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Abstract

Question answering (QA) tasks serve as a key
benchmark for evaluating generation systems.
Traditional rule-based metrics, such as accu-
racy and relaxed-accuracy, struggle with open-
ended and unstructured responses. LLM-based
evaluation methods offer greater flexibility but
suffer from sensitivity to instructions, robust-
ness issues, and high computational costs. To
overcome these challenges, we introduce QAE-
val, a hybrid framework combining rule-based
reliability with LLM-based adaptability. QAE-
val utilizes two high-quality datasets: QAEx-
tract for short-answer extraction and QAScore
for scoring model training. By integrating a
Mixture of Evaluators model with Dynamic
Load Balancing Optimization, QAEval enables
accurate, cost-effective QA evaluation. Experi-
mental results show it outperforms models like
GPT-4o and Claude-3, achieving 92.3% accu-
racy with only 0.6B parameters.

1 Introduction

Question answering (QA) systems (Ojokoh and
Adebisi, 2018; Zaib et al., 2022) serve as an impor-
tant medium of human-computer interaction, with
diverse applications, such as information retrieval
for solving complex problems (Masry et al., 2022;
Liu et al., 2023; Welivita and Pu, 2023). With the
advancement of large language models (LLMs),
QA tasks have become a crucial benchmark for
assessing their performance (Krithara et al., 2023;
Mao et al., 2024). Robust QA evaluation becomes
essential for understanding the strengths and limi-
tations of LLMs, particularly in reasoning, factual
accuracy, and contextual comprehension.

Existing QA evaluation methods exhibit notable
limitations in assessing complex and open-ended
responses (Wang et al., 2024). Traditional rule-
based approaches rely on strict matching criteria
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Figure 1: Comparison of complex QA evaluations using
different methods, including our proposed QAEval.

to compute accuracy (Kahou et al., 2017), mak-
ing them struggle with open-ended questions that
require contextual understanding. While relaxed-
accuracy metrics (Methani et al., 2020) improve
flexibility by allowing numerical tolerance, they
remain insufficient for capturing contextualized
correctness. More recently, LLM-based evalua-
tors have gained popularity due to their ability
to assess responses holistically. These methods
score the input [Question, True-answer, Model-
response] in a binary classification ([0, 1]) by us-
ing tailored prompts (Xia et al., 2024; Wang et al.,
2024). However, these methods introduce new
challenges, including sensitivity to prompt varia-
tions (Mao et al., 2023), evaluation inconsistencies
across different LLM versions, and high compu-
tational costs (Shekhar et al., 2024). These con-
straints hinder their reliability and scalability, par-
ticularly for large-scale evaluation tasks where ef-
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ficiency and stability are critical. Typical errors
presented in relaxed-accuracy and GPT-4o-based
evaluation methods are shown in Fig. 1.

To address these challenges, we propose QAE-
val1, a hybrid evaluation framework that com-
bines the robustness of rule-based methods with
the adaptability of language model-based evalua-
tion. Unlike existing LLM-based methods, QAE-
val is designed to be lightweight, plug-and-play,
and cost-efficient while maintaining high accu-
racy. Our method utilizes a Mixture of Evalua-
tors (MOE) model, trained with Dynamic Load
Balancing Optimization (DLBO), which leverages
Kullback-Leibler (KL) dispersion to enhance eval-
uation robustness. Additionally, we introduce two
manually labeled datasets, QAExtract with 9,889
samples and QAScore with 14,419 samples, to re-
fine both extraction and scoring capabilities. Ex-
perimental results on QAScore test set demonstrate
that QAEval achieves state-of-the-art performance
(92.3%), surpassing models such as GPT-4o and
Claude-3 while using only 0.6B parameters, signif-
icantly reducing computational overhead without
compromising accuracy.

The contributions of this work are summarized
as follows: 1) We introduce QAEval, a novel eval-
uation framework that efficiently and accurately
assesses QA tasks by integrating an answer ex-
traction model, a rule-based scoring model, and a
scoring model utilizing MOE. The framework is
lightweight, and highly robust, supporting a plug-
and-play deployment approach. 2) To enhance the
robustness of the MOE scoring model, we pro-
pose DLBO, which dynamically balances evaluator
selection propensity and evaluation accuracy, en-
suring more stable and reliable performance. 3)
We construct two high-quality datasets: QAExtract
for answer extraction and QAScore for scoring, by
sampling data from 31 QA datasets and generating
responses using 10 mainstream LLMs. All data
is manually labeled and thoroughly proofread to
ensure dataset quality and reliability.

2 Related works

With the rapid development of LLMs, QA tasks
have become an important benchmark for testing
model understanding (Yue et al., 2023; Kim et al.,
2024) and reasoning capabilities.

Early QA datasets, such as FigureQA (Kahou
et al., 2017) and DVQA (Kafle et al., 2018), pri-

1https://github.com/yuetanbupt/QAEval

marily rely on fixed-answer formats, where re-
sponses are constrained to binary (“yes/no”) or pre-
defined categorical labels. These datasets are eval-
uated using accuracy, which directly measure the
match between model outputs and ground-truth an-
swers (see Fig. 2A). While effective for structured
tasks, this rigid evaluation framework struggle to
accommodate more complex QA tasks that involve
open-ended or numerical responses. To address
this, relaxed-accuracy is introduced (Methani et al.,
2020), allowing for a tolerance range in numerical
answers and improving flexibility. Beyond numeric
relaxation, recent rule-based methods (Bulian et al.,
2022; Li et al., 2024) further enhance equivalence
judgment through manually defined transforma-
tion rules, enabling interpretable matching for para-
phrased or reformatted answers. However, as QA
tasks continue to grow in complexity (Ma et al.,
2024), particularly with the emergence of LLMs
capable of generating diverse and unconstrained re-
sponses, traditional rule-based methods fail to pro-
vide a comprehensive assessment of response qual-
ity. The inherent variability in LLM outputs, such
as paraphrased responses or contextual interpreta-
tions (Yue et al., 2021; Zhu et al., 2024; Verga et al.,
2024), makes it difficult for rule-based methods
to accurately capture semantic equivalence (Wang
et al., 2022; Wang, 2023; Yue et al., 2024).

To overcome these limitations, LLM-based eval-
uation methods (Achiam et al., 2023; Xia et al.,
2024) have been developed, leveraging the con-
textual interpretation capabilities of LLMs (see
Fig. 2B). These approaches instruct an LLM to
assess responses by comparing the [Question, True-
answer, Model-response] tuple, where the evalua-
tion task is often treated as a binary classification
problem, assigning a score of “1” for correct an-
swers and “0” for incorrect answers. Some meth-
ods, such as Charxiv (Wang et al., 2024), instruct
LLMs to first extract key information from lengthy
model responses and then score them. While LLM-
based evaluation improves flexibility by handling
diverse and unstructured responses, it also intro-
duces significant challenges. LLMs are prone to
hallucinations and inconsistent responses, lead-
ing to unreliable or unexplainable scoring deci-
sions. Furthermore, their sensitivity to prompt
variations, dependence on proprietary model ver-
sions, and high computational costs hinder their
robustness and scalability for large-scale evalua-
tion tasks (Chang et al., 2024).

In summary, rule-based evaluation approaches

14718



Figure 2: Comparison of the proposed QAEval framework with existing methods. Figure 2A represents the
rule-based method, Figure 2B represents the LLM-based method, and Figure 2C shows our QAEval framework.

struggle with model-generated responses that vary
in structure and phrasing, leading to underestima-
tion of correct answers due to limited semantic
flexibility. While LLMs enable flexible response
assessment (Vu et al., 2024), they frequently pro-
duce hallucinated errors and lack interpretability,
making their scoring inconsistent and difficult to
verify. LLM-based evaluators exhibit poor robust-
ness, with significant fluctuations in results due
to slight prompt variations (Xu et al., 2023; Chi-
ang and Lee, 2023). Their reliance on proprietary
models introduces version inconsistencies, while
high API/deployment costs and latency make them
impractical for large-scale QA evaluation.

3 Methodology

We propose QAEval, a novel framework designed
for efficient and accurate evaluation of QA tasks.
As illustrated in Fig. 2C, QAEval comprises three
key components: an answer extraction model, a
rule-based scoring model, and an MOE scoring
model. By integrating extraction with a multi-stage
scoring approach, QAEval enhances evaluation ac-
curacy while maintaining a lightweight model ar-
chitecture.

QAEval evaluates each input sample, consisting
of [Question, True Answer, Model Response], via a
multi-step process: 1) Answer Extraction. Short-
form answers are extracted from lengthy model-
generated responses to standardize the evaluation
input. 2) Rule-Based Quick Scoring. The ex-
tracted answers are first assessed using a improved
rule-based scoring method for rapid evaluation. 3)
Flexible Scoring via MOE. If the rule-based ap-
proach fails to establish a reliable match between

the extracted and true answers, an MOE scoring
model is employed to provide a more flexible and
context-aware assessment. The final evaluation out-
put is a three-tiered scoring system ([0, 0.5, 1]),
capturing varying degrees of answer correctness.

3.1 Answer extraction

The answer extraction model is designed to distill
concise answers from lengthy QA responses, fa-
cilitating a more straightforward comparison with
ground-truth answers. To achieve this, we fine-tune
a Qwen2.5-0.5B model using our curated QAEx-
tract dataset. Through instruction fine-tuning, the
model learns to extract key information from com-
plex and verbose responses, ensuring more efficient
and accurate matching during evaluation.

The extraction model takes the input [Q,R],
where Q represents the question and R repre-
sents the model-generated response. The out-
put Apre is the extracted information from the
QA system response. During training, the model
learns to minimize the loss between the pre-
dicted answer Apre and the true extracted an-
swer Aext with the following the loss Lextract =
−∑T

t=1 logP (At|A<t, Q,R; θ), where T is the
length of the true extracted answer Aext; At is the
t-th token of the true extracted answer; A<t rep-
resents the sequence of tokens generated before
At at step t; P (At|A<t, Q,R; θ) is the probability
of generating token At conditioned on the previ-
ous tokens, question Q, response R, and model
parameters θ. During inference, the model extracts
the short answer by finding the sequence Apre that
maximizes the joint probability of all tokens by
Apre = argmaxA

∏T
t=1 P (At|A<t, Q,R; θ).
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3.2 Rule-based quick scoring
Based on the relaxed-accuracy method (Methani
et al., 2020), we propose an improved rule-based
evaluation method (Racc) that aims to measure the
prediction results of the model more comprehen-
sively. While retaining the error-tolerance mech-
anism for numerical answers, the method adds a
case-insensitive matching algorithm for string an-
swers, thus increasing the flexibility and applica-
bility of the evaluation. In addition, to address the
limitation that the relaxed-accuracy method only
provides two scores, 0 or 1, we introduce an inter-
mediate score of 0.5 to identify partially correct
answer cases. When dealing with multiple-answer
samples, we match each model-predicted answer
individually with the corresponding true answer to
ensure evaluation accuracy. The implementation
details are shown in Algorithm 1.

The rule-based method provides a fast and reli-
able preliminary evaluation using predefined match-
ing rules. In the initial scoring phase, it calculates
a score S, based on predefined matching rules. The
scoring function is given by:

S =





1, if Racc(Apre) = Atrue

0.5, if Racc(Apre) ∈ Atrue

0, otherwise

(1)

If the rule-based score S is 0.5 or 1, the extracted
answer is deemed a match, and the score is final-
ized. If S = 0, indicating no match or an incor-
rect response, the filtered sample (denoted as F ) is
passed to the MOE model for further assessment.

FinalScore =

{
S, if S = [0.5, 1]

MOE(F ), if S = 0
(2)

This two-stage scoring strategy merges the re-
liability and efficiency of the rule-based method
with the flexibility of the MOE model, offering a
balanced solution for complex QA tasks. It reduces
computational costs while maintaining accuracy.

3.3 Mixture of evaluators
We develop a scoring model using MOE (Fan et al.,
2024; Jiang et al., 2024; Cai et al., 2024; Guo et al.,
2025) to handle complex QA responses that rule-
based methods cannot match. Unlike LLM-based
evaluators with a generative paradigm, we treat QA
scoring as a classification task and train a classi-
fier. The advantage is that the classification ap-
proach directly maps the evaluation outcomes to

Algorithm 1 Rule-based Scoring Algorithm
1: Function Correctness(t, p, δ = 0.05)
2: Convert t and p to lowercase (for string comparison)
3: Define toFloat(x): parse x (original or lowercased) as a

float; if ends with ‘%‘, remove ‘%‘ and divide by 100
4: tf ← toFloat(t), pf ← toFloat(p)
5: if tf and pf are not None then
6: if tf == 0 then
7: return (pf == 0)
8: end if
9: Compute ∆← | pf−tf |

| tf |
10: return (∆ ≤ δ)
11: else
12: return (t == p)
13: end if
14: Function Score(R,A)
15: Trim leading/trailing spaces in R,A, then split R and A

into lists (by delimiter ‘;‘)
16: if |R| > |A| then
17: return 0
18: end if
19: Initialize match← [ ]
20: for r in R do
21: m← any(Correctness(a, r, δ) for a in A)
22: Append m to match
23: end for
24: if all(match) and |R| == |A| then
25: return 1
26: else if all(match) then
27: return 0.5
28: else
29: return 0
30: end if

predefined categories, which enhances stability and
transparency. It also avoids the unpredictability
of generative models and reduces the risk of hal-
lucinations. To address the evaluation accuracy
drop caused by diverse QA types, we introduce
an MOE architecture with DLBO, which improves
scoring accuracy by assigning specific QA types
to evaluators (see Fig. 3). The input is defined as
E_input for evalulators and G_input for the gat-
ing network, where G_input = [..., [Q,Atrue]i, ...],
E_input= [..., [Q,Atrue, R,Apre]i, ...], ∀i ∈ [1, N ].
N is the batch size.

First, a gating network has been designed, which
assigns a weight distribution based on the QA type
of the input. It dynamically directs different sample
types to the most suitable evaluators, ensuring spe-
cialization. Features HCLS = MA(G_input), are
extracted from the ALBERT model (MA(·)) (Lan,
2019) using the [CLS] token representation, where
HCLS ∈ RN×d is the [CLS] feature vector. d is
the hidden layer size. The gating network takes
HCLS as input and computes the weight distribution
across evaluators. G = σ(

HCLS·Wg+bg

2 ), where
Wg ∈ Rd×K is the weight matrix of the gating
network. bg is the bias vector. K denotes the
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Figure 3: The proposed MOE scoring model. The left side of the figure illustrates the model scoring process, and
the right side represents the DLBO for the gating network.

number of evaluators. G ∈ RN×K is the weight
distribution generated by the gating network. σ is
a softmax function.

Next, we develop a gating network to select the
best evaluators for processing the evaluation task.
Based on the gating network’s output (the weight
values), we select the Top2 evaluators with the
highest weights. Each evaluator independently
performs the classification. The outputs of the
selected evaluators are fused with their weights:
yfused =

∑K
k=1 σ(Top2(G)) · MA(E_inputi).

Finally, during MOE training, the model may
over-rely on one evaluator, diminishing the utility
of others. To address this, we introduce Kullback-
Leibler (KL) divergence to create a DLBO function.
By applying a weight decay mechanism, the gating
network’s weights are dynamically adjusted across
epochs, ensuring balanced load distribution and
enhancing overall model performance. The KL
divergence measures the difference between the
evaluator distribution and a uniform distribution:

Lbalance =

K∑

k=1

(
1

N

N∑

i=1

Gik) · log(
1
N

∑N
i=1Gik

1
K

),

(3)
where k is the indexes of evaluators. An improved
weight decay function dynamically adjusts the bal-
ancing weight by

wbalance(p) = wmin +
winitial − wmin

1 + ej·(p/P−c)
, (4)

where wmin and winitial are the minimum and initial
weights. p is the current epoch, P is the total num-

ber of epochs. c = 0.5−f , where f is the early ad-
justment factor. j is the curve steepness factor. The
overall loss is Ltotal = Lce + wbalance(p) · Lbalance.

The DLBO function aims to constrain the av-
erage evaluator weight 1

N

∑N
i=1Gik to close to

the target uniform distribution 1
K , avoiding over-

reliance on specific evaluators. The function is
defined as the weighted logarithmic difference be-
tween the average evaluator weight and the target
distribution. During the optimization, load balanc-
ing is achieved by updating the gradient of each
sample weight Gik (we define µk = 1

N

∑N
i=1Gik):

∂Lbalance

∂Gik
=

∂Lbalance

∂µk
· ∂µk

∂Gik
, (5)

∂Lbalance

∂µk
= log

(
µk
1
K

)
+ 1, (6)

∂Lbalance

∂Gik
=

1

N

(
log

1
N

∑N
i=1Gik

1
K

+ 1

)
. (7)

In the early training stages, higher dynamic
weights cause greater gradient adjustments when
evaluator weights deviate from the target distribu-
tion. DLBO ensures that evaluators are exposed to
more data initially. The weights decay with train-
ing. In the later stages, gradients focus on predic-
tion differences, allowing better-performing evalu-
ators to receive higher weights for their specialized
QA tasks, ultimately improving model accuracy.

4 Dataset

4.1 Dataset collection
To train the extraction and scoring models, we build
two quality, manually labeled datasets: QAExtract

14721



Dataset Train Val. Test Total

QAExtract 7889 2000 - 9,889
QAScore 12419 1000 1000 14,419

Table 1: QAExtract and QAScore statistics.

and QAScore. Both are collected from 31 widely-
used datasets for QA, covering a wide range of
domains, including figure/chart QA, textbook QA,
visual QA, etc (see Table A.2 in Appendix A for
details). In the initial data collection phase, 60,000
QA samples are drawn from 31 datasets. How-
ever, the prevalence of homogeneous and simple
QA pairs pose a risk of ineffective training. To ad-
dress this, similar samples within the same dataset
are randomly selected, followed by manual filter-
ing, reducing the dataset to 24,000 samples while
ensuring quality and diversity (shown in Table 1).
The selection process adhered to three key princi-
ples: 1) maintaining a balanced data distribution by
controlling the proportion of similar QA samples;
2) limiting the inclusion of simple QA pairs to a
small set of representative examples; 3) increasing
the proportion of complex QA samples to enhance
dataset difficulty and model generalization.

4.2 Response generation

To further improve the reality and diversity of the
dataset, we use 10 popular LLMs (e.g., GPT-4o)
to generate responses (model list shown in Ap-
pendix B). During the generation, we use manually
constructed diverse instruction templates to guide
the LLMs to generate rich answer types.

4.3 QAExtract-dataset

The QAExtract dataset is used for instruction fine-
tuning the extraction model of QAEval to generate
concise and precise answers from longer responses.

To construct the dataset, simple cases where
short answers can be derived through rule-based
matching or LLM-generated extraction are first pro-
cessed preliminarily, followed by manual verifica-
tion. For more complex QA samples, manual ex-
traction is conducted to ensure accuracy and quality.
Three independent annotators (Appendix A.2) with
expertise in NLP and QA research participate in
this process. In cases where manually extracted
answers differ among annotators, discussions are
conducted to reach a consensus. The final dataset
consists of 9,889 samples, each containing [Ques-
tion, Model Response] as input and [True Extracted

Answer] as the ground truth output.
To standardize the annotation task, the extrac-

tion process adheres to strict guidelines: 1) Human
annotators extract short answers by referring to the
given context [Question, Model Response]. 2) Ex-
tracted answers must be strictly derived from the
content of [Model Response] without adding ex-
ternal information. 3) Extracted answers should
be as concise as possible, retaining only numeri-
cal values when applicable, with multiple answers
separated by semicolons.

4.4 QAScore-dataset

The QAScore dataset is designed to train a scor-
ing model that evaluates the alignment between
[Model Responses] and [True Answers]. It com-
prises 14,419 samples, each structured as [Ques-
tion, True Answer, Model Response] as input and
[True Score] as the target output. To ensure high
quality and accuracy, all samples are human-scored
based on a standardized three-level scale: Com-
plete Match (1.0) for responses identical to the
true answer, Partial Match (0.5) for responses with
partial correctness but some omissions or biases,
and Mismatch or Excess Content (0.0) for entirely
incorrect or extraneous responses. A rigorous an-
notation process is implemented to maintain con-
sistency and reliability. Three expert annotators
(Appendix A.2) with backgrounds in NLP and QA
evaluation are selected and instructed with clear
scoring guidelines and examples to minimize sub-
jectivity. Each sample is independently scored by
the three annotators, with discrepancies resolved
through discussion to reach a consensus.

5 Experiment

5.1 Methods

We perform extensive experiments using the rule-
based and LLM-based methods. 1) Rule-based:
Accuracy, Relaxed-accuracy (Methani et al., 2020),
BEM (Bulian et al., 2022), and PEDANTS (Li et al.,
2024). 2) LLM-based: Qwen2.5 (Team, 2025),
Claude-3 (Anthropic, 2024), Gemini-1.5 (Team
et al., 2024a), GPT-4o-mini (OpenAI, 2024),
ChartX (Xia et al., 2024), Charxiv (Wang et al.,
2024), and GPT-4o (Hurst et al., 2024). More de-
tails are shown in Appendix C.

5.2 Settings

For the rule-based and open-source LLM-based
methods, we use publicly available code and pre-
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Figure 4: The instruction for proprietary LLM-based
methods.

Name Variable Value

Number of trained evaluators K 8
Number of selected evaluators Top-k 2

Minimum weight wmin 0.01
Initial weight winitial 1

Early adjustment factor f 0.3
Curve steepness factor j 20

Hidden layer size d 768
Batch size N 16

Table 2: Hyper-parameter statistics.

trained weights with default hyperparameters. For
the proprietary closed-source LLM-based methods,
we conduct experiments by calling the API through
the official website (More details in Appendix D).
As shown in Fig. 4, we use the same instructions to
ensure a fair comparison. The QAEval framework
comprises an extraction model (Qwen2.5-0.5B2),
a rule-based model (Algorithm 1), a mixture of
evaluators model (ALBERT3 as evaluator). We
train QAEval for 10 epochs with a learning rate
of 1e-6. Hyper-parameter statistics are shown in
Table 2.

5.3 Evaluation

In our experiments, “Accuracy” measures whether
the final prediction scores match the true labels,
while “Score” serves as a complementary metric
to assess the gap between each method’s total evalu-
ation score and the true total score, which is 51.6%
in the test set. Since there is no publicly available
test set, we evaluate performance using QAScore-
Test with 1,000 samples.

6 Results

We aim to develop an accurate and efficient QA
scoring method with minimal computational cost.
Therefore, our evaluation focuses on accuracy, run-
ning time, and cost-effectiveness. As shown in

2https://huggingface.co/Qwen/Qwen2.5-0.5B-Instruct
3https://huggingface.co/albert

Methods RT(s) Cost Acc.(%)

Human - - 99.1

Rule-based

Accuracy 4.17 (O) Free 47.5
Relaxed-accuracy 4.36 (O) Free 47.6
BEM 56.34 (O) Free 63.5
PEDANTS 15.89 (O) Free 70.2

LLM-based

ChartX(GPT-3.5) 1281.74 (P) $0.5(Q)+$1.5(A) 64.4
GPT-4o-mini 1886.73 (P) $0.15(Q)+$0.6(A) 84.5
Claude-3 1418.14 (P) $0.25(Q)+$1.25(A) 85.5
Gemini-1.5 1172.81 (P) $0.15(Q)+$0.6(A) 86.1
ChartX(GPT-4o) 1381.60 (P) $2.5(Q)+$10(A) 87.5
Charxiv 3024.51 (P) $2.5(Q)+$10(A) 90.6

Fine-tune

Qwen2.5-0.5B 49.69 (O) Free 44.5
Qwen2.5-0.5B(FT) 129.97 (O) Free 58.1

QAEval (0.6B) 139.62 (O) Free 92.3

Table 3: Comparison of different methods in accuracy
(Acc.), running time (RT), and cost. $0.5(Q) + $1.5(A)
means that input 1 million tokens cost $0.5 and output
(response) 1 million tokens cost $1.5. O=Open source
(RTX4090D for running). P=Proprietary.

Table 3, QAEval achieves the highest 92.3% accu-
racy (with 97.06%/477 in our rule-based model and
87.95%/523 in our MOE model) among all meth-
ods, closely approaching human-level performance
(99.1%). Unlike LLM-based methods, QAEval
does not rely on external API calls, eliminating
additional costs. Although its execution time sur-
passes LLM-based methods with comparable pa-
rameter sizes and rule-based methods due to the
complexity of its hybrid framework, QAEval ex-
ceeds these methods in accuracy by a significant
margin.

Rule-based methods like Accuracy and Relaxed-
accuracy show high efficiency, completing a single
evaluation in approximately 4 seconds without re-
quiring an answer extraction model. However, their
accuracy falls below 50%, highlighting their limita-
tions in handling diverse QA tasks using predefined
rules alone. The BEM and PEDANTS methods
perform better, but there is still a significant gap
with the QAEval (-22.1% PEDANTS, and -28.8%
BEM). Both models perform significantly worse
in the evaluation of complex QA samples and are
not flexible enough to adapt to diverse QA samples,
especially for samples with very long responses but
short answers. LLM-based methods exhibit strong
accuracy, with Charxiv achieving 90.6%. How-
ever, their high API costs and time constraints limit
scalability. Smaller LLMs perform poorly under
default settings, as seen with Qwen2.5-0.5B, which
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Figure 5: Visualization of the effect of DLBO on the gating network. X-axis denotes the indexes of evaluators;
Y-axis denotes the number of training epochs. Red and yellow numbers indicate the top2 selected evaluators.

Instruction Settings Ground
Truth1 2 3 4 5

Acc. 79.9 85.5 77.1 79.2 79.4 100
Score 47.8 52.6 52.1 50.1 51.9 51.6

Table 4: Claude-3 performance by different instructions.

Version Accuracy Score

GPT-4o GPT-4o-0513 81.7 48.8
GPT-4o-0816 87.5 51.2

Table 5: Different GPT-4o version comparison

attains only 44.5% accuracy. After fine-tuning, its
accuracy improves to 58.1%, demonstrating the ef-
fectiveness of task-specific fine-tuning for smaller
models in the evaluation task.

6.1 LLM-based solution analysis

LLM-based scoring lacks robustness to instruc-
tion variations. To assess the robustness and con-
sistency of LLMs in QA scoring, we conduct exper-
iments using the Claude-3 model with five semanti-
cally equivalent but differently phrased instructions
(provided in Appendix E). As shown in Table 4,
the model exhibits notable sensitivity to instruction
phrasing, with accuracy varying between 77.1%
and 85.5%, a gap of 8.4%. Similarly, the final
scores ranged from 47.8% to 52.6%, differing by
4.8%. These results indicate that even minor mod-
ifications in instruction wording can significantly
impact scoring outcomes, highlighting the lack of
robustness in LLM-based scoring methods.
Scoring performance varies across LLM ver-
sions. LLM-based evaluation methods often de-
pend on proprietary APIs, and different model ver-
sions can yield substantially different results. To

Methods RS (%) ES (%) Imp. (%)

Accuracy 47.5 79.6 (↑)32.1
Relaxed-accuracy 47.6 87.9 (↑)40.3

ChartX(GPT-3.5) 64.4 67.1 (↑)2.7
Claude-3 85.5 88.1 (↑)2.6
ChartX(GPT-4o) 87.5 90.6 (↑)3.1

Table 6: Effect of key information extraction on scoring
results (Acc.). RS denotes using response and true an-
swer to score; ES denotes using extracted answer and
true answer to score; Imp. denotes improvements.

examine this effect, we compare two versions of the
GPT-4o model (0513 and 0816) on the QA scoring
task, as detailed in Table 5. The GPT-4o-0816 ver-
sion achieves an accuracy of 87.5%, outperforming
the 0513 version (81.7%) by 5.8%. These findings
underscore the importance of version stability in
ensuring consistent evaluation results.

6.2 Extraction and DLBO utility analysis

Answer extraction significantly enhances scor-
ing performance. This experiment evaluates the
impact of a paradigm that extracts concise an-
swers from lengthy responses before scoring them
against true answers. In Table 6, results demon-
strate substantial performance gains across all eval-
uation methods. For LLM-based methods, extrac-
tion improves accuracy by 2–3%, while rule-based
methods experience a notable 40.3% increase in
Relaxed-accuracy, achieving a final accuracy of
87.9%, comparable to leading LLM-based meth-
ods. These findings indicate that integrating an
answer extraction model with rule-based method
enhances QA scoring accuracy, simplifies process-
ing of lengthy responses, and improves overall reli-
ability, validating the effectiveness of our method.
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Figure 6: The impact of the number of evaluators, the number of selected evaluators (Top-k) for final decision-
making, and different sizes of extraction models on scoring results and runtime.

DLBO enhances specialized knowledge distribu-
tion among evaluators. To prevent over-reliance
on a single evaluator for all samples, we introduce
DLBO, which encourages diverse evaluator spe-
cialization. A case study visualizing the gating net-
work’s output during different training epochs (8
evaluators) highlights this effect in Fig. 5. DLBO
assigns tasks to Evaluators 2 (left) and 4 (right),
whereas without DLBO, the model consistently re-
lies on Evaluator 1. This demonstrates that DLBO
enables a more balanced and task-specific alloca-
tion of evaluators in our MOE architecture, improv-
ing the robustness of the evaluation process.

6.3 Hyperparameter analysis

Number of evaluators. Our findings indicate that
increasing the number of evaluators improves per-
formance when there are fewer evaluators (see
Fig. 6 left). However, beyond 8 evaluators, the per-
formance gains become marginal, while the compu-
tational cost increases. This occurs because, with
more than 8 evaluators, the gating network faces
difficulty in effectively distinguishing the roles of
each evaluator, resulting in diminishing returns in
performance.
Number of selected evaluators (Top-k). We fur-
ther examine the impact of the number of evalua-
tors selected by the gating network in generating
the final output (see Fig. 6 middle). Selecting only
one evaluator results in incorrect predictions for a
small subset of complex samples, due to a reduction
in robustness. However, due to the similarity and
redundancy of the outputs, as more than two evalua-
tors are selected, the accuracy stabilizes, with little
improvement beyond this point. Conversely, the
computational time increases substantially as the
number of evaluators grows, highlighting a trade-
off between accuracy and efficiency.

6.4 Model scaling analysis
Given that LLMs often enhance performance
through an increase in parameters, we conduct ex-
periments with the Qwen-2.5 model, testing vari-
ants with 0.5B, 1.5B, and 3B parameters. The
results reveal that while a higher number of param-
eters yields some performance improvement, the
gains are marginal relative to the increase in com-
putational resource requirements, which negatively
impacts the efficiency (see Fig. 6 right). These
findings suggest that high-quality data annotations,
like QAExtract, are more crucial than model size
in improving QAEval performance, stressing the
value of effective labeling over model complexity.

7 Conclusion

This work tackles the limitations of current QA
evaluation methods by introducing QAEval, which
effectively combines the reliability of rule-based
approaches with the adaptability of LLM-based
models. Our approach demonstrates superior per-
formance relative to advanced LLMs, while signif-
icantly reducing computational costs. In addition,
the QAExtract and QAScore datasets provide train-
ing and evaluation resources for QA evaluation.

Limitations

While QAEval solves QA tasks with unambiguous
answers effectively, e.g., visual QA, math problem
solving, textbook QA, it is limited when applied to
tasks involving ambiguous or subjective responses,
such as literary dialogues, multi-turn conversations,
and descriptive generation. In these tasks, answers
are often not unique and may vary depending on
context or interpretation. As a result, the quality
evaluation of such responses is more prone to sub-
jective influences. Therefore, further works are
needed for ambiguous QA tasks.
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A Details of datasets

A.1 Collection
As shown in Table A.1, to efficiently train our ex-
traction and scoring models, we build two high-
quality manually labeled datasets: QAExtract and
QAScore, which are sampled from 31 widely-used
QA-related datasets covering a wide range of do-
mains, including textbook question answering, vi-
sual question answering, figure question answering,
etc (shown in Table A.2). We show the sample in
QAScore dataset in Fig. A.1.

Dataset Que. Res. Ext.A Tru. A

QAExtract 19.71 37.05 1.65 -
QAScore 18.16 39.13 - 1.61

Table A.1: The average token statistics.

A.2 Annotation
A total of 6 annotators participate in the dataset
annotation (3 for QAExtract dataset and 3 for QAS-
core dataset). The annotators, all native Chinese
speakers from top universities, possessed advanced
English proficiency (CET-6). The annotators have
expert experience in the field of NLP and QA, and
we make the annotation rules for both QAExtract
and QAScore datasets as detailed instructions for
annotators. The average hourly payment for each
annotator is 129 CNY, exceeding the minimum
wage. Additionally, annotators are given a 10-
minute break after 30 minutes of work.

The dataset and code will be open-sourced under
the MIT License. The data used in this study are
derived from publicly available datasets and it has
been ensured that the relevant data use policies and
privacy protections have been followed. The data
will provide support to the academic field and the
use has been explained in detail in the instructions.

B Details of the models used to generate
responses

Claude-3.5-Sonnet (Anthropic, 2024) model per-
forms well in reasoning, knowledge acquisition,
and coding skills. The model has strong visual pro-
cessing capabilities and is able to interpret charts
and graphs.
Gemini-1.5-Pro (Team et al., 2024a) is a multi-
modal model from Google with a sparse mixture
of experts (MoE) architecture with a contextual
window for processing up to millions of tokens for

Dataset Year Task

GEOS 2015 Geometry Problem
VQA-AS 2015 Visual Question Answering
AI2D 2016 Textbook Question Answering
FigureQA 2017 Figure Question Answering
TQA 2017 Textbook Question Answering
VQA2.0 2017 Visual Question Answering
DVQA 2018 Figure Question Answering
VizWiz 2018 Visual Question Answering
VQA-RAD 2018 Visual Question Answering
KVQA 2019 Visual Question Answering
TextVQA 2019 Visual Question Answering
PlotQA 2020 Figure Question Answering
Geometry3K 2021 Geometry Problem
IconQA 2021 Math Problem
GeoQA+ 2022 Geometry Problem
UniGeo 2022 Geometry Problem
CLEVR-Math 2022 Math Problem
ChartQA 2022 Figure Question Answering
MapQA 2022 Figure Question Answering
DocVQA 2022 Figure Question Answering
ScienceQA 2022 Textbook Question Answering
A-OKVQA 2022 Visual Question Answering
ParsVQA-Caps 2022 Visual Question Answering
TabMWP 2023 Math Problem
SciBench 2023 Textbook Question Answering
TheoremQA 2023 Textbook Question Answering
PMC-VQA 2023 Visual Question Answering
Super-CLEVR 2023 Visual Question Answering
SciChart 2024 Figure Question Answering
Charvix 2024 Figure Question Answering
MathVista 2024 Figure Question Answering

Table A.2: Datasets used for developing QAExtract and
QAScore.

complex tasks requiring advanced reasoning and
analysis.
Qwen-VL-Plus (Bai et al., 2023) is an enhanced
version of the visual language model introduced by
Alibaba, which significantly improves the recogni-
tion of image details and text, and excels in a wide
range of visual tasks.
Qwen-VL-Max (Bai et al., 2023) is an ultra-large-
scale visual language model from Alibaba that ex-
cels in visual reasoning and command following
capabilities, supports processing of ultra-megapixel
high-resolution images, and is capable of accu-
rately recognizing image details and text.
Phi-3-Vision (Abdin et al., 2024) is a lightweight,
multimodal state-of-the-art model supporting 128K
context length, trained on high-quality textual and
visual inference data, and rigorously supervised
fine-tuned and preference-optimized for excellent
command adherence and security.
InternVL2-76B (Chen et al., 2024) is a multimodal
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Figure A.1: The sample in QAScore dataset.

large language model with capabilities of document
and chart comprehension, infographics QA, scene
text understanding, etc.
MiniCPM-V2.5 (Yao et al., 2024) is the latest mul-
timodal large model of MiniCPM-V series, sup-
porting more than 30 languages, with excellent
document understanding, OCR extraction, com-
plex reasoning, etc., while optimized for efficient
edge device deployment.
Reka-Core (Team et al., 2024b) is a 67 billion-
parameter multimodal language model supporting
32 languages with the ability to process text, im-
ages, video and audio for complex application sce-
narios and model distillation.
GPT-4V-Turbo (Achiam et al., 2023) is a multi-
modal model from OpenAI that combines natural
language processing and visual understanding ca-
pabilities to analyze images and answer related
questions. The model offers a significant increase
in processing speed over GPT-4.
GPT-4o (Achiam et al., 2023) is a SOTA multi-
modal model that can process multimodal inputs
(e.g., text and images) as well as perform excellent
understanding and reasoning.

C Methods

C.1 Rule-based methods

Accuracy is a metric that measures the consistency
between predicted and target answers, calculated
as the ratio of correctly predicted samples to the
total number of samples. The formula is:

Accuracy =
Ncorrect

Ntotal
, (8)

where Ncorrect denotes the number of samples
where the predicted answer matches the target an-
swer exactly, and Ntotal represents the total number
of samples.
Relaxed-accuracy provides an additional toler-
ance for errors in numerical answers. For example,
with a tolerance of 5%, 102 (Predict answer) = 100

(True answer).

Relax-accuracy =
Nrelaxed-correct

Ntotal
, (9)

where Nrelaxed-correct denotes the number of samples
where the predicted numerical answer ŷ satisfies:

|ŷ − y| ≤ ϵ · y, (10)

with y being the true answer and ϵ the allowed
tolerance fraction (e.g., ϵ = 0.05 for 5%). Ntotal
represents the total number of samples.
BEM (Bulian et al., 2022) introduces a rule-based
evaluation method that maps answers into prede-
fined equivalence classes based on transformations
such as numerical formatting, unit conversions,
and common paraphrases, enabling more flexible
matching beyond token-level accuracy.
PEDANTS (Li et al., 2024) proposes a lightweight
rule-based system that performs answer equiva-
lence checking through manually designed trans-
formations and pattern matching, aiming to achieve
interpretable and cost-efficient evaluation.

C.2 LLM-based methods
Qwen2.5-0.5B (Team, 2025) is the base model of
the Qwen2.5 family with 500 million parameters
and a decoder-only architecture. The model is pre-
trained on large-scale multilingual and multimodal
datasets with multilingual support and structured
data comprehension.
Claude-3-Haiku (Anthropic, 2024) model has mul-
timodal capabilities and is able to fast and effi-
ciently process visual and textual tasks.
Gemini-1.5-Flash (Team et al., 2024a) is an effi-
cient multimodal pre-training model introduced by
Google that aims to improve the performance of
visual and language understanding tasks through
fast reasoning and low computational cost.
GPT-4o-mini (OpenAI, 2024) is a lightweight ver-
sion of the GPT-4o model, designed to provide
multimodal capabilities in a more efficient model.
It maintains a better ability to process multimodal
data and greatly reduces the model size.
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GPT-4o (Achiam et al., 2023) is a SOTA multi-
modal model that can process multimodal inputs
(e.g., text and images) as well as perform excellent
understanding and reasoning.
ChartX (Xia et al., 2024) designs the GPT-acc eval-
uation method for tasks with clear answers such
as QA, which uses the GPT-4 model to evaluate
responses and true answers and outputs binary clas-
sification results (True/False). Similar to relaxed-
accuracy, GPT-acc sets a 5% error margin for nu-
merical answers.
Charxiv (Wang et al., 2024) uses the GPT-4o
model to evaluate model responses and true an-
swers, designed with instructions that first ask the
model to extract short answers from long responses
and then evaluate them with true answers.

D Experimental settings

In this study, for different types of methods, we
have given careful consideration to the experimen-
tal setup to ensure that each method is comparable
under a fair evaluation framework.
Rule-based methods: based on the formulas in
Appendix C.1, we implement the Accuracy and
Relaxed-accuracy assessment methods. We set a
5% tolerance for relaxed-accuracy.
Proprietary LLM-based methods: for the ex-
periments of proprietary LLM-based methods, in-
cluding Claude-3, Gemini-1.5, GPT-4o-mini and
GPT-4o, we conduct experiments by calling the
API through the official website. The official rec-
ommended hyperparameter settings are strictly fol-
lowed for each model. ChartX4 and Charxiv5 are
based on GPT-4 and GPT-4o, respectively. We
conducted experiments using the code, instructions
and parameters provided in their papers.
Open-source LLM-based methods: for Qwen2.5-
0.5B, we use publicly available code and pre-
trained weights (downloaded from Huggingface6)
with default hyperparameters. And for Qwen 2.5-
0.5B(FT), we use the LoRA method (Hu et al.,
2021) to fine-tune the model on the QAScore train-
ing dataset with 10 epochs.

E Instructions for robustness testing

Given that current LLM-based methods typically
exhibit high sensitivity to instruction input, i.e.,
instructions with different expressions may lead

4https://github.com/Alpha-Innovator/ChartVLM
5https://github.com/princeton-nlp/CharXiv
6https://huggingface.co/Qwen/Qwen2.5-0.5B-Instruct

Figure A.2: Different instructions for robustness testing.

to significantly different evaluation results, we de-
sign and implement a multi-instruction experiment.
Specifically, we design five semantically consistent
instructions that differ in terms of expression struc-
ture, wording choice, and linguistic style to system-
atically evaluate the stability and robustness of the
model under different instruction expressions.

These instructions cover different linguistic fea-
tures, including concise, lengthy, and language,
etc., so as to simulate as much as possible the di-
versified forms of instruction inputs that the model
may face in real application scenarios. Examples
of the instructions are shown in Fig. A.2, and the
model outputs under different instructions are com-
pared through multiple rounds of experiments to
further analyze their impact on the model perfor-
mance and potential adaptive capability.
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