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Abstract
Multi-modal Large Language Models
(MLLMs) have demonstrated remarkable
reasoning capability while lacking explicit
mechanisms for visual grounding and seg-
mentation, creating a gap between cognitive
reasoning and visual perception. To bridge this
gap, we introduce Reasoning Segmentation via
Visual Prompting (RSVP), a novel framework
that unifies multi-step multimodal reasoning
with grounded visual understanding. RSVP
is a two-stage structuralized framework that
integrates reasoning-driven localization with
segmentation refinement. In the reasoning
stage, RSVP employs multimodal chain-
of-thought visual prompts to help MLLMs
understand queries and infer targets, generating
interpretable region proposals that enhance
visual grounding. In the segmentation stage,
RSVP refines these proposals with a Vision-
Language Segmentation Module (VLSM),
which seamlessly integrates textual and visual
cues to produce precise segmentation masks.
By explicitly modeling the interaction between
multimodal reasoning and segmentation, RSVP
introduces a new paradigm for interpretable
reasoning segmentation. It exploits MLLMs’
inherent localization capabilities, enabling the
models to not only reason about objects but
also generate structured visual representations.
Our extensive experiments demonstrate that
RSVP achieves state-of-the-art performance,
surpasses state-of-the-art methods by up to
+6.5 gIoU and +9.2 cIoU on ReasonSeg,
and achieves 49.7 mAP on SegInW under
zero-shot settings. These results validate RSVP
as an effective and scalable framework for
integrating cognitive reasoning with structured
visual understanding.

1 Introduction

Recent advances in multi-modal learning have en-
hanced MLLMs’ ability to reason about visual con-
tent (Cao et al., 2024; Peng et al., 2025). However,
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hancing reasoning results in significant improvements.

Figure 1: (a) and (b) depict different aspects of our segmenta-
tion pipeline performance. More demo results are available in
Appendix C.

a key challenge remains unresolved: bridging the
gap between cognitive reasoning and visual seg-
mentation.

Reasoning Segmentation has emerged as a cru-
cial task in multi-modal grounding, requiring mod-
els to produce segmentation masks from complex,
implicit textual queries (Lai et al., 2024). Unlike
traditional referring segmentation, which relies on
explicit descriptions, reasoning segmentation de-
mands models to infer whether a target object ex-
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ists and where it is located using common sense
knowledge and multi-step reasoning based on both
textual and visual information. This makes it a
significant step toward more interpretable and in-
telligent vision-language systems.

While Large Language Models (LLMs) ex-
cel at logical reasoning and contextual inference,
they lack visual processing capabilities. MLLMs
combine textual and visual modalities but re-
main incapable of generating precise segmentation
masks (Das et al., 2024; Hu et al., 2024; Yang
et al., 2023c). Conversely, referring segmentation
models can identify object boundaries but struggle
with high-level inference and reasoning, preventing
them from effectively tackling reasoning segmen-
tation. Existing solutions attempt to close this gap
through fine-tuning large language-segmentation
models on large-scale datasets, which is costly and
impractical, or through heavy supervised training,
which lacks scalability. While parameter-efficient
tuning methods like LoRA (Hu et al., 2021) re-
duce computational costs, they still require sub-
stantial effort. Moreover, these models lack mod-
ularity—new architectures require retraining on
large-scale data to benefit from performance im-
provements.

To address these challenges, we propose RSVP:
Reasoning Segmentation via Visual Prompting, a
reasoning-driven multi-stage framework that uni-
fies multi-modal chain-of-thought prompting with
visual segmentation. Unlike prior methods that
treat reasoning and segmentation as separate com-
ponents, RSVP explicitly models their interaction,
enabling MLLMs to generate interpretable, step-
wise region proposals that bridge reasoning and
segmentation within a modular framework follow-
ing a two-stage pipeline:
Reasoning Stage. By introducing Multi-modal
Chain-of-Thought Visual Prompting, MLLMs are
guided to understand queries, infer object proper-
ties, reason about existence, and generate region
proposals, enabling explicit visual grounding.
Segmentation Stage. These coarse proposals are
refined using a Vision-Language Segmentation
Module (VLSM), which integrates textual and vi-
sual cues to produce precise segmentation masks.

By integrating structured reasoning with segmen-
tation, RSVP enables MLLMs to reason about ob-
jects while producing explainable visual representa-
tions. Experiments on ReasonSeg (Lai et al., 2024)
and SegInW (Zou et al., 2023) show state-of-the-
art zero-shot performance, surpassing zero-shot

baselines by +6.5 gIoU, +9.2 cIoU, and achiev-
ing 49.7 mAP. Notably, RSVP consistently outper-
forms baselines on both open-source and closed-
source LLM foundations, demonstrating strong
generalization.

Our contributions are summarized as follows:

• We propose a reasoning-driven multi-stage
framework that leverages MLLMs’ reasoning
capabilities for explicit region proposal gen-
eration, significantly reducing training costs
while improving interpretability.

• We develop a multi-modal chain-of-thought
prompting paradigm that bridges the gap be-
tween reasoning and segmentation by produc-
ing object properties, explainable rationales,
and structured region proposals.

• A joint text-image segmentation model
is developed following our design, that
achieves state-of-the-art results on Reason-
Seg (gIOU=60.3, cIOU=60.0) and SegInW
(mAP=49.7) under zero-shot settings, demon-
strating its effectiveness in both reasoning and
open-world segmentation.

2 Related Work

2.1 Reasoning Segmentation

First introduced by LISA (Lai et al., 2024), Rea-
soning Segmentation extends referring segmenta-
tion by requiring models to reason over implicit
queries. Unlike traditional referring segmentation
which directly identifies objects based on simple
descriptions (e.g., “The brown dog at the front”),
reasoning segmentation involves abstract contex-
tual inference (e.g., “What area in the picture could
lead to other parts of the garden?”). This demands
models to integrate visual understanding, object
properties, common sense and world knowledge.

2.2 Multi-modal Large Language Models

MLLMs combine vision encoders with language
models to process multi-modal inputs, bridging
textual and visual tasks (Zhang et al., 2024a; Wu
et al., 2024c; Zhang et al., 2025). Open-source
models such as LLaVA (Liu et al., 2023b) and Mini-
GPT4 (Zhu et al., 2023) demonstrate remarkable
generalization on downstream tasks, while propri-
etary systems like GPT-4o (OpenAI et al., 2024)
and Gemini (Team et al., 2024) push the limits of
multi-modal cognition (Li et al., 2025).
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Figure 2: Overview of the proposed model. An input image is divided into horizontal and vertical regions to assist localization.
In the reasoning stage, an MLLM receives a query about the object’s protective features and identifies "the shell" as the protective
object, generating region proposal using region IDs (idv and idh). Red boxes indicate the regions of interest determined by
the MLLM, yellow box denotes the padding p for complete visual content. The CoT process enhances reasoning accuracy. In
the segmentation stage, a multi-modal encoder integrates textual and visual information, resizing the image for detailed feature
extraction. Finally, SAM refines the segmentation by highlighting the shell that acts as a protective covering for the snail.

MLLMs have been applied in vision-language
reasoning tasks, including LISA (Lai et al.,
2024), Kosmos-2 (Peng et al., 2024), and Ground-
hog (Zhang et al., 2024b), where models generate
region proposals or segmentation masks. However,
these methods either require extensive training or
rely on complex architectures with large parame-
ter sizes. Our approach differs by introducing a
lightweight reasoning-driven framework that ex-
ploits MLLMs’ innate reasoning and localization
capabilities without additional training.

2.3 Visual Prompting

Inspired by prompt engineering in Natural Lan-
guage Processing (NLP), visual prompting (Wu
et al., 2024a; Yang et al., 2023d) modifies the input
space using human-perceivable markers such as
bounding boxes (Lin et al., 2024), numbers (Yang
et al., 2023a), or shapes (Shtedritski et al., 2023).
These cues help MLLMs focus on key image re-
gions without altering model parameters, mitigat-
ing issues like visual hallucination (Bai et al., 2024)
and language bias (Qu et al., 2024).

Visual prompting has shown effectiveness in
fine-grained visual attention for tasks such as re-
ferring expressions (Shtedritski et al., 2023), vi-
sual question-answering (VQA) (Zhou et al., 2024)
and video localization (Wu et al., 2024b). Det-
ToolChain (Wu et al., 2024a) integrates CoT rea-
soning (Wei et al., 2022) with visual prompts to
enhance object detection using MLLMs like GPT-
4V and Gemini.

To our knowledge, no previous work has ex-
plored visual prompting for reasoning segmenta-
tion. Unlike prior approaches that focus on basic
spatial attention, we integrate multi-modal chain-

of-thought visual prompting to provide structured
reasoning for segmentation, allowing models to
generate interpretable region proposals.

2.4 Multi-modal Chain of Thought

Motivated by recent advances in LLMs, Multi-
modal Chain-of-Thought (CoT) has become a
prominent approach for enhancing MLLMs’ rea-
soning capabilities. A line of work (Zhang et al.,
2023) extends CoT reasoning to Vision-Language
tasks by introducing a two-stage framework that
separates reasoning chain generation and answer in-
ference. M3-CoT, introduced by Chen et al. (2024)
as a comprehensive benchmark dataset, provides
rich multi-step, multi-modal samples of mathemat-
ical and scientific problems. Additionally, Shao
et al. (2024) proposes VisCoT, a multi-round inter-
active image understanding pipeline that mimics
human localized focus to extract key information,
improving performance on VQA and document
comprehension tasks. Literature Chen et al. (2025)
Comprehensively surveys long CoT applications
of MLLMs in areas such as mathematics, science
and commonsense puzzles. However, application
of Multi-modal CoTs of reasoning segmentation
tasks remain underexplored.

2.5 Text-Prompted Segmentation

Text-prompted segmentation (referring segmen-
tation) involves extracting object segmenta-
tion masks based on natural language queries.
Transformer-based models like SAM (Kirillov
et al., 2023) leverage CLIP (Radford et al.,
2021) embeddings for segmentation, while SAM-
CLIP (Wang et al., 2023) fuses the visual back-
bones of SAM and CLIP. Grounded-SAM (Ren
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et al., 2024) employs Grounding-DINO (Liu et al.,
2023c) to detect objects before refining segmenta-
tion with SAM.

However, these models lack a structured knowl-
edge summarization and reasoning process be-
tween text embedding and segmentation. More-
over, they are trained on short, explicit queries,
limiting their ability to handle abstract and implicit
reasoning. In contrast, we incorporate multi-modal
reasoning within segmentation models, enabling
superior performance on complex, implicit queries.
As shown in Figure 1, by integrating MLLMs for
reasoning and rough localization region proposals
while retaining similar segmentation models, we
achieve superior performance compared to non-
reasoning text-prompted segmentation.

3 Method

3.1 Overview

We aim to develop an efficient, modular reasoning
segmentation framework that integrates MLLM’s
inherent cognitive reasoning capabilities with struc-
tured visual segmentation while minimizing the
need for fine-tuning. To achieve this goal, we intro-
duce RSVP, a two-stage framework consisting:

1) Multi-modal Chain-of-Thought (CoT) Visual
Prompting, which enables an MLLM to reason
about object attributes and generate interpretable
region proposals.

2) Vision-Language Segmentation Module
(VLSM), which refines these proposals into pre-
cise segmentation masks.

Unlike existing approaches that rely on exten-
sive fine-tuning (Lai et al., 2024), RSVP exploits
MLLMs’ intrinsic reasoning and localization capa-
bilities through structured CoT visual prompting.
This enables zero-shot segmentation while improv-
ing interpretability.

3.2 Multi-modal Chain-of-Thought Visual
Prompting

Region Proposal Initialization. To generate struc-
tured region proposals, we simplify reasoning
segmentation into a text-guided localization task,
where an MLLM identifies the object of interest
and its approximate location. Unlike prior works
that require model fine-tuning, our method directly
leverages MLLMs’ reasoning and rough localiza-
tion abilities via visual prompting.

Inspired by Set-of-Mark (SoM) prompting (Yang
et al., 2023a), we introduce a region-aware visual

🔍 Generation
Query: In an intense dragon boat 
race. What object in the picture 
should be struck to boost the 
morale of the competing team and 
cheer them on?

{"instance": "drum", "ids_vertical": 
[4, 5, 6], "ids_horizontal": [5, 6, 7, 
8], "reason": "The drum is used to 
boost the morale of the competing team 
and cheer them on in a dragon boat 
race."}

CoT Processing Strategy

• Infer the object’s name according to
queries

• Determine if the object is visible in
given images

• Identify vertical proposals if object
exists

• Identify horizontal proposals if object
exists

• Produce reasoning for why this specific
object is queried

Rough Region Proposal

Precise
Segmentation
Mask

Figure 3: Illustration of the CoT processing strategy in action
for a query about a dragon boat race.

prompt to explicitly structure spatial queries. As il-
lustrated in Figure 3, we preprocess the input image
I by dividing it into M horizontal and N vertical
sections, assigning unique region IDs. The reason-
ing process explains why “drum” is the object that
matches the query: “boosts team morale”. Region
IDs for localization are determined as (ids_v: [4,
5, 6], ids_h: [5, 6, 7, 8]). The rough region pro-
posal highlights the drum’s location in the image
as a crucial target. The determined region and in-
ferred object name are passed to the second-stage
segmentation model to produce the precise mask,
detailed prompt inputs are shown at Appendix D.
The structured prompt consists of:

(1) A reasoning-based textual query guiding the
MLLM to infer object attributes.

(2) A region-aware localization task, where the
MLLM assigns region IDs to detected objects.

(3) A CoT-based reasoning step, which provides
explicit rationale behind the object’s presence and
location.

The MLLM outputs structured proposals con-
taining: (1) Object name and attributes: A textual
description (e.g., “a red drum”). (2) Region local-
ization: A set of horizontal and vertical region IDs.
(3) Reasoning rationale: Justification for why the
object belongs to the detected region.
Region Proposal Formulation. Given the MLLM-
predicted horizontal (idh) and vertical (idv) region
indices, we construct the bounding horizontal / ver-
tical regions, Rh and Rv:

Rh = [max(min(idh), 1)− py,min(max(idh),M) + py]

Rv = [max(min(idv), 1)− px,min(max(idv), N) + px]

where px, py are padding terms ensuring the
bounding box does not truncate object edges.
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3.3 Multi-modal Chain-of-Thought Reasoning
While MLLMs excel at multimodal reasoning,
they lack structured segmentation capabilities. To
address this gap, we design a CoT-based visual
prompt that guides MLLMs through a step-wise
progressive reasoning process, ensuring accurate
object identification and localization.

CoT Reasoning Process. Given an input image
I and textual query Tq, the MLLM generates a
structured reasoning output:

Ta = MLLM(I, Tq)

Unlike single-step predictions, we structure the
query into explicit step-wise CoT prompts, which
require the MLLM to:

(1) Infer the most probable object class (e.g.,
“drum”). (2) Identify key attributes (e.g., “red, cylin-
drical”). (3) Locate objects within image regions
using visual referencing with region IDs. (4) Pro-
vide rationale explaining how and why the infer-
ence was made.

This explicit reasoning improves interpretabil-
ity while ensuring robust region proposals. If the
model found the object of interest is absent from
the image, it returns an empty region list as well as
its rationale.

3.4 Vision-Language Segmentation Module
Once the object description and approximate loca-
tion are obtained, the task reduces to referring seg-
mentation, where we generate a fine-grained mask.
To achieve this, we design a Vision-Language Seg-
mentation Module (VLSM) that integrates textual
descriptions and localized image crops.

Region Cropping. We extract a cropped region
I ′ centered around the bounding box:

H ′ =
H

M
× (endv − startv + 1) + 2py

W ′ =
W

N
× (endh − starth + 1) + 2px

Where H
M / W

N is the height / width of each vertical
region. (endv − startv + 1) and (endh − starth +
1) calculate the number of units included in the
cropped sections, px and py refers to horizontal
and vertical padding.

Multi-modal Feature Encoding. We build upon
the SAM framework (Kirillov et al., 2023) by cre-
ating a module for integrated visual-language fea-
ture extraction. Since Segment Anything Model

(SAM) (Kirillov et al., 2023) lacks native text sup-
port, we incorporate BEiT-3 (Wang et al., 2022) as
a joint vision-language encoder.

First, the cropped image I ′ is resized to Ir ∈
R224×224×3. The target description Ta, tok-
enized with XLMRobertaTokenizer (Rachmadi
et al., 2023), is integrated into the BEiT-3 model.
Image and text features are processed indepen-
dently, producing Fimage ∈ R(N+1)×D and Ftext ∈
RL×D. These embeddings are combined via cross-
attention in Transformer layers, yielding a unified
token for cross-modal representation. It is then pro-
cessed through a projector with two linear layers
and ReLU, mapping it to a 256-dimensional space,
which is sent to SAM’s prompt encoder and seg-
mentation decoder, which predicts the pixel-wise
segmentation mask.

3.5 Inference Pipeline and Computational
Efficiency

During inference, RSVP operates in two steps.
MLLM first generates structured region proposals
(CoT-based Region Proposal Generation). Identi-
fied regions are then processed by VLSM to gen-
erate the final mask, corresponding to the Vision-
Language Segmentation step. We compared the
inference latency on the ReasonSeg-Test split (com-
prising 754 images) using our pipeline (7B models)
and LISA. The detailed results are as follows:

Model Stage Time (s) Model Size

RSVP-LLaVA
First-stage 9.20

7BSecond-stage 0.77
Total 9.97

RSVP-Qwen
First-stage 9.35

7BSecond-stage 0.72
Total 10.07

RSVP-Qwen
First-stage 7.36

2BSecond-stage 0.73
Total 8.09

LISA-13B Total 15.88 13B
LISA-7B Total 9.41 7B

Table 1: Average inference time (seconds per image) on the
ReasonSeg-Test split. RSVP’s latency is broken down into
two stages. LISA is a single-stage model, only total time is
reported.

Inference time was measured after loading each
model onto a single A100 40GB GPU. RSVP-7B
exhibited a worst-case latency of 10.07 seconds
per image, compared to 9.41 seconds for LISA-7B
and 15.88 seconds for LISA-13B. This represents
only a ∼ 7% increase over LISA-7B, a marginal
overhead considering RSVP’s added capabilities.
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The primary computational cost originates from the
firsr-stage MLLM inference. In real-world applica-
tions, this overhead can be further reduced through
optimization techniques such as quantization or de-
ployment frameworks such as vLLM (Kwon et al.,
2023). Importantly, unlike end-to-end fine-tuning
methods, RSVP requires no additional training,
making it computationally efficient for reasoning-
based segmentation while maintaining inference
speed comparable to existing approaches.

4 Experiments

We evaluate RSVP through quantitative and quali-
tative analysis to assess its performance in reason-
ing segmentation, open vocabulary segmentation,
and referring segmentation. The section is orga-
nized as follows. Experiment Setup is described
in Sec. 4.1, Details of the implementation are ex-
plained in Sec. 4.2, Sec. 4.3 presents evaluation
results. In addition, the ablation study is conducted
concerning various design choices in Sec. 4.4.

4.1 Evaluation Setup

We apply the following datasets and evaluation
metrics for the following experiments:
Datasets. For reasoning segmentation, we con-
duct our experiments on the ReasonSeg validation
and testing dataset, which is proposed by LISA
(Lai et al., 2024). Specifically, the ReasonSeg-Val
dataset consists of 200 samples, while between dif-
ferent splits of the ReasonSeg-Test dataset (around
770 samples), “Short Query” refers to reasoning
segmentation annotations with a single short sen-
tence, while in the “Long Query” split, each refer-
ring annotation contains multiple long sentences.
To demonstrate RSVP’s generality in the zero-shot
open-world segmentation task, we evaluate our
model’s performance on the Segmentation in the
Wild (SegInW) zero-shot benchmark (Zou et al.,
2022), which comprises 25 zero-shot in-the-wild
segmentation datasets. refCOCOg (Mao et al.,
2015) is utilized for testing the referring expres-
sion segmentation task on our second-stage model:
Visual-Language Segmentation Module (VLSM)
to demonstrate its capability in this task.
Metrics. Following previous works (Lai et al.,
2024; Yang et al., 2023b), we apply Generalized
IoU (gIoU) and Cumulative IoU (cIoU) as the per-
formance evaluation metric in referring segmen-
tation, as well as the reasoning segmentation task.
Generalized IoU (gIoU) is computed as the average

IoU over all images in the test set:

gIoU =
1

N

N∑

i=1

IoU(i) =
1

N

N∑

i=1

I(i)

U (i)

while Cumulative IoU (cIoU) is defined as the
ratio of the cumulative intersection over the cumu-
lative union across all images:

cIoU =

∑N
i=1 I

(i)

∑N
i=1 U

(i)

Where: N is the number of images in the test
set, B(i)

pred and B
(i)
gt are the predicted and ground

truth bounding boxes for the i-th image, I(i) is
their intersection area, and U (i) is their union area.

For open-world segmentation, we applied mean
average precision (mAP) as the evaluation metric
following the convention of the SegInW benchmark
and previous works.

4.2 Implementation Details

Our two-stage model combines a zero-shot
prompted MLLM for reasoning and a referring
segmentation model for mask generation.
First-stage MLLMs. For evaluating commercial
MLLMs, we employ GPT-4o and Gemini-Flash1.
For open-source MLLMs, we apply LLaVA-NeXT
and Qwen2-VL2.
Second-stage Segmentation Model. The segmen-
tation model is trained on refCOCO, initialized
with BEiT-3 and SAM weights. The model training
uses LoRA and DeepSpeed (Rasley et al., 2020),
with AdamW optimizer (Loshchilov and Hutter,
2017) with a learning rate of 1e-4 alongside Dice
Loss and Binary Cross-Entropy (BCE) Loss. Train-
ing involves around 16,000 epochs with a total
batch size of 256.

4.3 Main Results

Reasoning Segmentation. RSVP is extensively
tested on ReasonSeg’s validation and test set to
demonstrate its effectiveness. Table 2 compares
RSVP with conventional zero-shot methods, LISA
models which are further fine-tuned on Reason-
Seg’s training split, and LISA models which are
not further trained on any reasoning segmentation
dataset.

1GPT-4o version: gpt-4o-2024-08-06, Gemini-Flash ver-
sion: gemini-1.5-flash-002.

2Obtained 7B version model weights from their Hugging-
Face pages.
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Method MLLM
Val Test

Overall Short Query Long Query Overall
gIOU cIOU gIOU cIOU gIOU cIOU gIOU cIOU

OVSeg(Wang et al., 2024) - 28.5 18.6 18.0 15.5 28.7 22.5 26.1 20.8
SEEM(Zou et al., 2024) - 25.5 21.2 20.1 11.5 25.6 20.8 24.3 18.7
Grounded-SAM(Ren et al., 2024) - 26.0 14.5 17.8 10.8 22.4 18.6 21.3 16.4
LLaVA-7B + OVSeg LLaVA-7B 38.2 23.5 24.2 18.7 44.6 37.1 39.7 31.8
LLaVA-7B + CoT + OVSeg LLaVA-7B 42.1 26.6 27.5 19.6 44.6 40.2 40.4 34.0
LISA(Lai et al., 2024)-7B LLaVA-7B 53.6 52.3 47.1 48.5 49.2 48.9 48.7 48.8
LISA(Lai et al., 2024)-13B LLaVA-13B 57.7 60.3 50.8 50.0 54.7 50.9 53.8 50.8
LISA(Lai et al., 2024)-7B (ft) LLaVA-7B 61.3 62.9 48.3 46.3 57.9 59.7 55.6 56.9
LISA++(Yang et al., 2023b)-7B (ft) LLaVA-7B 64.2 68.1 49.6 51.1 59.3 61.7 57.0 59.5
LISA(Lai et al., 2024)-13B (ft) LLaVA-13B 65.0 72.9 55.4 50.6 63.2 65.3 61.3 62.2
RSVP-LLaVA LLaVA-7B 59.2 56.7 47.9 42.0 58.4 53.0 55.9 50.7
RSVP-Qwen Qwen2-VL-7B 58.6 48.5 48.5 44.3 57.1 53.8 56.6 51.6
RSVP-Gemini Gemini-Flash 56.9 49.2 47.3 40.2 60.2 65.6 57.1 59.2
RSVP-GPT GPT-4o 64.7 63.1 55.4 50.4 61.9 62.5 60.3 60.0

Table 2: Reasoning segmentation results of our model and previous related works on ReasonSeg(Lai et al., 2024). “ft” denotes
that the model was fine-tuned on ReasonSeg’s training split, others are tested under zero-shot. “CoT” means utilizing region
proposal Chain-of-Thought strategy. Results in bold are the best metric among zero-shot models. Columns with gray backgrounds
indicate training-free methods, while grayed-out columns are LISA models fine-tuned on ReasonSeg Training split.

The first 4 rows represent traditional zero-shot
methods, which perform significantly worse than
zero-shot or fine-tuned LISA models, and our ap-
proaches. It is worth mentioning that applying our
RSVP framework to weaker models (e.g., LLaVA-
7B + Multi-Modal CoT Visual Prompt + OVSeg)
notably improves segmentation results.

Despite using models with comparable or larger
parameter sizes, both 7B and 13B versions of LISA
that are not fine-tuned on ReasonSeg-Training split
underperform against RSVP, demonstrating the ef-
fectiveness of reasoning-driven segmentation. Al-
though LISA models can be further fine-tuned on
ReasonSeg to achieve competitive performance,
they require substantial computational resources
and retraining whenever new foundation models
emerge. In contrast, RSVP achieves state-of-the-art
gIoU and cIoU in zero-shot settings, outperforming
fine-tuned models without additional training.

Method refCOCOg
val(cIoU) test(cIoU)

MCN (Luo et al., 2020) 49.2 49.4
VLT (Ding et al., 2021) 55.0 57.7
CRIS (Wang et al., 2021) 59.9 60.4
LAVT (Yang et al., 2021) 61.2 62.1
ReLA (Liu et al., 2023a) 65.0 66.0
X-Decoder (Zou et al., 2022) 64.6 -
SEEM (Zou et al., 2024) 65.7 -
LISA (Lai et al., 2024) 66.4 68.5
RSVP (VLSM only) 65.5 66.4

Table 3: cIoU metric report on refCOCOg dataset’s validation
and test split. “-”: data is not reported by original work. Our
result: highlighted with gray background and bold text.

Referring Segmentation. We further evaluate
VLSM on refCOCOg (Table 3). RSVP achieves
competitive results and demonstrates segmentation
model remains effective in standard referring seg-

mentation tasks.
Open-World Segmentation.

Table 4 shows the result in SegInW. Although
the reasoning part of the Segmentation in the Wild
task is relatively straightforward, the target cate-
gories are more diverse, allowing us to validate the
generalization capabilities of RSVP. Our method
achieved a mean average precision (mAP) of 49.7
across 25 categories, demonstrating the effective-
ness of our proposed approach.

4.4 Ablation Study

We conduct ablation studies to analyze design
choices in RSVP’s CoT reasoning process.

First-stage Multimodal Information Distillation.
Table 2 compares different MLLMs. GPT-4o out-
performs LLaVA by +6.4 cIoU, +5.5 gIoU, and
Qwen2-VL by +14.6 cIoU, +6.1 gIoU, showing
that stronger reasoning models yield better segmen-
tation performance. However, Gemini-Flash does
not outperform LLaVA, indicating that applying
our multi-modal chain-of-thought region proposal
with MLLMs which are stronger in reasoning, com-
prehending, and distilling information conveyed in
multi-modal inputs is crucial for achieving power-
ful performance in reasoning segmentation tasks.

Distillation Modality GPT-4o LLaVA

Visual Only 33.7 (−29.6) 31.2 (−25.5)
Text Only 56.6 (−6.5) 53.5 (−3.2)
Both Modalities 63.1 56.7

Table 5: Comprasion of our model’s cIoU metric on
ReasonSeg-Val split utilizing different Multi-Modal Informa-
tion Distillation Approaches. Values in brackets indicate the
amount of cIoU decrease of this approach compared to the
"Both Modalities" approach.
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X-Decoder-T (Zou et al., 2022) 22.6 65.6 22.4 16.2 5.5 50.6 41.6 66.5 62.1 0.6 28.7 12.0 0.7 10.5 1.1 3.6 1.2 19.0 9.5 19.3 15.0 48.9 15.2 29.9 12.0 7.9
X-Decoder-L-IN22K 26.6 63.9 20.3 13.5 4.9 50.5 74.4 79.1 58.8 0.0 24.3 3.5 1.3 12.3 0.5 13.4 18.8 43.2 14.6 20.1 12.3 57.3 6.9 43.4 12.3 15.6
X-Decoder-B 27.7 68.0 18.5 13.0 6.7 51.7 81.6 76.7 53.1 20.6 30.2 13.6 0.8 13.0 0.3 5.6 4.2 45.9 13.0 27.3 18.2 55.4 8.0 8.9 36.8 19.4
X-Decoder-L 32.2 66.0 42.1 13.8 7.0 53.0 67.1 79.2 68.4 75.9 33.0 8.6 2.3 13.1 2.2 20.1 7.5 42.1 9.9 22.3 19.0 59.0 22.5 15.6 44.9 11.6
ODISE-L (Xu et al., 2023) 38.7 74.9 51.4 37.5 9.3 60.4 79.9 81.3 71.9 41.4 39.8 84.1 2.8 15.8 2.9 0.4 18.3 37.7 15.8 28.6 30.2 65.4 9.1 43.8 41.6 23.0
UNINEXT-H (Yan et al., 2023) 42.1 72.1 57.0 56.3 0.0 54.0 80.7 81.1 84.1 93.7 16.9 75.2 0.0 15.1 2.6 13.4 71.2 46.1 10.8 44.4 64.6 64.6 21.0 6.1 52.7 23.7
Grounded-SAM (B+H) 48.7 77.9 81.2 64.2 8.4 60.1 83.5 82.3 71.3 70.0 24.0 84.5 8.7 37.2 11.9 23.3 71.7 65.4 20.4 30.0 32.9 50.1 29.8 35.4 47.5 45.8
Grounded-SAM (L+H) 46.0 78.6 75.2 61.5 7.2 35.0 82.5 86.9 70.9 90.7 22.8 84.6 7.2 38.4 10.2 17.4 59.7 43.7 26.3 22.4 27.1 63.2 38.6 3.4 49.4 40.0
RSVP 49.7 84.7 61.6 69.1 42.3 90.7 81.6 84.3 79.6 90.2 34.7 82.3 34.1 61.2 13.4 52.4 75.6 83.8 12.6 41.1 76.4 91.7 70.6 45.7 45.1 45.6

Table 4: mAP reported on SegInW Open-world segmentation dataset. Metrics in bold represent the top 1 result for each subtask,
our result is highlighted with the gray background.

Multimodal Information Distillation Strategy.
We explore different approaches to distilling multi-
modal input using MLLMs for reasoning seg-
mentation tasks. Specifically, we adopt different
methodologies on our model with two representa-
tive MLLMs as the first-stage model, GPT-4o and
LLaVA: (a) The MLLM comprehends and distills
the input’s textual modality only. (b) The MLLM
comprehends and distills the input’s visual modal-
ity only. (c) The MLLM comprehends and distills
both of the input’s modalities.

Results in Table 5 show that excluding textual
reasoning leads to a 29.6 cIoU drop, while omitting
visual information decreases performance by 6.5
cIoU, while distilling both modalities yields the
most superior performance in reasoning segmen-
tation, confirming that reasoning about object at-
tributes as well as generating rough object ground-
ing proposal is crucial for reasoning segmentation.

VLSM Combination gIoU (%) cIoU (%)

RSVP-OVSeg 43.5 37.2
RSVP-LLaVA 55.9 50.7
RSVP-GPT 60.3 60.0
RSVP-GPT (ft) 57.5 61.6

Table 6: Ablation study on the VLSM Module in RSVP,
evaluated on the ReasonSeg Test split. Best result rows are
highlighted in gray.

Importance of Reasoning and Segmentation
Modules. We examined the importance of the
modules of both stages in the performance of the
reasoning segmentation task. Table 6 demonstrates
the ablation result, where RSVP-GPT (ft) refer
to finetuned VLSM using GPT-4o’s reasoning on
ReasonSeg-Train, RSVP-GPT and RSVP-LLaVA
are zero-shot models trained on refCOCOg. RSVP-
LLaVA uses LLaVA-7B’s reasoning for inference
and RSVP-GPT (ft) and RSVP-GPT use GPT-4o’s
reasoning on ReasonSeg-Test. Replacing VLSM
with OVSeg reduces cIoU by -22.8 on ReasonSeg-
Test, aligning with OVSeg’s weaker referring seg-

Visual Modality Distill Strategy LLaVA GPT-4o

9 × 9 Grid 53.1 56.8
5 × 5 Split 54.3 59.6
9 × 9 Split 56.7 63.1
13 × 13 Split 52.3 57.6
No Visual Prompt 53.5 56.6

Table 7: Visual Modality Distillation Strategy. Grid: Grid
visual prompt. Split: Region-aware visual prompting with
varying densities (5× 5, 9× 9, 13× 13 regions). Best result
is highlighted in gray background and bold text.

mentation capability. Further, RSVP with weaker
reasoning models (LLaVA vs. GPT-4o) underper-
forms despite an identical segmentation module,
emphasizing that a strong MLLM is essential for
strong, top-tier performance.

Visual Modality Distillation Strategy. We ex-
plore two types of visual prompting strategies to as-
sist in visual modality distillation: (A) Grid-based
Visual Prompt. (B) Region-aware Visual Prompt.
For (B), we further experimented with three den-
sities: (a) 5 horizontal and vertical regions, (b)
9 horizontal and vertical regions, and (c) 13 hor-
izontal and vertical regions. The tests were car-
ried out on two representative models: open-source
LLaVA and close-source GPT4o. Neither of them
is trained in comprehending our region-aware hor-
izontal/vertical separation visual prompts or grid
visual prompts. Results in Table 7 shows:

(1) With the appropriate density, 9× 9 being set,
region-aware visual prompting led to notable im-
provements in cIoU, which is +3.2 cIoU for LLaVA
and +6.5 cIoU for GPT-4o.

(2) Visual markers’ density may strongly impact
models’ performance. Too many visual markers
degrade performance (e.g., 13× 13 results in up to
-6.3 cIoU drop), which could be explained as over-
detailed visual prompts exceed MLLMs’ capacity
for recognizing fine details and impact the semantic
information’s quality obtained by the model, while
too few markers fail to filter irrelevant regions, lead-
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Multi-Modal CoT Design RSVP-LLaVA RSVP-GPT

Prompt (A) 50.7 60.0
Prompt (B) 45.5 55.7

Table 8: Multi-Modal Chain-of-Thought Prompt Design. (A):
manual-crafted multi-step prompt. (B): simple CoT prompt.
Best result rows are highlighted in gray, while the best results
are highlighted in bold.

ing to segmentation accuracy declines.
Multi-Modal Chain-of-Thought Prompting De-
sign. An ablation test on CoT prompt design is con-
ducted to demonstrate the importance of manually
designed Chain-of-Thought prompts. RSVP’s cIoU
results on ReasonSeg dataset’s test split across
different models are examined with two distinct
prompt designs:

(A) A hierarchical Chain-of-Thought prompt in-
structing the model to comprehend both intricate
queries and provided images in a structuralized,
step-by-step manner.

(B) A plain Chain-of-Thought prompt describing
the overall problem, and provide plain instructions
on generating structuralized answers.

As Table 8 shows, both models demonstrated
stronger performance on the human-designed CoT
prompt, while a suboptimal prompt has a notice-
able negative impact on model’s reasoning segmen-
tation performance. For both models, significant
decreases in cIoU are observed, which is -5.2 cIoU
for RSVP-LLaVA and -4.3 for RSVP-GPT. This
finding suggests that carefully designed reasoning
principles could activate models’ inherent infer-
ence capability and world knowledge, providing
more robust and credible answers.

In conclusion, these results highlight the impor-
tance of balanced visual prompts for optimal multi-
modal grounding.

5 Conclusion

In this work, we identified that the core chal-
lenge of reasoning segmentation is query com-
prehension and object localization. To address
this, we introduced RSVP, a two-stage multi-modal
reasoning framework that leverages MLLMs’ in-
trinsic reasoning and visual localization capabili-
ties through Multi-Modal Chain-of-Thought Visual
Prompting. By explicitly modeling the interac-
tion between step-wise reasoning and segmenta-
tion, RSVP achieves state-of-the-art performance
on zero-shot reasoning segmentation tasks.

Apart from performance improvements, we
demonstrate the potential of integrating multi-

modal reasoning with visual localization, providing
new insights into bridging the gap between cogni-
tive inference and fine-grained visual perception.
We hope our work could lay the foundation for
future research on reasoning segmentation, visual
prompting, and broader integration of MLLMs in
vision-language tasks.

6 Limitations

Although RSVP effectively integrates reasoning-
driven object localization with structured segmen-
tation, several challenges remain.
Dependence on MLLMs. RSVP relies on MLLMs
for reasoning, making its performance sensitive to
the capabilities of the underlying model. While
stronger models like GPT-4o produce high-quality
region proposals and nuanced query understand-
ing, weaker or smaller MLLMs may struggle with
complex reasoning and detailed visual interpreta-
tion. Future work could explore model distillation
techniques or mixture-of-experts to enhance perfor-
mance with lightweight models.
Visual Prompting Strategy. While our region-
aware visual prompting effectively guides MLLMs
for spatial reasoning, the optimal visual prompt
design design remains an open question. Future di-
rections include discovering diverse visual prompt
designs or fine-tuned visual prompting mechanisms
to further boost MLLMs’ spatial understanding and
visual grounding capabilities.
Computational Overhead. RSVP eliminates the
need for fine-tuning while multiple processing
steps are still involved, leading to potential latency
in real-time applications. Further work could in-
vestigate efficient model compression techniques
to improve inference speed.
Data Bias and Generalization. While RSVP per-
forms well on ReasonSeg and SegInW, its robust-
ness on broader real-world datasets remains un-
derexplored. The reliance on MLLM may intro-
duce bias inherent from pretraining data, affecting
the fairness and reliability of the model’s output.
Future work could investigate domain adaptation
techniques to improve generalization beyond cu-
rated benchmarks and explore MLLM guardrails
to maintain the safety of model output.

Despite these limitations, RSVP establishes a
scalable and interpretable framework for reasoning-
based segmentation, offering new insights for fu-
ture improvements in multimodal vision-language
grounding.
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A Appendix

B Supplementary Ablation Experiment
Results

In this section, we present more ablation experi-
ments designed to validate our pipeline’s design
choices as complementary material to ablation ex-
periments in previous sections.

B.1 Padding Ablation Study.

To investigate the performance impact of padding
size, we experimented on padding ratios set to 0%,
20% and 40% relative to the height/width of the
cropped image region. Our main results reported
are obtained with the 20% padding. With three di-
verse padding sizes, we report the following results
on ReasonSeg-Test split:

Model Padding Size (%) gIoU cIoU

RSVP-GPT 0% 58.8 57.1
20% 60.3 60.0
40% 60.0 59.3

RSVP-LLaVA 0% 52.6 49.9
20% 55.9 50.7
40% 53.7 50.1

Table 9: Ablation study on the effect of padding ratio in
the visual prompt. Best-performing rows for each model are
highlighted in gray, and best values are shown in bold.

As the above result reveals, the moderate-sized
padding provides the most optimal balance be-
tween object boundaries preservation and minimiz-
ing irrelevant background inclusion.

B.2 CoT method Ablation Study.

We conducted an ablation experiment for inves-
tigating the impact of Multi-modal CoT design
on our system’s performance. Our design is com-
pared with the prompt design adaptating (Wu et al.,
2023), which force the MLLM to first summarize
all perceptable visual cues in the given media, then
perform analysis according to the summarization.

Model gIoU cIoU

RSVP-LLaVA 55.6 50.9
RSVP-LLaVA, with (Wu et al., 2023) 52.5 46.2
RSVP-GPT 60.3 60.0
RSVP-GPT, with (Wu et al., 2023) 57.6 56.4

Table 10: Comparison of RSVP performance with/without
integrating the CoT framework (Wu et al., 2023). Best-
performing rows are highlighted in gray and best values are
highlighted in bold.

Adopting CoT design from literature Wu et al.
(2023) degrades performance, likely due to fun-
damental differences between our reasoning-and-
localization task and the caption-based selection
tasks focused by the literature, demonstrating the
importance of choosing appropriate CoT frame-
works for achieving satisfiable reasoning segmenta-
tion performance. Prompt is attached in Figure 10.

B.3 Model Temperature Ablation Study.

Temperature can significantly impact the consis-
tency of MLLM’s output. We evaluated our
pipeline under different temperature settings on
non-MoE models where the randomness of outputs
are controllable by temperature parameter, to eval-
uate our system’s robustness. Experiments on the
ReasonSeg-Test split yield the following results:

Model Inference Temperature gIoU cIoU

RSVP-LLaVA 0.0 55.9 50.7
0.4 55.8 50.5
0.8 55.4 50.9

RSVP-Qwen 0.0 56.6 51.6
0.4 56.4 51.7
0.8 56.5 51.4

Table 11: Effect of varying temperature in RSVP-LLaVA
and RSVP-Qwen. Rows with the best gIoU or cIoU for each
model are highlighted in gray, and best values are bolded.

Although slight variations are observed across
settings, the overall performance remains stable.
Temperature 0.0’s result are what we reported in
our paper (bold text in the table). These findings
demonstrate that our method is robust to changes
in the temperature parameter.

B.4 Dependency on First Stage MLLM
Ablation Study

To further explore our system’s performance re-
liance on first-stage MLLM choice, we exper-
imented an additional ablation experiment on
Qwen2-VL with its two variants (7B and 2B pa-
rameter size) on the ReasonSeg-Test split (with
temperature set to 0) varying significantly in model
parameter sizes.

Model gIoU cIoU

RSVP-Qwen (7B First-Stage MLLM) 56.6 51.6
RSVP-Qwen (2B First-Stage MLLM) 45.8 43.7
LISA (7B MLLM, Zero-shot) 48.7 48.8

Table 12: Comparison of First-stage MLLM choices with
different model sizes and types. RSVP-Qwen (7B) achieves
the highest performance.
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The performance drop for the smaller 2B model
is likely caused by its limited reasoning abilities,
along with its reduced capacity to fully compre-
hend task requirements. It is worth notice that the
performance difference between the RSVP-Qwen
(2B) and LISA-7B is only up to 5.1% in terms of
IoU metrics. In practice, deploying the pipeline
with models smaller than 7B with the cost of a
small level of performance dropping in reason seg-
mentation tasks is practical and acceptable.

C Reasoning Segmentation Case Study

In this section, we demonstrate case studies re-
garding our model’s results with LISA-13B on the
ReasonSeg Dataset Test split. We mainly report
two types of demonstrative results: Incorrect local-
ization and low-quality segmentation masks.

Query: When monkeys move from one tree 
to another, they often use a certain 
part of their body to maintain balance 
and stability. What part of the monkey's 
body in the picture helps them with 
this?

RSVP Reasoning: The tail is used for 
balance and stability when moving from 
one tree to another.

Ours LISA-13b Ground Truth

Query: the more advanced warcraft

RSVP Reasoning: The description 'the more 
advanced warcraft' likely refers to the 
aircraft on the right, which appears to 
be more advanced in design compared to 
the one on the left.

Ours LISA-13b Ground Truth

Query: the cover to protect lens from 
damage"

RSVP Reasoning: The lens cap is the part 
of the camera that protects the lens from 
damage.

Ours LISA-13b Ground Truth

Figure 4: Illustration of Incorrect Localization cases produced
by LISA.

Query: Looking at the image, it seems 
that the dog is engaged in a playful 
activity. What part of the dog's body is 
likely to be holding an object during 
this playful activity?

RSVP Reasoning: The dog's mouth is open 
and likely holding an object during the 
playful activity.

Ours LISA-13b Ground Truth

Query: In equestrian sports, riders and 
horses need to overcome obstacles to 
complete a course. What in the picture 
can be used as an obstacle for the rider 
and horse to jump over?

RSVP Reasoning: The red and white striped 
pole is the object that the rider and 
horse are jumping over in the equestrian 
sports event.

Ours LISA-13b Ground Truth

Figure 5: Illustration of Low-quality Segmentation mask
cases produced by LISA.

C.1 Case: Incorrect Localization
Fig. 4 shows three distinct cases that demonstrated
the limitation of LISA in correctly comprehending
the query and localizing the correct object in the im-
age. In all three examples, our RSVP successfully
identified the object of interest by reasoning about
the provided query, while LISA failed to detect the
correct object of interest. In the first case, LISA
segmented out the tree branch which has nothing to

do with the query, while in the second case, LISA
was not aware of the requirement of distinguishing
the more advanced fighter, while RSVP correctly
captured this subtle requirement and identified the
double-engine jet. For the final example, LISA
mistook the strap as the item that protects the lens.

Query: In order to ensure the tire is 
inflated properly, what area in the 
picture could be used to check the air 
pressure and add air if needed?

RSVP Reasoning: The tire is located on 
the right side of the image and is the 
only object that can be used to check air 
pressure and add air if necessary.

Ours LISA-13b Ground Truth

Figure 6: Illustration of Low-quality Segmentation mask
cases produced by LISA.

C.2 Case: Low-Quality Segmentation Mask
Fig. 5 and Fig. 6 demonstrated another limitation
of LISA, which is the possibility of producing
poorly shaped segmentation masks. In the first
case, LISA only managed to segment out the dog’s
tongue, while RSVP correctly segmented out the
entire mouth along with the tongue. For the horse
case, our model precisely identified the pole on the
front, while LISA produced a shattered segmenta-
tion mask for the front pole, and also incorrectly
segmented out the unrelated pole in the background
as well. The final example shown in Fig. 6 of LISA
segmented a part of the tire, but the segmentation
mask is deformed and only covers a very small
portion of the object of interest.

C.3 Analysis and Summary
The above case study demonstrated two main limi-
tations of LISA. On the one hand, LISA may incor-
rectly reason about the provided query, therefore
producing off-the-track localized results that lead
to the segmentation of unrelated objects. On the
other hand, the latent segmentation proposal token
that is produced by LISA’s front-end MLLM may
not be able to efficiently guide the second-stage
segmentation model to generate high-quality, com-
plete segmentation masks. The generated visual
prompt and the produced region proposal are visu-
alized in Fig. 12.

C.4 Bad Case Analysis
In this subsection, we conduct a qualitative anal-
ysis of failure cases. Our observations reveal two
primary categories of error:

False Localization or Misinterpretation. THe
first bad case type originates from the first-
stage false interpretation of user prompt or incor-
rect/imprecise localization, where the initial object
localization or comprehension of object type is sub-
optimal.
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Prediction Ground Truth Reference Image

Prediction Ground Truth Reference Image

Figure 7: Illustration of bad cases caused by false localization
or prompt misinterpretation.

As shown in Fig. 7, in the first example, the
query referred to the ceramic cup lid, but the sys-
tem misinterpreted it as the plate, resulting in com-
pletely incorrect localization and segmentation. In
the second example, the system only captured the
left half of the table because the first-stage MLLM
failed to include the right half in its localization.

Suboptinal Segmentation. This type of bad
cases are mainly caused by the second-stage VLSM
module which produces unsatisfactory segmenta-
tion masks with holes or incomplete/hard edges,
resulting in suboptimal gIoU and cIoU metrics.

Prediction Ground Truth Reference Image

Prediction Ground Truth Reference Image

Figure 8: Illustration of bad cases caused by suboptimal
segmentation masks.

As shown in Fig. 8, in both cases, our system
correctly identifies the target object but fails to
fully segment it. In the cigarette advertisement, the
system recognizes the cigarette box but the mask
contains a hole. In the whale case, the whale is
mostly captured by RSVP, but the tail is not fully
segmented, leaving holes and hard edges on the
mask, partly due to the challenging visual condi-

tions, as the whale’s tail is obscured by intense
waves.

D Implementation Detail of
Region-aware Visual Prompt

During the experimentation, evaluation, and abla-
tion study, we designed the following prompt uni-
versally as demonstrated in Fig. 9. For “vertically-
segmented image”, we refer to the image that
is being processed by a horizontally-dividing vi-
sual prompt, while for “horizontally-segmented im-
age”, it refers to the image being processed by the
vertically-dividing visual prompt. The algorithm is
demonstrated as in Algorithm 1. The example of a
generated visual prompt is shown in Fig. 11.

Each image is resized to a resolution of
1000 × 1000 during processing, and the margin
width/height is dynamically set as 20% of the width
/ height of the uniformly divided vertical / horizon-
tal regions.

Algorithm 1 Visual Prompt Generation

1: procedure GenerateVisualPrompt(I, n) ▷ Generate prompts for I
with n segments

2: h,w ← Height(I),Width(I) ▷ Get image dimensions
3: sh ← h/n, sw ← w/n ▷ Compute segment sizes
4: ▷ Vertical Segmentation (Horizontal Lines)
5: Ih, Iv = I, I
6: for i← 1 to n do
7: DrawHorizontalLine(Ih, y = (i− 1) · sh, color=green) ▷ Draw

horizontal line
8: PlaceNumericLabel(Ih, x = w/2, y = (i− 0.5) · sh, color=white)▷

Center label
9: ▷ Horizontal Segmentation (Vertical Lines)

10: for j ← 1 to n do
11: DrawVerticalLine(Iv, x = (j − 1) · sw, color=green) ▷ Draw

vertical line
12: PlaceNumericLabel(Iv, x = (j − 0.5) · sw, y = h/2, color=white)▷

Center label
13: return Ih, Iv ▷ Return image with visual prompts

1

Algorithm 1: Algorithm used for generating visual prompts.

1

2

3

4

5

1 2 3 4 5

Figure 11: Visual prompt example: the image is evenly di-
vided into vertical/horizontal regions. The dividing density is
set to five for demonstrative purposes.
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CoT Prompt Applied in Evaluations and Experiments

You are now acting as an image annotator. I will give you several abstract descriptions 
which refer to the same object which may appear in the given image and you need to locate 
them if they exists.

Now I will provide you with two images featuring exactly the same scene but annotated 
with vertical and horizontal visual segmentation prompt.

The first provided image is divided into <<segment_density>> segments vertically, and the 
second one is divided horizontally into <<segment_density>> segments. Each segment is 
labeled with a number from 1 to <<segment_density>>.

Now please carefully follow the below instruction step by step:
1. Infer what is (are) the objects that the questions are jointly referring to, carefully 
review the given image and find the object(s) that is the most probable candidate(s). 

2. Denote from which labeled segment to which contain any parts of the object(s) that the 
questions described, both vertically and horizontally.

Tell me these segment ids in json as follows:
{

"instance": "<words(adj+noun) short summarative description of the answer object>",  
"ids_vertical": [1,2,3,...], 
"ids_horizontal": [1,2,3...], 
"reason": "<your rationale about what is(are) being referred>"

}

Attention: you MUST give all segment numbers that contain any parts of the object(s) that 
the questions described. The answer object may not be the salient object in the frame, 
and may even not appear in the frame.

If the answer is not in the image, please return empty ids like:
{

"instance": "<words(adj+noun) short summarative description of the answer object>",  
"ids_vertical": [], 
"ids_horizontal": [], 
"reason": "<your rationale about what is being referred and why none of the object in 

the scene matches>”
}

Now, the questions are presented as follows, do NOT output anything other than the 
required json.

questions:
<<questions>>

Figure 9: The prompt utilized to query MLLMs in our implementation.
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Prompt Applied in CoT Framework Ablation

You are now acting as an image annotator. I will give you several abstract 
descriptions which refer to the same object which may appear in the given image
and you need to locate them if they exists.
Now I will provide you with two images featuring exactly the same scene but 
annotated with vertical and horizontal visual segmentation prompt.
The first provided image is divided into <<segment_density>> segments 
vertically, and the second one is divided horizontally into <<segment_density>> 
segments. Each segment is labeled with a number from 1 to <<segment_density>>.

Now please carefully follow the below instruction step by step:
1. Determine if the provided descriptions are long, complex or not. If the 
descriptions are long, abstract and complex, please perform the following task:
1.1. Infer what is (are) the objects that the questions are jointly referring 
to, carefully review the given image and find the object(s) that is the most 
probable candidate(s).
1.2. Describe this object in a short, concise, summarative way.
1.3. Denote from which labeled segment to which contain any parts of the 
object(s) that the questions described, both vertically and horizontally.
1.4. Set "is_complex" flag to True.
2. Otherwise, perform the following task instead:
2.1 Infer what is (are) the objects that the questions are jointly referring to, 
carefully review the given image and find the object(s) that is the most 
probable candidate(s).
2.2 Describe this object in a short, concise way, also include its relative 
location (top/bottom, left/right, center, ...) in the image.
2.3 Set "is_complex" flag to False.

Tell me these segment ids in json as follows:
{

"is_complex": <true/false>,
"instance": "<words(adj+noun) short summarative description of the answer 

object>",
"ids_vertical": [1,2,3,...],
"ids_horizontal": [1,2,3...],
"reason": "<your rationale about what is(are) being referred>"

}

Attention: you MUST give all segment numbers that contain any parts of the 
object(s) that the questions described. The answer object may not be the salient 
object in the frame, and may even not appear in the frame.
If the answer is not in the image, please return empty ids like:
{"instance": "<words(adj+noun) short summarative description of the answer 
object>", "ids_vertical": [], "ids_horizontal": [], "reason": "<your rationale 
about what is being referred and why none of the object in the scene matches>"}

Now, the questions are presented as follows, do NOT output anything other than 
the required json.
questions:
<<questions>>

Figure 10: The prompt utilized to experiment on CoT framework ablation experiment.
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Demonstration of produced visual prompt images and region proposals

Original Image Horizontal
Visual Prompt

Vertical
Visual Prompt

Visualized
Region Proposal

Segmentation
Result

Produced Region Proposal Region Proposal Margin

Figure 12: Visualization of produced visual prompts and region proposals for demonstrated cases.
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