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Abstract

Recent advancements in Large Vision Lan-
guage Models (LVLMs) show promise for
pathological diagnosis, yet their application
in clinical settings faces critical challenges
of multimodal hallucination and biased re-
sponses. While preference alignment methods
have proven effective in general domains, ac-
quiring high-quality preference data for pathol-
ogy remains challenging due to limited ex-
pert resources and domain complexity. In this
paper, we propose EAGLE (Expert-guided
self-enhancement for preference Alignment in
patholoGy Large vision-languagE model), a
novel framework that systematically integrates
medical expertise into preference alignment.
EAGLE consists of three key stages: initial-
ization through supervised fine-tuning, self-
preference creation leveraging expert prompt-
ing and medical entity recognition, and iter-
ative preference following-tuning. The self-
preference creation stage uniquely combines
expert-verified chosen sampling with expert-
guided rejected sampling to generate high-
quality preference data, while the iterative
tuning process continuously refines both data
quality and model performance. Extensive
experiments demonstrate that EAGLE sig-
nificantly outperforms existing pathological
LVLMs, effectively reducing hallucination
and bias while maintaining pathological ac-
curacy. The source code is available at
https://github.com/meidandz/EAGLE.

1 Introduction

Histopathological examination is widely regarded
as the gold standard in cancer diagnosis (Zhu et al.,
2024b), requiring meticulous analysis of tissue
samples to detect abnormalities in cells and tis-
sues (Gurcan et al., 2009). This process heav-
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Gen. Answer: The image primarily showcases a cyst, which is 
a closed sac-like structure that can be filled with a gaseous, 
liquid, or semisolid substance. 

GT: The image shows bone and a specialized unusual epidermis 
that looks like mucosa.

GT: In some areas, there is a lot of missing gland and 
distortion, possibly some bifurcation.

Gen. Answer: The image displays a close-up view of a purple 
tissue with a distorted architectural structure.  

Failure Type:
Multimodal Hallucination

Failure Type:
Biased Responses

(d) Two typical failure cases generated by SFT model
       

Case 1:

Question: 
What is visible in the image?

Question: 
What can be said about the 
architectural distortion in the 
image?

Case 2:

Not Exist 

Bias 

Figure 1: Typical failure cases demonstrate multimodal
hallucination and biased response issues in the SFT-
tuned model. Gen. Answer and GT represent the answer
generated by the SFT model and ground-truth answer.

ily relies on the expertise of pathologists to in-
terpret subtle patterns indicative of various dis-
ease states (Van der Laak et al., 2021). However,
these traditional diagnostic methods are often time-
intensive (Pallua et al., 2020) and subject to subjec-
tive interpretation (Baxi et al., 2022), prompting the
integration of artificial intelligence (AI) techniques
to enhance diagnostic accuracy and efficiency.

Recent advancements in Large Vision Language
Models (LVLMs) (Liu et al., 2024b; Zhu et al.,
2023; Li et al., 2024a; Bai et al., 2023) have demon-
strated remarkable performance across general do-
mains. However, the application of these capa-
bilities to medical area, particularly in pathology,
demands great attention to reliability and safety
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due to stringent ethical considerations (Liu et al.,
2024c). While LVLMs like LLaVA show promis-
ing improvements through Supervised Fine-Tuning
(SFT) with pathology-specific instructions (Sey-
fioglu et al., 2024; Sun et al., 2024; Dai et al.,
2024), significant challenges persist in achieving ro-
bust alignment with human expertise. Specifically,
there are two aspects as Fig. 1 shows: 1) Multi-
modal Hallucination: A key challenge in patho-
logical AI is hallucination—descriptions or diag-
noses that misalign with image content (Li et al.,
2024c, 2023; Zhao et al., 2023; Xie et al., 2024b).
Unlike general vision-language tasks, pathology
hallucinations stem from subtle misidentifications
of morphological patterns, potentially leading to
serious diagnostic errors. For example, as shown
in Fig. 1, a bone pathology image was mistakenly
identified as a cyst, highlighting the risks of such
misinterpretations in clinical practice. 2) Biased
Responses: Models tend to default to common di-
agnoses, overlooking rare pathological conditions
due to dataset imbalances. This bias reduces ac-
curacy in less frequent cases, posing a significant
challenge in pathology where rare diseases require
precise identification for proper treatment. In view
of this, solving the above two problems is particu-
larly important to further improve the robustness
and stability of the LVLMs for pathology. While
Seyfioglu et al. (2024) proposes Quilt-LLaVA, a
specific pathological LVLM fine-tuned by a pathol-
ogy instruction dataset, it cannot mitigate the align-
ment issues above. Based on the successful experi-
ence in the general domain (Rafailov et al., 2024;
Li et al., 2024c; Xiong et al., 2024; Zhao et al.,
2023), the preference alignment method (PFT) is a
potential way to mitigate these issues.

When designing the alignment method, we
identify significant challenges in acquiring high-
quality multi-modal preference data for pathol-
ogy. Traditional methods of preference data an-
notation, including human expert annotation (Zhou
et al., 2024) and proprietary-level models anno-
tation (Taori et al., 2023; Chiang et al., 2023a),
face substantial limitations in this context. Firstly,
scarce pathology data coupled with the high costs
of expert annotation create fundamental barriers
to acquiring the amount of data required for the
model alignment. While proprietary-level mod-
els present a potentially more scalable alternative,
they frequently lack the specialized domain knowl-
edge essential for accurate pathological assessment.
Meanwhile, proprietary-level models often require

Table 1: Comparison among SFT, PFT, and EAGLE.

Preference
Alignment

Data
Self-Creation

Iterative
Improvement

Expertise

SFT
PFT ✓

EAGLE ✓ ✓ ✓ ✓

API calls and data uploads, which introduce the
risk of data leakage. Secondly, current preference
data generation methods lack integration of crit-
ical medical domain knowledge that is essential
for accurate pathological diagnosis. Pathology is
heavily dependent on specialized expertise, includ-
ing understanding of tissue morphology patterns,
disease progression mechanisms, rare pathological
presentations, and complex clinical correlations.
Without incorporating this domain-specific knowl-
edge, generated preference data may not capture
nuanced decision-making processes that patholo-
gists use, potentially leading to suboptimal model
performance. Furthermore, due to the complexity
of pathological knowledge and the open-ended na-
ture of diagnostic reasoning, it becomes difficult
to verify the accuracy of both chosen and rejected
responses in the preference dataset. This verifi-
cation challenge raises concerns about the quality
and reliability of the training data. It is necessary
to develop more robust approaches to preference
data annotation that effectively incorporate medi-
cal expertise while ensuring verifiable quality in
pathological LVLMs.

To address these challenges, we propose EA-
GLE (Expert-guided self-enhancement for pref-
erence Alignment in patholoGy Large vision-
languagE model), a novel framework to effec-
tively integrates medical domain knowledge into
preference alignment through automated prefer-
ence data generation, comprising three key stages:
initialization, self-preference creation, and pref-
erence following-tuning stages. In Table 1, EA-
GLE uniquely combines preference alignment, self-
created training data, iterative improvement, and
domain expertise integration. In the initialization
stage, we establish the model’s basic pathological
understanding through supervised fine-tuning on
instruction-following data. The core innovation
lies in our self-preference creation stage, where
we integrate medical domain knowledge into pref-
erence data generation through: (1) an expert-
verified chosen sampling module that leverages
expert prompting for high-quality responses, and
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(2) an expert-guided rejected sampling module that
incorporates multiple pathology expert models and
medical entity recognition to ensure rejected re-
sponses maintain pathological coherence while con-
taining controlled inaccuracies. After this stage,
we construct a preference dataset with about 150k
paired data for preference alignment. Finally, our
preference following-tuning stage iteratively aligns
the model with these expert-informed preference
pairs through direct preference optimization. This
iterative process involves continuous updates to
both the preference data and the model parame-
ters, gradually enhancing both the quality of the
preference data and the overall model performance.
Extensive experiments demonstrate the superiority
of EAGLE to existing pathological LVLMs. Our
contributions can be summarized as follows:

• We propose EAGLE, a novel three-stage
framework that addresses the challenges of
pathology LVLM alignment through expert-
guided preference optimization. To our knowl-
edge, this is the first work to systematically
integrate medical expertise into preference
alignment for pathological LVLMs.

• The proposed preference dataset contains
more than 150k preference data, which can
be used for preference alignment, helping the
model to solve problems such as multimodal
hallucination and biased responses.

• Experimental results on different models show
the superiority of the proposed EAGLE over
existing pathological LVLMs.

2 Related Work

2.1 Medical Large Vision Language Models
(LVLMs)

Recent LLM advancements have transformed
vision-language models (Li et al., 2024a; Yin
et al., 2024; Gu et al., 2024), with models like
LLaVA (Liu et al., 2024b) achieving GPT-4-level
performance. In medicine, LLaVA-Med (Li et al.,
2024b) and BiomedGPT (Zhang et al., 2024) pio-
neered innovations, with BiomedGPT training on
271,803 image-text pairs. While MedDr (He et al.,
2024) and STLLaVA-Med (Sun et al., 2024) ad-
vanced healthcare applications, histopathology re-
mained underserved. PathChat (Lu et al., 2023),
adapted from LLaVA and fine-tuned on 450k in-
struction pairs, later outperformed GPT-4V in

pathology tasks. Quilt-LLaVA (Seyfioglu et al.,
2024), trained on the Quilt-instruct dataset and
Quilt-VQA’s 107,131 QA pairs, further advanced
pathology capabilities. Meanwhile, Xie et al. pro-
posed the MedTrinity-25M dataset and used this
dataset to pretrain LLaVA, surpassing represen-
tative SOTA multimodal large language models.
However, challenges like high construction costs
and alignment issues persist. Thus, we propose
a self-creation stage to synthesize preference data
automatically.

2.2 Preference Learning in LVLM

Preference learning is essential for developing ef-
fective (Gorbatovski et al., 2024), safe (Dai et al.,
2023), and trustworthy (Yu et al., 2024) mod-
els. It typically follows an instruction-following
stage, where models are fine-tuned using human
input. Cui et al. propose a data-centric frame-
work, Biomedical Visual Instruction Tuning with
Clinician Preference Alignment (BioMed-VITAL),
that incorporates clinician preferences into both
stages of generating and selecting instruction data
for tuning biomedical multimodal foundation mod-
els. Reinforcement Learning with Human Feed-
back (RLHF) (Ouyang et al., 2022) is a widely
used method, involving a reward model trained
on human preferences to guide policy optimiza-
tion. Since RLHF is complex and unstable, requir-
ing reward model training and fine-tuning of large
unsupervised models to maximize rewards, sev-
eral RLHF variants have been developed, includ-
ing Direct Policy Optimization (DPO) (Rafailov
et al., 2024), Proximal Policy Optimization (PPO)
(Schulman et al., 2017), and Reinforcement Learn-
ing from AI Feedback (RLAIF) (Bai et al., 2022).
DPO simplifies the process by bypassing the re-
ward model and directly learning policies, reduc-
ing complexity and often outperforming PPO. Zhu
et al. propose MMedPO, a novel multimodal medi-
cal preference optimization approach that considers
the clinical relevance of preference samples to en-
hance Med-LVLM alignment. In this work, we
propose EAGLE to iteratively align specially for
pathology LVLMs with preference data optimized
by DPO.

3 Methods

In Fig. 2, we propose EAGLE (Expert-guided
self-enhancement for preference Alignment in
patholoGy Large vision-languagE model), a novel
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Figure 2: Overview of EAGLE, a pathology LVLM
framework integrating expert knowledge for preference
alignment through three stages, i.e. (1) initialization for
initial instruction tuning, (2) self-preference creation for
expert-guided preference data generation, and (3) pref-
erence following-tuning for iterative alignment, with
stages 2 and 3 implemented cyclically.

framework that leverages expert knowledge for ef-
ficient preference data generation in pathological
analysis. It consists of three key stages, i.e., Ini-
tialization, Self-Preference Creation, and Prefer-
ence Following-Tuning stages. Firstly, the initial-
ization stage trains a seed LVLM through SFT on
instruction-following datasets to obtain an LVLM-
SFT model with basic pathological understanding
and interaction capabilities. Then, a self-preference
creation stage utilizes an expert-verified chosen
sampling and expert-guided rejected sampling mod-
ules to generate preference data, i.e. chosen and
rejected samples, respectively. With the chosen
and rejected samples, the preference following-
tuning stage leverages DPO to align the LVLM-
SFT model with the constructed preference data
to obtain the LVLM-PFT model. The second and
third stages are implemented iteratively to improve
the preference alignment, as shown in Algorithm 1.

3.1 Initialization

The initialization stage creates a basic LVLM
through supervised fine-tuning on pathological in-
struction data from (Seyfioglu et al., 2024). The
model combines a Vicuna-based LLM (Chiang
et al., 2023b) (fϕ(·)) with a QuiltNet (Ikezogwo
et al., 2024) visual encoder, connected via a projec-
tion layer. Joint optimization of these components
using the instruction dataset produces an initial
LVLM-SFT model πθ capable of basic pathologi-
cal query interpretation.

Algorithm 1 EAGLE Pipeline

1: Input: Instruction following data
2: Output: Enhanced LVLM πpre
3: Stage 1: Initilization
4: IFT_data← Construct_Instruction_Data()
5: πθ ← Supervised_Fine_Tuning(IFT_data)
6: Stage 2: Self-Preference Creation
7: Preference_data ←

Create_Preference_Dataset(πθ)
8: Stage 3: Preference Following-Tuning (PFT)
9: πpre ← PFT(Preference_data)

10: while Update and Refine do
11: πθ ← πpre
12: Stage 2
13: Stage 3
14: end while
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Figure 3: Expert-verified chosen sampling to generate
chosen responses through pathological prompts.

3.2 Self-Preference Creation
Due to the scarcity of preference data in pathol-
ogy, we introduce a novel Self-Preference Cre-
ation stage to leverage expert knowledge to effi-
ciently generate high-quality preference data at a
low cost, avoiding time-consuming manual annota-
tions from medical professionals. It consists of an
expert-verified chosen sampling and expert-guided
rejected sampling modules, which generate the cho-
sen and rejected responses respectively to construct
the preference training data. Formally, the prefer-
ence dataset D consists of N samples, where each
sample contains an image Xi and a question Qi

paired with two responses: a chosen response Ac
i

and a rejected response Ar
i :

D = {Qi,A
c
i ,A

r
i }Ni=1, (1)

where Ac
i is generated through expert-verified cho-

sen sampling and Ar
i through expert-guided re-

jected sampling.
Expert-Verified Chosen Sampling (EVCS). In
Fig. 3, the expert-verified chosen sampling module
is designed to generate high-quality responses for
pathological diagnosis. We use the LVLM-SFT πθ
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Figure 4: Self-preference creation stage to generate rejected responses with expert guidance.

to generate the chosen response Ac
i by prompting

the model to “role-play" as a domain expert,

Ac
i = πθ(Xi,Q,Pc), (2)

where Pc is a crafted prompt template that instructs
the model to adopt the persona of a knowledgeable
expert in pathological diagnosis. Please see Ap-
pendix D for details.
Expert-Guided Rejected Sampling (EGRS). In
Fig. 4, we propose an expert-guided rejected sam-
pling module to utilize multiple experts to analyze
the pathological findings of the input image and
further generate rejected responses based on the
findings.

Concretely, given an input image Xi, we extract
patches for Xi and establish a pathology expert
panel to screen the abnormality of each patch Xj

i ,
where j indicates the j-th patch of the input image.
The pathology expert panel consists of four patho-
logical expert models, including UNI (Chen et al.,
2024), CTransPath (Wang et al., 2022), Enhanced
ViT (Ding et al., 2023), and Phikon (Filiot et al.,
2023). These models are either trained on large-
scale pathology datasets or trained for tumor/no-
tumor binary classification, showing strong repre-
sentation ability and zero-shot generalization capa-
bility. Each expert model provides the decision on
the presence of tumors for each patch. To provide
overall pathological findings, we perform a major-
ity vote on the decisions from all the expert models.
Then, we generate the rejected response based on
the presence of the tumor. When the input image
contains tumor regions, we generate a mask image
M that indicates the tumor patches, and perform
element-wise multiplication betweenM and Xi to
generate a masked input image (M⊙Xi). With

the masked image, LVLM-SFT generates a rejected
response:

Ar
i = πθ(M⊙Xi,Q,Pr), (3)

where prompt Pr is designed to guide the model
in generating responses that maintain pathological
relevance while introducing controlled semantic
deviations. Please see Appendix D for details.

For images without tumor regions, we first ap-
ply a Medical Named Entity Recognition (NER)
model (Mattupalli, 2025) to identify pathologi-
cal entities in both the chosen response and the
ground-truth (GT) answer. We then perform exact
matching between the entities of the chosen re-
sponse Ec and GT answer Egt to identify matched
and unmatched entities: Ec = {Ec

m,Ec
u}, Egt ={

Egt
m,Egt

u

}
, where m and u denote ‘matched’ and

‘unmatched’, respectively. To generate the rejected
response, we replace matched entities Ec

m from the
chosen response with unmatched entities Egt

u from
the GT answer, creating a synthetic response that
introduces controlled inaccuracies while maintain-
ing pathological coherence. These perturbations
are carefully designed to reflect realistic diagnostic
errors, ensuring that the rejected samples maintain
a high degree of relevance to real-world scenarios.
Finally, we refine this synthetic response through
LVLM-SFT to improve its coherence, yielding the
final rejected response. This approach ensures re-
jected responses contain plausible but incorrect di-
agnostic information, providing effective training
signals for preference optimization.

By adopting the self-preference creation stage,
we construct a preference dataset with more than
150k paired data for preference alignment, helping
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the model to solve problems such as multimodal
hallucination and biased responses.

3.3 Preference Following-Tuning

Aiming to align the SFT-tuned LVLM (LVLM-
SFT) with the synthetic preference data, we in-
troduce Preference Following-Tuning (PFT) to
learn from the preference data iteratively. Specif-
ically, we adopt Direct Preference Optimization
(DPO) (Rafailov et al., 2024) to implement pref-
erence alignment, which can be viewed as a
new parameterization of the reward model in
RLHF (Reinforcement Learning from Human Feed-
back) (Ouyang et al., 2022) that can directly opti-
mize the policy model πpre. The policy model is
optimized as follows:

Ldpo(πpre;πθ) = −E(m,Ac
i ,A

r
i )∼D[

log σ(βlog
πpre(A

c
i |m)

πθ(A
c
i |m)

− β log
πpre(A

r
i |m)

πθ(A
r
i |m)

)
]
,

(4)

where m = (Xi,Q), and is the input to the LVLM
πpre. πpre and πθ denote policy model and refer-
ence model, respectively. D represents our pref-
erence dataset, and logσ stands for log-sigmoid
function. This objective function is designed to
train the reward and policy models concurrently,
skewing the reward model to favor the chosen re-
sponse and reject the rejected response.

To enhance the quality of preference alignment,
we implement stages 2 and 3 alternately, allow-
ing iterative refinement of both chosen and rejected
responses using the progressively improved LVLM-
PFT model. This creates a positive feedback loop
where preference dataset evolves alongside model
improvements, leading to enhanced response qual-
ity and more effective preference alignment.

4 Experiments

4.1 Implementation Details

For Supervised Fine-Tuning (SFT), we adopt deep-
speed ZeRO stage-3 (Liu et al., 2024a) during
SFT. The total epoch, batch size, learning rate,
and weight decay are set as 1, 128, 2e-4, and 0,
respectively. The hyper-parameters of lora γ and
α are set as 128, 256. For Preference Following-
Tuning (PFT), we adopt deepspeed ZeRO stage-3
(Liu et al., 2024a) during PFT with DPO. The total
epoch, batch size, learning rate, and weight decay

are set as 1, 128, 2e-6, and 0, respectively. The
hyper-parameters of lora γ and α are set as 128,
256, and the scale parameter β in DPO is fixed
as 0.1. During these stages, the visual encoder is
frozen, and the project layer and LLM are trainable.

4.2 Datasets
We evaluate EAGLE on pathological datasets:
PathVQA(He et al., 2020), Quilt-VQA (Q-VQA),
Quilt-Red (Q-Red), Quilt-Nored (Q-NoRed), and
Quilt-conversation (Seyfioglu et al., 2024), across
three tasks: Visual Question Answering (VQA),
VQA with visual prompting, and multi-modal con-
versation. PathVQA and Q-VQA assess VQA
performance, Q-Red and Q-NoRed evaluate vi-
sual prompting, and Quilt-conversation tests multi-
modal conversations.
PathVQA (He et al., 2020) contains 32,799
question-answer pairs extracted from 4,998
pathology image-caption pairs sourced from
textbooks and digital libraries. For our evaluation,
we utilized 3,370 open-instructions from the
evaluation set.
Quilt-VQA (Seyfioglu et al., 2024) consists of
1,283 pairs which are categorized into two groups,
1,055 image-dependent pairs that reference the nar-
rator’s specific image and 228 general-knowledge
pairs rooted in broader medical understanding.
Quilt-Red (Q-Red) and Quilt-Nored (Q-
NoRed) (Seyfioglu et al., 2024) are construct
based on Quilt-VQA. Quilt-Red (Q-Red) is
constructed by selecting a subset of Quilt-VQA,
and creating red ellipses in the input image to
provide visual guidance for the question. The
instructions in Q-Red contain ‘Tip: Focus on
image areas highlighted by the red circle(s)’, while
Quilt-Nored (Q-NoRed) does not contain this
instruction and red ellipses in the input image.
They both have 426 images and 439 instructions.
Quilt-conversation (Seyfioglu et al., 2024) com-
prises 14 subtypes and 326 questions, including
256 conversations and 70 detailed descriptions, as
detailed in Table 10. It is named instruction follow-
ing test set in the Quiltllava work (Seyfioglu et al.,
2024).

4.3 Results on Visual Question Answering
Quantitative results. Table 2 presents a compre-
hensive comparison between our EAGLE and ex-
isting LVLMs, including LLaVA (Liu et al., 2024b)
for general scenes, LLaVA-Med (Li et al., 2024b),
STLLaVA-Med(Sun et al., 2024), MMedPO (Zhu
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Table 2: Quantitative evaluation of VQA and VQA with
visual prompting (VQA w/ V.P.) tasks. Q-VQA, Q-
Red, Q-NoRed, and Avg denote Quilt-VQA, Quilt-Red,
Quilt-NoRed, and average recall, respectively.

LVLMs
VQA (%) VQA w/ V.P.(%)

Avg
PathVQA Q-VQA Avg Q-Red Q-NoRed Avg

LLaVA 11.68 53.66 32.67 55.48 55.01 55.25 43.96
LLaVA-Med 8.20 49.63 28.92 50.11 47.91 49.01 38.97

STLLaVA-Med 12.06 56.60 34.33 58.23 54.72 56.48 45.41
Quilt-LLaVA 13.24 54.62 33.93 55.68 52.84 54.26 44.10

MMedPO 8.94 48.94 28.94 42.35 47.79 45.07 37.00
MMed-RAG 8.03 48.71 28.37 50.16 48.33 49.24 38.80

EAGLE 15.80 66.42 41.11 64.95 64.21 64.58 52.85

et al., 2024a) and MMed-RAG (Xia et al., 2024)
for medical scenes, and Quilt-LLaVA (Seyfioglu
et al., 2024) for pathology-specific scenes. Our
EAGLE achieves superior performance with an
average recall of 41.11% on PathVQA and Quilt-
VQA (Q-VQA) datasets, surpassing the second-
best performer STLLaVA-Med by 6.78%. De-
spite PathVQA being a challenging dataset with
low overall performance across all models, EA-
GLE still achieves the best result of 15.80%. On
Quilt-VQA, it also demonstrates strong capabil-
ity with 66.42% recall, validating its effectiveness
in understanding and answering questions about
pathological images.

Qualitative results. In Table 3, we present a
comparative analysis of different LVLMs on a
histopathology VQA example. When asked about
NSIP characteristics, LLaVA completely misinter-
prets the condition, incorrectly associating it with
liver disease rather than lung pathology. Quilt-
LLaVA shows improvement by correctly identi-
fying NSIP as a lung condition and recognizing
its uniform appearance, though it still includes
some imprecise descriptions of pathological fea-
tures. In contrast, EAGLE demonstrates superior
understanding by providing a comprehensive and
accurate description of NSIP’s histopathological
features, particularly emphasizing the uniform pat-
tern of interstitial changes and correctly differen-
tiating it from UIP, which aligns closely with the
ground truth. This shows EAGLE’s enhanced ca-
pability in interpreting complex medical images
and providing more precise, clinically relevant re-
sponses compared to existing approaches. Please
see Appendix Table 9 for more details.

Table 3: Qualitative comparison of different LVLMs in
VQA task on QuiltVQA dataset. Green for correct and
red for wrong.

Input example, Histopathology Image and Question:

User

What characterizes the cases of NSIP?

LLaVA The cases of NSIP (Nonalcoholic Steatohep-
atitis) are characterized by the presence of in-
flammation and fibrosis in the liver.

Quilt-LLaVA In the cases of Non-Specific Interstitial Pneu-
monia (NSIP), there are several key features
to note. NSIP is characterized by a uniform
or ‘non-patchy’ appearance, which is a dis-
tinguishing factor from other interstitial lung
diseases. This uniformity is seen in the image
as a consistent pattern of interstitial inflamma-
tion and fibrosis.

EAGLE The histopathological features of NSIP can
vary widely, but they typically include a uni-
form pattern of interstitial inflammation and
fibrosis, with no significant architectural dis-
tortion or honeycombing. The fibrosis in NSIP
is usually uniform and lacks the characteristic
features of usual interstitial pneumonia (UIP),
such as a patchy distribution and fibroblastic
foci.

Ground-Truth NSIP cases are characterized by uniform ex-
pansion of the alveolar septa. It’s a very homo-
geneous process in contrast to cases of UIP.

4.4 Results on VQA with Visual Prompting

We evaluate our method in VQA with the visual
prompting task on the Quilt-Red (Q-Red) and Quilt-
Nored (Q-NoRed) (Seyfioglu et al., 2024) datasets.
The Q-Red dataset contains images with red el-
liptical annotations that highlight key contextual
regions. In contrast, Q-NoRed images lack these vi-
sual guides, presenting a more challenging scenario
for visual prompting.
Quantitative results. In Table 2, we quantitatively
evaluate our EAGLE and other LVLMs on VQA
with visual prompting (VQA w/ V.P.) task. EA-
GLE demonstrates consistent superior performance
across both Q-Red and Q-NoRed datasets, achiev-
ing 64.95% and 64.21% recall respectively. Most
notably, the minimal performance gap (0.74%) be-
tween Q-Red and Q-NoRed scenarios indicates
EAGLE’s robust ability to understand and rea-
son about visual content, even without explicit
visual prompts. This is in stark contrast to pre-
vious methods, which typically show larger perfor-
mance degradation when visual guides are removed.
For instance, STLLaVA-Med drops by 3.51% and
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Quilt-LLaVA by 2.84%, suggesting that our ap-
proach particularly excels at bridging the gap be-
tween medical visual understanding and language
reasoning. These results collectively demonstrate
EAGLE’s effectiveness in maintaining consistent
performance across varying levels of visual guid-
ance, indicating a more fundamental improvement
in visual-language understanding rather than mere
reliance on visual prompts.
Qualitative results. Table 4 compares EA-
GLE with existing LVLMs on the Q-Red dataset.
LLaVA’s response shows limited understanding,
incorrectly identifying bile ducts where none are
prominently featured. While Quilt-LLaVA pro-
vides a more detailed explanation and correctly
identifies bile accumulation, it includes inaccurate
observations about hepatocyte appearance. EA-
GLE not only correctly identifies the cholestatic
pattern but also accurately associates it with drug
toxins, aligning closely with the ground truth.
This exemplifies EAGLE ’s exceptional vision-
language understanding capabilities, where the it-
erative preference training enables the model to
capture subtle pathological features and provide
nuanced medical interpretations that are both accu-
rate and clinically relevant. Please see Appendix
Table 11 for details.

4.5 Results on Multi-Modal Conversation
We evaluate EAGLE and other LVLMs in multi-
modal conversation task on the Quilt-conversation
dataset, and use relative score (Seyfioglu et al.,
2024) and Elo rating (Chiang et al., 2024) as met-
rics. In the relative score, Table 5 shows EA-
GLE achieves the best performance with an overall
score of 69.5, surpassing Quilt-LLaVA (68.8) and
LLaVA (51.5). For conversational questions, EA-
GLE scores 72.7, improving over Quilt-LLaVA
(72.0) and LLaVA (55.0). On descriptive questions,
it maintains competitive performance at 58.8, com-
parable to Quilt-LLaVA (58.4) and significantly
above baselines. Across medical sub-domains,
EAGLE demonstrates consistent superiority, with
highest scores in Bone (81.0), Gynecologic (76.1),
and Head and Neck (75.6) pathology. Notable im-
provements appear in challenging areas like Neu-
ropathology (67.9 vs Quilt-LLaVA’s 61.7). De-
tailed results are in Appendix Table 10. These
results validate EAGLE’s effectiveness in both gen-
eral multi-modal conversation and specialized med-
ical understanding. In Elo rating, we compare re-
sponses generated by different LVLMs and record

Table 4: Qualitative comparison in VQA with the visual
prompting task on Q-Red dataset. Green for correct and
red for wrong.

Input example, Histopathology Image and Question:

User

What is the pattern of cholestatic hepatitis
associated with ? Tip: Focus on image areas

highlighted by the red circle(s).

LLaVA The pattern of cholestatic hepatitis associated
with the red circle(s) in the image is character-
ized by the presence of numerous small bumps
or bile ducts.

Quilt-LLaVA The highlighted areas in the image, as indi-
cated by the red circle(s), show a pattern of
cholestatic hepatitis. This condition is charac-
terized by the accumulation of bile within the
liver due to impaired bile flow. The hepato-
cytes in these areas may appear swollen and
have a pale, granular cytoplasm. The presence
of cholestasis can be inferred from the pres-
ence of these features.

EAGLE The image shows a pattern of cholestatic hep-
atitis, which is characterized by the presence
of bile within the hepatocytes. This may be
related to drugs and drug toxins. The pattern
of cholestatic hepatitis is typically associated
with a variety of liver diseases.

Ground-Truth The pattern of cholestatic hepatitis seen in the
image is associated with drug and medication
toxins, as well as hepatitis A and E, as these
can produce cholestatic injury features.

the preferred reponses via GPT-4, which gives us
a record of the winning rate between pairs of dif-
ferent LVLMs. In Fig. 5, EAGLE wins in the
pairwise comparison with a score of 1,079, sug-
gesting its superority to existing methods.

4.6 Ablation Studies

To prove the effectiveness of each stage, we ablate
stages 2 (self-preference creation) and 3 (prefer-
ence following-tuning) of our EAGLE. Table 6
shows that removing stages 2 and 3 decreases the
performance significantly across all the datasets,
indicating their effectiveness. To further analyze
the effectiveness of the number of iterations (#It-
eration) for stages 2 and 3, we compare the per-
formance of EAGLE from 1 to 4 iterations. As
shown in Table 6, performance improves in the
first 2 iterations, notably on PathVQA and Q-VQA.
Marginal gains are seen in the 3rd iteration for
some tasks, while the 4th leads to overall declines.
This suggests that stages 2 and 3 can gradually
improve the LVLMs in pathological tasks through
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Table 5: Quantitative comparison on the Quilt-conversation dataset, using the relative score via GPT-4 evaluation.
Question type includes conversation (Conv) and detailed description (Desc). Sub-domain contains 14 domains. The
number of each sub-domain is shown in brackets.

LVLMs
Question Types Sub-Domains

OverallConv
(256)

Desc
(70)

Bone
(25)

Breast
(23)

Cyto
(23)

Gastro
(23)

Gyne
(22)

H&N
(24)

Neuro
(24)

Pulm
(25)

Soft
(25)

LLaVA (Liu et al., 2024b) 55.0 40.0 51.5 55.2 44.8 47.9 58.3 56.4 59.4 45.1 54.2 51.5
LLaVA-Med (Li et al., 2024b) 61.8 42.9 58.5 63.5 51.7 50.3 57.8 64.1 58.2 53.2 61.0 57.4

STLLaVA-Med (Sun et al., 2024) 69.1 47.9 69.4 67.1 50.9 63.9 65.8 73.2 63.5 53.7 69.4 64.2
Quilt-LLaVA (Seyfioglu et al., 2024) 72.0 58.4 77.4 75.1 59.8 59.3 61.0 70.4 61.7 56.4 80.5 68.8

EAGLE 72.7 58.8 81.0 75.8 60.3 59.7 76.1 75.6 67.9 59.6 81.0 69.5
Abbreviation: Cytopathology and Hepatopathology (Cyto), Gastrointestinal (Gastro), Gynecologic (Gyne), Head and Neck (H&

N), Neuropathology (Neuro), Pulmonary (Pulm), and Soft tissue (Soft).

Figure 5: Elo rating comparison among LVLMs.

Table 6: Ablation Studies. Q-VQA, Q-Red, and Q-
NoRed represent Quilt-VQA, Quilt-Red, and Quilt-
NoRed, respectively.

Stage 1 Stage 2&3 #Iteration
Datasets

Average
PathVQA Q-VQA Q-Red Q-NoRed

QuiltNet-B-32, Vicuna 7B Language Model
✓ 13.53 55.84 49.37 52.78 42.88
✓ ✓ 1 13.96 64.14 63.43 62.07 50.90
✓ ✓ 2 15.80 66.42 64.95 64.21 52.85
✓ ✓ 3 15.80 66.89 65.33 64.53 53.13
✓ ✓ 4 13.24 65.22 62.85 62.60 50.97

QuiltNet-B-32, Mistral 7B Language Model
✓ 12.61 55.40 53.24 43.99 41.31
✓ ✓ 1 13.42 56.50 61.45 60.24 47.90
✓ ✓ 2 13.96 57.02 62.27 63.24 49.14

iterations of preference training. The number of
iterations is best controlled at 2-3 times, and too
many iterations may cause overfitting. Moreover,
we further compare our performance when using
different language models, e.g. Vicuna 7B (Chiang
et al., 2023b) and Mistral 7B (Jiang et al., 2023).
The results show that the Vicuna 7B outperforms
the Mistral 7B overall.

Table 7 shows the ablation study in different sam-
pling strategies. When ablating EGRS by introduc-
ing random noise to generate rejected samples, the
performance across all four datasets decreases sig-

Table 7: Performance under different sampling strate-
gies.

EVCS EGRS
Datasets

Average
PathVQA Q-VQA Q-Red Q-NoRed

X X 12.85 56.85 57.08 57.65 46.10
✓ X 13.05 62.54 62.85 61.26 49.92
✓ ✓ 13.96 64.14 63.43 62.07 50.90

nificantly, highlighting the critical role of EGRS in
generating high-quality rejected responses. While
GT answers are available, we utilize LVLM-SFT to
generate the "chosen" responses in preference pairs
because the model, after supervised fine-tuning, is
capable of producing clear and accurate responses
that align closely with GT answers. Additionally,
the model-generated answers often provide more
context or explanatory detail than the GT, enhanc-
ing the quality of the "chosen" samples. The results
also demonstrate the significant contributions of
EVCS in preference data creation.

5 Conclusion

In this paper, we presented EAGLE, a novel frame-
work for enhancing pathology-focused LVLMs
through expert-guided preference alignment. EA-
GLE addresses multimodal hallucination and bi-
ased responses through a three-stage approach that
generates high-quality preference data without ex-
tensive manual expert annotation. Extensive exper-
iments across multiple pathology datasets demon-
strate EAGLE’s superiority over existing LVLMs,
achieving the best performance in visual ques-
tion answering, visual prompting tasks, and multi-
modal conversations.
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Limitations

Although our method achieved promising experi-
mental results, it was primarily designed for pathol-
ogy applications. While the model demonstrates
strong performance in pathology analysis, its gen-
eralization capabilities across different imaging
modalities require enhancement. Future research
should focus on expanding the model’s adaptability
to various medical imaging modalities and validat-
ing its cross-modal effectiveness.
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Appendix for EAGLE

Abstract. In this appendix, we provide addi-
tional information about the proposed EAGLE.
Appendix A illustrates additional experiments of
the proposed EAGLE with human evaluation. Ap-
pendix B shows the extra qualitative result on Quilt-
VQA. Appendix C provides more results on in-
struction alignment. Appendix D demonstrates the
prompts for self-preference creation. Appendix E
discusses the reliability of rejected samples.

A Human Evaluation

In this section, we evaluate the performance by
a human evaluation involving 5 users, each was
asked to rank 5 LVLMs among 84 cases. This study
assesses whether the answer meets the instructions
and complies with the doctor’s behavior. The rank-
ing was awarded 5 points for first place, which
decreased to 1 point for fifth place. As shown in
Table 8, EAGLE emerged as the top performer
with an average score of 3.76, followed by Quilt-
LLaVA (3.20), LLaVA-Med (2.90), LLaVA (2.67),
and STLLaVA-Med (2.46). Specifically, in Fig.
6, EAGLE showed the best overall performance,
ranking first 193 times, significantly better than
other models. The Quilt-LLaVA model performed
relatively evenly, ranking first 105 times and second
133 times, indicating that the model can maintain
a good performance level in most cases. However,
it still ranked fifth 98 times, indicating that its per-
formance is somewhat unstable. LLaVA-Med and
LLaVA performed poorly overall, with a higher
frequency of ranking at the bottom.

Table 8: Average score for human evaluation.

EAGLE Quilt-LLaVA LLaVA-Med LLaVA STLLaVA-Med

3.76 3.20 2.90 2.67 2.46

Figure 6: Frequency of occurrence of different rankings.

B Example comparison

Visual question answering Table 9 shows the
comparative performance of various LVLMs in

histopathological VQA. It shows a confusing case
of Nonalcoholic Steatohepatitis (NSIP) to verify
the performance of different models. The base
LLaVA model provided a rudimentary identifica-
tion of key features, namely inflammation and fi-
brosis, though lacking in diagnostic depth. LLaVA-
Med, while acknowledging the diagnostic chal-
lenges, emphasized the absence of specific histo-
logical features, potentially reflecting a more cau-
tious clinical approach. Notably, the response of
STLLaVA-Med deviated significantly from profes-
sional medical discourse, inappropriately incorpo-
rating humor into its interpretation. In contrast,
Quilt-LLaVA exhibited superior performance by
accurately describing the pathological pattern and
distinguishing features, including the characteristic
‘patchy’ appearance and interstitial inflammation
patterns. EAGLE demonstrated the most compre-
hensive analysis, providing detailed observations of
uniform interstitial patterns while correctly noting
the absence of architectural distortion and honey-
comb features.

C More Results on Instruction Alignment

VQA with visual prompting Table 11 shows
cases on the histopathology VQA with visual
prompting on different LVLMs. The models
demonstrated varying levels of descriptive depth
and pathophysiological understanding when pre-
sented with visual prompting questions focusing
on specific regions highlighted by red circles. The
base LLaVA model provided fundamental obser-
vations, identifying bile ducts and morphological
changes, though lacking detailed cellular character-
ization. LLaVA-Med and STLLaVA-Med offered
similar basic descriptions of bile presence, with
STLLaVA-Med specifically noting bile pigment ac-
cumulation. Notably, Quilt-LLaVA demonstrated
superior analytical capability by providing a com-
prehensive description that included specific cel-
lular changes (swollen hepatocytes with granular
cytoplasm), pathophysiological mechanisms (im-
paired bile flow), and the ability to infer cholestasis
from observed features. EAGLE contributed addi-
tional clinical context by linking the histological
findings to potential etiologies, particularly drug
and toxin-related causes while maintaining accu-
rate morphological descriptions.
Instruction Alignment Table 12 shows the com-
parison of different LVLMs on instruction align-
ment. The evaluation was implemented to assess
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Table 9: Example comparison of histopathology visual
question answering on different LVLMs. Green for
correct and red for wrong.

Input example, Histopathology Image and Question:

User

What characterizes the cases of NSIP?

LLaVA The cases of NSIP (Nonalcoholic
Steatohepatitis) are characterized by the
presence of inflammation and fibrosis
in the liver.

LLaVA-Med The cases of NSIP (nonspecific inter-
stitial pneumonia) are characterized by
a lack of specific histological features.
This makes it difficult to accurately di-
agnose NSIP based solely on histologi-
cal examination.

STLLaVA-Med The image shows a histopathy of NSIP,
which stands for ḧistopathy of normal
pulmononium.Ït is important to note
that this is a play on words, not a med-
ical condition. The image is meant to
be humorous and should not be taken
literally.

Quilt-LLaVA In the cases of Non-Specific Intersti-
tial Pneumonia (NSIP), there are sev-
eral key features to note. NSIP is char-
acterized by a uniform or ’non-patchy’
appearance, which is a distinguishing
factor from other interstitial lung dis-
eases. This uniformity is seen in the
image as a consistent pattern of intersti-
tial inflammation and fibrosis.

EAGLE The histopathological features of NSIP
can vary widely, but they typically in-
clude a uniform pattern of interstitial
inflammation and fibrosis, with no sig-
nificant architectural distortion or hon-
eycombing. The fibrosis in NSIP is usu-
ally uniform and lacks the characteristic
features of usual interstitial pneumonia
(UIP), such as a patchy distribution and
fibroblastic foci.

GT NSIP cases are characterized by uni-
form expansion of the alveolar septa.
It’s a very homogeneous process in con-
trast to cases of UIP.

the performance of various LVLMs against GPT-
generated responses in histopathological image in-
terpretation. During the evaluation process, each
LVLM will receive two scores (model score / GPT
score) and the evaluation basis will be given. Sig-
nificant variations in diagnostic reasoning and re-
sponse quality were observed in this comparative
analysis of LVLMs addressing histopathological
assessment of giant cell presence. The evaluation
focused on the models’ ability to interpret the ab-
sence of giant cells and its diagnostic implications.
LLaVA and LLaVA-Med provided basic interpreta-
tions but demonstrated limited clinical reasoning,
with scores of 4/8 reflecting their inaccurate and
incomplete analysis. STLLaVA-Med showed im-
proved understanding by discussing fibroblastic
implications, though lacks relevance to the diag-
nosis. A notable advancement was observed in
Quilt-LLaVA’s response (7/8), which demonstrated
sophisticated clinical reasoning by incorporating
cellular architecture considerations and broader his-
tological context. However, the explanation was
less focused and introduced additional considera-
tions. EAGLE achieved the highest score (9/8),
providing the most comprehensive analysis by inte-
grating multiple diagnostic aspects, including ab-
normal cell shapes, tissue arrangements, and the
importance of whole-slide examination. The model
particularly excelled in emphasizing the need for
comprehensive tissue examination and additional
clinical correlation.

D Self-Preference Creation

The prompt of the expert-verified chosen sam-
pling is carefully crafted by the pathologi-
cal expert. The prompt Pc is structured as:
You are an AI assistant who specializes

in pathological diagnosis questions and

answers. Please generate a high-quality
answer to the questions.

The prompt Pr of the expert-guided rejected
sampling is defined as: Please generate a

low-quality-answer to the question, that
is highly relevant but not semantically

identical to the questions above from the

user.

E Reliability of rejected samples

It is important to note that the preference learn-
ing framework is designed to leverage the relative
quality differences between the “chosen” and “re-
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Table 10: Performance comparison of LVLM instruction alignment abilities, measured by the relative score
via GPT-4 evaluation. Question type mainly consists of conversation and detailed description. Sub-domain
contains Bone, Breast, Cytopathology and Hepatopathology (Cyto), Dermatopathology (Derm), Endocrine (Endo),
Gastrointestinal (Gastro), Genitourinary (Geni), Gynecologic (Gyne), Head and Neck (H& N), Hematopathology
(Hema), Neuropathology (Neuro), Pulmonary (Pulm), Renal, and Soft tissue (Soft). The number of each subdomain
is shown in brackets.

LVLMs Question Types Sub-Domains Overall

Conv

(256)

Desc

(70)

Bone

(25)

Breast

(23)

Cyto

(23)

Derm

(21)

Endo

(23)

Gastro

(23)

Geni

(23)

Gyne

(22)

H&N

(24)

Hema

(22)

Neuro

(24)

Pulm

(25)

Renal

(23)

Soft

(25) (326)

LLaVA (Liu et al., 2024b) 55.0 40.0 51.5 55.2 44.8 48.2 54.4 47.9 50.9 58.3 56.4 47.2 59.4 45.1 48.8 54.2 51.5

LLaVA-Med (Li et al., 2024b) 61.8 42.9 58.5 63.5 51.7 66.2 46.2 50.3 61.2 57.8 64.1 55.6 58.2 53.2 59.8 61.0 57.4

STLLaVA-Med (Sun et al., 2024) 69.1 47.9 69.4 67.1 50.9 72.8 62.2 63.9 67.9 65.8 73.2 56.5 63.5 53.7 65.9 69.4 64.2

Quilt-LLaVA (Seyfioglu et al., 2024) 72.0 58.4 77.4 75.1 59.8 75.4 79.9 59.3 78.4 61.0 70.4 64.9 61.7 56.4 66.5 80.5 68.8

EAGLE 72.7 58.8 81.0 75.8 60.3 66.9 66.3 59.7 73.9 76.1 75.6 64.3 67.9 59.6 65.9 81.0 69.5

Table 11: Example comparison of histopathology VQA
with visual prompting on different LVLMs. Green for
correct and red for wrong.

Input example, Histopathology Image and Question:

User

What is the pattern of cholestatic hepatitis
associated with ? Tip: Focus on image areas

highlighted by the red circle(s).

LLaVA The pattern of cholestatic hepatitis associated
with the red circle(s) in the image is character-
ized by the presence of numerous small bumps
or bile ducts.

LLaVA-Med The pattern of cholestatic hepatitis associated
with is characterized by the presence of bile
ducts, which are marked by the red circle(s) in
the image.

STLLaVA-Med The pattern of cholestatic hepatitis in this im-
age is associated with the presence of bile pig-
ment granules in the portal tracts. These gran-
ules are visible in the image areas highlighted
by the red circle(s).

Quilt-LLaVA The highlighted areas in the image, as indi-
cated by the red circle(s), show a pattern of
cholestatic hepatitis. This condition is charac-
terized by the accumulation of bile within the
liver due to impaired bile flow. The hepato-
cytes in these areas may appear swollen and
have a pale, granular cytoplasm. The presence
of cholestasis can be inferred from the pres-
ence of these features.

EAGLE The image shows a pattern of cholestatic hep-
atitis, which is characterized by the presence
of bile within the hepatocytes. This may be
related to drugs and drug toxins. The pattern
of cholestatic hepatitis is typically associated
with a variety of liver diseases.

Ground-Truth The pattern of cholestatic hepatitis seen in the
image is associated with drug and medication
toxins, as well as hepatitis A and E, as these
can produce cholestatic injury features.

jected” responses, rather than relying solely on the
absolute correctness of the “chosen” samples. Di-
rect Preference Optimization (DPO), in particular,
demonstrates strong robustness to noise and label
inconsistencies through several key properties:
Noise Samples Have Local Impact: DPO only
uses pairwise preference comparisons, so a misla-
beled pair affects only the loss from that specific
comparison. It does not distort the absolute scores
or global preference structure. The loss function
for a noisy pair is given as:

Lnoisy = − log σ (−β (log πθ(y
w|x)

− log πθ(y
l|x)

))
(5)

where the flipped gradient only affects the local
direction for the specific triple (x, yw, yl). The rest
of the dataset remains unaffected.
Correct Preferences Outweigh Noisy Ones:
Since DPO relies on many preference pairs, noisy
labels are diluted by the majority of correct com-
parisons. The model’s update direction reflects the
dominant preference signal. The update direction
for the model parameters is computed as:

∇θLDPO = −β (σ(β∆)− 1)∇θ∆

where ∆ = log πθ(y
w|x)− log πθ(y

l|x) (6)

Even if some ∆ < 0 due to noise, most updates
push in the correct direction when ∆ > 0 domi-
nates.
DPO Is Inherently Robust to Label Scale Bias:
Unlike reward modeling or pointwise RLHF meth-
ods, DPO does not require consistent or absolute
reward values. It only compares preference direc-
tion via log-ratios:

∆R(x) ∝ log πθ(y
w|x)− log πθ(y

l|x) (7)
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Table 12: Example comparison of histopathology VQA with GPT evaluation. Each LVLM will receive two scores
(model score / GPT score). GPT’s analysis of generated answers is highlighted.

Input example, Histopathology Image and Question:

Gen .Answer Score Analysis

User

How common is it to observe acanthosis in large tumors, and what does its presence signify?

LLaVA The absence of giant cells in the area of the image implies
that the diagnosis might be different from what was initially
suspected. Giant cells are often associated with certain dis-
eases, such as giant cell arteritis or temporal arteritis, which
are inflammatory conditions affecting the blood vessels.
However, the absence of giant cells in this area suggests
that the diagnosis might be more accurate or that the pathol-
ogist has identified a different condition. It is essential to
consider other factors, such as the patient’s symptoms, med-
ical history, and additional diagnostic tests, to confirm the
correct diagnosis.

4/8 Assistant 2, on the other hand, provides an inaccurate and
less relevant response. It incorrectly suggests that the ab-
sence of giant cells might imply a different diagnosis, such
as giant cell arteritis or temporal arteritis, which are un-
related to giant cell tumors of bone. This response lacks
accuracy and relevance to the context of the question,
which is specifically about giant cell tumors of bone. Ad-
ditionally, it introduces unrelated conditions, which could
confuse the reader. Overall, Assistant 1’s response is more
aligned with the context and question, leading to a higher
score.

LLaVA-
Med

The absence of giant cells in this area suggests that the
diagnosis of giant cell tumor (GCT) may not be accurate.
GCT is a type of bone tumor characterized by the presence
of giant cells. If the diagnosis is incorrect, it may lead to
inappropriate treatment and management of the patient’s
condition.

4/8 Assistant 2, on the other hand, incorrectly suggests that
the absence of giant cells in the area might imply an inac-
curate diagnosis of a giant cell tumor. This is misleading
because it does not take into account the complexity of
histopathological diagnosis, where the presence or absence
of certain features in isolated areas does not solely deter-
mine the diagnosis. This response lacks accuracy and could
lead to misunderstanding, thus receiving a lower score.

STLLaVA-
Med

The absence of giant cells in the histopathological image
suggests that the lesion is likely a benign fibroblastic tu-
mor. Fibroblastic tumors are typically slow-growing, non-
cancerous growths that arise from fibroblasts, which are
cells that produce collagen and other extracellular matrix
components. The absence of giant cells in this area indicates
that the tumor is not malignant and may not be aggressively
invading the surrounding tissue. However, it is important to
consult a healthcare professional for a thorough evaluation
and proper diagnosis of the specific type of fibroblastic tu-
mor and to determine the appropriate course of treatment.

4/8 Assistant 2, on the other hand, incorrectly suggests that the
absence of giant cells implies the lesion is likely a benign
fibroblastic tumor. This is misleading because the absence
of giant cells in one area does not automatically indicate a
different type of tumor. The response lacks accuracy and
relevance to the context of diagnosing a giant cell tumor
of bone. Additionally, it introduces unnecessary infor-
mation about fibroblastic tumors, which is not directly
related to the question. Therefore, Assistant 2’s response
is less helpful and less accurate, resulting in a lower score.

Quilt-
LLaVA

The absence of giant cells in this area is indeed intriguing.
Giant cells are often seen in certain types of tumors, includ-
ing giant cell tumors, which are typically benign. How-
ever, their absence does not necessarily rule out a benign
diagnosis. It’s important to consider the overall cellular
architecture and other histological features. Hint: Consider
the presence of other cell types in the area. For instance, are
there any spindle-shaped cells or any signs of hemorrhage?
Also, think about the patient’s age and symptoms. How
might these factors influence your diagnosis?

7/8 Assistant 2 also offered a relevant response, noting that the
absence of giant cells does not rule out a diagnosis. How-
ever, the explanation was less focused and introduced
additional considerations, such as spindle-shaped cells
and patient factors, which, while potentially useful, were
not directly related to the user’s question about the absence
of giant cells. This made the response slightly less precise
and potentially more confusing for the user. The level of
detail was higher, but not all of it was directly relevant to
the question asked.

EAGLE The absence of giant cells in this area of the histopathology
image is indeed intriguing. Giant cells are often a key
feature in certain types of tumors, such as giant cell tumors.
However, their absence does not necessarily rule out the
possibility of a tumor. It’s important to remember that
the presence or absence of giant cells is just one aspect
of the overall histopathological picture. In the context of
a tumor, the presence of other cellular features such as
abnormal cell shapes, sizes, and arrangements, as well as the
presence of mitotic figures, can be indicative of malignancy.
Additionally, the location of the tumor and its relationship
with surrounding structures can provide valuable clues. In
this case, the absence of giant cells in the area of focus
doesn’t necessarily exclude the possibility of a tumor. It’s
possible that giant cells are present in other areas of the
tissue not visible in this particular image. Therefore, a
comprehensive examination of the whole slide, including
multiple areas of the tissue, would be necessary to make
a definitive diagnosis. In conclusion, while the absence of
giant cells in this area is noteworthy, it doesn’t provide a
definitive diagnosis. Further examination of the whole slide,
along with clinical correlation and possibly additional tests,
would be necessary to confirm the diagnosis.

9/8 Assistant 2 offers a more detailed response, explaining
not only the significance of the absence of giant cells but
also discussing other histopathological features that might
be considered in the diagnosis. It provides a more compre-
hensive view by mentioning the importance of examining
the whole slide and correlating with clinical information.
This response is more informative and better addresses
the complexity of histopathological diagnosis, making it
more helpful and relevant to the user’s question.
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Hence, DPO is invariant to reward scaling or ad-
ditive shifts in reward annotations. This makes it
more robust to subjective or inconsistent human
labels.

To further perform a quantization analysis, we
track the reward progression of “chosen” and “re-
jected” samples during training. As shown in Ta-
ble 13, as training progresses, the reward for chosen
samples increases, while the reward for rejected
samples decreases significantly. This results in a
progressively larger delta between the two. The
growing gap correlates with improved accuracy
from 53% to 89%. These findings suggest that
the reliability of rejected samples has minimal im-
pact on preference training, as the focus is on the
relative quality difference.

Table 13: Reward progression and accuracy improve-
ment during training

Iteration 10 20 50 100

Reward of Chosen Sample 0.0020 0.0025 0.0267 0.0321

Reward of Rejected Sample -0.0160 -0.1911 -2.0880 -6.7071

Delta 0.0180 0.1936 2.1148 6.7392

Accuracy 0.5312 0.8125 0.8281 0.8906
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