GPU efficiency. In the pre-
fill stage, first token time increases linearly with
prompt length, with Jetson’s advantage expanding.
In decode, latency per token rises as more tokens
are generated. On Meizu, latency spikes from 1 to
10 tokens due to thermal throttling, then stabilizes
at high latency. Jetson, with better cooling, fluctu-
ates only after 30 tokens. We tested Qwen1.5-1.8B
on three smartphones with 60s intervals to reduce
power effects. Latency scales linearly with token
count. The Xiaomi 12S had the lowest latency,
showcasing the efficiency of Snapdragon 8 Gen 1+.
The Pixel 7 Pro followed, while the Meizu 18 Pro
had the highest latency due to its older Snapdragon
888 and lower memory configuration.

Insights#6: We draw following insights of
impacts of hardware. (1) GPU has greater
advantage in the prefill stage. (2) Jetson
maintains consistent latency due to its simpler
hardware structure and better heat dissipation,
whereas smartphones experience higher ther-
mal fluctuations during long inference tasks.
(3) The development of System on a Chip
(SoC) generations effectively improves infer-
ence efficiency.
Opportunity#6: For smartphones, fully uti-
lizing the heterogeneous computing power
of the SoC (e.g., GPU, NPU) can signifi-
cantly improve prefill efficiency. Addition-
ally, power consumption from continuous re-
quests or long-context processing remains a
major challenge.

3.3 Latency and Memory Breakdown

3.3.1 Latency Breakdown
Figure 7 presents a breakdown analysis of Qwen
2-0.5B and Qwen 1.5-0.5B, two models of similar
size but different latencies. We measured the time
distribution across Embedding, Attention, FFN,
and LM Head.

In the prefill stage, both models are dominated by
Attention and FFN layers. In Qwen 1.5, Attention
accounts for a slightly higher proportion of latency
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Figure 8: On-device inference latency Breakdown.
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Figure 9: Memory Breakdown.

than FFN, whereas in Qwen 2, FFN contributes
significantly more due to its wider FFN layer. Dur-
ing the decode stage, Attention latency increases in
Qwen 1.5, likely due to KV Cache growth, while
FFN remains the dominant bottleneck in Qwen
2. At the operator level, mul_mat_vec_q (matrix-
vector multiplication) accounts for over 80% of
total latency in both prefill and decode stages. This
proportion is even higher in Qwen 2-0.5B due to its
wider FFN layer, further increasing computation
time.

3.3.2 Memory Breakdown
As shown in Figure 9a, vocabulary size signif-
icantly influences memory consumption beyond
model size. Larger vocabularies increase compute
buffer memory due to the logits, sized as batch_size
* sequence_length * vocabulary_size. For in-
stance, Bloom-560M (vocabulary: 250,880) re-
quires 492MB memory, 3.5× more than OpenELM-
1.1B (vocabulary: 32,000), while Bloom-1B1 re-
quiring 496MB memory exceeds Qwen2-1.5B (vo-
cabulary: 151,936) by 1.6×. Models using GQA
have reduced KV cache size compared to MHA.
OpenELM-3B is 3.9× smaller than StableLM-
zephyr-3B. At long context lengths, compute buffer
and KV cache dominate memory usage. For
Qwen2 series (context length: 131,072), they ac-
count for 85%, while for Qwen1.5 (context length:
32,768), they make up 87%.

Insights#7: We have following insights re-
garding the breakdown of SLM runtime cost.
(1) Mul_mat_vec (matrix by vector multipli-

cation) is the most time-consuming opera-
tions of SLM, which constitute more than
70% end-to-end inference time. (2) Vocab-
ulary size and Context length is crucial for
model runtime memory usage.
Opportunity#7: SLMs are increasingly ex-
panding vocabulary size to enhance perfor-
mance. However, larger vocabulary increases
inference latency and memory usage, ne-
cessitating compression strategies that pre-
serve model capability. Similarly, as long-
context support becomes a key trend, KV
cache compression and quantization are cru-
cial for SLMs.

4 Related Work

Benchmarking SLM capability. Several public
leaderboards evaluate the capabilities of LLMs,
such as Open LLM Leaderboard (ope) support
by Hugging Face clusters, FlagEval (fla). Some
datasets have released their own leaderboards, such
as SuperCLUE (Xu et al., 2023), C-Eval (cev), and
MMLU (mml). These leaderboards include lim-
ited SLMs and lack a rich variety of datasets. Mo-
bileAIBench (Murthy et al., 2024) and MELTing
point (Laskaridis et al., 2024) also evaluate some
LLMs on device. Compared to them, we are the
first dive into the SLM capability through experi-
ments on a large number of representative SLMs.
Benchmarking SLM runtime cost. Currently,
some studies have measured the inference through-
put and power consumption of LLMs on various
hardware devices. MELTing point focuses on the
throughput and energy consumption across differ-
ent hardware. MELODI (Husom et al., 2024) also
proposes a framework that focuses on energy con-
sumption of LLMs. Using its dataset, the study
explores how prompt attributes, such as length and
complexity, correlate with energy expenditure. Ad-
ditionally, MobileAIBench evaluates the runtime
cost of 3 models under 3 billion parameters after
4-bit quantization on an iPhone 14. However, these
studies have measured only a limited number of
SLMs, and miss crucial observations such as the
influence of model architecture on runtime costs.

5 Conclusions

In this work, we conduct a comprehensive study on
the capabilities and performance of small language
models (100M–5B parameters). We evaluate most,
if not all, open-source SLMs and analyze their re-
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sults, drawing key insights to guide future research.
These insights provide a clear understanding of
SLM strengths and limitations, identifying areas
for architectural improvements and deployment op-
timizations.

6 Limitations

For SLM capability evaluation, we selected 10 com-
monsense reasoning and problem-solving datasets,
excluding math datasets due to the performance
gap between SLMs and larger models in mathemat-
ical reasoning. For cost analysis, to ensure con-
sistency and eliminate inference engine variations,
we evaluated 20 models supported by llama.cpp,
excluding those not compatible with it.
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Margaret Mitchell, Colin Raffel, Leandro Von Werra,
Thomas Wolf, et al. 2024. The fineweb datasets:
Decanting the web for the finest text data at scale.
arXiv preprint arXiv:2406.17557.

Guilherme Penedo, Quentin Malartic, Daniel Hesslow,
Ruxandra Cojocaru, Alessandro Cappelli, Hamza
Alobeidli, Baptiste Pannier, Ebtesam Almazrouei,
and Julien Launay. 2023. The refinedweb dataset
for falcon llm: outperforming curated corpora with
web data, and web data only. arXiv preprint
arXiv:2306.01116.

Princeton. 2023.11. Sheared-llama. https://huggin
gface.co/princeton-nlp/Sheared-LLaMA-1.3
B.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhaga-
vatula, and Yejin Choi. 2020. Winogrande: An ad-
versarial winograd schema challenge at scale. In
Proceedings of the AAAI Conference on Artificial
Intelligence.

Timo Schick and Hinrich Schütze. 2020. It’s not just
size that matters: Small language models are also
few-shot learners. arXiv preprint arXiv:2009.07118.

Luca Soldaini, Rodney Kinney, Akshita Bhagia, Dustin
Schwenk, David Atkinson, Russell Authur, Ben Bo-
gin, Khyathi Chandu, Jennifer Dumas, Yanai Elazar,
Valentin Hofmann, Ananya Harsh Jha, Sachin Kumar,
Li Lucy, Xinxi Lyu, Nathan Lambert, Ian Magnusson,
Jacob Morrison, Niklas Muennighoff, Aakanksha
Naik, Crystal Nam, Matthew E. Peters, Abhilasha
Ravichander, Kyle Richardson, Zejiang Shen, Emma
Strubell, Nishant Subramani, Oyvind Tafjord, Pete
Walsh, Luke Zettlemoyer, Noah A. Smith, Hannaneh
Hajishirzi, Iz Beltagy, Dirk Groeneveld, Jesse Dodge,
and Kyle Lo. 2024. Dolma: an Open Corpus of Three
Trillion Tokens for Language Model Pretraining Re-
search. arXiv preprint.

StabilityAI. 2023.11. stabilityai/stablelm-zephyr-3b. ht
tps://huggingface.co/stabilityai/stablel
m-zephyr-3b.

StabilityAI. 2024.01. stabilityai/stablelm-2-zephyr*.
https://huggingface.co/stabilityai/stabl
elm-2-zephyr.

Alon Talmor, Jonathan Herzig, Nicholas Lourie, and
Jonathan Berant. 2019. Commonsenseqa: A question
answering challenge targeting commonsense knowl-
edge. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies.

TensorOpera. 2024. Fox-1-1.6b. https://huggingf
ace.co/tensoropera/Fox-1-1.6B.

Toyota. 2024.08. Dclm. https://huggingface.co/T
RI-ML/DCLM-1B.

Unknown. 2023.12. Tinyllama. https://huggingfac
e.co/tinyllama.

14757

https://huggingface.co/m-a-p/CT-LLM-Base
https://huggingface.co/m-a-p/CT-LLM-Base
https://huggingface.co/MBZUAI/LaMini-GPT-774M
https://huggingface.co/MBZUAI/LaMini-GPT-774M
https://huggingface.co/mbzuai/MobiLlama
https://huggingface.co/mbzuai/MobiLlama
https://huggingface.co/meituan/MobileLLaMA
https://huggingface.co/meituan/MobileLLaMA
https://huggingface.co/meta-llama/Llama-3.2-3B
https://huggingface.co/meta-llama/Llama-3.2-3B
https://huggingface.co/microsoft/phi-1
https://huggingface.co/microsoft/phi-1
https://huggingface.co/microsoft/phi-1_5
https://huggingface.co/microsoft/phi-1_5
https://huggingface.co/microsoft/phi-2
https://huggingface.co/microsoft/phi-2
https://huggingface.co/microsoft/phi-3-mini
https://huggingface.co/microsoft/phi-3-mini
http://arxiv.org/abs/2406.10290
http://arxiv.org/abs/2406.10290
https://huggingface.co/nvidia/Minitron-4B-Base
https://huggingface.co/nvidia/Minitron-4B-Base
https://huggingface.co/openbmb/MiniCPM
https://huggingface.co/openbmb/MiniCPM
https://huggingface.co/openbmb/MiniCPM3
https://huggingface.co/openbmb/MiniCPM3
https://huggingface.co/princeton-nlp/Sheared-LLaMA-1.3B
https://huggingface.co/princeton-nlp/Sheared-LLaMA-1.3B
https://huggingface.co/princeton-nlp/Sheared-LLaMA-1.3B
https://huggingface.co/stabilityai/stablelm-zephyr-3b
https://huggingface.co/stabilityai/stablelm-zephyr-3b
https://huggingface.co/stabilityai/stablelm-zephyr-3b
https://huggingface.co/stabilityai/stablelm-2-zephyr
https://huggingface.co/stabilityai/stablelm-2-zephyr
https://huggingface.co/tensoropera/Fox-1-1.6B
https://huggingface.co/tensoropera/Fox-1-1.6B
https://huggingface.co/TRI-ML/DCLM-1B
https://huggingface.co/TRI-ML/DCLM-1B
https://huggingface.co/tinyllama
https://huggingface.co/tinyllama


Xiaohongshu. 2023.11. Minima. https://huggingf
ace.co/GeneZC/MiniMA-3B.

Xiaohongshu. 2024.07. Minima2. https://huggingf
ace.co/GeneZC/MiniMA-2-1B.

Weikai Xie, Li Zhang, Shihe Wang, Rongjie Yi, and
Mengwei Xu. 2024. Droidcall: A dataset for
llm-powered android intent invocation. Preprint,
arXiv:2412.00402.

Daliang Xu, Hao Zhang, Liming Yang, Ruiqi Liu,
Gang Huang, Mengwei Xu, and Xuanzhe Liu.
2024a. Empowering 1000 tokens/second on-device
llm prefilling with mllm-npu. arXiv preprint
arXiv:2407.05858.

Jiajun Xu, Zhiyuan Li, Wei Chen, Qun Wang, Xin Gao,
Qi Cai, and Ziyuan Ling. 2024b. On-device language
models: A comprehensive review. arXiv preprint
arXiv:2409.00088.

Liang Xu, Anqi Li, Lei Zhu, Hang Xue, Changtai Zhu,
Kangkang Zhao, Haonan He, Xuanwei Zhang, Qiyue
Kang, and Zhenzhong Lan. 2023. Superclue: A com-
prehensive chinese large language model benchmark.
Preprint, arXiv:2307.15020.

Mengwei Xu, Wangsong Yin, Dongqi Cai, Rongjie Yi,
Daliang Xu, Qipeng Wang, Bingyang Wu, Yihao
Zhao, Chen Yang, Shihe Wang, et al. 2024c. A sur-
vey of resource-efficient llm and multimodal founda-
tion models. arXiv preprint arXiv:2401.08092.

Jinliang Yuan, Chen Yang, Dongqi Cai, Shihe Wang,
Xin Yuan, Zeling Zhang, Xiang Li, Dingge Zhang,
Hanzi Mei, Xianqing Jia, et al. 2023. Mobile
foundation model as firmware. arXiv preprint
arXiv:2308.14363.

Sha Yuan, Hanyu Zhao, Zhengxiao Du, Ming Ding,
Xiao Liu, Yukuo Cen, Xu Zou, Zhilin Yang, and
Jie Tang. 2021. Wudaocorpora: A super large-scale
chinese corpora for pre-training language models. AI
Open, 2:65–68.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali
Farhadi, and Yejin Choi. 2019. Hellaswag: Can a
machine really finish your sentence? In Proceedings
of the 57th Annual Meeting of the Association for
Computational Linguistics.

Hugh Zhang, Jeff Da, Dean Lee, Vaughn Robinson,
Catherine Wu, Will Song, Tiffany Zhao, Pranav Raja,
Dylan Slack, Qin Lyu, et al. 2024a. A careful exami-
nation of large language model performance on grade
school arithmetic. arXiv preprint arXiv:2405.00332.

Xinlu Zhang, Zhiyu Zoey Chen, Xi Ye, Xianjun Yang,
Lichang Chen, William Yang Wang, and Linda Ruth
Petzold. 2024b. Unveiling the impact of coding data
instruction fine-tuning on large language models rea-
soning. arXiv preprint arXiv:2405.20535.

Google 7Pro Xiaomi 12S MEIZU 18Pro

PHONEJETSON

SSH
Cost Results

Llama.cpp

ADB

A800 SERVER

Lm-Eval/OpenCompass

Capability ResultsModels Capability Tasks

Jetson Orin NX

Models

Figure 10: Framework.

Zhengping Zhou, Lezhi Li, Xinxi Chen, and Andy
Li. 2023. Mini-giants:" small" language mod-
els and open source win-win. arXiv preprint
arXiv:2307.08189.

Junyi Zhu, Shuochen Liu, Yu Yu, Bo Tang, Yibo Yan,
Zhiyu Li, Feiyu Xiong, Tong Xu, and Matthew B.
Blaschko. 2024. Fastmem: Fast memorization of
prompt improves context awareness of large language
models. Preprint, arXiv:2406.16069.

A Evaluation Suite

The framework of our evaluation suites shown in
Figure 10 evaluates SLMs across diverse devices,
including smartphones (Google Pixel 7 Pro, Xi-
aomi 12S, MEIZU 18 Pro) and Jetson Orin NX,
focusing on capability evaluation and cost analysis.
Capability evaluation is conducted on the A800
server using Lm-Eval/OpenCompass, benchmark-
ing models on various tasks.

Cost analysis measures inference efficiency and
resource consumption, with both Jetson and smart-
phones executing cost tasks via llama.cpp. In the
cost analysis, the A800 server serves as the cen-
tral hub, managing model deployment, execution,
and result aggregation. It downloads and trans-
fers models to target devices, where models are
quantized, and prompts are generated to prepare
for cost evaluation. After testing, the A800 server
analyzes cost results, generating a detailed report
on latency, memory usage, and performance break-
downs. Communication between A800 and Jetson
occurs via SSH, while smartphones connect via
ADB, ensuring seamless task distribution and re-
sult collection. By integrating hardware diversity,
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benchmarking tools, and evaluation metrics, the
framework enables a comprehensive analysis of
SLM efficiency across different deployment scenar-
ios.

B Model Architecture

While we focus on only decoder-only transformer
SLMs, their specific configurations still diversify,
as shown in Figure 11(a). The core of Transformer
is the multi-head self-attention(MHA) mechanism
and the Feed-Forward Neural Network(FFN).

Model architecture analysis. We conduct sta-
tistical analysis on the following several compo-
nents of the model architecture: 1) The type of
self-attention; 2) The type of feed-forward neu-
ral network; 3) The intermediate ratio of the feed-
forward network; 4) The activation function of the
feed-forward neural network; 5) The type of layer
normalization; 6) The vocabulary size. Figure 11(a)
shows the architecture of SLM and the pie chart
shows the distribution of six components. Figure
11(b) shows how these distributions change over
time.

1) The type of self-attention. The self-attention
mechanism is the core of the Transformer model.
In general, SLMs mainly use three types of atten-
tion mechanism: Multi-Head Attention (MHA),
Multi-Query Attention (MQA), Group-Query At-
tention (GQA) and Multi-Head Latent Atten-
tion(MLA). Multi-Head Attention is a mechanism
that allows the model to focus on different parts of
the input data simultaneously by employing multi-
ple attention heads, which is the most widely used
self-attention mechanism in the Transformer mod-
els. Multi-Query Attention simplifies multi-head
attention by using a single shared query across all
heads but allowing different key and value projec-
tions. This reduces the complexity in both space
and time. Group-Query Attention is a variant of
multi-head attention that reduces computational
complexity by sharing query representations across
multiple heads, while allowing separate key and
value representations. The idea is to use fewer
query groups but still preserve a level of diversity
in the attention mechanism. Multi-Head Latent At-
tention achieves better results than MHA through
low-rank key-value joint compression, and requires
much less Key-Value(KV) Cache.

Figure 11(b) 1⃝ shows the changing situation of
choosing three self-attention mechanisms during
these time periods from 2022 to 2024. We can

see that MHA is gradually being phased out and
replaced by GQA.

2) The type of feed-forward neural network.
Feed-forward network can be summarized into two
types: the Standard FFN and the Gated FFN. The
Standard FFN is a two-layer neural network with a
activation function. The Gated FFN adds an addi-
tional gate layer.

The Figure 11(b) 2⃝ shows the changing situa-
tion of type of FFN during these time periods from
2022 to 2024. It shows that Standard FFN is gradu-
ally being phased out and replaced by Gated FFN.

3) The intermediate ratio of the feed-forward
neural network. The intermediate ratio of FFN is
the ratio of the intermediate dimension to the hid-
den dimension. Figure 11(b) 3⃝ shows that the in-
termediate ratio of the Standard FFN is commonly
set to be 4, while the intermediate ratio of the Gated
FFN is rather diversified ranging from 2 to 8.

4) The activation function of the feed-forward
neural network. There are 4 main kinds of ac-
tivation functions used in FFN: ReLU (Rectified
Linear Unit), GELU (Gaussian Error Linear Unit),
GELUtanh, SiLU (Sigmoid Linear Unit). Observed
from Figure 11(b) 4⃝ , the activation function of
FFN was mostly ReLU in 2022, and then changed
to GELU and its variants in 2023. For those re-
leased in 2024, SiLU becomes the dominant type.

5) The type of layer normalization. There are
two main types of layer normalization: LayerNorm
and RMSNorm. The Figure 11(b) 5⃝ shows the
changing situation of type of the type of layer nor-
malization during these time periods from 2022
to 2024. layer normalization is gradually being
phased out and replaced by RMS normalization.

6) The vocabulary size. The vocabulary size is
the total number of unique tokens that an SLM can
recognize. The Figure 11(b) 6⃝ shows the chang-
ing situation of the vocabulary size during these
time periods from 2022 to 2024. We can see that
the vocabulary size of the model is gradually in-
creasing. The vocabulary of the latest models is
often larger than 50k

Model architecture innovations. While the
vanilla transformer architecture has been well rec-
ognized for its scaling ability, there still exist a few
architecture-level innovations in the tested SLMs,
namely parameter sharing and layer-wise parame-
ter scaling.

1) Parameter Sharing. Parameter Sharing is a
technique used in large language models to reuse
the same set of weights across different layers or
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Figure 11: The architecture analysis of the SLM, highlighting 6 configurations: attention type, FFN type, FFN
ratio, FFN activation, vocabulary size, and normalization type. (a) presents the overall structure of the SLM,
and the categorizations with usage frequency of the 6 configurations; (b) analyzes the concrete selections of six
configurations over time.
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components of the network. This approach allows
the model to significantly reduce the number of
parameters, leading to more efficient training and
inference, while maintaining performance.

Embedding-lm_head sharing. Sharing the
weights of the embedding with the final lm_head
layer is the most common weight sharing technique.
It is the sharing of the word embedding layer and
has nothing to do with the rotary position encoding.
Models such as Gemma, and Qwen all used this
sharing technique.

layer-wise attention/FFN sharing. In this ap-
proach, the same set of weights is reused across
multiple layers of the model. This is commonly
seen in SLM/LLM, where all the transformer lay-
ers share the same parameters. For example, Mo-
biLLaMA shares the weights of the FFN of all the
transformer blocks; MobileLLM shares the weights
of the Attention and FFN of two adjacent trans-
former blocks.

2) Layer-wise parameter scaling. This technique
was proposed and used by OpenELM. Traditional
SLMs use the same configuration for each trans-
former layer in the model, resulting in a uniform
allocation of parameters across layers. Unlike these
models, each transformer layer in OpenELM has
a different configuration (e.g., number of heads
and feed forward network dimension), resulting
in variable number of parameters in each layer of
the model. This lets OpenELM to better utilize
the available parameter budget for achieving higher
accuracies.

3) Nonlinearity compensation. PanGu-π ana-
lyzes the state-of-the-art language model architec-
tures and observes the feature collapse problem.
PanGu-π adopts two techniques for nonlinearity
compensation of language model to solve the fea-
ture collapse problem. The series activation func-
tion is adapted to FFN, and the augmented short-
cuts are integrated into MHA, which effectively
introduces more nonlinearity into the Transformer
architecture.

Insights: We make two key observations in
SLM architectures. (1) As of August 2024, a
typical SLM architecture tends to use group-
query attention, gated FFN with SiLU activa-
tion, an intermediate ratio of FFN between 2
and 8, RMS normalization, and a vocabulary
size larger than 50K. However, the choice
of such settings is mostly empirical, without

strict and public validation on the superiority
of such model’s capacity. Instead, the archi-
tecture innovations have relative larger im-
pacts on the runtime performance on devices,
as shown in §3. (2) The innovations to the
transformer architecture is limited in nowa-
day SLMs. For the few that did contribute
architectural innovation (except embedding-
lm head sharing), we do not observe strong
evidence showing them being significantly su-
perior to the vanilla transformer, and neither
are them being generally adopted or studied
across different research groups or companies.
The significance of those innovations remain
to be explored and validated.

C Training Datasets and Costs

We find 12 open-source datasets being used:

• The Pile (Gao et al., 2020) (825B tokens):
a combination of smaller corpora in various
domains.

• FineWeb-Edu (Penedo et al., 2024) (1.3T to-
kens): a collection of educational text filtered
from FineWeb.

• StarCoder (Li et al., 2023) (35B tokens):
Python tokens.

• Cosmopedia (Ben Allal et al., 2024) (25B to-
kens): a dataset of synthetic textbooks, blog-
posts, stories, posts and WikiHow articles gen-
erated by Mixtral-8x7B-Instruct-v0.1.

• RefinedWeb (Penedo et al., 2023) (5T tokens):
despite extensive filtering, high-quality data
extracted from the web remains plentiful, ob-
tained from CommonCrawl.

• RedPajama (Computer, 2023) (1.2T tokens):
includes over 100B text documents coming
from 84 CommonCrawl snapshots and pro-
cessed using the CCNet pipeline.

• Dolma (Soldaini et al., 2024): a English cor-
pora, which is deduplicated inner corpus and
across corpus using MinHash algorithms.

• WuDaoCorpora (Yuan et al., 2021) (4T to-
kens): a super large-scale Chinese corpora,
containing about 3T training data and 1.08T
Chinese characters.
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5 (13.9%)
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Figure 12: The usage frequency of each open-source pre-training dataset from 2022 to 2024.
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(a) Llama3.2-1B
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(b) Llama3.2-3B
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(c) Qwen1.5-0.5B
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(d) Qwen1.5-1.8B
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(e) Qwen2-0.5B
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(f) Qwen2-1.5B
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(g) Qwen2.5-0.5B
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Figure 13: Long context capabilities of SLMs.

• RoBERTa (Liu, 2019) CCNewsV2: contain-
ing an updated version of the English portion
of the CommonCrawl News dataset.

• PushShift ().io Reddit (Baumgartner et al.,
2020): a social media data collection, anal-
ysis, and archiving platform that since 2015
has collected Reddit data and made it avail-
able to researchers.

• DCLM-baseline (Li et al., 2024a) (1.35T to-
kens): a standardized corpus extracted from
Common Crawl, effective pretraining recipes
based on the OpenLM framework, and a broad
suite of 53 downstream evaluations.

• CulturaX (Nguyen et al., 2023) (6.3T tokens):
a substantial multilingual dataset in 167 lan-
guages.

The usage preference of pre-training datasets.
We then conducted statistics on the usage frequency
of the datasets for training SLM from 2022 to 2024.
The results are illustrated in Figure 12. It shows
that The Pile is the most widely used pre-training

dataset especially in 2022 and 2023; yet more re-
cently, more such datasets are proposed and the
choice becomes diversified. In fact, The Pile has
been abandoned in pre-training SLMs recently, and
datasets such as "RefinedWeb" and "RedPajama"
have gradually been widely used. It shows the
active research and engineering efforts in construct-
ing pre-training datasts with better quality.

Since pretraining typically uses only one
epoch, the Training TFLOPs is calculated
as: Training FLOPs = 6 × Model Size ×
Training Tokens. Here, the factor 6 accounts for
the number of multiplication and addition opera-
tions required per token during the model’s forward
and backward propagation.

When estimating the actual computation time
using Training TFLOPs, we need to consider
Model FLOPs Utilization (MFU) (Chowdhery
et al., 2023). Using the data from DCLM (Li et al.,
2024a), we obtain a typical MFU of approximately
30%.

The estimated training time on H100 (BF16
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TFLOPS is 1979) is given by:

Train Hours =
Training FLOPs

MFU × H100 TFLOPs
(1)

As shown in Table 5, we can observe that more
tokens are being used to train SLMs over time.
The overall training cost has escalated accordingly.
And we select 8 models released at 2024 and show
that the recent SLMs do not obey the scaling law
of training cost and model size. For example, as
shown in Table 6, Qwen2 0.5B takes more training
tokens and hours than Gemma-2 2B.

Table 5: Token count for SLM pretraining is rising over
time.

Model Size (B) Tokens (T) TFLOPs Date H100 h

OPT 1.3 0.18 1.4 22.05 657
Bloom 1.1 0.35 2.3 22.11 1081
Pythia 1.4 0.30 2.5 23.03 1179
Phi-1.5 1.5 0.15 1.4 23.09 632
TinyLlama 1.1 3.0 19.8 23.12 9264
OpenELM 1.1 1.5 9.9 24.04 4632
Qwen2 1.5 7.0 63.0 24.06 29476

Table 6: The training cost of recent SLMs.

Model Size (B) Tokens (T) TFLOPs Date H100 h

SmolLM 0.135 0.6 0.49 24.07 227
SmolLM 0.36 0.6 1.30 24.07 606
Qwen 2 0.5 12 36.0 24.06 16844
Qwen 2 1.5 7 63.0 24.06 29476
SmolLM 1.7 1 10.2 24.07 4772
Gemma-2 2.0 2 24.0 24.07 11229
Phi-3 3.0 3.3 59.4 24.04 27792
Qwen 1.5 4.0 4 96.0 24.02 44916

D Long Context Capabilities

We used Needle-In-A-Haystack provided by Open-
Compass to explore long-context capabilities of
SLMs. The tasks included Single-Needle Retrieval,
Multi-Needle Retrieval, and Multi-Needle Reason-
ing. The scores in Figure 13 are the average of
these three tasks. Different models showed large
variations in performance. Small models, such as
Qwen1.5-0.5B and Qwen2-0.5B, performed less
effectively. Qwen1.5-0.5B achieved an average ac-
curacy of 22.13%. Qwen2-0.5B performed slightly
better, reaching 43.84%. Qwen1.5-0.5B handled
shorter contexts (9k-17k) relatively well. How-
ever, its accuracy dropped sharply with longer
contexts. This was especially true for middle
inserted text (Depth Percent from 20% to 70%).
Larger models performed much better. Llama
3.2-3B had an average accuracy of 57.81%. It
worked well with shorter contexts but struggled

with deeper insertions when contexts exceeded 25k
tokens. Qwen2.5-3B achieved an average accuracy
of 91.71%. It maintained nearly perfect accuracy
across all context lengths and insertion positions.
This result highlights its strong ability to handle
long contexts and complex scenarios.

Insights: We draw two key insights from the
long context capacity of SLMs: (1) Larger
parameters are crucial for long-context ca-
pabilities. Small models, such as Qwen1.5-
0.5B and Qwen2-0.5B, perform adequately
on short-context tasks but experience a signif-
icant drop in recognition accuracy as the con-
text length increases. In contrast, larger mod-
els, such as Qwen2.5-3B, excel with outstand-
ing performance, maintaining near-perfect ac-
curacy across all context lengths and inser-
tion positions. (2) "Lost in the Middle" also
occurs in small models. Compared to deep
or front insertions, the accuracy of middle-
position text (Depth Percent 20%-70%) is sig-
nificantly lower.

E Tool-use Capabilities

We conducted evaluations on tool-use capabilities
with DroidCall(Xie et al., 2024), a dataset for LLM-
powered Android intent invocation. Without fine-
tuning, SLMs can not catch with LLMs on the tool-
use capabilities as shown in Table 7. Qwen2.5-3B,
Gemma2, Phi-3.5, and Llama3.2-3B show better
performance than GPT-4o after fine-tuning.

Table 7: The tool-use capabilities of SLMs.

Model Size Zero-Shot Acc Few-Shot Acc FT Acc

Qwen2.5-Instruct 1.5B 61.0 64.5 76.0
Qwen2.5-Instruct 3B 62.0 71.0 83.0
Gemma2-it 2B 59.0 67.5 85.0
Phi-3.5-mini-instruct 3.8B 62.0 67.5 83.5
MiniCPM3-4B 4B 67.0 75.0 74.5
Llama3.2-Instruct 1B 31.5 60.5 75.5
Llama3.2-Instruct 3B 66.5 72.0 82.0
GPT-4o - 77.0 80.5 -
GPT-4o-mini - 71.5 76.0 -

F Evaluations on RNN-based Models

To explore the runtime cost of RNN-based archi-
tecture models, we evaluated Mamba-1.4B on Jet-
son Orin NX. Compared to Phi-1.5 with a similar
size, Mamba does not have an advantage in pre-
fill time. As shown in Figure 14, it takes more
time, likely due to the lack of llama.cpp operator
optimization for RNN-based models. Decode la-
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Figure 14: Latency of Mamba on Jetson Orin NX.

tency per token typically increases as the number
of tokens increases in Transformer-based models
because of the O(n2) time complexity of the at-
tention mechanism (n = token count). However,
Mamba maintains a very stable decode latency per
token, highlighting the advantages of its O(n) time
complexity.

In terms of accuracy performance, we evaluate
the Mamba variant: Zamba2. We evaluate Zamba2-
1.2B and Zamba2-2.7B on 9 downstream tasks,
as shown in Table 8. Zamba2-2.7B demonstrates
better performance than Llama2-7B with fewer pa-
rameters, while Zamba2-1.2B performs worse than
Llama2-7B. Compared to the SLMs released in
the same period (May 2024) shown in Figure 1,
Zamba2-2.7B performed very well, ranking just
behind Phi-3.

Table 8: Capabilities of Zamba2-1.2B and Zamba2-2.7B
on 9 downstream tasks.

Model ARC-C ARC-E BoolQ CSQA HellaSwag MMLU OBQA PIQA TruthfulQA Avg

Zamba2-1.2B 0.44 0.77 0.74 0.52 0.53 0.44 0.32 0.77 0.38 0.55
Zamba2-2.7B 0.48 0.80 0.80 0.75 0.57 0.56 0.32 0.79 0.46 0.61
Llama2-7B 0.45 0.74 0.80 0.76 0.76 0.41 0.34 0.79 0.38 0.60

G Ablation Studies

G.1 Impact of Model Architecture on
Performance

To systematically examine the impact of model
architecture, we trained 18 different models of sim-
ilar parameter sizes, each on the same dataset con-
taining 20B tokens. Table 9 shows that model ar-
chitecture has a negligible effect on final training
loss (ranging from 3.58 to 3.81), suggesting simi-
lar next-token prediction capability across variants.
However, inference speeds—both in the prefill and
decoding stages—vary significantly among archi-
tectures, with up to 5.22× difference in decoding
speed.

G.2 Impact of Data Quality on Capabilities
To investigate the effect of data quality, two mod-
els with 500M parameters and identical hyperpa-

Table 9: Ablation on model architectures. All models
trained on 20B tokens with comparable size.

ID Size (M) Hidden FFN Layers Act. QH KVH Loss Prefill (tok/s) Decode (tok/s)

1 106.73 1280 2096 3 relu 16 16 3.76 916.70 455.32
2 106.73 1280 2096 3 silu 16 16 3.81 877.19 424.08
3 101.42 768 2046 9 relu 16 16 3.70 742.85 258.56
4 101.42 768 2046 9 relu 4 4 3.67 784.94 266.68
5 101.42 768 2046 9 relu 16 4 3.66 871.94 260.37
6 101.42 768 2046 9 silu 16 16 3.69 788.95 260.03
7 101.42 768 2046 9 silu 4 4 3.66 773.27 255.42
8 101.42 768 2046 9 silu 16 4 3.65 853.46 252.71
9 99.54 704 1856 11 relu 16 16 3.65 720.98 228.11
10 99.54 704 1856 11 silu 16 16 3.64 753.61 228.03
11 100.00 576 1536 18 relu 16 16 3.68 601.56 154.59
12 100.00 576 1536 18 relu 4 4 3.59 652.11 164.05
13 100.00 576 1536 18 relu 16 4 3.66 705.54 153.85
14 100.00 576 1536 18 silu 16 16 3.67 614.41 151.98
15 100.00 576 1536 18 silu 4 4 3.58 640.13 160.48
16 100.00 576 1536 18 silu 16 4 3.65 691.67 150.15
17 101.06 448 1184 33 relu 16 16 3.68 469.89 89.48
18 101.06 448 1184 33 silu 16 16 3.67 481.58 87.70

rameters were trained on different datasets: one
on RefinedWeb + StarCoder (200B tokens) and
one on DCLM (100B tokens). Both models share
the same architecture. Evaluation on seven down-
stream tasks (ARC-Easy, ARC-Challenge, Hel-
laSwag, TruthfulQA, Winogrande, PIQA, MMLU)
yields average accuracies of 0.47 and 0.52, respec-
tively. Despite using fewer tokens, the DCLM-
trained model outperforms the model trained on
larger but less curated data, indicating the impor-
tance of data quality over sheer quantity.

These experiments support our important con-
clusions:

• Model architecture significantly affects infer-
ence latency (§3.1).

• Dataset quality has a crucial impact on model
performance (§2.4).
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